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Abstract—The concept of a checking test is of prime interest
to the study of a variant of exact identification problem, in
which the learner is given a hint about the unknown object. A
graph F is said to be a checking test for a cographG iff for
any other cograph H there exists an edge inF distinguishing
G and H, that is, contained in exactly one of the graphsG and
H. It is known that for any cograph G there exists a unique
irredundant checking test, the number of edges in which is
called the checking test complexity ofG. We show that almost
all cographs on n vertices have relatively small checking test
complexity of O(n log n). Using this result, we obtain an upper
bound on the checking test complexity of almost all read-
once Boolean functions over the basis of disjunction and parity
functions.

Keywords-cograph, checking test, complexity, equivalence
query, teaching, read-once Boolean function.

I. I NTRODUCTION

A general setup of a checking test problem can be
described as follows. Consider a setC and imagine a black
box containing a single objectc ∈ C. One knows for sure that
the object in the box comes fromC, and can ask questions
about it. One is also given a hint that the object in the box
is c0. The checking test problem forc0 lies in verifying the
hint, that is, in checking whether the box indeed containsc0

or not.
In this paper, we study checking test complexity for a

certain class of graphs, namely, for cographs [11]. A graph
is called complement-reducible, or a cograph, if it can be
reduced to distinct vertices by recursively complementing
its connected components (or, equivalently, if it does not
contain an induced subgraph isomorphic to a simple path
P4 on four vertices). Cographs are closely related to a
broad class of rooted trees. They have arisen in many
areas of mathematics and computer science and have been
independently rediscovered several times.

Let G be a cograph on verticesX. A graphF on X is
said to be achecking testfor G iff for any cographH on X
such thatH 6= G there exists an edgee in F contained in
exactly one of the graphsG andH. A lengthof the test is
the number of edges contained in it. The smallest length of
a checking test forG is called thechecking test complexity
of G.

A checking test for a cographG can be regarded as a
certificate forG in the following sense. If from all edgese
contained in a checking testF for G, a cographH on the
same set of vertices contains exactly those that are present
in G, thenH = G. Checking test complexity is therefore a
measure of how hard the task of proving thatH = G is, if
H is known a priori to be a cograph.

One can easily see that a complete graph onX is a
checking test for all cographs onX by definition, so the
checking test complexity for any cograph onn vertices is
less or equal to

(
n
2

)
, which is quadratic inn. It must be

stressed that there exist cographs requiring all edges to be
present in their checking test and thus having checking test
complexity of exactly

(
n
2

)
(a complete graph itself is one of

these cographs). For some cographs, however, checking test
complexity is as low as2n− 3, which is linear inn.

The checking test problem for cographs was studied
in [25]. It was shown that allirredundantchecking tests (i. e.,
ones containing no edges that can be eliminated without
losing the property of being a checking test) for any fixed
cograph have equal length. A simple formula giving the
exact value of this length (checking test complexity) was
deduced. It was also demonstrated that checking tests for
cographs can be used to construct individual checking tests
for Boolean read-once functions over the basis of all two-
variable functions. Exact statements of these results are
given below.

This paper is devoted to establishing an upper bound
on checking test complexity foralmost all cographs. We
show that the fraction of cographs onn vertices allowing a
checking test of lengthO(n log n) tends to1 as n → ∞.
More precisely, we prove the following theorem:

Theorem 1:Checking test complexity of almost all
cographs onn vertices is less or equal to

4n log2n · (1 + o(1)).

The statement of the theorem means that almost all
cographs have relatively small checking test complexity, as
compared to the maximum of

(
n
2

)
= Ω(n2). This result,

apart from having independent value, proves useful for
estimating checking test complexity for other classes of
objects. Exploiting cographs’ relation to trees and applying



a result from [25], we establish an analogous bound on
checking test complexity for almost all read-once Boolean
functions over the basis of disjunction and sum modulo2
(parity).

