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Testing Read-Once Functions over the Elementary Basis

We prove a universal upper bound on checking test length for read-once functions over the

elementary basis. We also identify the exact value of the corresponding Shannon function for

the basis of conjunction and disjunction.
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A checking test problem for read-once functions, also known as testing with respect to read-
once alternatives, was set up by A.A. Voronenko in [1]. For a read-once function f(x1, . . . , xn)

depending essentially an all its variables, it is required to construct a test—a set of vectors
that distinguishes f from all other read-once functions depending on the same variables.
This setting, unlike a number of related problems, is not degenerate and has polynomial
solutions for a wide range of Boolean bases. In this paper, the elementary basis, consisting
of conjunction, disjunction and negation, is considered. Minimal test length (the number of
vectors contained in it) for a function f is denoted by T (f) , and the value of the correspond-
ing Shannon function is denoted by T (n) . In [2], the inequality T (n) < 7n/2 is obtained.
The main goal of this paper is to obtain the following bound.

Theorem 1. Any read-once function f(x1, . . . , xn) over {∧,∨,¬} has a test with respect
to read-once alternatives of length less or equal to 2n + 1 :

T (n) 6 2n + 1.

For an n-ary disjunction, the lower bound T (x1∨. . .∨xn) > n+1 is obvious. S. E. Bubnov
formulated a conjecture that the equality T (f) = n + 1 holds for all read-once functions f

having exactly n essential variables. Note that, e. g., in the case of the basis of all two-variable
functions, the known universal upper bound of

(
n
2

)
+ n + 1 coincides with the length of a

unique irredundant test for the disjunction [3]. However, for individual read-once functions
over this basis, stronger upper bounds (including linear ones) are known [4].

Remark. For the elementary basis, a failed attempt to prove the universal upper bound
of n+1 is contained in [5]. For instance, for the function f = (x1∨x2)∧(x3∨x4) , the algorithm
of that paper mistakenly suggests the set of vectors (0010), (0110), (1000), (1001), (1010) as
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a test. Nevertheless, one can check that f has a test of length 5 , which consists of vectors
(0011), (1100), (1010), (0110), (1101) . Thus S. E. Bubnov’s conjecture has been neither proved
nor disproved.

Let us proceed to the main results of this paper. Let f(x1, . . . , xn) be a read-once function
depending essentially on all its variables. Construct auxiliary sets of vectors A0(f) and A1(f)

using the following inductive description:

1. Suppose that f = xi . Then put A0(f) = {(0)} and A1(f) = {(1)} .

2. Suppose that f = f1∧f2∧ . . .∧fs , where each fi is either a variable or a disjunction of
monotone read-once functions. (For f = f1∨f2∨ . . .∨fs , the construction is dual.) Let
the order of variables of f be given by sequential enumeration of all variables of f1 ,
and then ones of f2, . . . , fs . Groups of variables corresponding to different functions fi

will be separated from each other by vertical bars. Take an arbitrary vector αi from
each set A1(fi) and include the vector

α = ( α1 | α2 | . . . | αs )

in the set A1(f) . Also add to this set all vectors obtained from α by replacing any
subvector αi with an arbitrary subvector α′

i from the same A1(fi) . Furthermore, let
A0(f) be the set of all vectors of form

β = (1 | . . . | 1 | βi | 1 | . . . | 1 ),

where βi ∈ A0(fi) for i = 1, . . . , s and symbols 1 denote subvectors consisting of ones.

3. Suppose that f is obtained from f ′ by substituting xi for xi in a formula expressing
f ′ . In this case, obtain vectors of sets A0(f) and A1(f) from the corresponding vectors
for f ′ by inverting the component representing xi .

Note that for any read-once function f , transformations in the last item of the list above
are unambiguous.

Claim 1. For any monotone read-once function f(x1, . . . , xn), the sets A0(f) and A1(f)

consist of upper zeros and lower ones of f , respectively.

Claim 2. If xi is an essential variable of a monotone read-once function f , then there
exists a vector in A0(f) with xi = 0 and a vector in A1(f) with xi = 1.

Lemma 1. For any read-once function f , the set A0(f) ∪A1(f) contains exactly n + 1

vectors, where n is the number of essential variables of f .

