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Abstract—The concept of a checking test is of prime interest
to the study of a variant of exact identification problem, in
which the learner is given a hint about the unknown object. A
graph F' is said to be a checking test for a cographG iff for
any other cograph H there exists an edge inF' distinguishing
G and H, that is, contained in exactly one of the graphs> and
H. It is known that for any cograph G there exists a unique
irredundant checking test, the number of edges in which is
called the checking test complexity oiG. We show that almost
all cographs onn vertices have relatively small checking test
complexity of O(nlogn). Using this result, we obtain an upper
bound on the checking test complexity of almost all read-
once Boolean functions over the basis of disjunction and parity
functions.
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A checking test for a cograpli can be regarded as a
certificate forG in the following sense. If from all edges
contained in a checking tegt for G, a cographHd on the
same set of vertices contains exactly those that are present
in G, then H = G. Checking test complexity is therefore a
measure of how hard the task of proving tlfat= G is, if
H is known a priori to be a cograph.

One can easily see that a complete graph26nis a
checking test for all cographs o by definition, so the
checking test complexity for any cograph anvertices is
less or equal to};), which is quadratic inn. It must be
stressed that there exist cographs requiring all edges to be
present in their checking test and thus having checking test
complexity of exactly(g) (a complete graph itself is one of
these cographs). For some cographs, however, checking test
complexity is as low ag@n — 3, which is linear inn.

The checking test problem for cographs was studied

A general setup of a checking test problem can ben [25]. It was shown that alfredundantchecking tests (i. e.,

described as follows. Consider a geind imagine a black ones containing no edges that can be eliminated without
box containing a single objectc C. One knows for sure that |osing the property of being a checking test) for any fixed
the object in the box comes frody and can ask questions cograph have equal length. A simple formula giving the
about it. One is also given a hint that the object in the boxexact value of this length (checking test complexity) was
is ¢o. The checking test problem fag lies in verifying the  deduced. It was also demonstrated that checking tests for
hint, that is, in checking whether the box indeed contains cographs can be used to construct individual checking tests

or not.

for Boolean read-once functions over the basis of all two-

In this paper, we study checking test complexity for avariable functions. Exact statements of these results are
certain class of graphs, namely, for cographs [11]. A graplyiven below.

is called complement-reducibjeor a cograph if it can be

This paper is devoted to establishing an upper bound

reduced to distinct vertices by recursively complementingon checking test complexity foalmost all cographs. We
its connected components (or, equivalently, if it does notshow that the fraction of cographs anvertices allowing a
contain an induced subgraph isomorphic to a simple patlchecking test of lengtlD(nlogn) tends tol asn — .
P, on four vertices). Cographs are closely related to aMore precisely, we prove the following theorem:

broad class of rooted trees. They have arisen in many Theorem 1:Checking test complexity of almost all
areas of mathematics and computer science and have beeographs om vertices is less or equal to

independently rediscovered several times.

Let G be a cograph on vertice¥. A graph F' on X is
said to be achecking tesfor G iff for any cographH on X
such thatH # G there exists an edgein F' contained in
exactly one of the graph& and H. A lengthof the test is

4nlogyon - (1 4 o(1)).

The statement of the theorem means that almost all
cographs have relatively small checking test complexity, as
compared to the maximum of;) = Q(n?). This result,

the number of edges contained in it. The smallest length oépart from having independent value, proves useful for
a checking test fo(7 is called thechecking test complexity estimating checking test complexity for other classes of
of G. objects. Exploiting cographs’ relation to trees and applying



a result from [[25], we establish an analogous bound on Il. PRELIMINARIES AND RELATED RESULTS
checking test complexity for almost all read-once Boolean First of all, we need some facts concerning cographis [11].

functions over the basis of disjunction and sum modlo Suppose thaT is a rooted tree with the set of leavasand
(paArltBy). | funci . ledread basis no nodes with exactly one child. Also suppose tin&rnal
i oobean unc 'ngb's C? € rfza \-l%nCﬁover a basl bl nodes(non-leaf nodes) ofl" are properly coloured witl)
fif it can be expressed by a formula ovBrwhere no variable 44 (no two adjacent nodes have the same colour). Any

appears more than once. The structure of such formul ee satisfying these conditions is calledatree Denote by
can be represented by rooted trees, where leaves stand nf
o}