A Boolean functionf is calledread-onceover a basisB
iff it can be expressed by a formula overB where no variable
appears more than once. The structure of such formulae
can be represented by rooted trees, where leaves stand for
variables, and internal nodes are labeled with functions from
B. A checking test for a read-once functionf(x1, . . . , xn)
over B depending essentially on all its variables is defined
as a set of input vectors distinguishingf from all other read-
once functions overB of variablesx1, . . . , xn. Checking test
complexity of a read-once functionf overB is the smallest
possible number of input vectors in a checking test forf .

For computational learning theory, the study of checking
tests is interesting for two reasons. First, checking tests can
be regarded asteaching sequencesdescribed by Goldman
and Kearns [14]. For a Boolean functionf from a certain
class C, a teaching sequence is a list of pairs of form
〈α, f(α)〉 such thatf is the only function inC consistent
with all given pairs. The prime difference between the
results on checking tests presented here and previously
known results for Goldman and Kearns’ model is that we
study the problem for individual objects, whereas Goldman
and Kearns’ work is focused on estimating theteaching
dimension, which is the complexity of teaching the “hardest”
object from the whole concept class. In test theory, maxi-
mum complexity of an object in the class with a bounded
size is usually calledShannon function. For cographs onn
vertices, this function is equal to

(
n
2

)
.

A second point of view on checking tests in the context
of learning is related to the notion ofequivalence queries
for exact identification problem, the goal of which is to
determine exactly what object is hidden in the black box
by asking questions (performing queries) [2]. For Boolean
concepts regarded as functions, an equivalence query allows
the learner to check whether the (unknown) target function
f can be expressed by a given formula (in some settings,
more general representations are allowed). The answer is
either “yes” or a counterexampleα such thatf(α) 6= g(α),
where g is a function expressed by the given formula.
Consequently, a checking test can be regarded as an im-
plementation of an equivalence query with more primitive
membership queries, which simply ask the value of the
function in the black box on a given input. In order to obtain
the answer to the equivalence query, it is sufficient to query
the value of the target function on all vectors in a checking
test.

It is worth remarking, however, that minor details in the
definitions of a checking test for a specific concept class and
an equivalence query can create an exponential complexity
gap between these two notions. A discussion of this issue
can be found at the end of our paper.

II. PRELIMINARIES AND RELATED RESULTS

First of all, we need some facts concerning cographs [11].
Suppose thatT is a rooted tree with the set of leavesX and
no nodes with exactly one child. Also suppose thatinternal
nodes(non-leaf nodes) ofT are properly coloured with0
and 1 (no two adjacent nodes have the same colour). Any
tree satisfying these conditions is called acotree. Denote by
φ(T ) a graph on verticesX such that an edge{xi, xj} is
contained inφ(T ) iff the lowest common ancestor ofxi and
xj in T is coloured with1. Any graphφ(T ) constructed in
this manner is a cograph. The mappingφ is known to be a
bijection between the set of all cotrees with leavesX and
the set of all cographs on verticesX. A cotreeT represents
the process of reducing the cographφ(T ) to distinct vertices
by repeatedly complementing its connected components.

Now, suppose thatG is a cograph onX = {x1, . . . , xn}
andT = φ−1(G). According to [25], [8], the checking test
complexity ofG is equal to

ν(T ) =
∑

{u,w}∈int E(T )

b(u) b(w) +
1
2

∑
v∈int V(T )

b2(v) +
n− 1

2
, (1)

whereintV(T ) is the set of all internal nodes ofT , int E(T )
is the set of all edges incident only to internal nodes,b(v) =
deg v − 1 and deg v is the number of children ofv in T .
Furthermore, ifF is a checking test forG of length greater
thanν(T ), then some of its edges can be removed without
losing the property of being a checking test forG. Finally,
for each cographG there exists a unique checking testF
containing exactlyν(T ) edges [25].

