

Reachability Questions on (Partially Lossy) Queue Automata 28. Theorietag "Automaten und Formale Sprachen", Wittenberg

Chris Köcher

Automata and Logics Group Technische Universität Ilmenau

September 26, 2018

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\bullet \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

- Let A be an alphabet ($|A| \ge 2$).
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\blacksquare \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

- Let A be an alphabet ($|A| \ge 2$).
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\blacksquare \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\blacksquare \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

- Let A be an alphabet ($|A| \ge 2$).
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\bullet \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

 $\blacksquare \Sigma := \mathbf{A} \uplus \overline{\mathbf{A}}$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\bullet \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

- Let A be an alphabet ($|A| \ge 2$).
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\bullet \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

- Let A be an alphabet ($|A| \ge 2$).
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\bullet \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$$

 $\blacksquare \Sigma := \mathbf{A} \uplus \overline{\mathbf{A}}$

Reachability Problems

Inputs:

- T ⊆ Σ* regular language of transformations
- *L* ⊆ *A*^{*} regular language of queue contents

Compute:

- $\operatorname{post}_{\mathbf{T}}(L) :=$ { $q \in A^* \mid \exists p \in L, \mathbf{t} \in \mathbf{T} \colon p \xrightarrow{\mathbf{t}} q$ }
- $\operatorname{pre}_{\mathbf{T}}(L) :=$

 $\{q \in A^* \,|\, \exists p \in L, \mathbf{t} \in \mathbf{T} \colon q \xrightarrow{\mathbf{t}} p\}$

Reachability Problems

Inputs:

- T ⊆ Σ* regular language of transformations
- L ⊆ A* regular language of queue contents

Compute:

- $\operatorname{post}_{\mathbf{T}}(L) :=$ { $q \in A^* \mid \exists p \in L, \mathbf{t} \in \mathbf{T} \colon p \xrightarrow{\mathbf{t}} q$ }
- $\operatorname{pre}_{\mathbf{T}}(L) :=$

 $\{q \in A^* \mid \exists p \in L, \mathbf{t} \in \mathbf{T} \colon q \xrightarrow{\mathbf{t}} p\}$

Theorem (Brand, Zafiropulo 1983)

Queue Automata are Turing-complete.

- $post_{T}(\varepsilon) / pre_{T}(\varepsilon)$ can be any recursively enumerable language
- \blacksquare holds already for $T = \{w_1, \ldots, w_n\}^*$ with $w_1, \ldots, w_n \in \Sigma^*$

Theorem (Boigelot, Godefroid, Willems, Wolper 1997)

For $\mathbf{w} \in \Sigma^*$ and $L \subseteq A^*$ regular, the sets $\text{post}_{\mathbf{w}^*}(L)$ and $\text{pre}_{\mathbf{w}^*}(L)$ are effectively regular.

Definition

 $\mathbf{s}, \mathbf{t} \in \mathbf{\Sigma}^*$ behave equally (in symbols $\mathbf{s} \equiv \mathbf{t}$) if, and only if, $\forall p, q \in A^* \colon p \xrightarrow{\mathbf{s}} q \iff p \xrightarrow{\mathbf{t}} q$

$$\Rightarrow \text{ post}_{s}(L) = \text{post}_{t}(L) \text{ and } \text{pre}_{s}(L) = \text{pre}_{t}(L)$$

Theorem (Huschenbett, Kuske, Zetzsche 2014)

 \equiv is the least congruence on Σ^* satisfying the following equations:

$$\mathbf{1} \ \mathbf{a}\overline{\mathbf{b}} \equiv \overline{\mathbf{b}}\mathbf{a} \text{ if } a \neq b$$

$$\mathbf{2} \ \mathbf{a} \overline{\mathbf{a} \mathbf{c}} \equiv \overline{\mathbf{a}} \mathbf{a} \overline{\mathbf{c}}$$

 $\mathbf{3} \ \mathbf{c}\mathbf{a}\overline{\mathbf{a}} \equiv \mathbf{c}\overline{\mathbf{a}}\mathbf{a}$

for any $a, b, c \in A$.

Corollary

Let
$$T \subseteq \Sigma^*$$
 be closed under \equiv and $L \subseteq A^*$. Then
 $\text{post}_T(L) = \text{post}_{T \cap \overline{A}^* A^* \overline{A}^*}(L)$ and $\text{pre}_T(L) = \text{pre}_{T \cap \overline{A}^* A^* \overline{A}^*}(L)$.

Theorem

Let $T \subseteq \Sigma^*$ be regular and closed under \equiv and $L \subseteq A^*$ be regular. Then $\text{post}_T(L)$ and $\text{pre}_T(L)$ are effectively regular (in polynomial time).

