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Vector Addition Systems with States (VASS)

s

t

a ∣ (2, 1)

b ∣ (−1, 1)
a ∣ (1, 1)

b ∣ (1, 0)

a ∣ (2,−4)

a a b a0 0

2 13 22 3

fails, since 3 − 4 < 0

L(V) = {w ∈ Σ∗ ∣ ∃v⃗ ∈ Nd ∶ (s, 0⃗) wÐ→V (t, v⃗) ≥ (t, 0⃗)}
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Regular Separability (1)

Problem

Given two languages K , L ⊆ Σ∗.
Is there a regular language R ⊆ Σ∗ with K ⊆ R and L ∩ R = ∅?

R?

K L

Σ∗

Note: Regular Separability ≠ Disjointness!
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Regular Separability (2)

Theorem (Czerwiński et al. @ CONCUR 2018)
LetV andW be two VASS. Then L(V) and L(W) are regular separable if, and only if,
L(V) ∩ L(W) = ∅.

Question
What is the size of a regular separator of L(V) and L(W)?

Czerwiński et al.: doubly exp. lower bound & triply exp. upper bound

Theorem (MainTheorem)
LetV andW be two VASS with ≤ n states and updates of norm ≤ m. If L(V) ∩ L(W) = ∅
then there is an separating NFA with at most (n +m)2poly(d) many states.
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Proof (1): Reduce to Counter Instructions

Γd = {ai, ai ∣ 1 ≤ i ≤ d}
ai increase counter i by 1
ai decrease counter i by 1

Cd = {w ∈ Γ∗d ∣ ∀ prefixes v of w , 1 ≤ i ≤ d∶ ∣v∣ai ≥ ∣v∣ai}

Lemma (Jantzen 1979)
L ⊆ Σ∗ is a VASS coverability language iff there is a rational transduction T with L = T(Cd).

Corollary

LetV andW be two VASS and T be a rational transduction with L(W) = T(Cd). Then

L(V) is regularly separable from L(W) iff T−1(L(V)) is regularly separable from Cd .

∣v∣ai − ∣v∣ai

t

V∶

s t

a ∣ (0, 1)
b ∣ (1,−1)

b ∣ (1,−2)

ε ∣ (0, 0)

TV∶

Ô⇒ s t

a2 ∣ a
a1a2 ∣ b

a1a2a2 ∣ b

ε ∣ ε

⇒ W

a b

V ⇒

T−1 ( S ( Cd ))
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Proof (2): Basic Separators

For k ∈ N let Bk ⊆ Γ∗d be the following language: w ∈ Bk iff there is 1 ≤ i ≤ d with
there is a prefix v of w with ∣v∣ai < ∣v∣ai and
each proper prefix u of v satisfies 0 ≤ ∣u∣ai − ∣u∣ai ≤ k

Bk is accepted by a DFA of size O(kd).

Theorem (Czerwiński & Zetzsche @ LICS 2020)
LetV andW be two VASS with L(V) ∩ L(W) = ∅ and let T be a rational transduction with

L(W) = T(Cd). Then Bk is a regular separator of T
−1(L(V)) and Cd for a k ∈ N.

∣w∣ai − ∣w∣ai

t

kBk,i ∶

Bk = ⋃1≤i≤d L(Bk,i)

−1 0 1 2 . . . k k+1

Γd

ai

ai

Γd ∖ {ai, ai}

ai

ai

Γd ∖ {ai, ai}

ai

ai

Γd ∖ {ai, ai}

ai

ai

ai

ai

Γd ∖ {ai, ai} Γd
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Proof (3): Covering

Theorem (Rackoff 1978)
LetV be a VASS, c be a configuration ofV, and a vector v⃗ ∈ Nd with c →∗V (t, v⃗) ≥ (t, 0⃗).
Then there is 0 ≤ ℓ ≤ (n +m)2poly(d)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Rackoff(V)

and w⃗ ∈ Nd with c →ℓ
V (t, w⃗) ≥ (t, 0⃗).

Here, n is the number of states inV and m is the norm of the counter updates inV.

Theorem
LetV andW be two VASS with L(V) ∩ L(W) = ∅ and let T be a rational transduction with

L(W) = T(Cd). Then BRackoff(V×W) is a regular separator of T−1(L(V)) and Cd .

Finally, T(BRackoff(V×W)) is a regular separator of L(V) and L(W). ◻
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Conclusion

NFAs DFAs
unary binary unary binary

d as input 2-exp. 3-exp.
d ≥ 2 poly. exp. exp. 2-exp.

d fixed
d = 1 poly. exp. exp. exp.

Thank you!
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