It is also known that, forn ≥ 2, the smallest possible
value ofν(T ) is 2n−3, for binary cotrees and, ifn = 3, for
a three-leaf star graph (the latter corresponds to a complete
cograph on three vertices). The largest possible value is

(
n
2

)
,

for cotrees with exactly one or two internal nodes. It is also
known that for every integerm between2n−3 and

(
n
2

)
, there

exists a cotreeT with n leaves such thatν(T ) = m. Hence,
for cographs onn ≥ 2 vertices the set of all possible values
of checking test complexity is exactly[2n − 3;

(
n
2

)
] ∩ N.

These results are developed in [8].
The study of checking test complexity for cographs

was motivated by a related research on read-once Boolean
functions. A nontrivial checking test problem for read-once
functions described above was suggested by Voronenko
in [21]. This problem is referred to astesting with respect
to read-once alternatives. For all finite bases this problem
is believed to be polynomial in the number of variables,
whereas one cannot unconditionally identify an unknown
read-once conjunction ofn literals with less than2n − 1
queries of type(α1, . . . , αn) 7→ f(α1, . . . , αn) (membership
queries in query learning).

For the basis of all two-variable functions, the following
results are known. An exact universal upper bound (Shannon
function) of

(
n
2

)
+n+1 on checking test complexity for read-



once functions over this basis was obtained by Ryabets [19].
Individual upper bounds can be as low as3n − 2 (see,
e. g., [25]). Ann-ary disjunction requires at least

(
n
2

)
+n+1

vectors in its test.
Checking techniques for this basis enabling one to obtain

individual bounds on checking test complexity for any read-
once functionf were suggested in [25]. These techniques
exploit a connection between read-once functions over this
basis and cographs. First, suppose that the target function is
read-once over the basis{∨,⊕} containing only disjunction
and sum modulo 2 (parity) functions. LetTf be a cotree
representing the structure of a formula forf where no
variable appears more than once, and symbols⊕ and ∨
are replaced with0 and 1, respectively. It turns out that
checking test complexity off is always less or equal to
ν(Tf )+n+1, even if arbitrary read-once functions over the
basis of all two-variable functions are allowed as alternatives
for f . If f itself is read-once only over this basis, the upper
bound of4 ν(T̈f ) holds, whereT̈f is a cotree representing
the structure of a formula forf , in which all non-linear basis
functions are not distinguished from one another.

A generalization of the suggested techniques to the case
of an arbitrary Boolean basisB was described in [23], which
is an English translation of a paper in Russian. A proof of
a universal upper bound for the basis of all five-variable
Boolean functions can be found in [26]. A recent paper [9]
(also an English translation) is devoted to individual check-
ing test complexity for arbitrary bases and describes read-
once functions whose checking test complexity is strictly
less than that of their projections.

Read-once Boolean functions have been studied in com-
putational learning theory for more than two decades. In
1984 Valiant suggested a polynomial algorithm using three
types of queries to solve the problem of exact identification
of an unknown read-once function over the basis of conjunc-
tion, disjunction and negation [20]. Further major results are
due to Angluin, Hellerstein and Karpinski, who conducted
a thorough study of the problem for the bases{∧,∨,¬}
and {∧,∨} [3]. More powerful algorithms for generalized
versions of this problem to the case of wider bases have
been developed by Bshouty, Hancock and Hellerstein [5].
Recent research due to Golumbic, Mintz and Rotics has
been devoted to efficient factoring and recognition of read-
once functions over the basis{∧,∨,¬} [15]. This work
also involves cographs, and makes use of the concept of
normality, in the flavour of early results by Gurvich [16].