. ; . ; (T) a graph on verticest' such that an edgéz;, z;} is
variables, apd internal nodes are labeled Wlth functions fro ntained inp(T) iff the lowest common ancestor of and
B. A checking test for a read-once functigitzy,...,z,)

. . ; g ; . i in T is coloured withl. Any graph¢(T") constructed in
over B depending essentially on all its variables is deflnedtzﬁi y grapho(T)

. L S manner is a cograph. The mappinds known to be a
as a set of input vectors distinguishirigrom all other read- bijection between the set of all cotrees with leavésand
once functions oveB of variablesz1, . . ., z,,. Checking test

: . . the set of all cographs on verticéS. A cotreeT represents
complexity of a read-once functiofiover B is the smallest grap P

bl ber of inbut vectors i hecking test the process of reducing the cograp{t’) to distinct vertices
po:g € numt ?.r 0 llr:pu vec ?r:S n aﬂ;: e(:,[ Icr;g fes rJ]fork_ by repeatedly complementing its connected components.
or computational learning theory, the study of checking ™\ suppose thaf? is a cograph onX — {z1, ..., an}

tests is interesting for two reasons. First, checking tests cap 47T — 41 A ind to 251 81, the checking t
be regarded aseaching sequencedescribed by Goldman cggwple_xi?;/ ogg).is ggs;cliltr(l)g 0125], [8], the checking test

and Kearns[[14]. For a Boolean functighfrom a certain
class C, a teaching sequence is a list of pairs of form _ 1 2 n—1
(o, f()) such thatf is the only function inC consistent vT) = Z b(u) blw) + 2 Z bw) + 2 @)
with all given pairs. The prime difference between the
results on checking tests presented here and previouslyhereint V(7) is the set of all internal nodes @f, int E(7")
known results for Goldman and Kearns’ model is that weis the set of all edges incident only to internal nodgs) =
study the problem for individual objects, whereas Goldmandegv — 1 anddegv is the number of children ob in 7.
and Kearns' work is focused on estimating tteaching Furthermore, iff’ is a checking test fo of length greater
dimensionwhich is the complexity of teaching the “hardest” thanv(T'), then some of its edges can be removed without
object from the whole concept class. In test theory, maxidosing the property of being a checking test f@r Finally,
mum complexity of an object in the class with a boundedfor each cograpl there exists a unique checking tefst
size is usually called@hannon functionFor cographs om  containing exactly/(7) edges|[25].
vertices, this function is equal t(f)). It is also known that, fom > 2, the smallest possible

A second point of view on checking tests in the contextvalue ofv(T) is 2n— 3, for binary cotrees and, if = 3, for
of learning is related to the notion @fquivalence queries a three-leaf star graph (the latter corresponds to a complete
for exact identification problem, the goal of which is to cograph on three vertices). The largest possible vall@)i,s
determine exactly what object is hidden in the black boxfor cotrees with exactly one or two internal nodes. It is also
by asking questions (performing queries) [2]. For Boolearknown that for every integen betweer2n—3 and (%), there
concepts regarded as functions, an equivalence query allovexists a cotre@” with n leaves such that(T') = m. Hence,
the learner to check whether the (unknown) target functiorfor cographs om > 2 vertices the set of all possible values
f can be expressed by a given formula (in some settinggf checking test complexity is exactljgn — 3; (’5)] N N.
more general representations are allowed). The answer iBhese results are developed lin [8].
either “yes” or a counterexample such thatf(«) # g(«), The study of checking test complexity for cographs
where g is a function expressed by the given formula. was motivated by a related research on read-once Boolean
Consequently, a checking test can be regarded as an inflinctions. A nontrivial checking test problem for read-once
plementation of an equivalence query with more primitivefunctions described above was suggested by Voronenko
membership querieswhich simply ask the value of the in [21]. This problem is referred to assting with respect
function in the black box on a given input. In order to obtainto read-once alternativesFor all finite bases this problem
the answer to the equivalence query, it is sufficient to querys believed to be polynomial in the number of variables,
the value of the target function on all vectors in a checkingwhereas one cannot unconditionally identify an unknown
test. read-once conjunction of literals with less thar2™ — 1

