Regular Separators for VASS Coverability Languages

33. Theorietag “Automaten und Formale Sprachen”, Kaiserslautern

Chris Köcher Georg Zetzsche

Max Planck Institute for Software Systems, Kaiserslautern

October 4, 2023
Vector Addition Systems with States (VASS)

\[L(\mathcal{V}) = \{ w \in \Sigma^* | \exists \vec{v} \in \mathbb{N}^d : (s, \vec{0}) \xrightarrow{\mathcal{V}} (t, \vec{v}) \geq (t, \vec{0}) \} \]
Vector Addition Systems with States (VASS)

\[L(\mathcal{V}) = \{ w \in \Sigma^* \mid \exists \vec{v} \in \mathbb{N}^d : (s, \vec{0}) \xrightarrow{w} \mathcal{V} (t, \vec{v}) \geq (t, \vec{0}) \} \]
Vector Addition Systems with States (VASS)

$L(\mathcal{V}) = \{w \in \Sigma^* | \exists \vec{v} \in \mathbb{N}^d : (s, \vec{0}) \xrightarrow{w} (t, \vec{v}) \geq (t, \vec{0})\}$
Vector Addition Systems with States (VASS)

\[L(\mathcal{V}) = \{ w \in \Sigma^* \mid \exists \vec{v} \in \mathbb{N}^d : (s, \vec{0}) \xrightarrow{w} \mathcal{V} (t, \vec{v}) \geq (t, \vec{0}) \} \]
Vector Addition Systems with States (VASS)

$L(V) = \{ w \in \sum^* \mid \exists \tilde{v} \in \mathbb{N}^d: (s, \tilde{0}) \xrightarrow{w} V (t, \tilde{v}) \geq (t, \tilde{0}) \}$
Vector Addition Systems with States (VASS)

\[L(\mathcal{W}) = \{ w \in \Sigma^* | \exists \vec{v} \in \mathbb{N}^d: (s, \vec{0}) \xrightarrow{w} \mathcal{W} (t, \vec{v}) \geq (t, \vec{0}) \} \]
Vector Addition Systems with States (VASS)

\[L(\mathcal{V}) = \{ w \in \Sigma^* \mid \exists \tilde{v} \in \mathbb{N}^d: (s, \tilde{0}) \xrightarrow{w} \mathcal{V} (t, \tilde{v}) \geq (t, \tilde{0}) \} \]
VASS

\[L(\mathcal{V}) = \{ w \in \Sigma^* \mid \exists \vec{v} \in \mathbb{N}^d : (s, \vec{0}) \xrightarrow{w} (t, \vec{v}) \geq (t, \vec{0}) \} \]
Vector Addition Systems with States (VASS)

$L(\mathcal{V}) = \{ w \in \Sigma^* \mid \exists \vec{v} \in \mathbb{N}^d: (s, \vec{0}) \xrightarrow{w} \mathcal{V} (t, \vec{v}) \geq (t, \vec{0}) \}$
Vector Addition Systems with States (VASS)

\[L(\mathcal{W}) = \{ w \in \Sigma^* \mid \exists \tilde{v} \in \mathbb{N}^d : (s, \tilde{0}) \xrightarrow{w} \mathcal{W} (t, \tilde{v}) \geq (t, \tilde{0}) \} \]
Regular Separability (1)

Problem

- Given two languages $K, L \subseteq \Sigma^*$.
- Is there a regular language $R \subseteq \Sigma^*$ with $K \subseteq R$ and $L \cap R = \emptyset$?

Note: Regular Separability ≠ Disjointness!
Theorem (Czerwiński et al. @ CONCUR 2018)

Let \mathcal{V} and \mathcal{W} be two VASS. Then $L(\mathcal{V})$ and $L(\mathcal{W})$ are regular separable if, and only if, $L(\mathcal{V}) \cap L(\mathcal{W}) = \emptyset$.

Question

What is the size of a regular separator of $L(\mathcal{V})$ and $L(\mathcal{W})$?