Test theory, initially developed for switching circuits, was
suggested by Yablonsky and Chegis in 1958 [6], though the
authors paid more attention to a diagnostic test problem —
in terms of modern learning theory, that of exact identi-
fication. A similar problem for automata was studied by
Moore [17]. Research in this field seems to have been fueled
by development of electrical circuits, but the researchers’
attention was subsequently drawn to other object regions. A

somewhat extensive survey of Soviet results in the area of
tests is contained in [27]. Several checking test problems for
graphs (under the name of graph verification problems) were
considered by Reyzin and Srivastava [18]. Diagnostic testing
(learning) algorithms for graphs can also be found in [18],
as well as in Aigner’s book [1] and Bouvel, Grebinski and
Kucherov’s survey [4]. Unconditional diagnostic tests for
graphs were studied by Debrev (see, e. g., [13]).

III. A COMBINATORIAL ARGUMENT ON COTREES

Our plan is as follows. We first establish an upper bound
on the fraction of cotrees withn leaves having an internal
nodev with at leastk children (i. e., such thatdeg v ≥ k).
We show that ifk = k(n) is chosen sufficiently large, then
the fraction tends to zero asn →∞. This means that almost
all cographs onn vertices do not have internal nodes with
more thank−1 children, for the chosen sequencek = k(n).
We then demonstrate that the characteristicν(T ) of a cotree
T with n leaves cannot be greater thanC · nd, whered is
the maximum number of children of internal nodes inT and
C is a universal positive constant. Put together, these results
give an upper bound on the checking test complexity for
almost all cographs.

Remark 1:All cographs in this paper are assumed to have
a specific set of verticesX = {x1, . . . , xn}, wheren →∞.
Therefore, for eachn ≥ 2, the distribution underlying our
almost-all statements assigns equal non-zero probabilities
to all cographs on thesen vertices. For example, since all
graphs on three vertices are cographs, forn = 3 there exist
three distinct cographs having exactly one edge, and only
one cograph having no edges at all.

Remark 2:We say that a property holds foralmost all
cographs (cotrees, read-once functions) if the fractionεn

of cographs on verticesX = {x1, . . . , xn} (cotrees with
leavesX, read-once functions of variablesX) not having
the property tends to0 as n → ∞. However, our main
bounds can be proved with a constant factor relaxation under
conditions of formεn = O(n−c) for arbitraryc > 0 (details
are provided in Section IV).

Let us establish an upper bound on the fraction of cotrees
with n leaves having an internal nodev with at least
k children. To each cotree we shall assign a rooted and
ordered binary tree (each internal node of the latter tree
has exactly two children, calledleft andright, respectively).
This assignment will constitute a bijection between the set
of cotrees and the set of rooted and ordered binary trees.

SupposeR is a rooted and ordered binary tree. A sequence
v1, . . . , vh of internal nodes inR is called aright interval of
lengthh iff for all i = 2, . . . , h the nodevi is the right child
of vi−1. The nodev1 is called thesourceof the interval. If
the interval cannot be extended, i. e.,v1 is either the root of
R or the left child of an internal node inR, and the right
child of vh is a leaf, then the interval is calledcomplete.
Note that the left child of any internal node inR is the



source of exactly one complete right interval inR, and so
is the root ofR.

In a similar fashionleft intervalandcomplete left interval
are defined. As above, we observe that the right child of any
internal node inR is the source of exactly one complete left
interval in R, an so is the root ofR.

For the sake of simplicity, a subtree ofT containing an
internal nodev and all its descendants is identified withv.
In a binary tree, the left child subtree and the right child
subtree are distinguished for everyv.

We now describe the bijection announced above. Suppose
T is a cotree with leavesX = {x1, . . . , xn}. We obtain a
binary treeR by takingT and modifying it as follows:

1) Replace each internal nodev of T havingk children
with a right interval of lengthk−1. Each node of the
interval is labeled with the same symbol asv.

