# Reachability Questions on (Partially Lossy) Queue Automata 

28. Theorietag "Automaten und Formale Sprachen", Wittenberg

Chris Köcher

Automata and Logics Group
Technische Universität IImenau
September 26, 2018

## Queue Automata

## Example

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
- $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$



## Queue Automata

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
- $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$


## Example



## Queue Automata

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
- $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$


## Example



## Queue Automata

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$

■ $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$

## Example



## Queue Automata

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$

■ $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$

## Example



## Queue Automata

## Example

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$

■ $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$


## Queue Automata

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$

■ $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$

## Example



## Queue Automata

- Let $A$ be an alphabet $(|A| \geq 2)$.
- Two actions for each $a \in A$ :
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
- $\boldsymbol{\Sigma}:=\mathbf{A} \uplus \overline{\mathbf{A}}$


## Example



| $b$ | $b$ | $b$ |
| :--- | :--- | :--- |

## Reachability Problems

## Inputs:

- $T \subseteq \Sigma^{*}$ regular language of transformations
- $L \subseteq A^{*}$ regular language of queue contents
Compute:
- $\operatorname{post}_{\mathrm{T}}(L):=$

$$
\left\{q \in A^{*} \mid \exists p \in L, \mathbf{t} \in \mathbf{T}: p \xrightarrow{\mathbf{t}} q\right\}
$$

- $\operatorname{pre}_{\mathrm{T}}(L):=$
$\left\{q \in A^{*} \mid \exists p \in L, \mathbf{t} \in \mathbf{T}: q \xrightarrow{\mathbf{t}} p\right\}$


## Example



## Reachability Problems

## Inputs:

- $\mathbf{T} \subseteq \boldsymbol{\Sigma}^{*}$ regular language of transformations
- $L \subseteq A^{*}$ regular language of queue contents
Compute:
- $\operatorname{post}_{\mathrm{T}}(L):=$

$$
\left\{q \in A^{*} \mid \exists p \in L, \mathbf{t} \in \mathbf{T}: p \xrightarrow{\mathbf{t}} q\right\}
$$

- $\operatorname{pre}_{\mathrm{T}}(L):=$
$\left\{q \in A^{*} \mid \exists p \in L, \mathbf{t} \in \mathbf{T}: q \xrightarrow{\mathbf{t}} p\right\}$


## Example



| $a$ | $a$ | $b$ | $b$ |
| :--- | :--- | :--- | :--- |

## Known Results

## Theorem (Brand, Zafiropulo 1983)

Queue Automata are Turing-complete.

- $\operatorname{post}_{\mathbf{T}}(\varepsilon) / \operatorname{pre}_{\mathbf{T}}(\varepsilon)$ can be any recursively enumerable language
$■$ holds already for $\mathbf{T}=\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}^{*}$ with $\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}} \in \mathbf{\Sigma}^{*}$


## Theorem (Boigelot, Godefroid, Willems, Wolper 1997)

For $\mathbf{w} \in \mathbf{\Sigma}^{*}$ and $L \subseteq A^{*}$ regular, the sets post $\mathbf{w}^{*}(L)$ and $\mathrm{pre}_{\mathbf{w}^{*}}(L)$ are effectively regular.

## Behavioral Equivalence: Definition

## Definition

$\mathbf{s}, \mathbf{t} \in \boldsymbol{\Sigma}^{*}$ behave equally (in symbols $\mathrm{s} \equiv \mathrm{t}$ ) if, and only if,

$$
\forall p, q \in A^{*}: p \xrightarrow{\mathbf{s}} q \Longleftrightarrow p \xrightarrow{\mathbf{t}} q
$$

$$
\Rightarrow \operatorname{post}_{\mathbf{s}}(L)=\operatorname{post}_{\mathbf{t}}(L) \text { and } \operatorname{pre}_{\mathbf{s}}(L)=\operatorname{pre}_{\mathbf{t}}(L)
$$

Theorem (Huschenbett, Kuske, Zetzsche 2014)
$\equiv$ is the least congruence on $\mathbf{\Sigma}^{*}$ satisfying the following equations:
$\mathbf{1} \mathbf{a} \overline{\mathbf{b}} \equiv \overline{\mathbf{b}} \mathbf{a}$ if $a \neq b$
$2 \mathbf{a} \overline{\mathbf{a c}} \equiv \overline{\mathbf{a}} \overline{\mathbf{c}}$
3 $\mathbf{c a} \overline{\mathbf{a}} \equiv \mathbf{c a ̄ a}$
for any $a, b, c \in A$.

