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Abstract. We extend the concept of a synchronizing word from finite-
state automata (DFA) to nested word automata (NWA): A well-matched
nested word is called synchronizing if it resets the control state of any
configuration, i.e., takes the NWA from all control states to a single
control state.

We show that although the shortest synchronizing word for an NWA,
if it exists, can be (at most) exponential in the size of the NWA, the
existence of such a word can still be decided in polynomial time. As our
main contribution, we show that deciding the existence of a short syn-
chronizing word (of at most given length) becomes PSPACE-complete
(as opposed to NP-complete for DFA). The upper bound makes a con-
nection to pebble games and Strahler numbers, and the lower bound goes
via cost-optimal synchronizing words for DFA, an intermediate problem
that we also show PSPACE-complete.

1 Introduction

The concept of a synchronizing word for finite-state machines has been studied in
automata theory for more than half a century [22, 19]. Given a deterministic finite
automaton (DFA) D over an input alphabet Σ, a word w is called synchronizing
for D if, no matter which state q ∈ Q the automaton D starts from, the word w
brings it to some specific state q̄ that only depends on w but not on q. Put
differently, a synchronizing word resets the state of an automaton. If the state
of D is initially unknown to an observer, then feeding D with input w effectively
restarts D, making it possible for the observer to rely on the knowledge of the
current state henceforth.

In this paper we extend the concept of synchronizing words to so-called nested
words. This is a model that extends usual words by imparting a parenthetical
structure to them: some letters in a word are declared calls and returns, which are
then matched to each other in a uniquely determined “nesting” (non-crossing)
way. On the language acceptor level, this hybrid structure (linear sequence of
letters with matched pairs) corresponds to a pushdown automaton where every
letter in the input word is coupled with the information on whether the automa-
ton should push, pop, or not touch the pushdown (the stack). Such machines
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were first studied by Mehlhorn [15] under the name of input-driven pushdown
automata in 1980 and have recently received a lot of attention under the name
of visibly pushdown automata. The latter term, as well as the model of nested
words and nested word automata (in NWA the matching relation remains a sep-
arate entity, while in input-driven pushdown automata it is encoded in the input
alphabet), is due to Alur and Madhusudan [1].

The tree-like structure created by matched pairs of letters occurs naturally
in many domains; for instance, nested words mimic traces of programs with
procedures (which have pairs of calls and returns), as well as documents in
eXtensible Markup Language (XML documents, ubiquitous today, have pairs of
opening and closing tags). This makes the nested words model very appealing; at
the same time, nested words and NWA enjoy many nice properties of usual words
and finite-state machines: for example, constructions of automata for operations
over languages, and many decidability properties naturally carry over to nested
words—a fact widely used in software verification (see, e.g., [6] and references
therein). This suggests that the classic concept of a synchronizing word may
have an interesting and meaningful extension in the realm of nested words.

Our contribution and discussion. Nested word automata are essentially
an expressive subclass of pushdown automata and, as such, define infinite-state
transition systems (although the number of control states is only finite, the num-
ber of configurations—incorporating the state of the pushdown store—is already
infinite). Finding the right definition for synchronizing nested words becomes for
this reason a question of relevance: in the presence of infinitely many configura-
tions not all of them may even have equal-length paths to a single designated one
(this phenomenon is known and arises, for instance, in weighted automata [5]).
In fact, any nested word w, given as input to an NWA, changes the stack height
in a way that does not depend on the initial control state (and can only depend
on the initial configuration if w has unmatched returns). We thus choose to de-
fine synchronizing words as those that reset the control state of the automaton
and leave the pushdown store (the stack) unchanged (Definition 1; cf. location-
synchronization in [5]). Consider, for instance, an XML processor that does not
keep a heap storage and invokes and terminates its internal procedures in lock-
step with opening and closing tags in the input; our definition of a synchronizing
word corresponds to an XML document that “resets” the local variables.

Building on this definition, we show that shortest synchronizing words for
NWA can be exponential in the size of the automaton (Example 2), in contrast
to the case of DFA: every DFA with n states, if it has a synchronizing word,
also has one of length polynomial in n. The best known worst-case upper bound
on the length of a synchronizing word is (n3 − n)/6, due to Pin [17]; Černý
conjectured in the 1960s [21] that (n− 1)2 is a valid upper bound, but as of now
there is a gap between his quadratic lower bound and the cubic upper bound of
Pin (see [22] for a survey). In the case of nested words, the exponential comes
from the repeated doubling phenomenon, typical for pushdown automata.

Although the length of the shortest synchronizing word can be exponential,
it turns out that the existence of such a word—which, in fact, cannot be longer
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than exponential—can be decided in polynomial time (Theorem 3), akin to the
DFA case. However, generalizing the definition in standard ways (synchronizing
from a subset instead of all states, or to a subset of states instead of singletons)
raises the complexity to exponential time (Theorem 4); for DFA, the complexity
is polynomial space [18]. The lower bounds are by reduction from the intersection
nonemptiness problem, which is known to be complete for polynomial space in
the case of DFA [12] and which we observe to be complete for exponential time
over nested words (Lemma 5).

Our main technical contribution is characterizing the complexity of deciding
existence of short synchronizing words, where the bound on the length is given
as part of the input. In the DFA case, this problem is NP-complete as shown
by Eppstein [7], and for NWA it becomes PSPACE-complete (Theorem 6). We
believe that both upper and lower bound techniques that we use to prove this
result are of interest.

Specifically, for the upper bound (Section 4) we first encode the unranked
trees (which represent nested words) with ranked trees. This reduces the search
for a short synchronizing nested word to the search for a tree that satisfies a num-
ber of local properties. These properties, in turn, can be captured as acceptance
by a certain tree automaton of exponential size. We then show that guessing
an accepting computation for such a machine—which amounts to guessing an
exponentially large tree—can be done in polynomial space. To do this, we rely
on the concept of (black) pebbling games, developed in the theory of compu-
tational complexity for the study of deterministic space-bounded computation
(see, e.g., [20, Chapter 10]). We simulate optimal strategies for trees in such
games [13], whose efficiency is determined by so-called Strahler numbers [10].
Previous use of this technique in formal language theory and verification is
primarily associated with derivations of context-free grammars, see, e.g., [8, 9]
and [10] for a survey. In this body of work, closest to ours are apparently argu-
ments due to Chytil and Monien [3]. We believe that our key procedure—which
can decide bounded nonemptiness of succinct tree automata—may be of use in
other domains as well.

Finally, for the matching polynomial-space lower bound (Section 5) we con-
struct a two-step reduction from the problem of existence of carefully synchro-
nizing words for partial DFA, whose hardness is known [14]. We define an in-
termediate problem of cost-optimal synchronization for DFA, where every letter
in the alphabet comes with a price and the task is to decide existence of a syn-
chronizing word whose total cost does not exceed the budget. We show that this
natural problem is complete for polynomial space (this strengthens previous re-
sults from [11, 5], where prices can be state-dependent). After this, we basically
simulate price-equipped DFA using NWA and relying on the above-mentioned
repeated doubling phenomenon. We find it interesting that this “counting” fea-
ture of nested words alone is a ground for hardness.

We mention without proof that some of our techniques naturally extend to
(going via) tree automata over ranked trees.
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2 Nested words and nested word automata

A nested word of length k over a finite alphabet Σ is a pair u = (x, ν), where x ∈
Σk and ν is a matching relation of length k, that is, a subset ν ⊆ {−∞, 1, . . . , k}×
{1, . . . , k,+∞} such that, first, if ν(i, j) holds, then i < j; second, for 1 ≤ i ≤ k
each of the sets {j | ν(i, j)} and {j | ν(j, i)} contains at most one element; third,
whenever ν(i, j) and ν(i′, j′), it cannot be the case that i < i′ ≤ j < j′. We
assume that ν(−∞,+∞) never holds.

If ν(i, j), then the position i in the word u is said to be a call, and the posi-
tion j a return. All positions from {1, . . . , k} that are neither calls nor returns are
internal. A call (a return) is matched if ν matches it to an element of {1, . . . , k}
and unmatched otherwise. We shall call a nested word well-matched if it has no
unmatched calls and no unmatched returns.

Define a nested word automaton (an NWA) over the input alphabet Σ as a
structure A = (Q,Γ, δ, q0, γ

i), where:

– Q is a finite non-empty set of control states,
– Γ is a finite set of stack symbols,
– δ = (δcall, δint, δret), where
• δint : Q× Σ→ Q is an internal transition function,
• δcall : Q× Σ→ Q× Γ is a call transition function,
• δret : Γ×Q× Σ→ Q is a return transition function,

– q0 ∈ Q is the initial control state, and
– γ i ∈ Γ is the initial stack symbol.