2) Supposev is an internal node inT havingk children,
and T1, T2, . . . , Tk are its child subtrees. Then allTi

become the descendants of the nodes of the right
interval replacingv. In order for the transformation to
be bijective, we demand that the following condition
be satisfied. WheneverTi andTj are child subtrees of
a nodeu in a binary treeR, the left child subtree of
u shall be the one containing a leaf with the smallest
variable index among all the leaves ofTi andTj .

For convenience, the obtained tree shall be called an
ordered binary tree.

Lemma 1: In an ordered binary tree, the following state-
ments hold true:

• if an internal nodeu is the left child ofv, thenu and
v have different labels;

• if u and v are adjacent internal nodes with the same
label, then one of them is the right child of another;

• labels of nodes in any complete left interval are
uniquely determined by the label of any single node
in the interval (e. g., the interval’s source).

The proof is trivial. We remark that labels of any two
internal nodes, one of which is the right child of another,
can be considered independent. One can observe that the
described procedure indeed gives a bijection between the
set of all cotrees and the set of all ordered binary trees.
Furthermore, the obtained ordered binary treeR contains a
right interval of lengthk−1, all nodes of which are labeled
with identical symbols, iff the initial cotreeT contains an
internal nodev such thatdeg v ≥ k.

Define theindex-saving structureof an ordered binary tree
R as a tree obtained fromR by removing labels of all its
internal nodes.

Lemma 2:SupposeS is the index-saving structure of an
ordered binary treeR. Also suppose thatS contains exactly
m internal nodes which are right children of nodes inS.
Then there exist exactly2m+1 ordered binary trees having
index-saving structureS.

Proof: SinceS contains exactlym internal nodes which
are right children of nodes inS, it can be unambiguously
split intom+1 complete left intervals. One of these intervals
has the root ofS as its source, and other intervals’ sources
are thosem right children. By Lemma 1, each of these
intervals can be labeled in two different ways. Since labels
of two distinct left intervals are independent, we obtain the
desired.

The previous definition splits the set of all ordered binary
trees into classes of trees having identical index-saving
structures. We now obtain an upper bound on the fraction of
ordered binary trees containing an interval of lengthk − 1
of nodes with identical labels. This bound will lead us to
the bound on the fraction of cotrees containing a node with
k or more children.

Lemma 3:The fraction of cotrees withn leaves contain-
ing a node withk or more children is less or equal to

n− 1
2k−2

.

Proof: We recall that a node withk or more children
in a cotree is transformed into an interval of lengthk −
1 or greater, all nodes of which are labeled with identical
symbols. LetS be an index-saving structure withn leaves.
Since a right interval of lengthk−1 is uniquely determined
by its source, and a binary tree withn leaves has exactly
n − 1 internal nodes, it follows that the number of right
intervals of lengthk− 1 in S cannot be greater thann− 1.

Now suppose thatS containsm internal nodes which are
right children. ThenS can be split intom + 1 complete
left intervals. Let us choose an arbitrary right interval of
length k − 1 in S (there are no more thann − 1 ways of
doing this) and label all its nodes with identical symbols
(here the number of possibilities is2). The labeled nodes
uniquely determine the labels ofk−1 complete left intervals
containing the nodes of the chosen right interval.

All remaining m + 1 − (k − 1) complete left intervals
are then labeled arbitrarily; the number of possibilities is
2m−k+2. Therefore, in the set of all ordered binary trees
having index-saving structureS, no more than(n− 1) · 2 ·
2m−k+2 contain a right interval of lengthk − 1, all labels
in which are identical. Note that whenever a tree contains a
right interval of length greater thank− 1, or more than one
right interval of lengthk − 1 (or greater) such that all the
labels inside each said interval are identical, then this tree is
“counted” more than once, which does not render our upper
bound invalid.

According to Lemma 2, the number of all ordered binary
trees with index-saving structureS is equal to2m+1. Hence,
the fraction of trees containing a right interval of length
k − 1 with identical node labels in the set of all ordered
binary trees having index-saving structureS is less or equal
to (n−1)/2k−2. Since this bound does not depend onm or
S, it holds true for the set of all ordered binary trees with



n leaves. If we substitute cotrees for ordered binary trees
using the bijection described above, we obtain the desired.

