Regular Separators for VASS Coverability Languages

33. Theorietag "Automaten und Formale Sprachen", Kaiserslautern

Chris Köcher Georg Zetzsche

Max Planck Institute for Software Systems, Kaiserslautern
October 4, 2023

Vector Addition Systems with States (VASS)

- $L(\mathfrak{V})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{V})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{V})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{N})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{N})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{N})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{N})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{N})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{V})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}_{\mathfrak{V}}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Vector Addition Systems with States (VASS)

- $L(\mathfrak{V})=\left\{w \in \Sigma^{*} \mid \exists \vec{v} \in \mathbb{N}^{d}:(s, \overrightarrow{0}) \xrightarrow{w} \mathfrak{V}(t, \vec{v}) \geq(t, \overrightarrow{0})\right\}$

Regular Separability (1)

Problem

- Given two languages $K, L \subseteq \Sigma^{*}$.
- Is there a regular language $R \subseteq \Sigma^{*}$ with $K \subseteq R$ and $L \cap R=\varnothing$?

- Note: Regular Separability $=$ Disjointness!

Regular Separability (2)

Theorem (Czerwiński et al. @ CONCUR 2018)

Let \mathfrak{V} and \mathfrak{W} be two VASS. Then $L(\mathfrak{V})$ and $L(\mathfrak{W})$ are regular separable if, and only if, $L(\mathfrak{V}) \cap L(\mathfrak{W})=\varnothing$.

Question

What is the size of a regular separator of $L(\mathfrak{V})$ and $L(\mathfrak{W})$?
■ Czerwiński et al.: doubly exp. lower bound \& triply exp. upper bound

Theorem (Main Theorem)

Let \mathfrak{V} and \mathfrak{W} be two VASS with $\leq n$ states and updates of norm $\leq m$. If $L(\mathfrak{V}) \cap L(\mathfrak{W})=\varnothing$ then there is an separating NFA with at most $(n+m)^{2^{\mathrm{poly}(d)}}$ many states.

Proof (1): Reduce to Counter Instructions

- $\Gamma_{d}=\left\{\mathbf{a}_{\mathbf{i}}, \overline{\mathbf{a}_{\mathbf{i}}} \mid 1 \leq i \leq d\right\}$
- $\mathbf{a}_{\mathbf{i}}$ increase counter i by 1
- $\overline{\mathbf{a}_{\mathrm{i}}}$ decrease counter i by 1
- $C_{d}=\left\{w \in \Gamma_{d}^{*} \mid \forall\right.$ prefixes v of $\left.w, 1 \leq i \leq d:|v|_{a_{\mathrm{i}}} \geq|v|_{\overline{\mathrm{a}}_{\mathrm{i}}}\right\}$

Lemma (Jantzen 1979)

$L \subseteq \Sigma^{*}$ is a VASS coverability language iff there is a rational transduction T with $L=T\left(C_{d}\right)$.

Corollary

Let \mathfrak{V} and $\mathfrak{W J}$ be two VASS and T be a rational transduction with $L(\mathfrak{W})=T\left(C_{d}\right)$. Then $L(\mathfrak{V})$ is regularly separable from $L(\mathfrak{W})$ iff $T^{-1}(L(\mathfrak{V}))$ is regularly separable from C_{d}.

Proof (1): Reduce to Counter Instructions

- $\Gamma_{d}=\left\{\mathbf{a}_{\mathbf{i}}, \overline{\mathbf{a}_{\mathbf{i}}} \mid 1 \leq i \leq d\right\}$
- $\mathbf{a}_{\mathbf{i}}$ increase counter i by $\mathbf{1}$
- $\overline{\mathbf{a}_{\mathbf{i}}}$ decrease counter i by 1
- $C_{d}=\left\{w \in \Gamma_{d}^{*} \mid \forall\right.$ prefixes v of $\left.w, 1 \leq i \leq d:|v|_{\mathbf{a}_{\mathbf{i}}} \geq|v|_{\bar{a}_{\mathbf{i}}}\right\}$

Lemma (Jantach-10_o)

$L \subseteq \Sigma^{*}$ is a VASS

Corollary

Let \mathfrak{V} and \mathfrak{W} be $L(\mathfrak{V})$ is regularly

vith $L=T\left(C_{d}\right)$.
${ }^{`}\left(C_{d}\right)$. Then from C_{d}.

Proof (1): Reduce to Counter Instructions

- $\Gamma_{d}=\left\{\mathbf{a}_{\mathbf{i}}, \overline{\mathbf{a}_{\mathbf{i}}} \mid 1 \leq i \leq d\right\}$
- $\mathbf{a}_{\mathbf{i}}$ increase counter i by $\mathbf{1}$
- $\overline{\mathbf{a}_{\mathrm{i}}}$ decrease counter i by 1
- $C_{d}=\left\{w \in \Gamma_{d}^{*} \mid \forall\right.$ prefixes v of $\left.w, 1 \leq i \leq d:|v|_{\mathbf{a}_{\mathbf{i}}} \geq|v|_{\bar{a}_{\mathbf{i}}}\right\}$

Lemma (Jantzen 1979)

$L \subseteq \Sigma^{*}$ is a VASS coverability language iff there is a rational transduction T with $L=T\left(C_{d}\right)$.