A configuration of A is a tuple (q, s) ∈ Q × Γ∗. We say (q, s)
w−→ (q′, s′) for

nested words w by imposing the following conditions. Suppose w = (x, ν) is of
length 1, then:

– if w is an internal position, then δint(q, x) = q′ and s′ = s;
– if w is a call, then δcall(q, x) = (q′, γ) and s′ = sγ for some γ ∈ Γ;
– if w is a return, then:
• either δret(γ, q, x) = q′ and s = s′γ,
• or δret(γ i, q, x) = q′ and s = s′ = ε.

Now −→∗ is the reflexive transitive closure of −→, and the input words on top
of the arrow notation are concatenated appropriately.

Alternatively, nested words can be seen as words over a nested alphabet
〈Σ ∪ Σ ∪ Σ〉, where 〈Σ and Σ〉 are disjoint copies of Σ that contain letters of
the form 〈a and a〉, respectively, for each a ∈ Σ. Every word w over this nested
alphabet is unambiguously associated with a matching relation νw of length |w|
where positions with elements of 〈Σ, Σ, and Σ〉 are calls, internal positions, and
returns, respectively; the word w can thus identified with a nested word (w, νw).
The automaton A can then be viewed as an ε-free pushdown automaton over
the nested alphabet 〈Σ ∪Σ ∪Σ〉 in which the direction of stack operations (i.e.,
whether the automaton pushes, pops, or does not touch the stack) are deter-
mined by whether the current position belongs to 〈Σ, Σ, or Σ〉. Such automata
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are known under the names input-driven pushdown automata and visibly push-
down automata. A path (run, computation) through an automaton A driven by
an input word u = a1 . . . ak, where each ai ∈ 〈Σ∪Σ〉∪Σ, is a sequence of config-

urations (qi, si), i = 0, . . . , k, with (q0, s0) = (q0, ε) and (qi−1, si−1)
ai−→ (qi, si)

for all i.

3 Synchronizing words for NWA

Informally, a well-matched nested word u is synchronizing for an NWA A if it
takes A from all control states to some single control state. Note that the result
of feeding any well-matched word to an NWA does not depend on the stack
contents; if (q′, s′)

u−→ (q′′, s′′) and u is well-matched, then s′ = s′′. This lets us

extend the definition of −→ to sets of states: we write (Q′, s)
u−→ (Q′′, s) if, first,

the word u is well-matched, second, for all q′ ∈ Q′ there exists a q′′ ∈ Q′′ such
that (q′, s)

u−→ (q′′, s), and, third, for every state q′′ ∈ Q′′ there exists a q′ ∈ Q′
such that (q′, s)

u−→ (q′′, s). If Q′′ = {q′′}, we write (q′′, s) instead of ({q′′}, s).

Definition 1. A well-matched nested word u is synchronizing for an NWA A =
(Q,Γ, δ, q0, Q

f , γ i) if there exists a control state q̄ ∈ Q such that the relation

(Q, ε)
u−→ (q̄, ε) holds. (By the remark above, this happens if and only if for all

q ∈ Q and for all s ∈ Γ∗ the relation (q, s)
u−→ (q̄, s) holds.)

Remark. Definition 1 crucially relies on the nested structure of the input word,
in that this structure determines the stack behaviour of the NWA. Extending
this definition to the general case of pushdown automata (PDA) would face
the difficulties outlined in the introduction; to the best of our knowledge, no
such extension has been proposed to date. The term “synchronization” in the
context of PDA is known to be used when referring to the agreement between
the transitions taken by the automaton and an external structure [2]: in NWA,
for example, the input symbols and the stack actions are synchronized (in this
sense).

Example 2. Given n ≥ 1, we construct an NWA An with O(log n) control
states and O(1) stack symbols such that the shortest synchronizing word for An
has length exactly n.

Our construction is inductive. We first construct a family of incomplete
NWA Bn with stack symbols {x, y} and two designated states qx and qy. In
Bn, the shortest run from qx to qy is driven by some well-matched nested word w
of length n, and along this run the state qy is not visited. These NWA will
be incomplete, in the sense that their transition functions will only be partial;
redirecting all missing transitions to the initial state in would make these NWA
complete. From Bn, we construct another NWA B2n+4 and B2n+5 where the
length of the shortest run between two new states in and out is exactly 2n + 4
and 2n+ 5. The construction of B2n+4 is depicted in Figure 1. Here the shortest
run from in to out is over call(x) ·w · ret(x) ·call(y) ·w · ret(y) and has length 2n+4;
splitting state qz in two states where all transitions from one direct to the other,
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qx

qy

w ⇒

in

out

qz

qx

qy

w

call(x)

ret(x)

call(y)

ret(y)

Figure 1. Doubling transformation

Bn−2

the NWA An

in

outq

w

sync

#

£
#

#,£

£

#,£

Figure 2. The NWA An from Bn−2.

gives us B2n+5. We call this transformation doubling. For all n ≥ 4 the NWA Bn
can be constructed by several doubling transformations starting from one of the
automata B0,B1,B2,B3 (which are simply NWAs with 1, 2, 3, 4 states). The size
of Bn is O(log n).

For all n ≥ 2, from the NWA Bn−2 we construct an NWA An where the
shortest synchronizing word has length exactly n. Figure 2 shows the sketch
of the construction: there are two new letters # and £ and a new absorbing
state sync. From all states q of An, the letter # resets the NWA to in whereas

£-transitions are all self-loops except in the state out where out
#−→ sync. All

missing transitions are directed to the state in (note that even in case of DFA,
existence synchronizing words in the presence of partial transition functions is
PSPACE-complete [14]; it is thus of utmost importance that our NWA are
complete). Observe that the shortest synchronizing word has length exactly n;
it is # · w ·£ where w is the shortest word that brings Bn−2 from in to out.

Remark. Our Example 2 seems to use a “non-uniform” set of call, return, and
internal symbols, but this is easily remedied by making some of the symbols
indistinguishable. All call positions in the word are simply call, and all return
position are ret; in figures, the letter in parentheses is the pushed resp. popped
stack symbol.

In decision problems that we study in this paper, the size of an automaton is
proportional to |Γ| · |Σ| · |Q|.

Theorem 3. If an NWA A has a synchronizing word, then it has one of length
at most exponential in the size of A. Moreover, the existence of a synchronizing
word can be decided in time polynomial in the size of A.

Theorem 4. The following decision problems, with an NWA A part of the in-
put, are EXP-complete:
(1) Given a subset I ⊆ Q, decide if there exists a well-matched nested word u

such that (I, ε)
u−→ (q̄, ε) for some state q̄ ∈ Q.

(2) Given a subset F ⊆ Q, decide if there exists a well-matched nested word u

such that (Q, ε)
u−→ (F ′, ε) for some subset F ′ ⊆ F .

(3) Given subsets I ⊆ Q and F ⊆ Q, decide if there exists a well-matched nested

word u such that (I, ε)
u−→ (F ′, ε) for some subset F ′ ⊆ F .
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The corresponding decision problems for DFA are PSPACE-complete [18],
where hardness is by reduction from the DFA intersection non-emptiness prob-
lem (see [23] for a more refined complexity analysis). In the NWA case, the
proofs are an easy adaptation of these arguments and are based on the following
observation, which can be proved by translation from tree automata or by a
direct extension of Kozen’s proof [12]:

Lemma 5. The following problem is EXP-complete: Given NWA A1, . . . ,Am,
decide if there exists a well-matched word accepted by all Ai.

The following theorem is our main result.

Theorem 6. The following problem Short Synchronizing Nested Word
is PSPACE-complete: Given an NWA A and an integer ` ≥ 1 written in binary,
decide if A has a synchronizing word u of length at most `.

The corresponding decision problem for DFA is NP-complete [7]. (Note that
deciding if the shortest synchronizing word has length exactly k, a related but
different problem, is DP-complete [16].) Since any DFA with a synchronizing
word has one of length cubic in its size, it does not matter for DFA if ` is written
in binary or in unary. In contrast, as our Example 2 shows, NWA may need
an exponentially long word for synchronization; this explains the choice of the
setting above. (In the alternative version, i.e., if ` is written in unary, the problem
is NP-complete: the upper bound is a guess-and-check argument, and hardness
already holds for DFA.)

4 Upper bound of Theorem 6

In this section, we show that the following problem is in PSPACE: Given a
nested word automaton A and an integer ` ≥ 1 written in binary, decide if
there exists a synchronizing word for A of length at most `. In fact, we can also
adjust our arguments (see subsection 4.2) so that they give a PSPACE upper
bound for another problem: Given a nested word automaton A, two subsets of
its control states I, F ⊆ Q, and an integer ` ≥ 1 written in binary, decide if there
exists a well-matched word of length at most ` that takes all states in I to F .