Theorem 2:For any function

k(n) = log2n + r(n)

such thatr(n) → +∞ as n → ∞, almost all cotrees with
n leaves contain no nodes havingk or more children.

Proof: Under the conditions of the theorem, we have

n− 1
2k−2

= 2 log2n−k+2 · n− 1
n

= 2−r(n)+2 · (1− o(1)) → 0.

IV. U PPER BOUNDS ON CHECKING TEST COMPLEXITY

Our goal now is to establish a tight upper bound on the
characteristicν(T ) of a cotreeT containing no internal
nodes with more than, say,k children. In such a tree, for
all internal nodesv the inequalityb(v) ≤ k− 1 holds. First,
suppose thatb(v) = k−1 for all v. From (1), it follows that

ν(T ) = | int E(T ) |·(k−1)2+
1
2
·| intV(T ) |·(k−1)2+

n− 1
2

.

Since| int V(T ) | ·k = | intV(T ) |+n−1 and| int E(T ) | =
| intV(T ) | − 1, we have

ν(T ) = (n− 1) · (k − 1)− (k − 1)2

+
1
2
· (n− 1) · (k − 1) +

n− 1
2

=
3
2
· (n− 1) ·

(
k − 2

3

)
− (k − 1)2,

and

ν(T ) ≤ 3nk

2
.

However, if some internal nodes have less thank children,
then the cardinality| intV(T ) | cannot be bounded byC ·
(n − 1)/(k − 1). In fact, it may be as big asn − 1, which
gives us only

ν(T ) ≤ 3nk2

2
.

While this yields anO(n log2n) upper bound onν(T ) for
almost all cotreesT , we show how to tighten the bound on
ν(T ). We need an auxiliary lemma on edge contraction in
cotrees.

Lemma 4: If a cotreeT ′ is obtained from a cotreeT by
contracting several edges between internal nodes, then

ν(T ) ≤ ν(T ′).

Proof: Suppose thatT ′ is obtained fromT by contrac-
tion of exactly one edge{u, v}. Let u be the parent ofv.

By u1, . . . , ub(u) denote the rest of the children ofu, and
by v0, v1, . . . , vb(v) denote the children ofv. We have

ν(T ′)− ν(T ) =
1
2

(b(u) + b(v))2

− 1
2

(
b2(u) + b2(v)

)
− b(u)b(v)

+ b(v)
b(u)∑
i=1

b(ui) + b(u)
b(v)∑
i=0

b(vi)

+ b(v) bp(u),

wherebp(u) = 0 if u is the root ofT and bp(u) = b(w) if
T contains a parentw of u. It follows that

ν(T ′) = ν(T )+b(v)
b(u)∑
i=1

b(ui)+b(u)
b(v)∑
i=0

b(vi)+b(v) bp(u),

which proves the desired for the considered special case.
One can easily see that for any number of edge contractions
the inequalityν(T ) ≤ ν(T ′) holds.

We can now prove an upper bound onν(T ) which is
linear in n · k.

Lemma 5: If all internal nodes in a cotreeT with n leaves
have no more thank children, then

ν(T ) ≤ 4nk.

Proof: Take T and contract all internal edges{u, v}
such thatb(u) + b(v) ≤ k − 1 into single nodes (all edges
incident to leaves are left untouched). Repeat the procedure
until for all pairs of adjacent internal nodesu andv it holds
that b(u) + b(v) > k − 1. Denote the obtained tree byT ′.
By Lemma 4,ν(T ) ≤ ν(T ′).