It is worth remarking, however, that minor details in the queries of typ&as, ..., a,) — f(ai,...,a,) (Mmembership
definitions of a checking test for a specific concept class andqueries in query learning).
an equivalence query can create an exponential complexity For the basis of all two-variable functions, the following
gap between these two notions. A discussion of this issueesults are known. An exact universal upper bound (Shannon
can be found at the end of our paper. function) of (Z)+n+1 on checking test complexity for read-

{u,w}€int E(T) v€int V(T')



once functions over this basis was obtained by Ryabeis [195omewhat extensive survey of Soviet results in the area of
Individual upper bounds can be as low &8 — 2 (see, testsis contained in[27]. Several checking test problems for
e.g., [25]). Ann-ary disjunction requires at Ieaég)+n+ 1 graphs (under the name of graph verification problems) were
vectors in its test. considered by Reyzin and Srivastaval[18]. Diagnostic testing
Checking techniques for this basis enabling one to obtairflearning) algorithms for graphs can also be foundlin [18],
individual bounds on checking test complexity for any read-as well as in Aigner’s booK [1] and Bouvel, Grebinski and
once functionf were suggested in_[25]. These techniqueskucherov’s survey|[[4]. Unconditional diagnostic tests for
exploit a connection between read-once functions over thigraphs were studied by Debrev (see, e.g.] [13]).
basis and cographs. First, suppose that the target function is
read-once over the basjs, @} containing only disjunction
and sum modulo 2 (parity) functions. L&t; be a cotree Our plan is as follows. We first establish an upper bound
representing the structure of a formula f¢r where no on the fraction of cotrees with leaves having an internal
variable appears more than once, and symhplsnd v nodewv with at leastk children (i.e., such thadegv > k).
are replaced with) and 1, respectively. It turns out that We show that ifk = k(n) is chosen sufficiently large, then
checking test complexity off is always less or equal to the fraction tends to zero as— oco. This means that almost
v(Tr)+n+1, even if arbitrary read-once functions over the all cographs om vertices do not have internal nodes with
basis of all two-variable functions are allowed as alternativesnore thank —1 children, for the chosen sequence= k(n).
for f. If f itself is read-once only over this basis, the upperWe then demonstrate that the characteris{i€) of a cotree
bound of4 v (T%) holds, wherel; is a cotree representing 7" with n leaves cannot be greater théh nd, whered is
the structure of a formula fof, in which all non-linear basis the maximum number of children of internal node</immnd
functions are not distinguished from one another. C is a universal positive constant. Put together, these results
A generalization of the suggested techniques to the casgive an upper bound on the checking test complexity for
of an arbitrary Boolean basiB was described i [23], which almost all cographs.
is an English translation of a paper in Russian. A proof of Remark 1:All cographs in this paper are assumed to have
a universal upper bound for the basis of all five-variablea specific set of verticeX = {z1,...,z,}, wheren — cc.
Boolean functions can be found in_[26]. A recent papér [9]Therefore, for eacln > 2, the distribution underlying our
(also an English translation) is devoted to individual check-almost-all statements assigns equal non-zero probabilities
ing test complexity for arbitrary bases and describes reado all cographs on these vertices. For example, since all
once functions whose checking test complexity is strictlygraphs on three vertices are cographs,sfer 3 there exist
less than that of their projections. three distinct cographs having exactly one edge, and only
Read-once Boolean functions have been studied in consne cograph having no edges at all.
putational learning theory for more than two decades. In Remark 2:We say that a property holds famost all
1984 Valiant suggested a polynomial algorithm using threecographs (cotrees, read-once functions) if the fractgn
types of queries to solve the problem of exact identificationof cographs on verticeX = {zi,...,z,} (cotrees with
of an unknown read-once function over the basis of conjuncleaves X, read-once functions of variable¥) not having
tion, disjunction and negatioh [20]. Further major results arghe property tends t® asn — oo. However, our main
due to Angluin, Hellerstein and Karpinski, who conductedbounds can be proved with a constant factor relaxation under
a thorough study of the problem for the bases Vv, —} conditions of forme,, = O(n~°) for arbitraryc > 0 (details
and {A, V} [3]. More powerful algorithms for generalized are provided in Section IV).
versions of this problem to the case of wider bases have Let us establish an upper bound on the fraction of cotrees
been developed by Bshouty, Hancock and Hellerstein [5lwith n leaves having an internal node with at least
Recent research due to Golumbic, Mintz and Rotics hag children. To each cotree we shall assign a rooted and
been devoted to efficient factoring and recognition of read-ordered binary tree (each internal node of the latter tree
once functions over the basig\, Vv, —} [15]. This work  has exactly two children, callddft andright, respectively).
also involves cographs, and makes use of the concept dfthis assignment will constitute a bijection between the set
normality, in the flavour of early results by Gurvich [16]. of cotrees and the set of rooted and ordered binary trees.
Test theory, initially developed for switching circuits, was  SupposeR is a rooted and ordered binary tree. A sequence
suggested by Yablonsky and Chegis in 1958 [6], though the, ..., v, of internal nodes im? is called aright interval of
authors paid more attention to a diagnostic test problem —engthn iff for all i = 2, ... h the nodey; is the right child
in terms of modern learning theory, that of exact identi-of v;_;. The nodev, is called thesourceof the interval. If
fication. A similar problem for automata was studied bythe interval cannot be extended, i.e,is either the root of
Moore [17]. Research in this field seems to have been fuele® or the left child of an internal node ik, and the right
by development of electrical circuits, but the researchersthild of v, is a leaf, then the interval is callecbmplete
attention was subsequently drawn to other object regions. Aote that the left child of any internal node iR is the
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source of exactly one complete right interval ity and so Proof: SinceS contains exactlyn internal nodes which