The plan of the proof is as follows. We encode nested words using binary trees
(subsection 4.1), so that runs of NWA correspond to computations of tree au-
tomata and synchronizing words to tuples of such computations (subsection 4.2).
Thus the task of guessing a short synchronizing word is reduced to the task of
guessing an accepting computation of a tree automaton on an unknown binary
tree of potentially exponential size (Lemma 8); this is the same as guessing an
exponentially large binary tree subject to local conditions. We prove that it’s
possible to solve this bounded nonemptiness problem in polynomial space, even if
the tree automaton in question has exponentially many states and is only given
in symbolic form (subsection 4.4); our solution relies on the concepts of pebble
games and Strahler numbers (subsection 4.3).
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4.1 Binary tree representation of nested words

In this subsection we describe a representation of nested words with binary trees
that we use in the sequel. Because of space constraints, the full description can
be found in Appendix and here we only give a short descriptive summary.

Nested words as binary trees. We denote the binary tree representation of a
nested word u by bin(u). The explicit construction of bin(u) is not sophisticated
(see Appendix for details), but nodes of bin(u) come in several different types. We
did not attempt to minimize the number of these types; different representations
are, of course, also possible.

Degree Type Notes
2 call-return binary Associated with matched pair 〈xi, xj〉
2 auxiliary binary Corresponds to positions i < j
1 call-return unary Associated with matched pair 〈xi, xj〉
0 call-return leaf Associated with matched pair 〈xi, xj〉, j = i+ 1
0 internal leaf Associated with internal letter xi

We denote the set of types by Types; the degree of a node is, of course, the
number of its children. Note that auxiliary binary nodes are not associated with
any letters in the nested word, although they do correspond to pairs of positions
in it.

In general, run the left-to-right DFS traversal on the tree bin(u) and spell
the letters associated with the nodes in the natural way. Specifically, at any call-
return node v associated with i < j, spell “〈xi” when entering and “xj〉” when
leaving the subtree rooted at v; at any internal leaf associated with i, spell “xi”.
It is easy to see that the traversal of the entire tree bin(u) spells the word u, and
every subtree spells some well-matched factor.

Claim 1. For any nested word u of length ` its binary tree representation bin(u)
has at most 2`− 1 nodes. Moreover, if bin(u) = bin(u′), then u = u′.

Trees as terms over a ranked alphabet. We now switch the perspective a
little and look at binary tree representations as terms. Indeed, pick the ranked
alphabet

F ⊆ Types× (〈Σ× Σ〉 ∪ Σ ∪ {ε}) (1)

as follows. All elements of F have rank 0, 1, or 2, according to their first (that
is, Types-) component; the rank is simply the admissible number of children
(degree). The second component stores the associated letter or pair of letters,
if any; the value ε corresponds to the undefined association mapping. Since
the Types-component already determines whether the second component should
carry a pair of call and return letters, a single letter, or ε, we only take valid
combinations into F .

As this term representation is essentially the same as the binary representa-
tion defined above, we shall denote it by the same symbol bin(u); that is, bin(u)
is a term over F for any non-empty well-matched word u. In what follows, we
will mostly refer to bin(u) as a tree but treat it as a term.
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4.2 From nested word automata to tree automata

From runs of NWA to runs of tree automata. Recall the definition of a
nondeterministic tree automaton over a ranked alphabet F (see, e.g., [4]): such
an automaton is a tuple T = (Q,Qf ,∆) where Q is a finite set of states, Qf ⊆ Q
is a set of final states, and ∆ is a set of transition rules. These rules have the
form f(q1, . . . , qr) 7→ q where q, q1, . . . , qr ∈ Q and r ≥ 0 is the rank of the
symbol f ∈ F ; nondeterminism of T means that ∆ can contain several rules
with identical left-hand sides.

The semantics of tree automata is defined in the following manner. For any
tree t over the ranked alphabet F , we assign to any node v of t a state q ∈ Q
inductively, phrasing it as “the subtree tv rooted at v evaluates to state q” (as
the automaton is nondeterministic, the same subtree may evaluate to several
different states). The inductive assertion is that if f is the label of v, the subtree
tv evaluates to q, and its principal subtrees evaluate to q1, . . . , qr, then the tran-
sition f(q1, . . . , qr) 7→ q appears in ∆. The entire tree t is accepted if the root of
t evaluates to some final state q̄ ∈ Qf .

Lemma 7. For any NWA A with states Q and for all pairs p̄, q̄ ∈ Q, there
exists a tree automaton T (p̄, q̄) over the ranked alphabet F as in (3) that has the
following property: T (p̄, q̄) accepts a tree bin(u) if and only if the NWA A has
a run on u that starts in state p̄ and ends in state q̄. Moreover, T (p̄, q̄) can be
constructed from A in time polynomial in the size of A.

The proof can be found in Appendix.

Synchronizing words and implicitly presented tree automata. We can
now return to the synchronizing word problem. Suppose A is an NWA with
states Q; now a well-matched nested word u is a synchronizing word for A if and
only if there is a state q̄ ∈ Q such that for all i the tree bin(u) is accepted by the
automaton T (qi, q̄); here we assume Q = {q1, . . . , qn}. The following statement
rephrases this condition in terms of products of tree automata (the definition is
standard; see, e.g., [4, Section 1.3]).

Lemma 8. An NWA A with states Q = {q1, . . . , qn} has a synchronizing word
of length at most ` iff there exists a state q̄ ∈ Q such that the product automaton
Aq̄ = T (q1, q̄) × . . . × T (qn, q̄) × N` accepts some tree over F . Here N` is a
tree automaton that only depends on ` and Σ and accepts the set of trees of the
form bin(u) where the nested word u has length length at most `.

Note that the set of states of Aq̄, which we denote by Q, is, in general, exponential
in the size of A. Note, however, that (i) each state has a representation—as a
tuple of n states of T (qi, q̄) and a state of N`—polynomial in the size of A and `
and, moreover, that (ii) the following problems can be decided in PSPACE
(and, in fact, in P, although we do not need to rely on this):

(a) given a state q ∈ Q, decide if q is a final state of Aq̄;
(b) given a symbol f ∈ F of rank r and states q, q1, . . . , qr ∈ Q, decide if

f(q1, . . . , qr) 7→ q is a transition in Aq̄.
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We emphasize that the complexity bounds in these properties are given with
respect to the size of A and `, i.e., assuming that A and ` (and not Aq̄!) are
given as input. We will use these properties (i) and (ii) in the subsection 4.4; for
brevity, we shall simply say that Aq̄ is implicitly presented in polynomial space.

Claim 2. The automaton Aq̄ from Lemma 8 is implicitly presented in polyno-
mial space and does not accept any tree with more than 2`− 1 nodes.

The second part of the claim follows from Claim 3 in subsection 4.1.

4.3 Pebble games and Strahler numbers

In this subsection we recall a classic idea that we use in the proof of Lemma 9 in
the following subsection 4.4. We believe that the involved concepts, albeit classic,
deserve more attention from our community than they have hitherto received.

An instance of the (black) pebble game (see, e.g., [20, Chapter 10]) is defined
on a directed acyclic graph, G. The game is one-player; the player sees the graph
G and has access to a supply of pebbles. A strategy in the game is a sequence of
moves of the following kinds:

(a) if all immediate predecessors of a vertex v have pebbles on them, put a
pebble on v;

(b) remove a pebble from a vertex of v.

The game starts with no pebbles on vertices of the graph; note that for any source
v of G, the pre-condition for the move of the first kind is always satisfied. The
strategy is successful if during its execution every sink of G carries a pebble at
least once; the strategy is said to use k pebbles if the largest number of pebbles on
G during its execution is k. The (black) pebbling number of G, denoted peb(G), is
the smallest k for which there exists a successful strategy for G using k pebbles.

The black pebbling number captures space complexity of deterministic com-
putations. Intuitively, think of G as a circuit, where sources are circuit inputs
and sinks are circuit outputs; nodes with nonzero fan-in are gates that compute
functions of their immediate predecessors. A strategy corresponds to computing
the value of the circuit using auxiliary memory: pebbling a vertex (i.e., putting
a pebble on it) corresponds to computing the value of the gate and storing it in
memory; removing a pebble from the vertex corresponds to removing it from the
memory. The pebbling number is thus (an abstraction of) the minimal amount
of memory required to compute the value of the circuit.

Consider the case where the graph is a tree, G = t, with all edges directed
towards the root; this corresponds to formulas, say arithmetic expressions. For
trees, the pebbling number can be computed inductively: if t is a single-vertex
tree, then peb(G) = 1; suppose t has principal subtrees t1, . . . , td and peb(t1) ≥
peb(t2) ≥ . . . ≥ peb(td), then peb(t) = max(peb(ti) + i − 1) over 1 ≤ i ≤ d.
For binary trees (where all vertices have fan-in at most two, d ≤ 2) the pebbling
number (under different names) has been studied independently and rediscovered
multiple times (although, to the best of our knowledge, no connection with the
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literature on pebbling games has ever been pointed out), see [13, 10]. The value
peb(t)− 1 is usually called the Strahler number of the tree t and is also known,
e.g., as the Horton–Strahler number and as tree dimension; this is the maximal
h such that t has the complete binary tree of height h as a minor.