We now prove an upper bound onν(T ′). Define

V ′ = {v ∈ intV(T ′) | b(v) ≤ h},
V ′′ = {v ∈ intV(T ′) | b(v) > h},

where h = (k − 1)/2. By construction ofT ′, it contains
no edges between nodes inV ′. Furthermore, since for all
v ∈ V ′′ it holds thatb(v) > h, it then follows thatn− 1 >
h · |V ′′|, since the sum ofb(v) over all internal nodesv is
equal ton− 1.

Now recall that

ν(T ′) =
∑

{u,w}∈int E(T )′

b(u) b(w) +
1
2

∑
v∈int V(T )′

b2(v) +
n− 1

2
,

Consider the first sum in this formula. Denote byv0 the
root of T ′ and byanc(v) the parent of a non-root internal



nodev. We have∑
{u,v}∈int E(T ′)

b(u) b(v) =
∑

v∈V ′\{v0}

b(v) b(anc(v))

+
∑

v∈V ′′\{v0}

b(v) b(anc(v))

≤
∑
v∈V ′

b(v)(k − 1) +
∑

v∈V ′′

(k − 1)2

= (k − 1) ·
∑
v∈V ′

b(v) + (k − 1)2 · |V ′′|

≤ (k − 1) (n− 1) + 2 (k − 1) (n− 1)
= 3 (k − 1) (n− 1).

Now take the second sum. Clearly, the sum ofb2(v) over
all v ∈ int V(T ′) is less or equal to

M = max
n−1∑
i=1

y2
i ,

where0 ≤ yi ≤ k − 1 for 1 ≤ i ≤ n − 1 and
∑n−1

i=1 yi =
n− 1. If 0 < yi ≤ yj < k − 1, then(

(yi − 1)2 + (yj + 1)2
)
−

(
y2

i + y2
j

)
= 2 (yj − yi + 1)
≥ 2 · 1 > 0

and(y1, . . . , yn−1) does not bring the maximum. Hence, the
maximizing vector consists only of0’s, (k−1)’s and at most
one number from(0; k− 1). Suppose thatp · (k− 1) + q =
n− 1, wherep, q ≥ 0 andq < k − 1. We obtain∑

v∈int V(T ′)

b2(v) ≤ M = p · (k − 1)2 + q2

≤ (p + 1) · (k − 1)2

≤ 2p · (k − 1)2

≤ 2 (n− 1) (k − 1).

Combining the bounds yields

ν(T ′) ≤ 3 (n−1) (k−1)+
1
2
·2 (n−1) (k−1)+

n− 1
2

≤ 4nk,

which concludes the proof.
Remark 3:The bound of Lemma 5 cannot be improved

by more than a constant factor. Indeed, if all internal nodes
of a cotreeT have exactlyk children, then, as shown above,

ν(T ) =
3
2
· (n− 1) ·

(
k − 2

3

)
− (k − 1)2

=
3
2
· nk − k2 − n +

k

2
.

First suppose thatk ≤ C for some fixedC asn →∞, then

ν(T ) =
(

3
2
· k − 1

)
· n · (1− o(1)).

Now suppose thatk →∞. In this case, we have

ν(T ) =
nk

2
·
(

3− 2 · k

n

)
− n +

k

2

≥ nk

2
− n +

k

2

=
nk

2
· (1− o(1)).

We observe now that the statement of Theorem 1 follows
from Theorem 2 and Lemma 5, forr(n) = o(log n) → +∞
asn →∞.

Remark 4:Choosingk(n) = (c + 1) log2n, c > 0, in
Theorem 2 leads to the bound

ν(T ) ≤ 4(c + 1)n log2n,

which is still O(n log n) and holds for all but the fraction
of

2−c log2n+2 ·
(

1− 1
n

)
= 4 ·

(
1
n

)c

·
(

1− 1
n

)
= O(n−c)

cographs.
Recall that for any read-once functionf(x1, . . . , xn) over

the basis of disjunction and sum modulo2 (parity) its check-
ing test complexity with respect to read-once alternatives
either over the same basis or over the basis of all two-
variable functions is less or equal toν(Tf ) + n + 1, where
Tf is a tree representing the structure of a read-once formula
for f . Combining this with the statement of Theorem 1, we
obtain the following corollary:

Corollary 1: Checking test complexity of almost all read-
once functions ofn variables over the basis of disjunction
and sum modulo2 (parity) with respect to read-once alter-
natives either over the same basis or over the basis of all
two-variable functions is less or equal to

4n log2n · (1 + o(1)).

