
Using Relevance Queries

for Identification of Read-Once Functions

Dmitry V. Chistikov

Faculty of Computational Mathematics and Cybernetics
Moscow State University, Russia

dch@cs.msu.ru

Abstract. A Boolean function is called read-once if it can be expressed
by a formula over {∧,∨, } where no variable appears more than once.
The problem of identifying an unknown read-once function f depending
on a known set of variables x1, . . . , xn by making queries is considered.
Algorithms are allowed to perform standard membership queries and
queries of two special types, allowing to reveal the relevance of variables
to projections of f . Two exact identification algorithms are developed:
one makes O(n2) yes—no queries, and the other makes O(n log2 n) queries
with logarithmically long answers. Information-theoretic lower bound on
the number of bits transferred from oracles to identification algorithms
in the worst case is Ω(n log n).

Keywords: query learning, exact identification, read-once Boolean func-
tion, relevant variable.

1 Introduction

We consider query complexity of exact identification problem for read-once
Boolean functions in a non-standard learning model. A function is called read-
once if it can be expressed by a formula over {∧,∨, } where no variable appears
more than once (a read-once formula, sometimes referred to as µ-formula). Our
algorithms are allowed to perform standard membership queries (MQ), which
reveal the value of the unknown (target) function on a given input vector, and
queries of two special types. The latter answer the following questions about
projections of the target function f : given a projection fp induced by a partial
assignment of variables p,

(RQ) is a variable xi relevant to fp?
(CRQ) how many relevant variables does fp have?

Here the standard definition of relevance for Boolean functions is used — a
variable xi is called relevant if there exists an input vector such that a change in
the value of xi leads to the change in the function’s output. Queries of the first
type (denoted RQ for relevance queries) take arguments p and xi, and queries
of the second type (denoted CRQ for counting relevance queries), take only one

2

argument p. It is easily seen that queries of each type can be simulated with
queries of the other type.

Our main results are as follows. We develop two algorithms (one for each type
of relevance queries) running in polynomial time and identifying an unknown n-
variable read-once function. The first algorithm makes O(n2) membership and
relevance queries (MQ and RQ), and the second algorithm makes O(n log2 n)
membership and counting relevance queries (MQ and CRQ). For each n, both
algorithms can be expressed by deterministic decision trees. The corresponding
information-theoretic lower bounds on query complexity (the number of queries
performed in the worst case) are Ω(n logn) and Ω(n), so the second algorithm is
suboptimal only by a factor of O(log2 n). If we count the number of bits received
from oracles, which answer the queries, instead of the total number of queries,
the second algorithm achieves O(n log3 n) and the lower bound is Ω(n logn).

One can think of several reasons for the study of learning problems in this
model. First of all, relevance queries seem natural to the process of learning.
Imagine a student learning a rule which assigns one of two labels to each con-
ceivable combination of features characterizing possible situations (examples). In
this interpretation, membership queries are requests for a correct classification
of a particular example (combination of features): “If these features are present
and those are not, how do I classify the example?” Relevance queries are ques-
tions of the form: “Suppose that the presence of several features is known; can
this feature affect the correct decision?” Since the teacher (the supervisor) knows
how to apply the rule, he or she can answer the student’s question promptly.
For counting queries, however, it appears more natural to request the whole list
of relevant features instead of their number.

The notion of relevance plays a major role in the study of read-once Boolean
functions. One can observe, for instance, that all read-once functions f having
at least two relevant variables possess the following property: for each relevant
xi there exist a value σ ∈ {0, 1} and another variable xj that is relevant to
f but not to its projection fxi←σ obtained by substituting σ for xi. In 1963,
Subbotovskaya proved a variant of the converse: a function f is read-once if and
only if all its projections fp (including f itself) possess this property [10]. The
list of all minimal non-read-once projections was obtained by Stetsenko [9], who
built upon the criterion of Subbotovskaya.

For various learning problems involving read-once functions, the notion of
relevance also turns out to be of crucial importance. Consider generalized read-
once formulae, in which function symbols (gates) are taken from an arbitrary
set of Boolean functions, called a basis (standard read-once functions are then
read-once over the basis {∧,∨, }). It turns out that for any finite basis the
problem of distinguishing an individual (generalized) read-once function from
all other (generalized) read-once functions over the same basis can be solved
by checking its value on a polynomial number of input vectors, if the set of all
relevant variables is known in advance [12,5]. If, however, this information is
not available a priori, then the complexity of the problem is exponential: for

3

instance, all 2n input vectors must be tested to distinguish f(x1, . . . , xn) ≡ 0
from all read-once conjunctions of literals.

For exact identification problems, similar results are known [14,13]. Suppose
that, in addition to standard membership queries (requests for the value of the
unknown function on given input vectors), learning algorithms are allowed to ask
whether a given projection has at least one irrelevant variable. For the standard
basis {∧,∨, }, the problem of exact identification with these queries can be
solved polynomially if the set of relevant variables is known a priori, otherwise
the task requires an exponential number of queries in the worst case.

Exact identification problem for read-once Boolean functions has been stud-
ied since 1984, when Valiant described an algorithm performing the task using
a polynomial number of queries of three types [11]. Angluin, Hellerstein and
Karpinski [3] developed an algorithm using queries of only one of these three
types (namely, relevant possibility queries, which answer questions of type, “Are
literals xσ

i and xτ
j contained in a single minterm of f?”) and an algorithm using

membership and equivalence queries (such a query basically asks if f can be
expressed by a given read-once formula; we also refer to the paper [2] for the
more general original definition). Both algorithms run in polynomial time; the
first algorithm makes O(n2) relevant possibility queries, and the second algo-
rithm makes O(n3) membership and n equivalence queries (for a particular case
of monotone read-once functions just O(n2) membership queries are sufficient,
and equivalence queries are not needed at all).

Note that for the standard basis {∧,∨, } considered in this paper, a read-
once function f(x1, . . . , xn) has an irrelevant variable xi if and only if its number
of ones (true points, i. e., vectors α ∈ {0, 1}n such that f(α) = 1) is even (see,
e. g., [14]). This means that the question of whether f has at least one irrelevant
variable is equivalent to the request for the parity of the arithmetic sum S(f)
of f(α1, . . . , αn) over all 2n vectors (α1, . . . , αn). Furthermore, the number of
variables not relevant to f is equal to the largest number k such that 2k divides
S(f).

2 Preliminaries

Let us first define a read-once formula over {∧,∨, }. If x is a Boolean variable,
then x is also a read-once formula. If F1 and F2 are read-once formulae, then
a formal expression F1 is also a read-once formula, and so are (F1 ∧ F2) and
(F1 ∨F2) whenever sets of variables that occur in F1 and F2 are disjoint. Each
(well-formed) formula F expresses a Boolean function f , defined in the usual
way. A function f is called a read-once function if it can be expressed by a read-
once formula. By convention we shall usually assume that Boolean constants
0 and 1 are also read-once functions expressed by corresponding zero-variable
formulae.

Literals of a variable x are x1 = x and x0 = x. Symbols ∧ and ∨ are said to
be dual to each other, and so are constants 0 and 1.

4

The structure of read-once formulae can be represented by rooted trees. Such
trees are, in fact, Boolean circuits over the basis of negation and arbitrary fan-
in conjunction and disjunction, and we shall depict them with leaves on top
and root at the bottom. More formally, consider a rooted tree T satisfying the
following conditions:

1) any node labeled with 0 or 1 must be the only node in T ;
2) leaves are labeled with literals of different variables;
3) non-leaf nodes are labeled with symbols ∧ and ∨ and have arbitrary indegree

s ≥ 2;
4) adjacent nodes are labeled with different symbols.

Each read-once function f can be represented by such a tree. This representation
can be shown to be unique [6,7], so we usually talk about the tree of a read-once
function.