In the sequel, we choose to talk about Strahler numbers but use the connec-
tion to pebble games. The key observation, following from the last characteriza-
tion or from the recurrence above, is that the Strahler number of an m-node tree
does not exceed blog2(m+ 1)c−1, and this bound is tight. It corresponds to the
pebbling strategy that, before pebbling any vertex v of indegree 2, first (i) re-
curses into the subtree with the larger Strahler number; (ii) places (inductively)
a pebble on its root and removes all other pebbles from this subtree; and then
(iii) recurses into the other subtree. We will use this strategy in the following
subsection.

4.4 Bounded nonemptiness for implicitly presented tree automata

Here we combine the ideas from subsections 4.2 and 4.3 to prove Theorem 6.

Lemma 9. For a tree automaton implicitly presented in polynomial space and
a number m written in binary, one can decide in PSPACE if the automaton
accepts some tree with at most m nodes.

It is crucial that m constitute part of the input, because for explicitly presented
tree automata the (non-)emptiness problem is P-complete, and an implicitly
presented automaton can be exponentially big (this would give us an EXP
upper bound). The upper bound on the size of the tree significantly shrinks the
search space, so we refer to this problem as bounded nonemptiness. Assuming
this lemma, the proof of Theorem 6 goes as follows.

Proof (of Theorem 6). Combine Lemma 8 and 9 with the fact that the au-
tomaton Aq̄ from the former is implicitly presented in polynomial space. Indeed,
suppose an NWA A with states Q and an integer ` are given. By Lemma 8, a
synchronizing word for A of length at most ` exists if and only if there exists a
state q̄ ∈ Q such that the tree automaton Aq̄ accepts some tree over the ranked
alphabet F ; recall that this is the alphabet defined by (3) in subsection 4.1.
First note that the state q̄ can be guessed in polynomial space. Then recall from
Claim 2 in subsection 4.2 that Aq̄ only accepts trees with at most 2`− 1 nodes;
thus deciding its emptiness reduces to deciding its bounded emptiness. Again by
Claim 2, Aq̄ is implicitly presented in polynomial space, and thus we can apply
Lemma 9 with m = 2`− 1. This concludes the proof. ut

To prove Lemma 9, we design a decision procedure using the pebbling strategy
for trees that we discussed in subsection 4.3.

Proof (of Lemma 9). Denote the tree automaton implicitly presented in polyno-
mial space by Aq̄, as above. We describe a procedure that guesses (with checks
done on the fly) an accepting computation of Aq̄. Since the number m is given
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in binary, we cannot afford to write down the entire accepted tree, as it could
take up exponential space.

However, suppose that such a tree t exists and has m′ ≤ m nodes; we assume
without loss of generality that m = m′. Consider some pebbling strategy for t,
as defined in subsection 4.3. Our procedure will guess moves of this strategy on
the fly and simulate them; it will also guess the tree t in lockstep. More precisely,
we maintain the following invariant. Take any time step and any vertex v and
denote by tv the subtree of t rooted at v. If the pebbling strategy prescribes that
v should have a pebble, then our procedure keeps in memory a pair (q, k) where
q ∈ Q is a state of Aq̄ that tv evaluates to, and k is the total number of nodes
in tv. Note that any such pair (q, k) takes up space polynomial in the size of the
input: states of Aq̄ have such representations by the assumptions of the lemma,
and k never needs to grow higher than m.

We now describe how the moves of the strategy are simulated by our pro-
cedure. Suppose the strategy prescribes placing a pebble on a vertex v; by the
rules of the pebble game, this means that all immediate predecessors v1, . . . , vd
(if any) currently have pebbles on them. By our invariant, we already keep in
memory corresponding pairs (q1, k1), . . . , (qd, kd). Our procedure now guesses
the node v, i.e., its label f ∈ F in t. Then the procedure guesses a new state,
q ∈ Q, verifies in polynomial space that f(q1, . . . , qd) 7→ q is a transition in Aq̄,
and that k = k1 + . . .+ kd + 1 does not exceed m. If any check is failed, the pro-
cedure declares the current nondeterministic branch rejecting; if all the checks
are passed, the procedure stores the pair (q, k). Naturally, whenever a strategy
prescribes removing a pebble from a vertex, the procedure simply erases the
corresponding pebble from the memory (in fact, since t is a tree, we can assume
that every pair (q, k) is removed immediately after its use). At some point, the
procedure guesses that the strategy can terminate; this means that the root of
the tree t carries a pebble. The procedure picks some pair (q, k) from the mem-
ory and verifies in polynomial space that the state q is indeed final in Aq̄. This
signifies acceptance of tv.

It remains to argue that the procedure only uses polynomial space. Since
the tree t has m nodes, the upper bound on Strahler numbers tells us that the
optimal strategy needs peb(t) ≤ blog2(m + 1)c pebbles, which is polynomial in
the size of the input. If some guessed step requires more, the strategy cannot
be optimal, and the procedure declares the branch rejecting. This completes the
proof. ut

The idea of the proof of Lemma 9 can be distilled in a different form: We can
show that the bounded emptiness problem (are all trees up to a certain size
rejected?) is in PSPACE for succinct tree automata. These are tree automata
where the set of states, Q, can be exponentially large, but does not need to be
written out explicitly, and the set of transitions and the set of final states are
represented with Boolean circuits (or, alternatively, with logical formulas over
an appropriate theory). The proofs follows that of Lemma 9.
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5 Lower bound of Theorem 6

The matching lower bound for the Short Synchronizing Nested Word
problem is established by a reduction from the cost-optimal synchronizing prob-
lem, that we introduce and provide the PSPACE-completeness.

5.1 Cost-optimal synchronizing problem in DFAs.

For the standard definition of DFAs, see the appendix. For a DFA D = 〈Q,Σ,∆〉,
a price function price : Σ → N assigns a price to each letter a ∈ Σ. The function is
naturally extended to finite words: price(w·a) = price(w)+price(a) where w ∈ Σ∗
and a ∈ Σ. The cost-optimal synchronizing problem asks, given a DFA equipped
with a price function and given a cost ∈ N in binary, whether the DFA has a
synchronizing word w with price at most the estimated cost, i.e., price(w) ≤ cost.

The cost-optimal synchronizing problem is solved in (N)PSPACE by guess-
ing a synchronizing word w with length |w| ≤ 2|Q| such that price(w) ≤ cost. The
cost-optimal synchronizing problem is PSPACE-complete by a reduction from
the carefully synchronizing problem. The carefully synchronizing words gener-
alizes the synchronizing words to finite-state automata with a partially defined
transition function.

Theorem 10. The cost-optimal synchronizing problem is PSPACE-complete.

Theorem 10 strengthens the PSPACE-hardness result provided in [14, 5],
where the studied model is weighted automata with possibly negative weights
on transitions (the proof in there rely on negative weights).

5.2 Reduction from cost-optimal synchronization to
Short Synchronizing Nested Word

We prove the PSPACE-hardness of Short Synchronizing Nested Word
by the following reduction: given a DFA D = 〈Q,Σ,∆〉 equipped with func-
tion price and cost, we construct a NWA A and a length ` such that D has a
synchronizing word w with price(w) ≤ cost if and only if A has a synchronizing
nested word with length at most `.

Below, we present the construction of A and ` and we prove the correctness
of the reduction in Lemma 11. The intuition behind the reduction is to encode
the price of letters a in D by the length of some particular well-matched nested
words a · wa in A. To ensure that such a-transition is well-simulated, meaning
that A is not cheating by reading a different word w 6= a.wa, a punishment is
considered. When A is punished, it is forced to read a long nested word wpunish

which results in exceeding the length `.
We use two types of gadgets payq,a (to simulate a with a ·wa) and punishq (to

punish when A cheats) where q ∈ Q and a ∈ Σ. By a slight abuse of notation,
let payq,a and punishq denote the states set of those gadgets as well. The set of

states in A is Q ∪ {frc} ∪
⋃

q∈Q,a∈Σ
(payq,a ∪ punishq ∪ {pq, tq,a}).
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states Σ # call(γ) ret(Γ)

q ∈ Q tq,a pq
γ = x

self-loop
self-loop

frc self-loop
pq γ = x

self-loop
for some q self-loop

For all q ∈ Q and a ∈ Σ

tq,a self-loop pq
γ = £

self-loop
in of payq,a

pq self-loop pq
γ = /

self-loop
in of punishq

s ∈ punishq self-loop pq
see Figure 9 where
• cheating transitions go to state in of itself;
• from out, the transition ret(/) goes to q.

s ∈ payq,a self-loop pq
see Figure 8 where
• cheating transitions go to state err of itself;
• from out, the transition ret(£) goes to ∆(q, a);
• from err, the transition ret(£) goes to pq.