2



Proof. It follows from Claim 1 that for any read-once function f , the sets A0(f) and
A1(f) are disjoint, so the cardinality of their union is equal to the sum of their cardinalities.
Now use induction over n . For n = 1 , the desired is straightforward. Suppose that n > 2 .
Assume without loss of generality that f = f1∧ . . .∧ fs , where s > 2 . Then by construction
of A0(f) and A1(f) , it holds that

|A0(f)|+ |A1(f)| − 1 =
s∑

i=1

|A0(fi)|+

(
1 +

s∑
i=1

(|A1(fi)| − 1)

)
− 1

=
s∑

i=1

(|A0(fi)|+ |A1(fi)| − 1) ,

which gives the desired by the inductive assumption.

Lemma 2 (main lemma). Let f be a read-once function over {∧,∨} depending essen-
tially on all its variables. Then the set A0(f)∪A1(f) is a test for f with respect to read-once
alternatives over {∧,∨}.

Proof. Use induction on the depth of a read-once formula expressing f . For n = 1 , the
set A0(f) ∪ A1(f) contains all possible input vectors, so there is nothing to prove. Suppose
that n > 2 . Assume without loss of generality that f = f1 ∧ f2 ∧ . . . ∧ fs , where s > 2 and
all fi are variables and disjunctions of read-once functions. We now reconstruct (learn) f

using its values on vectors from A0(f) ∪ A1(f) and exploiting the fact that it is read-once
over {∧,∨} . We have:

f( α′
1 | α2 | . . . | αs ) = 1, α′

1 ∈ A1(f1), (input vectors of f are from A1(f))

f( β1 | 1 | . . . | 1 ) = 0, β1 ∈ A0(f1), (input vectors of f are from A0(f))

⇒ f( β1 | α2 | . . . | αs ) = 0, β1 ∈ A0(f1), (by monotonicity of f)

⇒ f(− | α2 | . . . | αs ) ≡ f1. (by the inductive assumption)

Arguing as above, we prove that f has projections equal to f2, . . . , fs on the corresponding
subcubes.

Observe that for any two variables xk , xm , the projection h(xk, xm) of f depending
essentially on both xk and xm is the same for any possible choice of constants substituted
for f ’s other variables. In order to reconstruct f , it is sufficient to reconstruct a graph G∧

defined as follows. The set of vertices of this graph is the set of essential variables of f , and
an edge (xk, xm) is present if and only if f has a projection equal to xk∧xm . This technique
dates back to the paper [6] by V.A. Gurvich and is used, e. g., in [2] and [7]. When applied to
the problem of testing read-once functions, it is most extensively developed in [4]. In our case,
it is sufficient to prove the connectivity of each subgraph of G∧ induced by a set of vertices—
variables of projections fi and fj (then, since the complement of such a subgraph is always
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disconnected, all missing information about edges is obtained automatically). Furthermore,
according to the argument above, any distinct induced subgraph for each fi can be regarded
as already known. It either contains only one vertex, or is disconnected and has connected
components that correspond to the summands in the read-once formula for fi .

Consider a subgraph for f1 and f2 . Without loss of generality, suppose that the vector
α contained in the test has the form

α = ( α1,1 0 . . .0 | α2,1 0 . . .0 | α3 | . . . | αs ).

Here and below, vectors’ components are split into groups according to read-once expressions
f = f1 ∧ f2 ∧ . . . ∧ fs and fi = fi,1 ∨ . . . ∨ fi,ni

. Naturally, symbols 0 denote subvectors
consisting only of zeros. Known information about f allows us to determine that the value
of f is equal to 0 on any vector differing from α in one component that equals to 1 in α1,1

or α2,1 (by Claim 1, vectors α1,1 and α2,1 are lower ones of f1,1 and f2,1 , respectively), so for
at least one pair of variables xk and xm of projections f1,1 and f2,1 , there exists a projection
of f equal to xk ∧ xm . We now reconstruct one edge between variables of projections f1,1

and f2,j , for all possible j , and one between variables of f1,i and f2,1 , for all possible i . This
is sufficient to prove the connectivity of the considered subgraph.

