# Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue Monoid <br> 27. Theorietag "Automaten und Formale Sprachen", Bonn 

Chris Köcher

Automata and Logics Group
Technische Universität IImenau
September 19, 2017

## What is a Partially Lossy Queue?

- there are two types of fifo-queues:
- Reliable Queues
- nothing can be forgotten or injected
- applications: software and algorithms engineering

■ Lossy Queues

- everything can be forgotten, nothing can be injected
- applications: verification and telematics

■ natural combination of both: Partially Lossy Queues (PLQs)

- some parts can be forgotten
- nothing can be injected


## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

| $a$ | $a$ | $b$ | $a$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$



## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

| $a$ | $a$ | $b$ | $a$ | $b$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$



## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

| $a$ | $a$ | $b$ | $a$ | $b$ | $b$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

| $a$ | $a$ | $b$ |  | $b$ | $b$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

| $a$ | $a$ | $b$ | $b$ | $b$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$



## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

| $a$ | $b$ | $b$ | $b$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=\text { aaba } \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$



## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$



## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$



## PLQs: Basics

- Let $A$ be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$ :
- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\Sigma:=\{a, \bar{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$


## Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=\text { aaba } \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

| $b$ | $b$ |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## PLQ Monoids: Definition

- we model this behavior as a monoid


## Theorem (K., Kuske 2017, cf. CSR 2017)

Two sequences of actions $v, w \in \Sigma^{*}$ act equally (in symbols $v \equiv w$ ) if, and only if, they can be equated by application of the following commutations:

- $a \bar{b} \equiv \bar{b} a$ if $a \neq b$
- $a \bar{a} \bar{b} \equiv \bar{a} a \bar{b}$
- $x w a \bar{a} \equiv x w \bar{a} a$ if $x \in U \cup\{a\}$ and $w \in A^{*}$
for any $a, b \in A$.


## Definition

- $\mathcal{Q}(A, U):=\Sigma^{*} / \equiv \ldots$ the plq monoid


## Rationality and Recognizability

## Definition

Let $\mathcal{M}$ be a monoid and $S \subseteq \mathcal{M}$.

- $S$ is rational if it can be constructed from finite subsets of $\mathcal{M}$ using $\cup, \cdot$, and *
- i.e., generalizes regular expressions
- $S$ is recognizable if $\eta^{-1}(S) \subseteq \Gamma^{*}$ is regular where $\eta: \Gamma^{*} \rightarrow \mathcal{M}$ is a homomorphism and $\Gamma$ is an alphabet.
- closure properties: $\cup, \cap$, \}
- i.e., generalizes acceptance of finite automata

Theorem (Kleene 1951)
$S \subseteq \Sigma^{*}$ is rational if, and only if, it is recognizable.

## Question

Is $S \subseteq \mathcal{Q}(A, U)$ rational if, and only if, it is recognizable? NO!

- class of rational sets is not closed under intersection
- class of recognizable sets is not closed under • and *
- BUT: each recognizable set is rational due to [McKnight 1964]


## Question

When is a rational set recognizable?

- recognizability of rational sets is undecidable


## Q-Rational Subsets

## Definition

- $S \subseteq \mathcal{Q}(A, U)$ is $q^{+}$-rational if $S=$ write $^{-1}(R)$ where $R \subseteq A^{*}$ is regular, i.e., if it can be constructed from write ${ }^{-1}(a)$ for $a \in A$, write ${ }^{-1}(\varepsilon)$, and $\emptyset$ using $\cup, \cdot$, and *.
- Similar: $S \subseteq \mathcal{Q}(A, U)$ is $\mathrm{q}^{-}$-rational if $S=\operatorname{read}^{-1}(R)$ where $R \subseteq(\Sigma \backslash A)^{*}$ is regular.
- $S \subseteq \mathcal{Q}(A, U)$ is q-rational if
- $S$ is $\mathrm{q}^{+}$- or $\mathrm{q}^{-}$-rational
- $S=S_{1} \cup S_{2}$ if $S_{1}, S_{2}$ q-rational
- $S=S_{1} \cdot \mathcal{Q}(A, U) \cdot S_{2}$ if $S_{1} \mathrm{q}^{+}$-rational, $S_{2} \mathrm{q}^{-}$-rational, and $\operatorname{read}\left(S_{2}\right)$ finite
- $S=\mathcal{Q}(A, U) \backslash S_{1}$ if $S_{1}$ q-rational


## Theorem

Let $S \subseteq \mathcal{Q}(A, U)$. Then the following are equivalent:
$1 S$ is recognizable
2 S is q-rational

## MSO Logic

- Let $a, b \in A, b \notin U$. Consider $w=\bar{b} \bar{a} b a a \bar{a}$.
- We model $w$ as a graph $\widetilde{w}$ :


■ FO ... first-order logic on these graphs

- MSO ... FO + quantification of sets


## Theorem

Let $S \subseteq \mathcal{Q}(A, U)$. Then the following are equivalent:
$1 S$ is recognizable
$2 S$ is q-rational
3 there is a sentence $\phi \in \mathrm{MSO}$ with $S=\{[w]|\widetilde{w}|=\phi\}$

## Aperiodic and Star-free Sets

## Definition

Let $\mathcal{M}$ be a monoid and $S \subseteq \mathcal{M}$.

- $S$ is star-free if it can be constructed from finite subsets of $\mathcal{M}$ using $\cup, \cdot$, and $\backslash$

■ i.e., generalizes star-free expressions
■ $S$ is aperiodic if it is recognizable and there is $n \in \mathbb{N}$ s.t.

$$
\forall x, y, z \in \mathcal{M}: x y^{n} z \in S \Longleftrightarrow x y^{n+1} z \in S
$$

- closure properties: $\cup, \cap, \backslash$
- i.e., generalizes acceptance of finite, counter-free automata


## Theorem (Schützenberger 1965)

$S \subseteq \Sigma^{*}$ is aperiodic if, and only if, it is star-free.

## Question

Is $S \subseteq \mathcal{Q}(A, U)$ aperiodic if, and only if, it is star-free? $N O$ !

- class of aperiodic sets is not closed under .
- define q-star-free sets similar to q-rational ones by replacing * by $\backslash$


## Theorem

Let $S \subseteq \mathcal{Q}(A, U)$. Then the following are equivalent:
$1 S$ is aperiodic
2 S q-star-free
3 there is a sentence $\phi \in$ FO with $S=\{[w] \mid \widetilde{w} \models \phi\}$