Table 1. Summary of the transition function δ of the NWA A constructed from the
DFA D = 〈Q,Σ,∆〉, where Γ = {x, y,£,/}. Here, the successor of states and letters

for all transitions is stated, for example, q
call(x)−−−→ q is the entry under q ∈ Q and call(γ).

The set of stack symbols is Γ = {x, y,£,/}; the letters are Σ ∪{#} where #
is a new letter. For all letters, the call and return transitions on state q and

stack symbols γ are the same, thus we use q
call(γ)−−−−→ p if δcall(q, a) = (p, γ); and

q
ret(γ)−−−→ p if δret(γ, q, a) = p where a ∈ Σ. We provide Table 1 for a complete

description of the transitions in A, which we explain intuitively in following.

The gadgets payq,a and punishq have similarity to Example 2:
Gadget payq,a: it has three distinguished local states in, out and err; see

Figure 8 in the appendix. All runs enter the gadget via an ingoing call(£) tran-
sition to state in and would leave the gadget via states out or err by an outgoing
ret(£) transition. All such runs that finally leave the gadget are thus over well-
matched words w ∈ call(£) · v · ret(£). A run is successful if it leaves the gadget
from state out; see that there is only a single word wa with a successful run.
We design the gadget such that |a · wa| = price(a). The only ingoing transition

that enters payq,a is tq,a
call(£)−−−−→ in where in is local for the gadget. The state tq,a

stands for inputting a in the state q of the DFA; in fact, the construction is such
that if a is input while synchronizing D, then A cannot avoid a · wa, and thus
the length of synchronizing word in A is added by |a · wa|. After reading a · wa
successfully, the gadget is left to the successor state ∆(q, a) of the DFA, thus the
a-transition in DFA is simulated. The unsuccessful runs leave payq,a from err; in
this cases, to show that the simulator has cheated, the state pq is reached where
the simulator would be punished by going through the gadget punishq.

Gadget punishq : it has two distinguished local states in and out; see Figure 9
in the appendix. As the main role, the gadget punishq is used to punish A if it
cheats while simulating D. Similar to payq,a, all runs which at some point leave
the gadget are over well-matched words w ∈ call(/) · v · ret(/). However, the
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the DFA D

1 2
a, b

b

a

⇒

the NWA A
punish1

in

out

punish2
in

out

pay2,b

in out

err
pay2,a

inout

err

pay1,b

in out

err

pay1,a

in out

err1 2

t2,bt2,a

t1,a

t1,b

a

b
a b

call(£)

call(£)

call(£) call(£)

ret(£)

ret(£)

ret(£)
ret(£)

ret(/) ret(/)

p1 p2
call(/) call(/)

ret(£)
ret(£)

ret(£)

ret(£)

frc
# call(x)

ret(Γ)

Figure 3. An example to illustrate the reduction from the cost-optimal synchronizing
problem to the Short Synchronizing Nested Word. The DFAD has a cost-optimal
synchronizing word, such as word b, if and only if cost ≥ price(b). For states q = {1, 2}
of the NWA A, the #-transitions in q, all states of gadget punishq and all states of
gadgets payq,a, payq,b lead to the state pq. Moreover, all a-transitions and b-transitions
in all states are self-loops, except in states 1, 2. See Table 1 for the complete description
of the transition function. Figures 8 and 9 in the appendix depicts the gadget payq,a
and punishq. The NWA A has a synchronizing nested word with length at most cost+
|wpunish|+ 1 if and only if D has a synchronizing word with price at most cost.

length of such words wpunish is very long (relative to the bound `) in a way that the
gadget can be visited, at most once. Hence, if A cheats and is punished, it cannot
avoid inputting the long word wpunish while synchronizing. As the secondary role,
we benefit from the fact that the gadget punishq can be visited once, to shrink the
whole states set of A to the subset Q, nominating copies of sates in D. Entering
simultaneously to all gadgets punishq (where q ∈ Q) is then possible by a special
letter # followed by an ingoing call(/) transition; all simultaneous runs leave
the gadgets punishq by an outgoing ret(/) transitions to states q where q ∈ Q.
Thus the second role can be achieved by # that is forced to be read at least once
while synchronizing A, otherwise the force state frc would never be synchronized.
The state frc has self-loops transitions for all transitions except for the letter #,
where it goes to pq for some q ∈ Q.

The states pq stands for punish time where the punished run ends in state q:

pq
wpunish−−−−→ q. For all q ∈ Q and letters a ∈ Σ, we have q

a−→ tq,a and tq,a
wa−−→

∆(q, a). Let ` = 1+ |wpunish|+cost. See Figure 3 for an example of the reduction.

Lemma 11. The Short Synchronizing Nested Word is PSPACE-hard.

Acknowledgements. The authors are grateful to Michael Wehar for comments.
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A Proof of Theorem 3

Suppose an NWA A has a synchronizing word. Then for every pair p, q ∈ Q,
where Q is the set of states of A, there exists a well-matched word that is
accepted by the product automaton A(p)×A(q)×W, where by A(p) and A(q)
we denote disjoint copies of A with initial states p and q respectively, and W is
a fixed NWA that only accepts well-matched words. As usual, a word is said to
be accepted by an automaton if it brings it to some accepting state (where the
set of such states is defined in advance). In this product automaton, accepting
are all states of the form (r, r, q̄) where r ∈ Q is arbitrary and q̄ is accepting in
W. Every synchronizing word is obviously accepted by the product automaton;
moreover, since this automaton has polynomial size, translating it to a context-
free grammar shows that the automaton accepts at least one word, say wp,q, of
at most exponential size (in terms of the size of A).

Now observe that the task of synchronzing runs of A that start in different
states q1, . . . , qn ∈ Q can be performed in steps: place n tokens on states of A,
pick any pair of them, say on p and q, and feed the machine with wp,q. Now this
pair of tokens is glued together; all tokens move some new locations, but their
number is now n− 1. Repeating the procedure another n− 2 times then gives a
synchronizing word for A.

It only remains to note that the argument above also gives a sufficient con-
dition for the existence of synchronizing words: indeed, if all product automata
A(p)×A(q)×W have nonempty languages, then a synchronizing word can be
constructed as described above, otherwise no such word can exist. Since empti-
ness for NWA is decidable in polynomial time, the theorem follows.

B Synchronization from subsets into subsets

In this section, we prove Theorem 4: let A = (Q,Γ, δ, q0, Q
f , γ i) be an NWA, the

following problems are EXP-complete.
(1) Given a subset I ⊆ Q, decide if there exists a well-matched nested word

u such that (I,⊥)
u−→ (q̄,⊥) for some state q̄ ∈ Q. We may refer to this

problem by synchronizing a subset problem.
(2) Given a subset F ⊆ Q, decide if there exists a well-matched nested word u

such that (Q,⊥)
u−→ (F ′,⊥) for some subset F ′ ⊆ F . We may refer to this

problem by synchronizing to a subset problem.
(3) Given subsets I ⊆ Q and F ⊆ Q, decide if there exists a well-matched nested

word u such that (I,⊥)
u−→ (F ′,⊥) for some subset F ′ ⊆ F . We may refer

to this problem by synchronizing a subset to another subset problem.

Observe that the synchronizing to a subset problem is a special case of the
synchronizing a subset to another subset problem when I = Q. Since the up-
per and lower complexity bounds are matching, it suffices to provide the lower
bound for the synchronizing to a subset problem, and the upper bound for the
synchronizing a subset to another subset problem.
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pyes pnopsink

call(yes)

ret(yes)
ret(Γ)

call(no)
ret(no)

call(no)
ret(Γ)

Figure 4. The NWA Awm used in the reductions to obtain EXP-hardness of syn-
chronization from subsets into subsets. Since on all letters, call and return transitions

behave the same, call transitions δcall(q, a) = (q′, γ) is shown as q
call(γ)−−−−→ q′, and re-

turn transitions δret(γ, q, a) = q′ is shown as q
ret(γ)−−−→ q′. All not-drawn transitions are

self-loops.

Establishing EXP-hardness.

We present reductions from the intersection nonemptiness problem for NWA,
that is given NWA A1, . . . ,Am, decide if there exists a well-matched nested
word accepted by all Ai.

Let Awm be an NWA on the same alphabet of NWA A1, . . . ,Am. It has
three states pyes, pno and psink. The state pyes is initial and final state, and the
state psink is absorbing. There are two stack symbols Γ = {yes, no}; see Figure 4.
The transitions in Awm are such that, for all a ∈ Σ,

– all internal transitions are self-loops: δint(p, a) = p where p ∈ {pyes, pno},
– the call transition in pyes and pno always lead to pno:

δcall(pyes, a) = (pno, yes) and δcall(pyes, a) = (pno, no),

– the return transitions in pyes go to psink: δ
ret(Γ, p0, a) = psink. However, the

return transitions in pno depends on the stack symbol:

δret(no, pno, a) = pno and δret(yes, pno, a) = pyes.