Remark 5:Here we employ the fact that our cotree rep-
resentation of read-once functions over{∨,⊕} is a one-
to-one correspondence (see, e. g., [25]). For eachn, we
consider functions as mappings from{0, 1}n to {0, 1} and
assign equal non-zero probabilities to all read-once functions
depending on variablesX = {x1, . . . , xn}. For example,
formulae(x1∨x2)⊕x3 and(x2∨x1)⊕x3 express the same
function, different from the one expressed by(x1∨x3)⊕x2.

Similarly to the case of cographs, the obtained value is
relatively small compared to the maximum possible value
of

(
n
2

)
+ n + 1, which is the exact value of checking test

complexity ofn-ary disjunction. Arguing as above, one can
also obtain anO(n log n) bound for all but the fraction of
O(n−c) read-once functions.



V. D ISCUSSION

We obtained anO(n log n) upper bound on checking test
complexity of almost all cographs and deduced a corollary
on said complexity of almost all read-once functions over
the basis of disjunction and sum modulo2 (parity). These
bounds reveal that almost all cographsG on n vertices
(or, similarly, almost all read-once functionsf of variables
x1, . . . , xn over {∨,⊕}) are relatively easy to “certify”:
if one knows for sure that a given graph is a cograph
(or, similarly, that a given Boolean function is read-once
over {∨,⊕}), then anO(n log n) amount of information
is sufficient to check whether the given graph (the given
function) is equal toG (f ). This information can be obtained
by checking the presence of edges (computing function’s
value at input vectors) pointed to by a checking test. It is
important to note that cograph recognition can be performed
in linear time [12].

We believe that our bounds are optimal in terms ofO(·),
i. e., they cannot be improved by more than a constant factor.
For the problem of testing with respect to read-once alterna-
tives, we expect that analogous bounds hold for wider bases,
even though individual lower bounds for some functions are
provably as high asnl for anyl ∈ N [24]. An approach based
on similar techniques for read-once functions over{∧,∨}
gives not only bounds, but also exact values of checking test
complexity, though the results computed so far look quite
different [10].

As indicated above, checking tests are closely related to
equivalence queries in the context of exact identification
problems. This connection should be treated with great care,
since minor details in definitions can turn out to be of
major importance. In our definition of a checking test for
read-once functions, the target functionf is assumed to
depend essentially on all its variables, though its alternatives
are not subject to the same restriction. If this restriction
on f is not imposed either, a problem of distinguishing
f(x1, . . . , xn) ≡ 0 from all conjunctions ofn literals
emerges. Since all such conjunctions are read-once over
the basis{∧,∨,¬}, all 2n vectors must be included in the
checking test for thisf . At the same time, if all variables of
the target function are known to be essential, then for any
n-variable read-once function over this basis there exists a
checking test containingO(n) vectors [22].

The problem of closing this complexity gap in the context
of exact identification can be addressed by introducing
auxiliary oracles. In a learning model considered in [7],
the learner is allowed, in addition to standard membership
queries, to ask questions of the following form: “Can the
value of f be determined unambiguously if only some
variable assignments, namelyxi1 = αi1 , . . . , xik

= αik
, are

known?” Such questions, on the one hand, seem quite natural
for the problem of identifying the unknown function and,
on the other hand, enable the use of modeling techniques

for checking tests in a simulation of an equivalence query.
Large classes of read-once Boolean functions are shown to
be exactly identifiable in this model.
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