## Behavioral Equivalence: Result

## Corollary

Let $\mathbf{T} \subseteq \mathbf{\Sigma}^{*}$ be closed under $\equiv$ and $L \subseteq A^{*}$. Then

$$
\operatorname{post}_{\mathbf{T}}(L)=\operatorname{post}_{\mathbf{T} \cap \overline{\mathbf{A}}^{*} \mathbf{A}^{*} \overline{\mathbf{A}}^{*}(L) \quad \text { and } \quad \operatorname{pre}_{\mathbf{T}}(L)=\operatorname{pre}_{\mathbf{T} \cap \overline{\mathbf{A}}^{*} \mathbf{A}^{*} \overline{\mathbf{A}}^{*}(L) .} . . . . .}
$$

## Theorem

Let $\mathbf{T} \subseteq \mathbf{\Sigma}^{*}$ be regular and closed under $\equiv$ and $L \subseteq A^{*}$ be regular. Then $\operatorname{post}_{\mathbf{T}}(L)$ and $\operatorname{pre}_{\mathbf{T}}(L)$ are effectively regular (in polynomial time).

Proof. We have $\mathbf{T} \cap \overline{\mathbf{A}}^{*} \mathbf{A}^{*} \overline{\mathbf{A}}^{*}=\bigcup_{i} \overline{\mathbf{K}_{\mathbf{i}, 1}} \mathbf{K}_{\mathbf{i}, 2} \overline{\mathbf{K}_{\mathbf{i}, 3}}$ for finitely many regular languages $\mathbf{K}_{\mathbf{i}, \mathbf{1}}, \mathbf{K}_{\mathbf{i}, \mathbf{2}}, \mathbf{K}_{\mathbf{i}, \mathbf{3}} \subseteq \mathbf{A}^{*}$. Then

$$
\operatorname{post}_{\mathbf{T}}(L)=\operatorname{post}_{U_{\mathbf{i}} \overline{\mathbf{K}_{\mathbf{i}, \mathbf{1}}} \mathrm{K}_{\mathbf{i}, 2} \overline{\mathrm{~K}_{\mathbf{i}, 3}}}(L)=\bigcup_{i} K_{i, 3} \backslash\left(\left(K_{i, 1} \backslash L\right) \cdot K_{i, 2}\right)
$$

which is regular since class of regular languages is closed under quotients and products.

## Behavioral Equivalence: Result

## Corollary

Let $\mathbf{T} \subseteq \mathbf{\Sigma}^{*}$ be closed under $\equiv$ and $L \subseteq A^{*}$. Then

$$
\operatorname{post}_{\mathbf{T}}(L)=\operatorname{post}_{\mathbf{T} \cap \overline{\mathbf{A}}^{*} \mathbf{A}^{*} \overline{\mathbf{A}}^{*}(L) \quad \text { and } \quad \operatorname{pre}_{\mathbf{T}}(L)=\operatorname{pre}_{\mathbf{T} \cap \overline{\mathbf{A}}^{*} \mathbf{A}^{*} \overline{\mathbf{A}}^{*}(L) .} . . . . .}
$$

## Theorem

Let $\mathbf{T} \subseteq \mathbf{\Sigma}^{*}$ be regular and closed under $\equiv$ and $L \subseteq A^{*}$ be regular. Then $\operatorname{post}_{\mathbf{T}}(L)$ and $\operatorname{pre}_{\mathbf{T}}(L)$ are effectively regular (in polynomial time).

## Example

Let $R_{1}, R_{2} \subseteq A^{*}$ be regular. $R_{1} ш \overline{R_{2}}$ is regular and closed under $\equiv$.

## Read-Write Independence: Definition

## Definition

Let $\mathbf{T} \subseteq \mathbf{\Sigma}^{*}$. $\mathbf{T}$ is read-write independent if for all $\mathbf{s}, \mathbf{t} \in \mathbf{T}$ there is $\mathbf{u}_{\mathbf{s}, \mathbf{t}} \in \mathbf{T}$ with

- $\operatorname{write}\left(\mathbf{u}_{\mathbf{s}, \mathbf{t}}\right)=\operatorname{write}(\mathbf{s})$ and
- $\operatorname{read}\left(\mathbf{u}_{\mathbf{s}, \mathbf{t}}\right)=\operatorname{read}(\mathbf{t})$.