Observe that Awm accepts all well-matched nested words; moreover, all runs,
which start from the initial state pyes and end in the final state p0, are over
well-matched nested words too.

Below when establishing reductions from the intersection nonemptiness prob-
lem for NWA, without loss of generality, we assume that Am = Awm.

Synchronizing a subset problem. Let A1, . . . ,Am be m NWA over the
same alphabet Σ. We construct Ā and set I such that there exists a well-matched
nested word accepted by all Ai if and only if exists some well-matched nested
word u and some state q̄ in Ā where (I,⊥)

u−→ (q̄,⊥).
The construction is as follows; see Figure 5. Let q1, · · · , qm be the initial

states and Qf
1, · · · , Qf

m be the accepting sets for m NWAs. Let Ā be the NWA
that has one copy of each NWA Ai (1 ≤ i ≤ m) and two new absorbing states
sync and sink. For a new internal letter #, let #-transitions in all accepting
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A1 :

q1

p1 f1

· · · · · · · · ·

Am :

qm

pmfm

sync

sink
# #

# #

Figure 5. The sketch of the reduction from the intersection nonemptiness problem to
the synchronizing a subset problem in NWAs.

A1 :

q1

p1 f1

· · · · · · · · ·

Am :

qm

pmfm
sync

frc

##

# #

#

Figure 6. The sketch of the reduction from the intersection nonemptiness problem
to the synchronizing to a subset problem in NWAs. All not-drawn transitions in sync
and frc are self-loops.

states q ∈ Qf
1 ∪ · · · ∪ Qf

m of all Ai go to state sync whereas all #-transitions
in all non-accepting states q 6∈ Qf

1 ∪ · · · ∪ Qf
m go to state sink. From the subset

I = {q1, · · · , qm, sync}, a synchronizing word cannot escape sync because sync
is an absorbing state. Let u be the shortest synchronizing word from I. We
show that u always ends with #: (1) The only way that runs starting in the
initial states q1, · · · , qn are synchronized in sync is inputting # at the right time
when those runs are simultaneously in some accepting states in each copy. (2)
Moreover, thanks to the fact that Am = Awm, we know that all runs of Awm

from qm to Qf
m are over well-matched nested words. Thus, there exits a well-

matched nested word v such that u = v ·#. One can verify that v is an accepting
word for all Ai. The EXP-hardness result follows.

Synchronizing to a subset problem. Let A1, . . . ,Am be m NWA over
the same alphabet Σ. We construct Ā and set F such that there exists a well-
matched nested word accepted by all Ai if and only if exists some well-matched
nested word u and some state q̄ in Ā where (Q,⊥)

u−→ (F ′,⊥) for some subset
F ′ ⊆ F .

The construction is as follows; see Figure 6. Let q1, · · · , qm be the initial
states and Qf

1, · · · , Qf
m be the accepting sets for m NWAs. Let Ā be the NWA

that has one copy of each NWA Ai (1 ≤ i ≤ m) and two new states frc and
sync. For a new internal letter #, let #-transitions in all states of Ai goes to qi.
The state sync is absorbing whereas the state frc has self-loops for all letters
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except #. The #-transitions in frc leads to sync. Let F = Qf
1∪· · ·∪Qf

m∪{sync}.
A well-matched synchronizing word u for Ā cannot escape sync because sync is
an absorbing state. Let u be the shortest synchronizing word to the set F , thus
u must have one occurrence of #; otherwise state frc cannot be synchronized
to F . Let u = w ·# · v be such that v has no #. As soon as the last # of u is
read, each NWA Ai is reset to its initial state qi. To be synchronized in F , each
NWA Ai from qi must reach the final state Qf

i by inputting the word v. Recall
that Am = Awm. If w is not well-matched, then v would have to matched the
pending calls of w that leads Awm to reach psink, a contradiction with the fact
that u synchronizes Ā to F . Thus, u and v are both well-matched. It remains to
observe that each Ai have an accepting run over the well-matched nested word v
to its final states. The EXP-hardness result follows.

Membership in EXP.

Synchronizing a subset problem. We reduce this problem to the syn-
chronizing a subset to another subset problem, which we discuss below. Let
A = (Q,Γ, δ, q0, Q

f , γ i) be an NWA with n states, and let I ⊆ Q. To decide
whether there exists a well-matched nested word u and some state q̄ ∈ Q such
that (I,⊥)

u−→ (q̄,⊥), we make |Q| queries, for each q ∈ Q, to the the synchro-
nizing the subset I to the singleton {q}.

Synchronizing a subset to another subset problem. Given A with
set Q of states, I ⊆ Q and F ⊆ Q, we reduce this problem to the emptiness
problem of a product NWA, possibly exponential in the size of A. The reduction
is simple: for each state q ∈ I, we introduce an NWA Aq which is a copy of A
where the initial state is q and the final states are F . Consider the product au-
tomata Ā of all NWA Aq with q ∈ Q, an accepting word synchronizes the set I
to F in the original NWA A. The size of this product is |Q||I| which is expo-
nential, and the emptiness problem for the product automata is in P (|Q||I|).
Hence, EXP upper bound follows.

C Binary tree representation of nested words

In this subsection we describe a representation of nested words with binary trees
that we use in the sequel.

Nested words as trees of unbounded degree. Given a non-empty well-
matched nested word u = (x, ν) of length ` over an alphabet Σ, we define
the (essentially standard) tree representation of u as follows. Recall that the
matching relation satisfies ν ⊆ {1, . . . , k}2, as u is well-matched, and that ν(i, j)
implies i < j. Moreover, whenever ν(i, j) and ν(i′, j′), it cannot be the case that
i < i′ ≤ j < j′; this means that the segments [i, j], [i′, j′] ⊆ [1, `] are either
disjoint or contained in one another. Therefore, this property also holds for the
binary relation

ν ∪ {(i, i) | there is no j such that ν(i, j) or ν(j, i)} ∪ {(0, `+ 1)}. (2)
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In other words, the set defined by (2) forms the node set of an ordered rooted
tree:

– a node (i′, j′) is a (non-strict) descendant of (i, j) if and only if [i′, j′] ⊆ [i, j];
– if nodes v1 = (i1, j1) and v2 = (i2, j2) are siblings, then either i1 ≤ j1 < i2 ≤
j2, in which case v1 is to the left of (comes before) v2, or i2 ≤ j2 < i1 ≤ j1,
and then v2 is to the left of (comes before) v1.

The root of the tree is the pair (0, `+ 1).
Now take any non-root node v = (i, j) of this tree. If i < j, then the ith

position in u is a call and the jth position a return, and we associate v with
the matched pair of letters 〈xi, xj〉 where x = x1 . . . x`; we write µ(v) = 〈xi, xj〉.
Otherwise i = j and the ith position in u is internal; in this case we associate
v with the letter ai and write µ(v) = xi. We perform this for all non-root
nodes v; the obtained ordered rooted tree is denoted by tree(u), the simple tree
representation of the nested word u = (x, ν). Let V be the set of all nodes of
tree(u); by convention, in the sequel we treat the values of the partial association
mapping µ : V ⇀ 〈Σ× Σ〉 ∪ Σ as part of the tree itself.

We would like to remark that our simple tree representation is very similar
to the mapping that transforms so-called “hedge words” into trees [1, subsec-
tion 7.1]. In our case, however, positions of x matched by ν do not have to carry
identical letters from Σ; moreover, we add a special node as the root of the tree.
Note that, in general, nodes of tree(u) can have unbounded degree (number of
children).

Nested words as binary trees. The next step in our construction is “binariza-
tion” of the trees. Based on tree(u), we construct a new binary tree as follows.
For every node v in tree(u) that has more than two children, say v1, . . . , vk
with k ≥ 3, replace the star formed by v and v1, . . . , vk by any ordered binary
tree with root v and leaves v1, . . . , vk (preserving the left-to-right DFS traver-
sal order) where all non-leaf nodes have exactly 2 children (the number of new
“auxiliary” nodes will be k−2, not including v). We do not insist on picking any
particular shape of the k-leaf tree, because we do not need to rely on uniqueness
of representation. Similarly, if the root of tree(u) has more than one child, we
perform a similar transformation to make the root a unary node. After this we
remove the root (recall that it was added artificially in the first place).

The newly obtained tree is binary; we denote it by bin(u) and call it the tree
representation of u. We will not use in the sequel the simple tree representation
tree(u) defined above. While the construction of bin(u) is not sophisticated, nodes
of bin(u) come in many different types; for the reader’s convenience, we present
a summary. We would like to emphasize that we did not attempt to minimize
the number of these types; different representations are, of course, also possible.

Degree Type Notes
2 call-return binary Associated with matched pair 〈xi, xj〉
2 auxiliary binary Corresponds to positions i < j
1 call-return unary Associated with matched pair 〈xi, xj〉
0 call-return leaf Associated with matched pair 〈xi, xj〉, j = i+ 1
0 internal leaf Associated with internal letter xi
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We denote the set of types by Types; the degree of a node is, of course, the
number of its children. Note that auxiliary binary nodes are not associated with
any letters in the nested word, although they do correspond to pairs of positions
in it.