Proof (1): Reduce to Counter Instructions

Corollary
Let \mathfrak{V} and \mathfrak{W} be two VASS and T be a rational trunsduction with $L(\mathfrak{W})=T\left(C_{d}\right)$. Then $L(\mathfrak{V})$ is regularly separable from $L(\mathfrak{W})$ iff $T^{-1}(L(\mathfrak{V}))$ is regularly separable from C_{d}.

Proof (2): Basic Separators

- For $k \in \mathbb{N}$ let $B_{k} \subseteq \Gamma_{d}^{*}$ be the following language: $w \in B_{k}$ iff there is $1 \leq i \leq d$ with
- there is a prefix v of w with $|v|_{a_{\mathrm{i}}}<|v|_{\overline{\mathrm{a}}_{\mathrm{i}}}$ and
- each proper prefix u of v satisfies $0 \leq|u|_{\mathbf{a}_{\mathrm{i}}}-|u|_{\bar{a}_{\mathrm{i}}} \leq k$
- B_{k} is accepted by a DFA of size $O\left(k^{d}\right)$.

Theorem (Czerwiński \& Zetzsche @ LICS 2020)

Let \mathfrak{V} and \mathfrak{W} be two VASS with $L(\mathfrak{V}) \cap L(\mathfrak{W})=\varnothing$ and let T be a rational transduction with $L(\mathfrak{W})=T\left(C_{d}\right)$. Then B_{k} is a regular separator of $T^{-1}(L(\mathfrak{V}))$ and C_{d} for a $k \in \mathbb{N}$.

Proof (2): Basic Separators

■ For $k \in \mathbb{N}$ let $B_{k} \subseteq \Gamma_{d}^{*}$ be the following language: $w \in B_{k}$ iff there is $1 \leq i \leq d$ with

- there is a prefix v of w with $|v|_{\mathrm{a}_{\mathrm{i}}}<|v|_{\overline{\mathrm{a}}_{\mathrm{i}}}$ and
- each proper pre: $\times u$ of v satisfies $0 \leq|u|_{\mathrm{a}_{\mathrm{i}}}-|u|_{\overline{\mathrm{a}}_{\mathrm{i}}} \leq k$
- B_{k} is accepted by a DFA f size $O\left(k^{d}\right)$.

Theorem (Czer
 Let \mathfrak{V} and \mathfrak{W} be t $L(\mathfrak{W})=T\left(C_{d}\right)$.

transduction with $k \in \mathbb{N}$.

Proof (2): Basic Separators

- For $k \in \mathbb{N}$ let $B_{k} \subseteq \Gamma_{d}^{*}$ be the following language: $w \in B_{k}$ iff there is $1 \leq i \leq d$ with
- there is a prefix v of w with $|v|_{\mathrm{a}_{\mathrm{i}}}<|v|_{\overline{\mathrm{a}}_{\mathrm{i}}}$ and
- each proper prefix u of v satisfies $0 \leq|u|_{\mathbf{a}_{\mathrm{i}}}-|u|_{\bar{a}_{\mathrm{i}}} \leq k$
- B_{k} is accepted by a DFA of size $O\left(k^{d}\right)$.

Proof (3): Covering

Theorem (Rackoff 1978)

Let \mathfrak{J} be a VASS, c be a configuration of \mathfrak{V}, and a vector $\vec{v} \in \mathbb{N}^{d}$ with $c \rightarrow \rightarrow_{\mathfrak{V}}^{*}(t, \vec{v}) \geq(t, \overrightarrow{0})$. Then there is $0 \leq \ell \leq \underbrace{(n+m)^{2{ }^{\text {paly }}(d)}}_{=: \text {Rackoff(}(\mathfrak{Z})}$ and $\vec{w} \in \mathbb{N}^{d}$ with $c \rightarrow \rightarrow_{\mathfrak{W}}^{\ell}(t, \vec{w}) \geq(t, \overrightarrow{0})$.
Here, n is the number of states in \mathfrak{V} and m is the norm of the counter updates in \mathfrak{V}.

Theorem

Let \mathfrak{V} and \mathfrak{W} be two VASS with $L(\mathfrak{V}) \cap L(\mathfrak{W})=\varnothing$ and let T be a rational transduction with $L(\mathfrak{W})=T\left(C_{d}\right)$. Then $B_{\text {Rackoff }(\mathfrak{V} \times \mathfrak{2 J})}$ is a regular separator of $T^{-1}(L(\mathfrak{V}))$ and C_{d}.

- Finally, $T\left(B_{\text {Rackoff }(\mathfrak{V} \times \mathfrak{W})}\right)$ is a regular separator of $L(\mathfrak{V})$ and $L(\mathfrak{W J})$.

Conclusion

	NFAs		DFAs	
	unary	binary	unary	binary
d as input	2-exp.		3-exp.	
$\begin{array}{ll} d \text { fixed } & d \geq 2 \\ d=1 \end{array}$	poly. poly.	exp. exp.	exp. exp.	$\begin{aligned} & \text { 2-exp. } \\ & \text { exp. } \end{aligned}$

Thank you!