In any rooted tree T , the parent (direct ancestor) of a non-root node v is
denoted by anc(v). A subtree Tv contains v as its root and all descendants of v
in T . We write w ∈ Tv if w is a node contained in the subtree Tv. We shall often
identify a leaf u labeled with a literal of a variable xi with this variable itself,
and by doing so, in a sense, not distinguish between a variable and its negation.
Sets of leaves and sets of variables will therefore be usually used as synonyms.

By l(v) we denote the number of leaves contained in Tv, i. e., the number of
leaves that are descendants of v (if v is a leaf itself, we put l(v) = 1). Non-leaf
nodes are also referred to as internal nodes, and direct descendants of a node
are called its children. For an internal node v, by λ(v) we shall sometimes denote
the number of leaves that are children of v.

A variable xi of a Boolean function f is called relevant if there exist two input
vectors α and α′ disagreeing only on xi (in ith position) such that f(α) 6= f(α′).
Relevant variables are sometimes called essential, and all other variables are
called irrelevant, or fictitious. In this paper, by R(f) we denote the set of all
variables relevant to f , and by r(f) the cardinality of R(f).

If f is a Boolean function and p is a set of substitutions of the form xi ← gi,
where all gi are Boolean functions, by fp we denote a function obtained from f
by substituting functions gi for inputs xi. To avoid unnecessary complications,
for each substitution xi ← gi it is always ensured that all xi are different and no
xi is relevant to any of gj for j 6= i. If all substitutions in p have the form xi ← σi,
where σi ∈ {0, 1}, then p is called a partial assignment, and the function fp is
a projection of f induced by p. Subscripts at function symbols will usually be
interpreted as partial assignments, and sequences will be indexed by superscripts,
as in fn, . . . , f1.

In settings of the problems considered in this paper, the task is exact identifi-
cation of an unknown read-once function f of a known set of variables {x1, . . . , xn}.
The relevance of these variables is not known a priori. In both settings, learning
(identification) algorithms are allowed to perform membership queries, i. e., to
request the value of f on arbitrary input vectors α picked by algorithms.

In this paper, we are primarily interested in query complexity (the number
of queries performed by the algorithms in the worst case) rather than time

5

complexity (maximum running time) of our algorithms. One can easily check
that both suggested algorithms run in polynomial time and do not involve any
brute-force search subroutines.

In order to obtain lower bounds on the complexity of our identification prob-
lems, observe that the logarithm of the number of read-once functions of variables
x1, . . . , xn is Θ(n logn) (see, e. g., [8]). Suppose that only yes—no queries (for
instance, membership and relevance ones) are allowed. Then every algorithm
identifying an unknown read-once function of these variables must perform at
least Ω(n logn) queries in the worst case, since the algorithm’s structure can
be represented by an oriented (decision) tree. Now suppose that answers to
the queries can have logarithmic length (this is the case for counting relevance
queries); then this bound is relaxed to Ω(n) (for the number of bits received as
answers, the former bound still holds). Also note that a well-known statement
on the average depth of a leaf in a tree (see, e. g., [1, section 8.6]) shows that
these bounds also hold for the average complexity.

For the sake of simplicity, we shall assume in the description of our algorithms
that all n input variables are relevant to the unknown function f . Since the
identification of the set of all variables relevant to f can be performed with
either n relevance queries (RQ) or with n+1 counting relevance queries (CRQ),
this does not affect the upper bounds of O(n2) and O(n log2 n) on the total
number of queries performed by our algorithms.

3 Relevance queries: quadratic algorithm

In the setting considered in this section, relevance queries are available. Each
relevance query supplies a partial assignment p and a variable xi. The query
returns 1 if xi ∈ R(fp), that is, if xi is relevant to fp, and 0 otherwise.

Recall that our goal is exact identification of an unknown read-once func-
tion f . As explained above, we can safely assume from the start that all input
variables are relevant to f . We shall present an algorithm that builds upon the
following fact (see, e. g., [10]):

Claim 1. For any read-once function f with r(f) ≥ 2, for each variable x rele-
vant to f there exists a unique σ ∈ {0, 1} such that R(fx←σ) = R(f) \ {x}.

Claim 1 gives an overall scheme of the future algorithm: construct a sequence
of projections fn, fn−1, . . . , f1 such that fn = f , each fk is a projection of
fk+1 and has exactly k relevant variables (here k = n − 1, . . . , 1). In other
words, the algorithm will construct a sequence of variables xn, . . . , x1 such that
R(fk) = {x1, . . . , xk} and each fk−1 is obtained from fk by substituting some
Boolean constant αk for the variable xk. This construction can be represented
by the following diagram:

fn xn←αn−−−−−→ fn−1 xn−1←αn−1

−−−−−−−−→ fn−2 −−−−→ · · · −−−−→ f2 x2←α2−−−−−→ f1.

The projection f1 that depends on x1 is either x1 or x1, so it can be identified
with a single membership query. The main issue we need to address is that of

6

going in the backward direction, i. e., reconstructing fk given its projection fk−1.
Our plan is to choose the variable xk in such a way that this reconstruction can
be carried out without additional effort, that is, without making any queries at
all.

Let us introduce the following notation. For a function g and variables x and
y relevant to g, we write x D y iff there exists τ ∈ {0, 1} such that y is not
relevant to gx←τ . Observe that x D x for all variables x, and put x ⊲ y iff x D y
and x 6= y. Now note that the original (reflexive) relation D is transitive [10]:

Claim 2. For any Boolean function f and any variables x, y, z relevant to f , if
x D y and y D z, then x D z.

For read-once functions with two or more relevant variables, it follows that
a cycle of length two can be found in the graph of D [10]:

Claim 3. For any read-once function f with r(f) ≥ 2, there exist two variables
x, y relevant to f such that x ⊲ y and y ⊲ x.

Now return to a projection fk of the unknown function f . Note that once a
pair x, y such that x ⊲ y and y ⊲ x for fk has been found, we are basically done.
Indeed, suppose that σ and τ are chosen in such a way that y is not relevant to
fk
x←σ and x is not relevant to fk

y←τ . Denote by fk−1 the projection fk
x←σ, and

observe that by Claim 1 we have R(fk−1) = R(fk) \ {x}. From the definition
of a relevant variable we deduce that fk

x←σ,y←τ = fk
x←σ,y←τ = fk

x←σ,y←τ . Since

fk−1 = fk
x←σ, it follows that fk = fk−1

y←(xσ∨yτ)τ .

Therefore, the only remaining issue is that of finding an appropriate pair x, y
for each (k-variable) function fk. An exhaustive search would use Θ(k2) queries
in the worst case, but our algorithm will use Claim 2 and make only O(k) queries
on this step. Details are provided further in this section.

The ideas presented above are incorporated in the procedure of AlgorithmA1

outlined in Fig. 1. In the description of steps 2(b)i and 2(b)ii, the equalities
xk = x, yk = y and x = y are not assignments, but notation: xk = x, for instance,
means that the name xk will henceforth represent the variable previously referred
to as x. The same holds for the equalities fn = f and f = fn in 1 and 5. The
equality in 2c simply fixes the value of the variable xk for further queries during
the subsequent iterations of 2 and 3. Finally, the equality in the description of
step 4 indicates how to obtain a read-once formula for fk from a known read-
once formula for fk−1. We also remark that for each iteration of step 2, the set
R(fk) \ {x} of possible values for y is evaluated only once in 2b, regardless of
possible changes in the meaning of x.

Theorem 1. The algorithm A1 correctly identifies any read-once function f
and performs one membership query and O(n2) relevance queries, where n is the
number of input variables of f .