- Czerwiński et al.: doubly exp. lower bound & triply exp. upper bound

Theorem (Main Theorem)

Let \mathcal{V} and \mathcal{W} be two VASS with $\leq n$ states and updates of norm $\leq m$. If $L(\mathcal{V}) \cap L(\mathcal{W}) = \emptyset$ then there is an separating NFA with at most $(n + m)^{2^{\text{poly}(d)}}$ many states.
Proof (1): Reduce to Counter Instructions

\[\Gamma_d = \{ a_i, \overline{a_i} \mid 1 \leq i \leq d \} \]

- \(a_i \) increase counter \(i \) by 1
- \(\overline{a_i} \) decrease counter \(i \) by 1

\[C_d = \{ w \in \Gamma_d^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \leq i \leq d : |v|_{a_i} \geq |v|_{\overline{a_i}} \} \]

Lemma (Jantzen 1979)

\(L \subseteq \Sigma^* \) is a VASS coverability language iff there is a rational transduction \(T \) with \(L = T(C_d) \).

Corollary

Let \(\mathcal{W} \) and \(\mathcal{W} \) be two VASS and \(T \) be a rational transduction with \(L(\mathcal{W}) = T(C_d) \). Then \(L(\mathcal{W}) \) is regularly separable from \(L(\mathcal{W}) \) iff \(T^{-1}(L(\mathcal{W})) \) is regularly separable from \(C_d \).
Proof (1): Reduce to Counter Instructions

\[\Gamma_d = \{ a_i, \overline{a_i} \mid 1 \leq i \leq d \} \]
- \(a_i \) increase counter \(i \) by 1
- \(\overline{a_i} \) decrease counter \(i \) by 1

\[C_d = \{ w \in \Gamma_d^* \mid \forall \text{prefixes } v \text{ of } w, 1 \leq i \leq d : |v|_{a_i} \geq |v|_{\overline{a_i}} \} \]

Lemma (Jantzen 1979)

\(L \subseteq \Sigma^* \) is a VASS coverability language iff there is a rational transduction \(T \) with \(L = T(C_d) \).

Corollary

Let \(\mathfrak{V} \) and \(\mathfrak{W} \) be two VASS with \(L(\mathfrak{V}) \) regular and \(L(\mathfrak{W}) = T(C_d) \). Then \(L(\mathfrak{W}) \) is regularly separable from \(C_d \).
Proof (1): Reduce to Counter Instructions

- $\Gamma_d = \{a_i, \overline{a}_i \mid 1 \leq i \leq d\}$
 - a_i increase counter i by 1
 - \overline{a}_i decrease counter i by 1
- $C_d = \{w \in \Gamma_d^* \mid \forall$ prefixes v of $w, 1 \leq i \leq d: |v|_{a_i} \geq |v|_{\overline{a}_i}\}$

Lemma (Jantzen 1979)

$L \subseteq \Sigma^*$ is a VASS coverability language iff there is a rational transduction T with $L = T(C_d)$.

Corollary

Let \mathcal{L} and \mathcal{W} be two VASS and T be a rational transduction with $L(\mathcal{W}) = T(C_d)$. Then $L(\mathcal{L})$ is regularly separable from $L(\mathcal{W})$ iff $T^{-1}(L(\mathcal{L}))$ is regularly separable from C_d.

\[s \quad \text{\xrightarrow{a} (0,1)} \quad b \quad \text{\xrightarrow{1,-2}} \quad \overline{a}_2 \quad \text{\xrightarrow{a_1,a_2}} b \quad \text{\xrightarrow{a_1,a_2}} \quad b \]
Proof (1): Reduce to Counter Instructions

Γ
\[d = \{ a_i \mid 1 \leq i \leq d \} \]

\[a_i \text{ increase counter } i \text{ by 1} \]

\[a_i \text{ decrease counter } i \text{ by 1} \]

\[C_d = \{ w \in \Gamma^* \mid \forall \text{ prefixes } v \text{ of } w, 1 \leq i \leq d : \mid v \mid_{a_i} \geq \mid v \mid_{a_i} \} \]

Lemma (Jantzen 1979)
\[L \subseteq \Sigma^* \text{ is a VASS coverability language iff there is a rational transduction } T \text{ with } L = T(C_d). \]

Corollary
Let \(\mathcal{V} \) and \(\mathcal{W} \) be two VASS and \(T \) be a rational transduction with \(L(\mathcal{W}) = T(C_d) \). Then \(L(\mathcal{V}) \) is regularly separable from \(L(\mathcal{W}) \) iff \(T^{-1}(L(\mathcal{V})) \) is regularly separable from \(C_d \).
Proof (2): Basic Separators

For $k \in \mathbb{N}$ let $B_k \subseteq \Gamma_d^*$ be the following language: $w \in B_k$ iff there is $1 \leq i \leq d$ with
- there is a prefix v of w with $|v|_{a_i} < |v|_{a_i}^-$ and
- each proper prefix u of v satisfies $0 \leq |u|_{a_i} - |u|_{a_i}^- \leq k$

- B_k is accepted by a DFA of size $O(k^d)$.