Without loss of generality, consider only one pair f1,1 and f2,2 . The form of vector α

indicated above implies that the set A1(f) contains at least one vector of the form

( α1,1 0 . . .0 | 0α2,2 0 . . .0 | α3 | . . . | αs ), α2,2 ∈ A1(f2,2),

so

f( α1,1 0 . . .0 | 0α2,2 0 . . .0 | α3 | . . . | αs ) = 1 (input vector of f is from A1(f))

⇒ f(γ1,1) = 1, γ1,1 = ( α1,1 0 . . .0 | 0α2,2 0 . . .0 | 1 | . . . | 1 ). (by monotonicity of f)

Furthermore,

f( β1 | 1 | . . . | 1 ) = 0, β1 ∈ A0(f1), (input vectors of f are from A0(f))

f( α′
1 | α2 | . . . | αs ) = 1, α′

1 ∈ A1(f1), (input vectors of f are from A1(f))

⇒ f( α′
1 | 1 | . . . | 1 ) = 1, α′

1 ∈ A1(f1), (by monotonicity of f)

⇒ f(− | 1 | . . . | 1 ) ≡ f1. (by the inductive assumption)

By Claim 1, for each subvector α′
1,1 obtained from α1,1 by changing a 1 to 0 in any its

component, it holds that

f( α′
1,1 0 . . .0 | 1 | . . . | 1 ) = 0

⇒ f(γ0,1) = 0, γ0,1 = ( α′
1,1 0 . . .0 | 0α2,2 0 . . .0 | 1 | . . . | 1 ). (by monotonicity of f)
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We also have

f( α1,1 0 . . .0 | α′
2 | α3 | . . . | αs ) = 1, α′

2 ∈ A1(f2), (input vectors of f are from A1(f))

⇒ f( α1,1 0 . . .0 | α′
2 | 1 | . . . | 1 ) = 1, α′

2 ∈ A1(f2), (by monotonicity of f)

f(1 | β2 | 1 | . . . | 1 ) = 0, β2 ∈ A0(f2), (input vectors of f are from A0(f))

⇒ f( α1,1 0 . . .0 | β2 | 1 | . . . | 1 ) = 0, β2 ∈ A0(f2), (by monotonicity of f)

⇒ f( α1,1 0 . . .0 | − | 1 | . . . | 1 ) ≡ f2 (by the inductive assumption)

⇒ f(γ1,0) = 0, γ1,0 = ( α1,1 0 . . .0 | 0α′
2,2 0 . . .0 | 1 | . . . | 1 ), (by monotonicity of f)

where α′
2,2 is obtained from α2,2 by changing any 1 to 0 .

The values of f on the three vectors γ1,1 , γ0,1 and γ1,0 prove that one of its projections is
a conjunction of two variables of f1,1 and f2,2 . According to the argument above, this proves
the connectivity of the induced subgraph for f1 and f2 . A special case when at least one
of these functions has exactly one essential variable, is analyzed in a similar manner. This
concludes the proof.

Theorem 2. Let f(x1, . . . , xn) be a read-once function over {∧,∨}. Then f has a test
with respect to read-once alternatives over {∧,∨} of length n + 1.

This theorem identifies the exact value of Shannon function for test length with respect
to read-once alternatives over the basis of conjunction and disjunction. The statement of
the theorem implies that n-ary disjunction is the hardest (in the context of checking test
problem) read-once function of n variables over this basis. Note that for this basis, there
exist read-once functions that are easier to test than the disjunction. For instance, in [7] a
subsequence of functions is constructed such that its function depending on n variables has
a checking test of length less than 3

√
n .

We now return to the elementary basis.

Proof of Theorem 1. Assume without loss of generality that f is monotone and all
its variables are essential. By Claim 2, for each variable xi there exists a vector δi ∈ A1(f)

with xi = 1 . By Claim 1, for the vector δ′i differing from δi only in xi = 0 , it holds that
f(δ′i) = 0 , whereas f(δi) = 1 . Let A2(f) consist of vectors δ′i for all i . Then the values of f

on vectors from A0(f)∪A1(f)∪A2(f) , firstly, prove that f is monotone in all its variables
(or, equivalently, read-once over {∧,∨}) and, secondly, distinguish f from all other read-
once functions over {∧,∨} that depend on the same variables. It follows that this set is a
test for f with respect to read-once alternatives over the basis {∧,∨,¬} . By Lemma 1, the
length of this test is at most (n + 1) + n = 2n + 1 . This completes the proof.
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