In general, run the left-to-right DFS traversal on the tree bin(u) and spell
the letters associated with the nodes in the natural way. Specifically, at any call-
return node v associated with i < j, spell “〈xi” when entering and “xj〉” when
leaving the subtree rooted at v; at any internal leaf associated with i, spell “xi”.
It is easy to see that the traversal of the entire tree bin(u) spells the word u, and
every subtree spells some well-matched factor.

Claim 3. For any nested word u of length ` its binary tree representation bin(u)
has at most 2`− 1 nodes. Moreover, if bin(u) = bin(u′), then u = u′.

Trees as terms over a ranked alphabet. We now switch the perspective a
little and look at binary tree representations as terms. Indeed, pick the ranked
alphabet

F ⊆ Types× (〈Σ× Σ〉 ∪ Σ ∪ {ε}) (3)

as follows. All elements of F have rank 0, 1, or 2, according to their first (that
is, Types-) component; the rank is simply the admissible number of children
(degree). The second component stores the associated letter or pair of letters,
if any; the value ε corresponds to the undefined association mapping. Since
the Types-component already determines whether the second component should
carry a pair of call and return letters, a single letter, or ε, we only take valid
combinations into F .

As this term representation is essentially the same as the binary representa-
tion defined above, we shall denote it by the same symbol bin(u); that is, bin(u)
is a term over F for any non-empty well-matched word u. In what follows, we
will mostly refer to bin(u) as a tree but treat it as a term.

D Proof of Lemma 7

For the reader’s convenience, we restate this lemma from subsection 4.2, in the
proof of the upper bound of Theorem 6. We show that for any NWA A with
states Q and for all pairs p̄, q̄ ∈ Q, there exists a tree automaton T (p̄, q̄) over
the ranked alphabet F as in (3) that has the following property: T (p̄, q̄) accepts
a tree bin(u) if and only if the NWA A has a run on u that starts in state p̄ and
ends in state q̄. Moreover, T (p̄, q̄) can be constructed from A in time polynomial
in the size of A.

The key idea is as follows. States of T (p̄, q̄) will be summaries, Q = Q2, and
subtrees will be evaluated to summaries (p, q) so that the following condition
holds. Take any subtree tv of the input tree t; as discussed in subsection 4.1, the
left-to-right DFS traversal of this subtree spells a word which is a well-matched
factor u′ of u. The automaton T (p̄, q̄) will pick the states p, q in such a way that
the NWA A will start and finish traversing u′ in the states p and q respectively.
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Naturally, nondeterministic guessing will be required for this construction to
work.

We now make the details of the construction more precise. Define a labeling
of t with respect to A as a function of the form λ : V (t) → Q2 where V (t)
denotes the set of nodes of t (or, equivalently, the set of ranked symbols in the
term representation of t). The labeling λ is consistent with the NWA A if the
following conditions are satisfied for all nodes v of t (we assume λ(v) = (p, q)
and λ(vs) = (ps, qs) for s = 1, 2).

1. If v is a call-return binary node associated with a matched pair 〈xi, xj〉 and
v1 and v2 are its left and right children, then there exists a γ ∈ Γ such that
δcall(p, xi) = (p1, γ), q1 = p2, and δret(γ, q2, xj) = q.

2. If v is an auxiliary binary node and v1 and v2 are its left and right children,
then p = p1, q1 = p2, and q2 = q.

3. If v is a call-return unary node associated with a matched pair 〈xi, xj〉 and
v1 is its only child, then there exists a γ ∈ Γ such that δcall(p, xi) = (p1, γ)
and δret(γ, q1, xj) = q.

4. If v is a call-return leaf associated with a matched pair 〈xi, xj〉, j = i + 1,
then there exists a γ ∈ Γ and an r ∈ Q such that δcall(p, xi) = (r, γ) and
δret(γ, r, xj) = q.

5. If v is an internal leaf associated with internal letter xi, then δint(p, xi) = q.

Suppose λ(root(t)) = (p̄, q̄) where root(t) is the root of t. Start the NWA A in the
state p0 and run the left-to-right DFS traversal of t; whenever the traversal spells
a letter, give it to A as input. Now λ is consistent with A if and only if for every
non-root node v with λ(v) = (p, q) the NWA begins the computation on the
corresponding well-matched factor in state p and leaves it in state q. Therefore
A has a computation on u that starts in state p̄ and terminates in state q̄ if and
only if there exists a consistent labeling λ of t such that λ(root(t)) = (p̄, q̄). What
remains is an easy exercise: define the transitions of T (p̄, q̄) in such a way that
T (p̄, q̄) guesses a consistent labeling of bin(u); the existence of an appropriate
set ∆ follows from our definition of a consistent labeling. This completes the
proof of Lemma 7.

E Standard definition of DFAs and synchronizing words.

In this section, we recall the standard definition of words and DFAs. A word
over a set Σ of letters is a sequence w = a1 · · · an of letters, where its length
is |w| = n. We denote by Σ∗ the set of all finite words over the finite alphabet Σ.

A deterministic finite-state automaton (DFA) is a tuple D = 〈Q,Σ,∆〉
where Q is a finite set of states, Σ is a finite alphabet and the transition func-
tion ∆ : Q×Σ → Q is totally defined. The function ∆ extends to finite words, in
a natural way: ∆(q, wa) = ∆(∆(q, w), a) for all words w ∈ Σ∗ and letters a ∈ Σ;
and it extends to set of states by ∆(S,w) =

⋃
q∈S ∆(q, w) where S ⊆ Q.

A word w is synchronizing for the DFA D if there exists some state q̄ ∈ Q
such that ∆(Q,w) = {q̄}. The synchronizing problem in DFAs asks, given a
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Figure 7. The sketch of the reduction from carefully synchronization to cost-optimal
synchronization. All not-drawn transitions in D are self-loops.

DFA D, whether there exists some synchronizing word for D. It is known that
D has a synchronizing word if and only if for all pairs of states q, q′ ∈ Q, there
exists a word v such that ∆(q, v) = ∆(q′, v) (see [22] for more details). The
synchronizing problem in DFAs is thus in NL by a simple technique which
we call pairwise synchronization. Given D with n states, set Sn = Q and for all
i = n−1, · · · , 1 repeat the following: find a word vi such that ∆(q, vi) = ∆(q′, vi)
for any pair q, q′ ∈ Si+1 and let Si = ∆(Si+1, v). The word w = vn−1 · · · v2 · v1

is synchronizing for D.

F Correctness of PSPACE-hardness reduction for the
cost-optimal synchronizing problem

In this section we prove Theorem 10, showing that the cost-optimal synchronizing
problem is PSPACE-complete. Membership in PSPACE is discussed in the
main text and to establish the PSPACE-hardness, we present a reduction from
carefully synchronizing problem.

The carefully synchronizing words generalizes the synchronizing words to
finite-state automata with a partially defined transition function (PFAs).

A PFA is a tuple P = 〈Q,Σ, δ〉 where the transition function δ : Q×Σ → Q
might not be defined for some states q and letters a. A synchronizing word w =
a1a2 · · · an for the PFA P must use only defined transitions, that means δ(q, a1)
is defined for all states q ∈ Q and δ(q, ai+1) is defined for all q ∈ δ(Q, a1a2 · · · ai)
and all 1 ≤ i < n. The carefully synchronizing problem asks, given a PFA P,
whether there exists some synchronizing word for P.

Reduction from carefully synchronizing problem. We prove that the
cost-optimal synchronizing problem is PSPACE-hard, by the following reduc-
tion. Given a PFA P = 〈Q,Σ, δ〉, we construct a DFA D equipped with func-
tion price and cost such that P has a synchronizing word if and only if D has a
synchronizing word w with price(w) ≤ cost.

Below, we present the construction of D and we prove the correctness of
the reduction in Lemma ??. The sketch of reduction is depicted in Figure 7.
The price associated to all a ∈ Σ is price(a) = 0. A new letter # is introduced
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with price(#) = 2|Q|; and for all q ∈ Q, a new letter dq is added with price(dq) =
1. Setting cost = 2|Q|+1 restricts D to input # at most once while synchronizing;
moreover, if # is read then only one letter among {dq | q ∈ Q} can be chosen.

Let ∆ be the transition function of D where ∆(q, a) = δ(q, a) if δ(q, a) is de-
fined for q ∈ Q and a ∈ Σ. For all q ∈ Q, a new state pq is added where all tran-
sitions are self-loops except #-transition: ∆(pq,#) = q. For all q ∈ Q and a ∈ Σ,
if δ(q, a) is not defined, we then add a new state `qa where all transitions are self-
loops except #-transition: ∆(`qa,#) = q; we also define ∆(q, a) = `qa. Hence,
to synchronize the states pq and `qa the letter # must be read at least once. It
remains to define for all q 6= q′: ∆(q,#) = q, ∆(q, dq) = sync and ∆(q, dq′) = q
where sync is a new state with no outgoing transitions. The automaton D can
only be synchronized in sync, and since sync is reached only by some letter dq,
the automaton D must input dq at least for one q ∈ Q.