is the root ofR. are right children of nodes i, it can be unambiguously
In a similar fashioneft intervalandcomplete left interval  split intom-+1 complete left intervals. One of these intervals

are defined. As above, we observe that the right child of anyas the root ofS as its source, and other intervals’ sources

internal node inR is the source of exactly one complete left are thosem right children. By Lemmd |1, each of these

interval in R, an so is the root oR. intervals can be labeled in two different ways. Since labels
For the sake of simplicity, a subtree @f containing an of two distinct left intervals are independent, we obtain the

internal nodev and all its descendants is identified with  desired. ]

In a binary tree, the left child subtree and the right child The previous definition splits the set of all ordered binary

subtree are distinguished for every trees into classes of trees having identical index-saving
We now describe the bijection announced above. Supposgructures. We now obtain an upper bound on the fraction of

T is a cotree with leaveX = {z;,...,z,}. We obtain a ordered binary trees containing an interval of length 1

binary treeR by takingT and modifying it as follows: of nodes with identical labels. This bound will lead us to

with a right interval of length: — 1. Each node of the * Or more children.

interval is labeled with the same symbol as Lemma 3:The fraction of cotrees with leaves contain-
2) Suppose is an internal node i’ havingk children, ing a node withk or more children is less or equal to

andTy,T5,...,T, are its child subtrees. Then &l n—1

become the descendants of the nodes of the right oh—2

interval replacing. In order for the transformation to ) Il th de with hild
be bijective, we demand that the following condition . Proof: We recall that a node witi or more children

be satisfied. Whenevat andT are child subtrees of N & cotree is transformed into an interval of lendth-
a nodeu in a binary tréeR thJe left child subtree of 1 OF greater, all nodes of which are labeled with identical

u shall be the one containing a leaf with the smallestSYMPOIS. LetS be an index-saving structure with leaves.

variable index among all the leaves B and 7. Sln_ce a right interval of_ length — 1 is uniquely determined
by its source, and a binary tree with leaves has exactly