Proof. First estimate the number of performed queries. Observe that two rele-
vance queries are sufficient to check the relation x ⊲ y for any fixed projection

7

Fig. 1. Algorithm A1: membership and relevance queries

1. Identify all n relevant variables. Put fn = f .
2. For k = n, . . . , 2:

(a) Take any x ∈ R(fk).
(b) For each y ∈ R(fk) \ {x}:

i. For fk, if x ⊲ y and y ⊲ x, denote xk = x, yk = y, choose σk and τk such
that yk 6∈ R(fk

xk←σk
) and xk 6∈ R(fk

yk←τk
), and go to step 2c.

ii. For fk, if x ⊲ y and y ⋫ x, put x = y.
(c) Obtain fk−1 = fk

xk←σk
.

3. Identify the projection f1 depending on the remaining variable.
4. For k = 2, . . . , n: reconstruct fk = fk−1

yk←(x
σk
k
∨y

τk
k

)τk
.

5. Terminate with f = fn.

fk and a given pair of relevant variables x, y. It follows that the algorithm makes
O(n2) relevance queries, and a membership query is only needed for step 3.

We now prove the correctness of the algorithm, which clearly requires special
consideration. We already know that the choice of xk, yk on step 2(b)i guarantees
the correct reconstruction on step 4. What we need to show is that the loop of
step 2b always finds an appropriate pair xk, yk and terminates on 2(b)i.

To prove this, assume the converse. Let y1, . . . , yk−1 be the variables tested
on step 2b. Denote by y0 the initial x, and by yi0 , yi1 , . . . , yis all the variables
represented by the name x during different iterations of the loop (here i0 = 0).
It follows that yi0 ⊲ yi1 ⊲ . . . ⊲ yis and yis ⋫ yj for all j < is (by Claim 2). By
Claim 1, there exists an index j > is such that yis ⊲ yj , which is a contradiction.
This concludes the proof.

Remark. It is worth pointing out that the only membership query made by the
algorithm is used to decide if the obtained projection f1 is equal to x1 or to x1

(here we assume R(f) = {x1, . . . , xn}). Since the formula for f is then obtained
from the formula for f1 by substitutions of the form yk ← (xσk

k ∨y
τk
k)τk , it follows

that different answers to the membership query lead to read-once functions that
are negations of each other. This means that our algorithm does not really need
a membership query per se, and can instead be supplied with any valid pair of
the form 〈α, f(α)〉, where α is any input vector from {0, 1}n. The reconstruction
phase of the new algorithm will then produce two hypotheses for f , one of which
is inconsistent with the given sample. The other hypothesis is equal to f and
output by the algorithm.

4 Counting queries: algorithm overview

In the setting considered in this section, counting relevance queries are available.
The only parameter provided by such a query is a partial assignment p. The

8

answer to the query is the value r(fp), i. e., the total number of variables relevant
to the projection fp.

The high-level scheme of our identification algorithm will be the same as
in the previous section. We shall still construct a sequence of projections fk,
k = n, . . . , 1, of the unknown function f such that each fk has exactly k relevant
variables and is obtained from fk+1 by substituting a constant for some variable
xk+1.

However, our strategy will be different from the one applied in Section 3.
Recall that for each fk we used O(k) queries to find an appropriate variable xk

with a corresponding Boolean constant. This resulted in zero cost of the recon-
structing step, that is, fk could be obtained from fk−1 without any additional
queries. Unfortunately, this gave us Θ(n2) queries in total for n-variable func-
tions in the worst case. In this section we shall use any relevant variable as xk

and make O(1) queries to find an appropriate constant. Thus the overall com-
plexity of the algorithm will be determined by the number of queries needed for
reconstructing all fk from their predecessors fk−1. The whole process will be
based on the following lemma, which is used implicitly in [14].

Lemma 1. Let g be a read-once function with k ≥ 3 relevant variables. Suppose
that x ∈ R(g) and σ ∈ {0, 1} are chosen in such a way that 0 < r(gx←σ) <
r(gx←σ). Then the tree T of g can be obtained from the tree T ′ of gx←σ with one
of the following operations (see Fig. 2):

1) attaching a new leaf x to some internal node v;
2) replacing a leaf y with a new internal node u, labeling it with a symbol dual

to that of the former parent v of y and attaching x and y as children of u;
3) splitting an internal node v into two nodes v0 and v1 and injecting a new

node u between them, i. e., if v is labeled with ∨ and g1, . . . , gs are functions
represented by its children, then T is obtained by replacing T ′v with a subtree
representing a function

((gi1 ∨ . . . ∨ git) ∧ xσ) ∨ git+1
∨ . . . ∨ gis ,

where {i1, . . . , is} = {1, . . . , s}, s ≥ 3, and t ≥ 2 (if v is labeled with ∧, then
all symbols in the formula are replaced with dual ones).

Proof. By Claim 1 we have R(g)\R(gx←σ) = {x}. Let the tree T of g be known
and consider the parent w of the leaf x in T . Denote by d the number of children
(direct descendants) of w. If d ≥ 3, then substituting σ for x eliminates one of
them and the rest of the tree is left untouched. This corresponds to case 1 in
the list above. If d = 2, then w has exactly one child besides x. If this child is
a leaf, we observe case 2. Otherwise, this child is labeled with the same symbol
as the parent of w, and these two nodes are glued together in T ′. This situation
is described in case 3. Note that w cannot be the root of T , since r(gx←σ) > 0.
This concludes the proof.

We remark that the case r(gx←σ) = 0 is simple and considered separately.

9

Fig. 2. Tree transformations

(in the dual case ∨ and ∧ are exchanged and σ is negated)

(a) Attaching a new leaf to an existing node

∨ ∨

xσ

−→

(b) Adding a new internal node with two descendants

∨

−→

∨

∧

xσ

(c) Splitting an existing node

∨

−→

∨

∧

xσ

∨

10

Fig. 3. Algorithm A2: membership and counting relevance queries

1. Identify all relevant variables. Denote them by x1, . . . , xn.
2. Construct a sequence of constant values σn, . . . , σ2 from {0, 1} such that functions

fn, . . . , f1 defined by fn = f and fk−1 = fk
xk←σk

have R(fk) = {x1, . . . , xk}.
3. Decide whether f1 = x1 or f1 = x1.
4. For k = 2, . . . , n, reconstruct fk from its projection fk−1:

(a) If r(fk
xk←σk

) = 0: choose ◦ ∈ {∧,∨} and τ ∈ {0, 1} such that fk = fk−1 ◦ xτ
k,

reconstruct the tree of fk and proceed to the next k.
(b) Find a node a in the known tree of fk−1 such that a = anc(anc(xk)) in an

unknown tree of fk.
(c) Identify the set of variables R(fk

xk←σk
) \R(fk

xk←σk
).

(d) Transform the tree of fk−1 into the tree of fk, and proceed to the next k, if
any.

5. Terminate with f = fn.

Suppose that fk−1 = fk
x←σ, where fk, x and σ satisfy the conditions of

Lemma 1. Also assume that T ′ is a known tree of fk−1 and T is an unknown
tree of fk. We shall split the task of reconstructing T from T ′ into two parts.
First, we locate the node a ∈ T ′ such that a = anc(anc(x)) in T . Second, we
identify the set of variables relevant to fk

x←σ but not to fk
x←σ. Once the second

part is done, we can easily insert in T ′ a new leaf labeled with an appropriate
literal of x. The obtained tree will then be guaranteed to represent fk, which is
exactly what we need.

We are now ready to present a sketch of our algorithm A2 for exact iden-
tification with membership and counting relevance queries. The main steps of
the algorithm are given in Fig. 3. For now, we do not focus on implementation
details, however crucial they may be, and leave out the rigorous description of
the actions. Details for steps 2, 3, 4a and 4d are explained in the proof of Theo-
rem 2 in this section, and implementation of steps 4b and 4c is postponed until
Section 5 and Section 6, respectively. Our final goal is to prove that all the steps
can be implemented in such a way that the total query complexity is bounded
by O(n log2 n).

Observe that the overall complexity depends primarily on the implementa-
tion of steps 4b and 4c, since all other computations can be performed with a
moderate number of queries, compared to the announced value. We claim that
these two steps can also be done with an appropriate number of queries. We
split this claim into two lemmas.