To prove the correctness of the reduction, observe that if P has some syn-
chronizing word v where δ(Q, v) = {q}, then # · v · dq is a synchronizing word
for D with price(# · v · dq) = cost.

Now, assume that D has some synchronizing word with price at most cost;
let w be the shortest such words. By construction, w must have exactly one
occurrence of # and one occurrence of dq for some state q ∈ Q. Since w is one
of the shortest synchronizing word, thus w = w1 ·# ·w2 · dq where w1, w2 ∈ Σ+.
We prove that w2 = a1a2 · · · an is a valid synchronizing word for P by three
observations:

– the set of reached states after inputting # is exactly Q.

– for all 1 ≤ i ≤ n and all states q ∈ ∆(Q, a1a2 · · · ai), the successor state is
never `qai ; otherwise since w2 has no occurrence of #, we get an immediate
contradiction with the fact that w is a synchronizing word for D. Thus, the
automaton D only fires “defined” transitions of P while reading w2.

– Since ∆(q1, dq) 6= ∆(q2, dq) for all letters dq and pairs of states q1 6= q2, then
∆(Q,w2) = δ(Q,w2) is a singleton.

The PSPACE-hardness results follows.

A variant of the cost-optimal synchronization is studied, in [5], for weighted
automata. In that model, the transitions of the automata are augmented with
negative or positive weights. Their model can assigns different weights, even
negative weights, to transitions on the same letter, thus their model generalizes
ours where all transition on the same letter have the same price. However, the
PSPACE-hardness result for the synchronizing problem with a bounded weight
in their model heavily benefits from the freedom of choosing negative weights,
and possibly different weights for the transitions on same letter. The obtained
PSPACE-hardness result then cannot be used for cost-optimal synchronizing
problem.
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G Correctness of PSPACE-hardness reduction for the
Short Synchronizing Nested Word

In this section we prove Lemma 11 of the main text, showing that
the Short Synchronizing Nested Word problem is PSPACE-hard. We
present a reduction from the cost-optimal synchronization problem to the
Short Synchronizing Nested Word in the main text, here, we provide the
correctness.

To prove the correctness of the reduction, observe that if D has some syn-
chronizing word v = a1a2 · · · an with price(v) ≤ cost, then

# · wpunish · a1 · wa1 · a2 · wa2 · · · an · wan

is a synchronizing word for A with length

|# · wpunish|+ price(a1) + price(a2) + · · ·+ price(an) ≤ 1 + |wpunish|+ cost.

For the converse direction, assume that A has some synchronizing word w
with length at most `. We prove that D has a synchronizing word with price at
most cost.

We take a close look at the runs of A over w = b1b2 · · · bm starting only from
the states q ∈ Q. Let S0 = Q and Si = δ(Si−1, bi) for all 1 ≤ i ≤ m. We first
prove that Si ∩ Q 6= ∅ if and only if Si ⊆ Q for all 1 ≤ i ≤ m. The proof is by
an induction where the induction step (S0 ⊆ Q) trivially holds.

For induction step (proving the statement for k), assume that for all i < k,
we have Si∩Q 6= ∅ if and only if Si ⊆ Q. For Si and j ∈ N, we call Si+j the j-th
successor of Si; when j = 1, we simply call Si+1 the successor of Si. Let x < k be
the biggest number such that Sx ⊆ Q. Since x is the biggest such numbers and
since all transitions in q ∈ Q are self-loops unless #-transition and a-transitions
where a ∈ Σ, thus there are two cases:

1. Sx+1 = {pq | q ∈ Sx} implying that bx+1 = #. Since all transitions
in pq are self-loops unless call(/) transitions, all next successors of Sx+1

are equal to itself until call(/) is read, say at by−1, implying that Sy =
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{in of gadgets punishq | q ∈ Sx}. If x + 1 ≤ n < y, then Sn = Sx+1 where
Sn ∩ Q = ∅ holds. For y ≤ n, consider the fact that all next successors
of Sy consists only from the states of gadget punishq unless either # is read
again that cause the same case (the successor would be {pq | q ∈ Sx}),
or ret(/) is read in the states out of all gadgets punishq. Note that since
all gadgets punishq have the same constructions, thus all runs follow the
same scenario and leave the gadget simultaneously. Let us say that ret(/)
is read such that bz = ret(/) and Sz−1 = {out of gadgets punishq | q ∈ Sx}.
If y ≤ n < z then Sn ∩ Q = ∅ holds. Otherwise, since by construction

Sz−1
bz−→ Sx, and since x < n is the biggest number with Sx ∩ Q 6= ∅, then

Sn = Sx ⊆ Q.

Observe that in this case, Sx = Sy for the two consecutive set Sx and Sy
with non-empty intersection with Q. We refer to this by no-ret(£)-case.

2. Sx+1 = {tq,a | q ∈ Sx, a = bx+1}. Since all gadgets payq,a on the same
letter a have the same construction; and since the only way to leave the
gadgets payq,a are: (i) inputting ret(£) in the states err of the gadgets or in-
putting #, where both lead to the successor {pq | q ∈ Sx}, that is discuss in
no-ret(£)-case; (ii) inputting ret(£) in the states out of the gadgets. We dis-
cuss the latter in details. Let by = ret(£) and Sy−1 = {out of gadgets paya,q |
q ∈ Sx, a = bx+1}. By construction Sy ⊆ Q. If x+1 ≤ n < y then Sn∩Q = ∅
holds; otherwise since x < n is the biggest number with Sx ∩ Q 6= ∅, then
n = y and Sn = ∆(Sx, bx+1) ⊆ Q.

Observe that in this case, inputting ret(£) in states out of the gadget payq,a
plays a key role to have Sy = ∆(Sx, bx+1) for the two consecutive set Sx and
Sy with non-empty intersection with Q. We refer to this by ret(£)-case.

The induction step is complete, and we then have that Si ∩ Q 6= ∅ if and
only if Si ⊆ Q for all 1 ≤ i ≤ m. We also have the following immediate result:
either Si = Sj or Sj = ∆(Si, bi+1) for all consecutive Si, Sj ⊆ Q (meaning that
1 ≤ i < j ≤ m and Sk ∩Q = ∅ for all i < k < j).

Let n be the size of {1 ≤ i ≤ m | Si ⊆ Q}, the number of Si with
Si ⊆ Q. We define a strictly increasing mapping id : {1, · · · , n} → {1, · · · ,m}
such that Sid(j) ⊆ Q. The sequence Sid(1)Sid(2) · · ·Sid(n) consists of all the suc-
cessors of Q with non-empty intersection with Q. We have shown that either
Sid(i) = Sid(i+1) or ∆(Sid(i), bid(i)+1) = Sid(i+1) where 1 ≤ i < n. Let T1T2 · · ·Tk
be the biggest subsequence of Sid(1)Sid(2).. · · ·Sid(n), and index : {1, · · · , k} →
{1, · · · , n} be a strictly increasing mapping such that Tj = Sid(index(j)) and
∆(Tj , bid(index(j))+1) = Tj+1 (all ret(£)-cases). Let v = a1 · · · ak be the word
consisting of all bid(index(j))+1 for 1 ≤ j ≤ k. Since v is constructed from ret(£)-
cases, then v ∈ Σ∗.

We prove that v is a synchronizing word for D with price(v) ≤ cost. First, see
that since v = a1 · · · ak is constructed from ret(£)-cases, then ∆(Tj , aj) = Tj+1

for all 1 ≤ j < k, as a result, the aj-transitions of D is well-simulated. It remains
to prove that Tk is a singleton. Towards contradiction, assume that there are



29

q 6= q′ such that {q, q′} ⊆ Tk. Let x be the biggest number x ≤ m where
Sx ⊆ Q, we have shown that Tk = Sx, giving that {q, q′} ⊆ Sx. By a similar
argument to no-ret(£)-case, the two states {q, q′} would not be synchronized
by bx+1bx+2 · · · bm, a contradiction with the fact that w is a synchronizing word
for A. Then, Tk is a singleton and v is a synchronizing word for D.

To complete the proof, we provide that price(v) ≤ cost. We know by construc-
tion that w have the subword # ·wpunish exactly once. Let w′ be the subword of w
after omitting # · wpunish, thus |w′| ≤ cost. On the other hand, by construction
of v = a1 · · · ak (from w′), we know that all letters ai of v are correct simulations
of an ai-transition in D, thus each ai is followed by wai where |ai·wai | = price(ai).
We thus have price(v) < cost.