For convenience, the obtained tree shall be called all _ 1 internal nodes, it follows that the number of right
ordered binary tree _ _ intervals of lengtht — 1 in S cannot be greater than— 1.
Lemma 1:In an ordered binary tree, the following state- Now suppose thaf containsm internal nodes which are
ments hold true: right children. ThenS can be split intom + 1 complete
« if an internal nodeu is the left child ofv, thenu and  |eft intervals. Let us choose an arbitrary right interval of
v have different labels; lengthk — 1 in S (there are no more than — 1 ways of
o if w andv are adjacent internal nodes with the sameqoing this) and label all its nodes with identical symbols
label, then one of them is the right child of another; (here the number of possibilities &. The labeled nodes
« labels of nodes in any complete left interval are yniquely determine the labels bf-1 complete left intervals
uniquely determined by the label of any single nodecontaining the nodes of the chosen right interval.
in the interval (e.g., the interval's source). All remaining m + 1 — (k — 1) complete left intervals
The proof is trivial. We remark that labels of any two are then labeled arbitrarily; the number of possibilities is
internal nodes, one of which is the right child of another,2™~%+2 Therefore, in the set of all ordered binary trees
can be considered independent. One can observe that thaving index-saving structurg&, no more thann — 1) - 2 -
described procedure indeed gives a bijection between th&"—*+2 contain a right interval of lengttt — 1, all labels
set of all cotrees and the set of all ordered binary treesin which are identical. Note that whenever a tree contains a
Furthermore, the obtained ordered binary tféeontains a right interval of length greater thaln— 1, or more than one
right interval of lengthk — 1, all nodes of which are labeled right interval of lengthk — 1 (or greater) such that all the
with identical symbols, iff the initial cotred” contains an labels inside each said interval are identical, then this tree is
internal nodev such thatdegv > k. “counted” more than once, which does not render our upper
Define theindex-saving structuref an ordered binary tree  bound invalid.
R as a tree obtained frolR by removing labels of all its According to Lemma ]2, the number of all ordered binary
internal nodes. trees with index-saving structurgis equal to2™*!. Hence,
Lemma 2: SupposeS is the index-saving structure of an the fraction of trees containing a right interval of length
ordered binary tred?. Also suppose tha$ contains exactly & — 1 with identical node labels in the set of all ordered
m internal nodes which are right children of nodesSn  binary trees having index-saving structuffés less or equal
Then there exist exactlg”*! ordered binary trees having to (n—1)/2%~2. Since this bound does not depend-aror
index-saving structuré. S, it holds true for the set of all ordered binary trees with



n leaves. If we substitute cotrees for ordered binary tree®y uy,...,uy) denote the rest of the children af and
using the bijection described above, we obtain the desiredy vo, v1, ..., vy,) denote the children of. We have
[ |

Theorem 2:For any function 1
Y v(T') = v(T) = 5 (b{u) + b(v))®

k(n) = logyn + r(n) - % (b*(uw) + b*(v)) — b(u)b(v)

such thatr(n) — 400 asn — oo, almost all cotrees with b(w) b(v)
n leaves contain no nodes havikgor more children. + b(v) Z b(u;) + b(w) Z b(v;)
Proof: Under the conditions of the theorem, we have =1 =0
- - +0(v) bp(u),
n 1 _ 2log2n—k+2 . Ll _ 2—r(n)+2 . (1 _ 0(1)) = 0.

2k—2 n
wherebp(u) = 0 if u is the root ofT" and bp(u) = b(w) if
T contains a parent of . It follows that

IV. UPPER BOUNDS ON CHECKING TEST COMPLEXITY b(u) b(w)

Our goal now is to establish a tight upper bound on the/(T") = v(T)+b(v) Y b(u;) +b(w) > b(v;) +b(v) bp(u),

characteristicv(T") of a cotreeT containing no internal =1 =0

nodes with more than, say, children. In such a tree, for

all internal nodes the inequalityb(v) < k — 1 holds. First,

suppose thal(v) = & —1 for all v. From [3), it follows that

which proves the desired for the considered special case.
One can easily see that for any number of edge contractions

the inequalityv(T) < v(T”) holds. |
W(T) = |int B(T) |~(k—1)2+1-\intV(T)|-(k’—1)2—|—n_ 1 ~We can now prove an upper bound eT’) which is
2 2 linear inn - k.
Since|int V(T) |-k = |int V(T) |[+n—1 and|int E(T) | = Lemma 5:1f all intern_al nodes in a cotre® with n leaves
lint V(T) | — 1, we have have no more thag children, then
v(T)=(n—1)-(k—1) = (k—1)? V(T) < 4nk.
t o gyt
2 2 Proof: Take T' and contract all internal edges:, v}
_3 (n—1)- (k — 2) — (k—1)2, such thatb(u) 4+ b(v) < k — 1 into single nodes (all edges
2 3 incident to leaves are left untouched). Repeat the procedure
and until for all pairs of adjacent internal nodasanduv it holds
3nk that b(u) + b(v) > k — 1. Denote the obtained tree LY .
v(T) < —- By Lemma[4,v(T) < v(T").