Lemma 2. Computation on step 4b in the algorithm A2 can be done by a sub-
routine that performs at most log2k +O(1) counting relevance queries.

Lemma 3. Computation on step 4c in the algorithm A2 can be done by a sub-
routine performing counting relevance queries and having the following property:
the total number of queries it makes when A2 is invoked on a read-once function
f with n relevant variables is O(n log2 n).

11

Proofs of these two lemmas are given in the sequel. Namely, Section 5 is
devoted to the proof of Lemma 2, and in Section 6 the proof of Lemma 3 is
given.

Now the task of obtaining the announced complexity bound is basically re-
duced to the task of proving Lemmas 2 and 3. The proof of Theorem 2 below
fills in the rest of the missing details.

Theorem 2. The algorithm A2 correctly identifies any read-once function f
and performs one membership query and O(n log2 n) counting relevance queries,
where n is the number of input variables of f .

Proof. First observe that y ∈ R(f) if and only if r(f) 6= r(fy←0), so step 1 can
be done with n+ 1 queries. Step 2 is done according to Claim 1, takes at most
2(n− 1) queries, and reveals the values r(fk

xk←0), r(f
k
xk←1) for k = n, . . . , 2. On

step 3 one membership query is performed.
Consider iterations of step 4. First suppose that r(fk

xk←σk
) = 0. Then one

counting relevance query is sufficient to reconstruct fk. Indeed, observe that
the projection fk

xk←σk
is equal to some Boolean constant β. Take arbitrary

values α1, . . . , αk−1 ∈ {0, 1} and construct a partial assignment p′ = {x1 ←
α1, . . . , xk−1 ← αk−1}. Now β′ = fk−1

p′ is known, and β = β′ if and only if

r(fk
p′) = 0. (We remark that we could also use a membership query to reveal β.)

If β = 0, then fk = fk−1 ∧ xσk

k , otherwise fk = fk−1 ∨ xσk

k .
Now suppose that r(fk

xk←σk
) > 0. By Lemmas 2 and 3, steps 4b and 4c reveal

the node a = anc(anc(xk)) and the set of variables relevant to fk
xk←σk

but not

to fk
xk←σk

. After that, step 4d transforms the tree of fk−1 into the tree of fk

according to Lemma 1 and chooses the literal of xk such that all variables of fk

except xk be relevant to fk
xk←σk

(similarly to the case r(fk
xk←σk

) = 0, although
no additional queries are needed here).

It remains to determine the total number of queries made by the algorithm.
We have

O(n) +

n
∑

k=2

(log2k + O(1)) +O(n log2 n) = O(n log2 n),

which completes the proof.

Remark. The algorithm A2, similarly to A1, does not exploit the power of the
membership query it makes, in the sense that this query can be replaced with
any valid sample 〈α, f(α)〉 provided as input. As seen from Lemma 1, the tree
structure of f can be reconstructed just by looking at consecutive differences
R(fk

xk←σk
) \R(fk

xk←σk
), with the only exception being the case r(fk

xk←σk
) = 0,

where one counting relevance query still reveals all the needed information. One
can prove by induction that without a membership query the algorithm will be
able to provide two hypotheses, which are negations of one another. This effect is
related to a simple observation that any types of queries dependent only on the
information about relevance of input variables are able to distinguish Boolean
values, but not to tell which is 0 and which is 1.

12

Fig. 4. Projections and partial assignments in Proof of Lemma 2

Known:

Unknown:

Unknown:

fk−1 g′
θ

−−−−−→ h′
p

−−−−−→ h′p
x

x←σ

x

x←σ

x

x←σ

fk g
θ

−−−−−→ h
p

−−−−−→ hp

y

x←σ

y

x←σ

y

x←σ

g′′
θ

−−−−−→ h′′
p

−−−−−→ h′′p

5 Proof of Lemma 2

This section is devoted to the proof of Lemma 2. We first introduce some nota-
tion, restate the lemma itself, and present main ideas of the proof. After that,
we discuss the proof in detail.

Suppose that fk−1 is a known read-once function with R(fk−1) = {x1, . . . , xk−1}.
Let fk be an unknown read-once function such that R(fk) = R(fk−1) ∪ {xk}
and fk

xk←σk
= fk−1, where σk is a constant from {0, 1}. By T ′ we denote the

known tree of fk−1 and by T the unknown tree of fk.
According to the description of the algorithmA2, we assume that r(fk

xk←σk
) >

0. This implies that the leaf of T labeled with a literal of the variable xk is not
adjacent to the root of T . In other words, there exists a node a in T such that
a = anc(anc(xk)). Recall that T can be obtained from T ′ by means of one of
the three operations described in Lemma 1, so a is also a node of T ′. The goal
of this section is to prove that this node a ∈ T ′ can be identified with the aid of
log2k +O(1) counting relevance queries.

Since throughout the proof the value of k is fixed, we shall use auxiliary
notation to avoid unnecessary indexing. By definition, put x = xk and σ = σk.
Also denote g = fk and g′ = fk

x←σ = fk−1, then T is the tree of g and T ′ is
the tree of g′. Finally, put g′′ = fk

x←σ and define m = r(g′) − r(g′′). We note
that links between the three projections of the function f mentioned in this
paragraph are reflected in two leftmost columns in Fig. 4.

The main idea of the proof is to find a variable that belongs to the set
difference R(g′) \R(g′′). At this stage, we do not need to identify the entire set
of all such variables exactly, since the real goal of this step is just to identify the
node a. These variables, however, are the key to the identification of a.

A straightforward algorithm searching for a variable y ∈ R(g′)\R(g′′) would
try to assign constant values to variables of the unknown function g′′ and analyze
the number of variables relevant to the obtained projections. Unfortunately, this
approach requires Θ(k) queries in the worst case, which only gives an O(n2)
bound on the overall query complexity of the algorithm. The idea applied in
this section is the use of simultaneous assignments to several variables. Let p be
a partial assignment of constants to some s variables. Observe that if all these
variables are relevant to g′′, then the value r(g′′p) is at most r(g′′) − s. Now

13

suppose that at least one of these variables is irrelevant to g′′, then this fact will
be revealed if r(g′′p) > r(g′′)− s. If we construct the assignment p carefully, then
the last inequality will be guaranteed to hold whenever p assigns a constant value
to some variable y ∈ R(g′) \ R(g′′). After that, we shall be able to use binary
search to find such a variable y and identify the node a.

We now begin to carry out the plan described above. We first need an auxil-
iary construction, which will help us throughout subsequent work. We shall use
our knowledge of the gap m = r(g′) − r(g′′) to reduce tree transformations of
Lemma 1 to manipulations with a number of subtrees, whose set can be delin-
eated beforehand. Recall that the number of leaves in a tree that are descendants
of a node v is denoted by l(v). Consider the set

N = { u ∈ T ′ | u 6= v0, l(u) ≤ m, l(anc(u)) > m },

where by v0 we denote the root of T ′. The next claim basically restricts the set
of all possible tree transformations taking T ′ to T to those leaving intact all
subtrees T ′u, where u ∈ N .

Claim 4. All variables in the set difference R(g′) \R(g′′) are contained in sub-
trees T ′u, where u ∈ N . Moreover, all subtrees T ′u, u ∈ N , containing variables
from R(g′) \ R(g′′) contain no variables from R(g′′) and have roots u such that
a = anc(u).

Proof. Let w be an internal node of T adjacent to x. Denote by lw the number
of leaves in Tw, then we have m = lw−1. Observe that the node a = anc(w) ∈ T
has at least one child besides w. So in the tree T ′ it holds that l(a) > lw−1 = m.
Furthermore, in the tree T ′ all variables from the set R(g′)\R(g′′) lie in subtrees
T ′u, where nodes u are children of a (two possible cases are shown in Fig. 5). All
these subtrees are left intact in T , as compared to T ′, and contain no variables
from R(g′′). The total number of leaves in these subtrees equal m, so l(u) ≤ m.
This concludes the proof of Claim 4.