## Example

- $\{\mathbf{w}\}$ for $\mathbf{w} \in \mathbf{\Sigma}^{*}$
- $\overline{\mathbf{K}} \mathbf{L} \overline{\mathbf{M}}$ for $\mathbf{K}, \mathbf{L}, \mathbf{M} \subseteq \mathbf{A}^{*}$
- Perm( $\mathbf{w}$ ) ... the set of all permutations of $\mathbf{w} \in \mathbf{\Sigma}^{*}$


## Read-Write Independence: Result

## Theorem

Let $\mathbf{T} \subseteq \mathbf{\Sigma}^{*}$ be finite and read-write independent and $L \subseteq A^{*}$ be regular. Then post $\mathrm{T}^{*}(L)$ and $\mathrm{pre}_{\mathrm{T}^{*}}(L)$ are effectively regular (in polynomial space).

## Conjecture

$\operatorname{post}_{\mathbf{T}^{*}}(L)$ and $\operatorname{pre}_{\mathbf{T}^{*}}(L)$ are effectively regular even if
■ T is regular, closed under $\equiv$, and read-write independent.

- $\mathbf{T}=\overline{\mathbf{K}} \mathbf{L} \overline{\mathbf{M}}$ for $\mathbf{K}, \mathbf{L}, \mathbf{M} \subseteq \mathbf{A}^{*}$ regular.


## Read-Write Independence: Proof - Overview



## Read-Write Independence: Proof - Overview



## Read-Write Independence: Proof - Phases $1+2$

## 1 Read only letters from the queue's initial contents

- Let $\mathcal{A}=(Z, A, I, \delta, F)$ be NFA accepting $L$.

■ for each $z \in Z$ :
■ Compute $R_{z}:=L\left(\mathcal{A}_{F:=\{z\}}\right) \cap \operatorname{read}(\mathbf{T})^{*}$

- Replace each occurrence of a word from $\operatorname{read}(\mathbf{T})$ in $R_{z}$ by write(T) $\rightsquigarrow W_{z} \subseteq$ write( $\left.\mathbf{T}\right)^{*}$
■ Result: $L\left(\mathcal{A}_{l:=\{z\}}\right) \cdot W_{z}$
■ $X_{1}:=\bigcup_{z \in Z} L\left(\mathcal{A}_{l:=\{z\}}\right) \cdot W_{z}$


## Read-Write Independence: Proof - Overview



## Read-Write Independence: Proof - Phases $1+2$

1 Read only letters from the queue's initial contents
■ Let $\mathcal{A}=(Z, A, I, \delta, F)$ be NFA accepting $L$.
■ for each $z \in Z$ :
■ Compute $R_{z}:=L\left(\mathcal{A}_{F:=\{z\}}\right) \cap \operatorname{read}(\mathbf{T})^{*}$
■ Replace each occurrence of a word from $\operatorname{read}(\mathrm{T})$ in $R_{z}$ by write(T) $\rightsquigarrow \quad W_{z} \subseteq$ write( $\left.\mathbf{T}\right)^{*}$
■ Result: $L\left(\mathcal{A}_{l:=\{\mathrm{z}\}}\right) \cdot W_{z}$

- $X_{1}:=\bigcup_{z \in Z} L\left(\mathcal{A}_{I:=\{z\}}\right) \cdot W_{z}$

2 Read some letters from the queue's initial contents and some letters written in Phase 1

- $\left.X_{2}:=\operatorname{post}_{\mathbf{T}}\left(X_{1}\right) \cap \operatorname{suffixes(write}(\mathbf{T})\right)$ write( $\left.\mathbf{T}\right)^{*}$


## Read-Write Independence: Proof - Overview



## Read-Write Independence: Proof - Phase 3

3 Read only letters written in Phases 1-3


- $S_{m}=S_{n}$ and arithmetical difference of the $E_{s, n}$ 's and $E_{s, m}$ 's is effectively semi-linear
- $X_{3}$ is effectively regular

$$
\Rightarrow \operatorname{post}_{\mathbf{T}^{*}}(L)=X_{1} \cup X_{2} \cup X_{3} .
$$

## (Partially) Lossy Queue Automata

- can forget some contents of their queue content at any time

■ Known Results (for fully lossy queues):

- $\operatorname{post}_{\mathbf{T}}(L)$ is regular
- NFA accepting $\operatorname{post}_{\mathbf{T}}(L)$ cannot be computed [Mayr 2003]
- Membership of $\operatorname{post}_{\mathbf{T}}(L)$ is decidable [Abdulla, Jonsson 1996], but not primitive recursive [Schnoebelen 2002]
- $\operatorname{pre}_{\mathrm{T}}(L)$ is effectively regular [Abdulla, Jonsson 1996]
- Results from this talk hold for arbitrary Partially Lossy Queue Automata


## Thank you!