Proof. We have $T \cap \overline{A}^* A^* \overline{A}^* = \bigcup_i \overline{K_{i,1}} K_{i,2} \overline{K_{i,3}}$ for finitely many regular languages $K_{i,1}, K_{i,2}, K_{i,3} \subseteq A^*$. Then

$$\mathsf{post}_{\mathbf{T}}(L) = \mathsf{post}_{\bigcup_{i} \overline{\mathbf{K}_{i,1}} \mathbf{K}_{i,2} \overline{\mathbf{K}_{i,3}}}(L) = \bigcup_{i} \kappa_{i,3} \setminus ((\kappa_{i,1} \setminus L) \cdot \kappa_{i,2})$$

which is regular since class of regular languages is closed under quotients and products.

Corollary

Let
$$T \subseteq \Sigma^*$$
 be closed under \equiv and $L \subseteq A^*$. Then
 $post_T(L) = post_{T \cap \overline{A}^* A^* \overline{A}^*}(L)$ and $pre_T(L) = pre_{T \cap \overline{A}^* A^* \overline{A}^*}(L)$

Theorem

Let $T \subseteq \Sigma^*$ be regular and closed under \equiv and $L \subseteq A^*$ be regular. Then $\text{post}_T(L)$ and $\text{pre}_T(L)$ are effectively regular (in polynomial time).

Example

Let $R_1, R_2 \subseteq A^*$ be regular. $R_1 \sqcup \overline{R_2}$ is regular and closed under \equiv .

Definition

Let $T\subseteq \Sigma^*.$ T is read-write independent if for all $s,t\in T$ there is $u_{s,t}\in T$ with

• write $(\mathbf{u}_{s,t}) = write(s)$ and

read
$$(\mathbf{u}_{s,t}) = \mathsf{read}(t)$$
.

Example

- $\{\mathbf{w}\}$ for $\mathbf{w} \in \mathbf{\Sigma}^*$
- $\blacksquare \ \overline{K} L \, \overline{M} \text{ for } K, L, M \subseteq A^*$
- Perm (\mathbf{w}) ... the set of all permutations of $\mathbf{w} \in \mathbf{\Sigma}^*$

Theorem

Let $T \subseteq \Sigma^*$ be finite and read-write independent and $L \subseteq A^*$ be regular. Then $\text{post}_{T^*}(L)$ and $\text{pre}_{T^*}(L)$ are effectively regular (in polynomial space).

Conjecture

 $post_{T^*}(L)$ and $pre_{T^*}(L)$ are effectively regular even if

- T is regular, closed under \equiv , and read-write independent.
- $T = \overline{K} L \overline{M}$ for $K, L, M \subseteq A^*$ regular.

Read-Write Independence: Proof - Overview

Read-Write Independence: Proof - Overview

1 Read only letters from the queue's initial contents

- Let $\mathcal{A} = (Z, A, I, \delta, F)$ be NFA accepting *L*.
- for each $z \in Z$:
 - Compute $R_z := L(\mathcal{A}_{F:=\{z\}}) \cap \operatorname{read}(\mathbf{T})^*$
 - Replace each occurrence of a word from read(T) in R_z by write(T) $\rightsquigarrow W_z \subseteq write(T)^*$

Result:
$$L(\mathcal{A}_{l:=\{z\}}) \cdot W_z$$

$$X_1 := \bigcup_{z \in Z} L(\mathcal{A}_{I:=\{z\}}) \cdot W_z$$

Read-Write Independence: Proof - Overview

1 Read only letters from the queue's initial contents

- Let $\mathcal{A} = (Z, A, I, \delta, F)$ be NFA accepting *L*.
- for each $z \in Z$:
 - Compute $R_z := L(\mathcal{A}_{F:=\{z\}}) \cap \operatorname{read}(\mathbf{T})^*$
 - Replace each occurrence of a word from read(T) in R_z by write(T) $\rightsquigarrow W_z \subseteq write(T)^*$

Result:
$$L(\mathcal{A}_{l:=\{z\}}) \cdot W_z$$

$$X_1 := \bigcup_{z \in Z} L(\mathcal{A}_{I:=\{z\}}) \cdot W_z$$

2 Read some letters from the queue's initial contents and some letters written in Phase 1

•
$$X_2 := \text{post}_{\mathbf{T}}(X_1) \cap \text{suffixes}(\text{write}(\mathbf{T})) \text{ write}(\mathbf{T})^*$$

Read-Write Independence: Proof - Overview

$$\Rightarrow \operatorname{post}_{\mathbf{T}^*}(L) = X_1 \cup X_2 \cup X_3$$

- can forget some contents of their queue content at any time
- Known Results (for fully lossy queues):
 - post_T(L) is regular
 - NFA accepting $post_T(L)$ cannot be computed [Mayr 2003]
 - Membership of post_T(L) is decidable [Abdulla, Jonsson 1996], but not primitive recursive [Schnoebelen 2002]
 - $pre_T(L)$ is effectively regular [Abdulla, Jonsson 1996]
- Results from this talk hold for arbitrary Partially Lossy Queue Automata

Thank you!