Remark. A possible perspective on Claim 4 is that once a variable y ∈ R(g′) \
R(g′′) has been found, the task of identifying the node a can be carried out by
taking the parent of a unique node u ∈ N such that y ∈ T ′u. The reason for this
is that for each variable xi ∈ R(g′) there exists only one node u on the path
from xi to v0 such that l(u) ≤ m and l(anc(u)) > m.

By Lemma 1, the tree T can be obtained from T ′ either by attaching a
new leaf to one of the nodes u ∈ N such that l(u) = m (if m = 1, this means
introducing a new internal node) or by “splitting” one of their parents, i. e., nodes
from the set

A = { anc(u) ∈ T ′ | u ∈ N },

and “lifting” a subset of N . Now suppose that u is a non-leaf node contained in
N . The corresponding subtree T ′u represents some read-once function g′u, which
has at least two relevant variables. Consider any single leaf in T ′u, labeled with
a literal xτ

i , for τ ∈ {0, 1}. Since xi is relevant to g′u, there exists a partial

14

Fig. 5. Locating subtrees that are left intact

(a) The node w has indegree 3 or greater in T

w

a

x

−→ w

al(w) = m
l(a) > m

(b) The node w has indegree 2 in T

a

w

x

−→

a

u

T ′u

l(u) ≤ m
l(a) > m

assignment θu to all other variables of g′u such that (g′u)θu = xτ
i . Let a partial

assignment θ be the composition of such partial assignments θu for all non-leaf
nodes u from N (see Fig. 6; if all the elements of N are leaves, then θ does
nothing).

This assignment θ takes the functions g, g′, g′′ to h, h′, h′′, respectively
(see left horizontal arrows in Fig. 4). The functions h and h′′ are still unknown.
Denote by T ′1 the tree of h′, which is obtained from T ′ by replacing subtrees
having roots from N with single leaves. The set N is transformed by θ into a set
Nθ, which contains only leaves of T ′1.

Put m1 = r(h′) − r(h′′) > 0. (Here one counting query is needed to reveal
the value of r(h′′).) For each node v of T ′1, denote by λ(v) the number of leaves
of T ′1 which are children (direct descendants) of v. Put

A1 = { v ∈ A | λ(v) ≥ m1 + δ(v) },

15

Fig. 6. Partial assignment θ

v

w

u

xτ
i

l(w) > l(v) > m
l(u) ≤ m

θ
−→ v

w

xτ
i

where δ(v) = 0 if the node v in T ′1 has at least one non-leaf child and δ(v) = 1
if all children of v are leaves. Finally, consider the set

N1 = { u ∈ Nθ | anc(u) ∈ A1 }.

We next show that this set contains all variables relevant to h′ but not to h′′.

Claim 5. For any variable y ∈ R(h′)\R(h′′), it holds that y ∈ N1 and anc(y) =
a ∈ A1.

Proof. First observe that R(h′)\R(h′′) ⊆ R(g′)\R(g′′). By Claim 4, all variables
of g′ not relevant to g′′ are contained in subtrees T ′u, where u ∈ N . Since T ′1 is
obtained from T ′ by replacing these subtrees with single leaf nodes, it follows
that all variables from R(h′) \R(h′′) belong to the set Nθ. Furthermore, it also
follows from Claim 4 that anc(u) is the same node a ∈ A for all these subtrees T ′u.
This node a in T ′1 must have at least m1 children that are leaves, so it remains
to check the inequality λ(a) ≥ m1 + δ(a). Indeed, if all children of a are leaves,
then their number is greater than or equal to m1+1, because otherwise the tree
of h would be obtained from T ′1 by attaching a new leaf to a, and the same would
hold for T and T ′ (which is impossible since some of the children of a in T ′ are
contained in N , so l(a) > m in T ′ and, therefore, a 6∈ N). This concludes the
proof of Claim 5.

Claim 5 shows that the tree of h′′ can be obtained from T ′1 by eliminating
some leaves that belong to N1 and have the node a as their common parent, and
possibly by suppressing an internal node of indegree 1 and glueing two adjacent
nodes with identical labels in the resulting tree.

Remark. The overall approach to the task of locating the node a can be imple-
mented without an explicit construction of the assignment θ. It seems, however,
that the transformation described above makes the whole argument more trans-
parent, since the problem appears reduced to a particular case.

16

Now all preliminary preparations are over and we move on to implementing
our approach to the identification of the node a. Recall that we need to construct
partial assignments to variables having some special properties. Let us introduce
the following definition. Call a partial assignment p = {xi1 ← α1, . . . , xis ←
αs} weak if the following conditions are satisfied:

1) all leaves labeled with literals of xi1 , . . . , xis in the tree of h′ are adjacent to
internal nodes from A1;

2) for each j, all relevant variables of h′ except xij are relevant to h′xij
←αj

;

3) for each internal node v of T ′1, if all children of v are leaves, then at most
(λ(v)−m1) of them are labeled with literals of variables from {xi1 , . . . , xis}.

The concept of a weak partial assignment captures our idea of distinguishing
the case when constants are substituted for relevant variables only from the case
when an irrelevant variable is assigned some constant value. This is formalized
by the following statement:

Claim 6. If a weak partial assignment p assigns a value to a variable y not
relevant to h′′, then all relevant variables of h′′ except those assigned by p are
also relevant to h′′p .

Proof. We first remark that key (although not all) projections of f discussed
here can be found in Fig. 4. If y ∈ R(h′) \ R(h′′), then in the tree T ′1 of h′

it holds that anc(y) = a. For an arbitrary node v of T ′1, denote by h′v the
function represented by the subtree (T ′1)v and by h′′v the function represented by
the corresponding subtree of the tree of h′′. (Note that although subscript here
can still be interpreted as referring to a projection of the original function, this
meaning is secondary.)

By condition 2 in the definition of a weak assignment, each separate sub-
assignment of p having the form xij ← αj cannot make other variables of h′

irrelevant. Recall that the tree of h′′ can be obtained from T ′1 by eliminating
several leaves. One can easily check that this elimination can be represented as a
composition ξ of m1 assignments of the form xi ← τi having the same property
(for this assignment ξ, it holds that (h′)ξ = h′′). Therefore, it is sufficient to prove
that under the conditions of the claim, for each internal (non-leaf) node v ∈ T ′1
the function h′v is taken by the composition ξp to a non-constant projection
(h′v)ξp = (h′′v)p. We shall do so using the fact that a function is non-constant iff
it has at least one relevant variable.

First consider all nodes v ∈ T ′1 such that the node a is neither v nor a
descendant of v. Use induction on the depth of (T ′1)v, i. e., on the maximum
number of edges on shortest paths from v to its descendants. For a node v, if all
its children are leaves, then the desired follows directly from condition 3 in the
definition of a weak partial assignment, since at least one variable is not assigned
by p. If one of the children is a non-leaf node w, then the desired follows from
the inductive assumption for w and from condition 2 in the definition of p.

Now consider the node a. If a has at least one non-leaf child v, then it
follows that all variables relevant to (h′′v)p are also relevant to (h′′a)p. Suppose

17

that the set W of all children of a contains only leaves. Recall that their number
is λ(a) ≥ m1 + 1 and at most (λ(a) −m1) of them are assigned by p. Since ξ
assigns values to m1 elements of W , and at least one variable is assigned a value
by both p and ξ, it follows that at least one variable from W is not assigned by
either p or ξ. Therefore, this variable is relevant to (h′′a)p.

The same reasoning as in the inductive step above shows that for all nodes
v such that a is a descendant of v the obtained projection (h′v)ξp = (h′′v)p has
at least one relevant variable. It then follows from the definition of ξ and from
condition 2 in the definition of a weak partial assignment that all variables
relevant to h′ except those assigned by either ξ or p are also relevant to h′′p . This
completes the proof of Claim 6.