. . , We now prove an upper bound o{7”). Define
However, if some internal nodes have less thachildren,

then the cardinality int V(7) | cannot be bounded bg' - ; . /
(n—1)/(k—1). In fact, it may be as big a8 — 1, which VH ={ve ?ntV(T/) | b(v) <
gives us only V" ={veint V(T") | b(v) >

3nk?
=Ty where h = (k — 1)/2. By construction ofT”, it contains
no edges between nodes Wi. Furthermore, since for all

While this yields anO(n log®n) upper bound on/(T) for 4 ¢ V" it holds thatb(v) > h, it then follows thatn — 1 >
almost all cotreeq”, we show how to tighten the bound on . |v”|, since the sum ob(v) over all internal nodes is

v(T). We need an auxiliary lemma on edge contraction iNequal ton — 1.

cotrees. _ . Now recall that
Lemma 4:If a cotreeT” is obtained from a cotre& by

hi,
hi,

v(T)

contracting several edges between internal nodes, then 1 -1
? ? y(T) = 3 blu)b(w)+5 > Bw) + o,
- 2 ¢ 2
V(T) < V(T’). {u,w}e€int E(T")’ v€Eint V(T')’
Proof: Suppose thal” is obtained fromil" by contrac- Consider the first sum in this formula. Denote tythe

tion of exactly one edgdu,v}. Let u be the parent ob.  root of 77 and byanc(v) the parent of a non-root internal



nodev. We have

> b(u)b(v) = Y b(v)b(anc(v))

{u,v}€int E(T") veV \{vo}
+ > b(v)b(anc(v))
veV"\{vo}
< b k-1 + Y (k- 1)
veV’ veV?”
= (k=1)- Y b(v)+ (k= 1)*- V"]
veV’
<h-Dn-D+2(k=-1)(n—1)
—3(k—1)(n—1).

Now take the second sum. Clearly, the sunbtfv) over
all v € int V(1”) is less or equal to

where0 <y, <k—1for1<i<n—-1landY) 'y =
n—1I1f0<y <y; <k—1,then

(i =12+ + 1)) — (WP +v3) =2y —vi + 1)
>2-1>0
and(yy, ...
maximizing vector consists only 6fs, (k—1)'s and at most
one number from{0; k — 1). Suppose thap- (k —1) + ¢ =
n — 1, wherep,q > 0 andq < k — 1. We obtain

Yo Pw<M=p-(k-1)°+¢
v€int V(T") <(p+1)-(k—1)>
<2p-(k-1)?
<2(n-1)(k—1).
Combining the bounds yields

n—1

W(T') < 3 (n—1) (k—1)+%-2 (n—1) (k=1)+" =L < 4nk,

which concludes the proof. ]

Remark 3: The bound of Lemm@]5 cannot be improve
by more than a constant factor. Indeed, if all internal node
of a cotre€l” have exactlyk children, then, as shown above,

V(T):Z.(n—1)~<k—§)—(k—1)2
3 ) k
zi-nk—k —n—|—§.

First suppose that < C for some fixedC asn — oo, then

V(T) = <‘;’.k—1).n-(1—o(1)).

Now suppose that — oco. In this case, we have

U1y = (32 2 ) n ]

2 2
ko
-2 2
=M1 —o)

We observe now that the statement of Theorém 1 follows
from Theorenj P and Lemnjg 5, fofn) = o(logn) — +oo
asn — 00.

Remark 4:Choosingk(n) = (¢ + 1)logyn, ¢ > 0, in
Theoren| P leads to the bound

v(T) < 4(c+ 1)nlogyn,

which is still O(nlogn) and holds for all but the fraction
of

g—clogyn+2 (1 _ i) 4. <:L>° (1 — :L) =0(n~°

cographs.
Recall that for any read-once functigitzy, . .., z,) over
the basis of disjunction and sum moda@igparity) its check-

,yn_1) does not bring the maximum. Hence, the ing test complexity with respect to read-once alternatives

either over the same basis or over the basis of all two-
variable functions is less or equal td7;) + n + 1, where

T is a tree representing the structure of a read-once formula
for f. Combining this with the statement of Theorgin 1, we
obtain the following corollary:

Corollary 1: Checking test complexity of almost all read-
once functions ofr variables over the basis of disjunction
and sum modul@ (parity) with respect to read-once alter-
natives either over the same basis or over the basis of all
two-variable functions is less or equal to

4nlogym - (14 o(1)).