Theorem (Czerwiński & Zetzsche @ LICS 2020)

Let \mathcal{V} and \mathcal{W} be two VASS with $L(\mathcal{V}) \cap L(\mathcal{W}) = \emptyset$ and let T be a rational transduction with $L(\mathcal{W}) = T(C_d)$. Then B_k is a regular separator of $T^{-1}(L(\mathcal{V}))$ and C_d for a $k \in \mathbb{N}$.
Proof (2): Basic Separators

For \(k \in \mathbb{N} \) let \(B_k \subseteq \Gamma_d^* \) be the following language: \(w \in B_k \) iff there is \(1 \leq i \leq d \) with

- there is a prefix \(v \) of \(w \) with \(|v|_{a_i} < |v|_{\overline{a_i}} \) and
- each proper prefix \(u \) of \(v \) satisfies \(0 \leq |u|_{a_i} - |u|_{\overline{a_i}} \leq k \)

\(B_k \) is accepted by a DFA of size \(O(k^d) \).

Theorem (Czerwiński & Zetzsche @ LICS 2020)

Let \(\mathcal{V} \) and \(\mathcal{W} \) be two VASS with \(L(\mathcal{V}) \cap L(\mathcal{W}) = \emptyset \) and let \(T \) be a rational transduction with \(L(\mathcal{W}) = T(C_d) \). Then \(B_k \) is a regular separator of \(T^{-1}(L(\mathcal{V})) \) and \(C_d \) for some \(k \in \mathbb{N} \).
Proof (2): Basic Separators

For \(k \in \mathbb{N} \) let \(B_k \subseteq \Gamma_d^* \) be the following language: \(w \in B_k \) iff there is \(1 \leq i \leq d \) with
- there is a prefix \(v \) of \(w \) with \(|v|_{a_i} < |v|_{\overline{a_i}} \) and
- each proper prefix \(u \) of \(v \) satisfies \(0 \leq |u|_{a_i} - |u|_{\overline{a_i}} \leq k \)

\(B_k \) is accepted by a DFA of size \(O(k^d) \).

\[B_k = \bigcup_{1 \leq i \leq d} L(\mathcal{B}_{k,i}) \]
Proof (3): Covering

Theorem (Rackoff 1978)

Let \mathcal{V} be a VASS, c be a configuration of \mathcal{V}, and a vector $\vec{v} \in \mathbb{N}^d$ with $c \rightarrow^*_{\mathcal{V}} (t, \vec{v}) \geq (t, \vec{0})$. Then there is $0 \leq \ell \leq (n + m)^{2^\text{poly}(d)}$ and $\vec{w} \in \mathbb{N}^d$ with $c \rightarrow^\ell_{\mathcal{V}} (t, \vec{w}) \geq (t, \vec{0})$.

Here, n is the number of states in \mathcal{V} and m is the norm of the counter updates in \mathcal{V}.

Theorem

Let \mathcal{V} and \mathcal{W} be two VASS with $L(\mathcal{V}) \cap L(\mathcal{W}) = \emptyset$ and let T be a rational transduction with $L(\mathcal{W}) = T(C_d)$. Then $B_{\text{Rackoff}(\mathcal{V} \times \mathcal{W})}$ is a regular separator of $T^{-1}(L(\mathcal{V}))$ and C_d.

Finally, $T(B_{\text{Rackoff}(\mathcal{V} \times \mathcal{W})})$ is a regular separator of $L(\mathcal{V})$ and $L(\mathcal{W})$. \qed
Conclusion

<table>
<thead>
<tr>
<th>d as input</th>
<th>NFAs</th>
<th>DFAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>d fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d \geq 2$</td>
<td>poly.</td>
<td>exp.</td>
</tr>
<tr>
<td>$d = 1$</td>
<td>poly.</td>
<td>exp.</td>
</tr>
</tbody>
</table>

Thank you!