The last auxiliary claim in this section shows that a constant number of weak
assignments are sufficient for the identification of a variable from R(h′) \R(h′′):

Claim 7. For each given read-once function g′ and any possible values of r(g′′)
and r(h′′), there exist two weak partial assignments p1, p2 such that for any read-
once function g that is consistent with g′ and these values at least one of these
assignments assigns a value to a variable not relevant to h′′.

Proof. For each node v ∈ A1, consider the set W (v) of all children of v that
belong to N1. If v has at least one non-leaf child, then let p1 assign constant
values αj to all variables xij from W (v). These values αj are chosen according
to the label of v so that R(h′xij

←αj
) = R(h′) \ {xij} (see also Claim 1 from

Section 3). If all children of v are leaves, then let each of p1 and p2 assign
constant values to λ(v)−m1 ≥ 1 variables from W (v) so that the total number
of variables assigned by the composition p1p2 is maximized. Remark that if
v = a, then exactly λ(v)−m1 variables from W (v) are relevant to h′′, so in any
subset of W (v) having size λ(v)−m1+1 there exists a variable irrelevant to h′′.
Observe that (λ(v)−m1+1)/(λ(v)−m1) ≤ 2. It follows that if all variables from
W (v) assigned by p1 and p2 are relevant to h′′, then so are all other variables
from W (v). This concludes the proof of Claim 7.

Claims 6 and 7 indicate an algorithm for the identification of the node a.
During first (preliminary) steps the partial assignment θ is constructed as de-
scribed above, and sets N1 and A1 are computed (one counting relevance query
is needed to determine the value m1 = r(h′)− r(h′′)). Then the algorithm con-
structs the assignments p1, p2 according to Claim 7 and runs counting relevance
queries for both induced projections h′′pi

.
Denote by si the number of variables assigned by pi. By Claim 6, if at least

one of these variables is not relevant to h′′, then each relevant variable of h′′

is either also relevant to h′′pi
or assigned a value by pi. Hence, r(h′′pi

) + si >
r(h′′). On the other hand, if all variables assigned by pi are relevant to h′′, then
r(h′′pi

)+si ≤ r(h′′). It follows that comparison of sums r(h′′pi
)+si to r(h′′) always

reveals an assignment pi whose existence is guaranteed by Claim 7.
The rest of the proof is straightforward. Since all sub-assignments of a weak

partial assignment are also weak, a simple binary search identifies the node a

18

with at most log2k queries. The total number of queries needed on the step 4b
is less than or equal to log2k +O(1). This concludes the proof of Lemma 2.

6 Proof of Lemma 3

This section is devoted to the proof of Lemma 3. Recall that for each fixed
k = 2, . . . , n we are given a read-once function fk−1 such that R(fk−1) =
{x1, . . . , xk−1} and are asked to reconstruct an unknown read-once function fk

such that R(fk) = R(fk−1) ∪ {xk} and fk
xk←σk

= fk−1, where σk is a known
constant. From the previous step of the algorithm we also learn the node a in
the known tree T ′ of fk−1 such that a = anc(anc(xk)) in the unknown tree T of
fk (since such a node exists, we deduce that k ≥ 3).

Recall that the reconstruction of fk can be performed according to Lemma 1,
which guarantees that given the tree T ′, one can obtain the tree T with the
aid of one of the three explicit operations (actually, there also exists a special
degenerate case, but we shall put off its discussion until further need). What is
more, Lemma 1 shows that the only information needed for the reconstruction
of fk, apart from T ′, is the set R(fk

xk←σk
) \ R(fk

xk←σk
). Lemma 3, which we

prove in this section, says that this set can be identified efficiently, provided that
the tree T ′ is known and the node a = anc(anc(xk)) is found in advance. More
rigorously, for any read-once function f with n relevance variables, the total
number of queries needed for the identification of sets R(fk

xk←σk
) \ R(fk

xk←σk
),

k = 3, . . . , n, is at most O(n log2 n).

We shall now describe an algorithm performing this identification. Following
the lines of the previous section, we first reduce the general problem to its par-
ticular case, where additional structure is assumed. Observe that all variables
from the difference R(fk

xk←σk
)\R(fk

xk←σk
) lie in some of the subtrees T ′u, where

nodes u are children of the node a. Using a single partial assignment θ, we can
ensure that all these subtrees consist of single leaves, that is, the tree of the
unknown projection (fk

xk←σk
)θ can be obtained from the tree of the projection

(fk−1)θ by eliminating some leaves with the common parent a.

An explicit construction of the assignment θ is provided in Section 5 and will
not be duplicated here. However, we shall reuse the notation h = fk

θ , h′ = fk−1
θ ,

and h′′ = (fk
xk←σk

)θ introduced previously. We note that the value m1 = r(h′)−
r(h′′) is always positive and can be computed with the aid of a single counting
relevance query. As before, T ′1 denotes the tree of h′.

We now summarize the obtained (reduced) setting. Given T ′1 and the node
a ∈ T ′1, we wish to identify the set of leaves u ∈ T ′1 adjacent to a that are labeled
with literals of variables not relevant to the function h′′.

Main technique of doing this is the same as in the previous section. Let W be
the set of leaves adjacent to a in T ′1. All the algorithm does is choose subsets of W ,
substitutes appropriate constants for the corresponding variables and performs
queries to reveal the number of relevant variables of the induced projections. In
short, for any subset U ⊆W the algorithm can learn the number of variables in

19

Fig. 7. Subroutine S: identifying a subset of a set

Arguments: a set W and an integer m.
Oracle: an intersection function q(·).

1. If m = 0, return ∅. If m = |W |, return W .
2. Otherwise, choose any U ⊆ W such that |U | = ⌊|W |/2⌋.
3. Make a query to the oracle to reveal q1 = q(U).
4. Make two recursive calls to compute R = S(U, q1) ∪ S(W \ U,m− q1).
5. Return R.

U which are relevant to h′′ with a single counting query. A variant of a binary
search algorithm can then be applied to identify the set R(h′) \R(h′′).

Note, however, that here we cannot directly apply the argument of Claim 6
from Section 5 to reveal the exact number of variables from U relevant to h′′.
It turns out that some partial assignments p to variables from U needed on
this step are not weak in the sense of that section. Nevertheless, the fact that
all variables from U have a common parent in T ′1 allows us to circumvent this
difficulty:

Claim 8. Suppose that U = {u1, . . . , us} is a subset of W , and an assignment
p = {u1 ← α1, . . . , us ← αs} is such that R(h′ui←αi

) = R(h′) \ {ui} for
i = 1, . . . , s. Then the value

q(U) = |U | −min{ r(h′′)− r(h′′p), |W | −m1 },

where m1 = r(h′) − r(h′′), is equal to the number of leaves from U labeled with
variables irrelevant to h′′.

Proof. Consider the set Q = R(h′)\R(h′′) and observe that m1 = |Q|. If Q∪U 6=
W , then r(h′′) − r(h′′p) < |W | −m1 and q(U) = |U | − (r(h′′)− r(h′′p)), which is
exactly the number of variables from U that are irrelevant to h′′. If Q∪U = W ,
then r(h′′) − r(h′′p) ≥ |W | − m1. In this case q(U) = |U | − (|W | − m1) =
|U |+ |Q| − |Q ∪ U | = |Q ∩ U |. This concludes the proof of Claim 8.

It follows that the whole task of identification of the set R(h′) \ R(h′′) can
be performed by Subroutine S defined in Fig. 7, supplied with the oracle for
q(U). After that, the reconstruction of the set R(fk

xk←σk
) \ R(fk

xk←σk
) can be

done without making any queries at all, since an arbitrary variable y ∈ R(fk−1)
is relevant to fk

xk←σk
iff it lies in a subtree T ′u such that u ∈ R(h′′).