Remark 5:Here we employ the fact that our cotree rep-

g resentation of read-once functions ovey, &} is a one-
Jo-one correspondence (see, e. .. [25]). For eaclwe

consider functions as mappings froffi, 1} to {0,1} and
assign equal non-zero probabilities to all read-once functions
depending on variableX = {z1,...,z,}. For example,
formulae(z; Vas) ® x5 and(z2 V) ® a3 express the same
function, different from the one expressed (y Vv z3) ® z5.

Similarly to the case of cographs, the obtained value is
relatively small compared to the maximum possible value
of (g) + n + 1, which is the exact value of checking test
complexity ofn-ary disjunction. Arguing as above, one can
also obtain arO(nlogn) bound for all but the fraction of
O(n~°) read-once functions.



V. DISCUSSION for checking tests in a simulation of an equivalence query.

) ) Large classes of read-once Boolean functions are shown to
We obtained arD(n log n) upper bound on checking test pe exactly identifiable in this model.

complexity of almost all cographs and deduced a corollary
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x1,...,T, over {V,®}) are relatively easy to “certify”
if one knows for sure that a given graph is a cograph
(or, similarly, that a given Boolean function is read-once [1] M. Aigner, Combinatorial search John Wiley and Sons,
over {Vv,®}), then anO(nlogn) amount of information 988.
is sufficient to check whether the given graph (the given (2] p. angluin, “Queries and concept learninglachine Learn-
function) is equal ta@7 (f). This information can be obtained ing, vol. 2, pp. 319-342, 1987.
by checking the presence of edges (computing function’s

3] D. Angluin, L. Hellerstein, M. Karpinski, “Learning read-

i i i is L
yalue at input vectors) pointed to by.a_. checking test. It is once formulas with queriesJournal of the ACM vol. 40,
important to note that cograph recognition can be performed pp. 185-210, 1993
in linear time [12]. ’
We believe that our bounds are optimal in termsOgf), [4] M. Bouvel, V. Grebinski, G. Kucherov, “Combinatorial search
i. €., they cannot be improved by more than a constant factor. ~ ©n graphs gOt";]atTeﬁ by t_)'o'gformat'csf a‘ép"cat'O”S: Sa_ brief
. . i _ survey,” in Graph-Theoretic Concepts in Computer Science
Eor the problem of testing with respect to read once alterna 2005 ser. Lecture Notes in Computer Science, vol. 3787,
tives, we expect that analogous bounds hold for wider bases, 5 16-27.
even though individual lower bounds for some functions are _ _
provably as high as' for anyl € N [24]. An approach based [5] N.H. Bshouty, T.R. Hancock, L. Hellerstein, “Learning
on similar techniques for read-once functions oyer, \/} Boolean read-once formulas over generalized basesjnal
. ) f i | . . 521-
gives not only bounds, but also exact values of checking test 2450{38?.“ and System Sciencesl. 50, no. 3, pp. 5
complexity, though the results computed so far look quite ’
different [10]. [6] I.A. Chegis, S.V. Yablonsky, “Logical methods for control-
As indicated above, checking tests are closely related to /i electrical circuits,” inTrudy matematicheskogo instituta
equivalence queries in the context of exact identification imeni V. A. Steklovéin Russiap, 1958, vol. 51, pp. 270-360.
problems. This connection should be treated with great care{7] D.V. Chistikov, “On the relationship between diagnostic and
since minor details in definitions can turn out to be of checking tests of the read-once functionSjscrete Mathe-
major importance. In our definition of a checking test for matics and Applicationsvol. 21, no. 2, pp. 203-208, 2011.
read-once fun(_:tlons’ the, targe_t functighis a§sumed to, [8] D.V. Chistikov, “On one characteristic of trees related to
depend essentially on all its variables, though its alternatives™ ~ ingividual testing of read-once functions,” iRroc. XVIII
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