We shall now prove the correctness of the algorithm described above and
the claimed upper bound on the number of queries performed on this step (4c
in Fig. 3 for Algorithm A2). From now on, by log c we denote the logarithm
of c to base 2. For an individual call to Subroutine S, we prove the following
proposition:

20

Claim 9. Suppose that W is a finite set and Q ⊆ W , |Q| = m. Assume that
q(U) = |Q∩U | for all U ⊆W . Then Subroutine S from Fig. 7, when supplied with
W , m and q(·), always terminates, returns Q, and makes at most min{m, |W |−
m}⌈log |W |⌉ queries.

Proof. S is an implementation of a binary search variant on W . For |W | ≤ 1,
the algorithm always terminates without recursive invocations and returns Q.
Otherwise, the cardinality of both U and W \ U is strictly less than |W |. It
then follows from the description of S that for any finite set W , Subroutine S
terminates and returns Q.

To prove the bound on the number of oracle calls, denote by w the cardinality
of W . The proof is by induction on the depth of recursive invocations of S. If
m = 0 or m = w, there is nothing to prove. Note that w = 1 also implies no
queries at all. Now suppose that w ≥ 2 and 0 < m < w. By definition, put
w1 = ⌊w/2⌋ and w2 = ⌈w/2⌉. Also put q2 = m− q1 and mi = min{qi, wi − qi},
i = 1, 2. We now show that the following inequality always holds:

1 +m1⌈logw1⌉+m2⌈logw2⌉ ≤ min{m,w −m}⌈logw⌉.

First observe that ⌈logw1⌉ ≤ ⌈log(w/2)⌉ = ⌈logw⌉−1. Secondly, if ⌈logw2⌉ >
⌈logw⌉ − 1, then ⌈log(2⌈w/2⌉)⌉ > ⌈logw⌉, which means that w cannot be even.
Assume that w = 2l+1, then ⌈log(2l+2)⌉ > ⌈log(2l+1)⌉. It follows that 2l+1
is a power of 2. In fact, the only possibility is w = 1, but that contradicts our
assumption. Hence, ⌈logw2⌉ ≤ ⌈logw⌉ − 1. We now obtain

1 +m1⌈logw1⌉+m2⌈logw2⌉ ≤ 1 +m1(⌈logw⌉ − 1) +m2(⌈logw⌉ − 1)

= (m1 +m2)⌈logw⌉ − (m1 +m2 − 1).

It suffices to prove, then, that m1 +m2 ≤ min{m,w −m}. Indeed, once we
have done that, we notice that the desired inequality follows directly from the
inequality m1 +m2 − 1 ≥ 0. (If m1 +m2 < 1, then m1 = m2 = 0 and we are
proving the inequality 1 ≤ min{w−m,m}⌈logw⌉, which obviously holds.) Since
mi ≤ qi for i = 1, 2, we obtain that m1 + m2 ≤ q1 + q2 = m. Similarly, from
mi ≤ wi − qi we get m1 + m2 ≤ w1 + w2 − m = w − m. Thus, m1 + m2 ≤
min{m,w −m}, which concludes the proof of Claim 9.

Claim 9 proves the correctness of our algorithm identifying the set R(fk
xk←σk

)\

R(fk
xk←σk

). It also shows that a relatively large number of queries can be made
on each individual call to S. Indeed, if |W | = Θ(k) and m1 = Θ(k), then the
obtained upper bound can be as large as Θ(k log k). Furthermore, it cannot be
improved by more than a polylogarithmic factor, since the number of all possible
⌊k/2⌋-sized subsets of a k-sized set equals 2k(1−o(1)).

For this reason, we shall prove the needed bound on the total number of
queries performed during such invocations. Since the arguments of each subse-
quent invocation are somewhat dependant on the results of the previous ones,
we develop a special technique to handle this dependency.

21

We shall need some notation related to directed graphs. In an directed graph,
an arc from u to v is denoted by u → v; we shall also say that v is a successor
of u. Directed paths are written as v1 → v2 → . . . → vs, where v1, . . . , vs are
consecutive vertices of the path. A vertex with outdegree 0 is called a sink. A
branch is a path that goes from a vertex with indegree 0 to a sink.

Recall that by Lemma 1, for each iteration of step 4 in A2, if the value
r(fk

xk←σk
) is strictly greater than 0, then there exist three types of opera-

tions which can transform the tree of fk−1 into that of fk. In the special case
r(fk

xk←σk
) = 0, such a transformation is either attaching xk to the root of the

existing tree (case 1 in terms of Lemma 1) or introducing a new root having
exactly two children.

Construct a sequence of directed graphs G2, . . . , Gn with labeled vertices
by the following rules. Let G2 contain a single vertex labeled with 1. For each
k = 3, . . . , n, the graph Gk is obtained from Gk−1 according to the type of
transformation on trees performed by A2 when reconstructing fk (see Fig. 8):

(a) Suppose T is obtained by attaching xk to an existing node v (case 1 in
Lemma 1, or r(fk

xk←σk
) = 0 if v is the root of T ′). Let d+ 1 be the number

of children of v in T . Then take a sink w labeled with d− 1 in Gk−1 and add
an arc from w to a new vertex labeled with d.

(b) Suppose that T is obtained from T ′ by introducing a new root (this implies
r(fk

xk←σk
) = 0) or injecting a new internal node with exactly two descendants

(case 2 in Lemma 1). Here, add to Gk−1 a new isolated vertex labeled with 1.

(c) Finally, suppose that T is obtained from T ′ by splitting an internal node v
(case 3 in Lemma 1). As earlier, assume that v has s children in T ′ and xk

“lifts” t of them. In this case, take a sink w labeled with (s − 1) in Gk−1

and add arcs from w to two new vertices labeled with (t − 1) and (s − t),
respectively. Moreover, add a new isolated vertex labeled with 1.

One can observe that the correctness of the described procedure is guaranteed
by the fact that labels of sinks in Gk are exactly the numbers of children of
internal nodes in T on step 4 of A2 (for this k) decreased by 1. Put Lk = 0 if
(a) or (b) is performed on the iteration for this k, and Lk = min{l′, l′′} if (c)
introduces arcs from a vertex labeled with (l′ + l′′) to ones labeled with l′ and
l′′.

Claim 10. For all k ≥ 3, the number of queries made on iteration k of step 4
in A2 does not exceed (Lk + 1) · ⌈log(k − 1)⌉.

Proof. If r(fk
xk←σk

) = 0, then Subroutine S is not invoked. Now suppose that

r(fk
xk←σk

) 6= 0. Then Subroutine S is asked to identify an m1-sized subset of
the set of nodes (leaves in T ′1) adjacent to a. Let w be the number of all these
nodes. By Claim 9, S makes at most min{m1, w−m1}⌈logw⌉ queries. If m1 = 1,
then operation (a) or (b) is performed on Gk−1, Lk = 0 and the desired bound
is obvious. If m1 ≥ 2, then operation (c) is performed, l′ and l′′ are m1 − 1 and
w−m1, so Lk+1 = min{m1, w−m1+1}. This completes the proof of Claim 10.

22

Fig. 8. Construction of graphs G2, . . . , Gn

(only transformed weakly connected components are shown)

(a) For attaching a new leaf to an existing node

d− 1
−→

d− 1 d

(b) For introducing a new root or adding a new internal node with two descendants

−→0 1

(c) For splitting an existing node

s− 1
−→

s− 1
t− 1

s− t

1

For a graph Gn define

L(Gn) =

n
∑

k=3

Lk =
∑

v→v1
v→v2

min{L(v1), L(v2)},

where L(v) is the label of v in Gn and the sum in the last expression is over all
v ∈ Gn such that outdegree of v is 2 (for such a vertex v, by v1 and v2 we denote
its successors).

Claim 11. L(Gn) ≤ n logn.

Proof. Observe that Gn is a forest that consists of rooted trees directed from
the roots. If Gn contains more than one tree, then it can be transformed into a
single tree G′n by successive identification of trees’ roots with other trees’ leaves
(see Fig. 9a). If in such an operation the label of the leaf u is z > 1, then one
arbitrary branch u → u1 → u2 → . . . → us from u to a sink us in the obtained
graph is selected and labels of all ui are increased by (z − 1). This ensures that

23

Fig. 9. Graph transformations in Proof of Claim 11

(a) Identifying a root with a leaf

1 z

z′
1

z1 z2

−→
z′

1 z

z1 + z − 1
z2 + z − 1

(b) Moving an arc

z1 + z2

z1 + 1z1

z2

−→
z1 + z2

z1 + 1z1 + z2 + 1

z2

the label of each vertex v of outdegree 2 in the obtained tree G′n is equal to the
sum of labels of its direct successors, and the label of each vertex u of outdegree 1
is less by 1 than that of its successor. It can easily be seen that L(Gn) ≤ L(G′n).

Now suppose that there exists a vertex v0 in G′n with outdegree 2 and arcs
v0 → v1, v0 → v2 such that v1 has only one successor v′1. Suppose that labels of
v1 and v2 are z1 and z2, then v0 is labeled with z1 + z2, and v′1 is labeled with
z1 + 1. Transform the tree by replacing the arc v0 → v2 with the arc v1 → v2
(see Fig. 9b). For consistency, the label of v1 is changed to z1 + z2 + 1. Remark
that this transformation either does not change L(·) or increases it by 1.

Continue transforming G′n as long as possible. The directed tree G′′n obtained
in the end has a simple path across the vertices of outdegree 1 from the root to
some vertex u which is the root of a strictly binary subtree (this subtree contains
no internal vertices of outdegree 1). By the argument above, L(G′n) ≤ L(G′′n),
and we shall now prove the required bound on L(G′′n).

Let s be the label of u. We claim that L(G′′n) ≤ s log s. The proof is by
induction on s. For s = 1, there is nothing to prove. If s = 2, then L(G′′n) ≤ 1 ≤
2 log 2. Suppose that s ≥ 3. Assume that arcs u → u1, u → u2 are present in
G′′n, and the labels of u1, u2 are x and s− x. Without loss of generality, assume
that x ≤ s/2. By definition, put φ(x) = x log x and Φ(x) = x+ φ(x) + φ(s− x).
By the induction hypothesis, L(G′′n) ≤ Φ(x). We now prove that Φ(x) ≤ s log s

24

for all x ∈ [1; s/2]. Take the derivatives φ′(x) = (lnx+ 1)/ ln 2 and

Φ′(x) = 1 +
(lnx+ 1)− (ln(s− x) + 1)

ln 2
= 1 + log

x

s− x
= log

2x

s− x
.

Since x ≤ s/2, the inequality Φ′(x) ≥ 0 is equivalent to x ≥ s/3. This means
that we only need to consider x = 1 and x = s/2. We have

Φ(1) = 1 + 0 + (s− 1) log(s− 1) ≤ log s+ (s− 1) log s = s log s,

Φ(s/2) =
s

2
+ 2 ·

s

2
log

s

2
=

s

2
+ s log s− s ≤ s log s.

This concludes the proof of Claim 11.

By Claims 10 and 11, the number of queries made by Algorithm A2 on step 4c
is less than or equal to

n
∑

k=3

(Lk + 1)⌈log(k − 1)⌉ ≤

(

n
∑

k=3

Lk + n

)

· (log n+ 1)

≤ (n logn+ n) · (log n+ 1)

= O(n log2 n).

This completes the proof of Lemma 3.

7 Conclusions

We developed two algorithms for exact identification of read-once functions. Our
first algorithm A1 makes O(n2) yes—no queries. Our second algorithm A2 makes
O(n log2 n) queries with logarithmically long and one-bit long answers. (In fact,
the number of membership queries performed by each algorithm is one, and this
query can be replaced with any valid sample 〈α, f(α)〉 supplied as input.) The
second bound is close to the information-theoretic lower bound of Ω(n logn) bits.
The second algorithm is, in fact, allowed to query a special characteristic of the
arithmetic sum S(fp) of all fp’s values for any partial assignment p — namely,
the largest number k such that 2k divides S(fp).

This characteristic S(fp) appears to play a key role in the process of exact
identification, as performed by the algorithm. For a different setting where only
the parity (sum modulo 2) of S(fp) is available [14], a known algorithm achieves
only n2(1 − o(1)). If queries of the second least significant bit of S(fp) are ad-
ditionally allowed [4], this value can be improved to 3n2/4 · (1 − o(1)), which is
still Θ(n2), as compared to O(n log3 n) bits achieved in this paper.

Acknowledgements. The author is grateful to Prof. Andrey A. Voronenko,
who set up the original problem of exact identification with queries to the oracle
that returns the value of S(fp). The author also wishes to thank his colleagues
Maksim A. Bashov and Vladimir V. Lysikov for fruitful and inspiring discussions.
This research was supported by Russian Foundation for Basic Research, project
number 09-01-00817, and by Russian Presidential grant MD-757.2011.9.

25

References

1. A.V. Aho, J. E. Hopcroft, J.D. Ullman. Data structures and algorithms. Addison-
Wesley, 1983.

2. D. Angluin. Queries and concept learning. Machine Learning. 2 (1987). P. 319–342.
3. D. Angluin, L. Hellerstein, M. Karpinski. Learning read-once formulas with queries.

Journal of the ACM. 40 (1993). P. 185–210.
4. D.V. Chistikov. Learning read-once functions using two least significant bits of the

number of true points of projections. In: Proc. of 3rd Russian workshop “Syntax and

semantics of logical systems” (in Russian). Irkutsk, izd. VSGAO (2010). P. 114–
118.

5. D.V. Chistikov. Checking tests for read-once functions over arbitrary bases. In:
Proc. CSR 2012, Lecture Notes in Computer Science, vol. 7353 (2012). P. 52–63.

6. V.A. Gurvich. On read-once Boolean functions. Uspehi matematicheskih nauk (in
Russian). Vol. 32 (1977), 1. P. 183–184.

7. M. Karchmer, N. Linial, I. Newman, M. Saks, A. Widgerson: Combinatorial char-
acterization of read-once formulae. Discrete Mathematics. Vol. 114 (1–3). 1995.
P. 275–282.

8. P. Savicky, A.R. Woods. The number of Boolean functions computed by formulas
of a given size. In: Random Structures and Algorithms: Proceedings of the Eighth

International Conference. Vol. 13, 3–4 (1998). P. 349–382.
9. V.A. Stetsenko. On almost bad Boolean bases. Theoretical Computer Science.

Vol. 136, 2. 1994. P. 419–469.
10. B.A. Subbotovskaya. On comparing bases for implementing Boolean functions with

formulae. Dokl. AN SSSR (in Russian). 1963. Vol. 149, 4. P. 784–787.
11. L.G. Valiant. A theory of the learnable. Communications of the ACM. 27, 1984.

P. 1134–1142.
12. A.A. Voronenko. On checking tests for read-once functions. Matematicheskie vo-

prosy kibernetiki (in Russian). Vol. 11. Moscow, Fizmatlit (2002). P. 163–176.
13. A.A. Voronenko. On global testing (deciphering) problems for read-once Boolean

functions. In: Proc. of 3rd Russian workshop “Syntax and semantics of logical sys-

tems” (in Russian). Irkutsk, izd. VSGAO (2010). P. 17–22.
14. A.A. Voronenko, D.V. Chistikov. Learning read-once functions using subcube par-

ity queries. Computational Mathematics and Modeling. Vol. 22, 1 (2011). P. 81–91.

	Using Relevance Queries for Identification of Read-Once Functions

