

Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue Monoid

35th International Symposium on Theoretical Aspects of Computer Science, Caen

Chris Köcher

Automata and Logics Group Technische Universität Ilmenau

March 2, 2018

there are two types of fifo-queues:

- Reliable Queues
 - nothing can be forgotten or injected
 - applications: software and algorithms engineering
- Lossy Queues
 - everything can be forgotten, nothing can be injected
 - applications: verification and telematics

natural combination of both: Partially Lossy Queues (PLQs)

- some parts can be forgotten
- nothing can be injected

- Let *A* be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \Sigma := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = \frac{b}{b}b\overline{a}\overline{b}$$

- Let *A* be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \Sigma := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \Sigma := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \Sigma := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \Sigma := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

- Let A be an alphabet ($|A| \ge 2$) and $U \subseteq A$.
 - *U* ... unforgettable letters
 - $A \setminus U$... forgettable letters
- two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$
- non-controllable operation: forgetting letters from A \ U

$$A = \{a, b\}, U = \{b\}$$
$$q = aaba \qquad v = bb\overline{a}\overline{b}$$

Definition

 $u, v \in \Sigma^*$ act equally (in symbols $u \equiv v$) if, and only if,

$$\forall p, q \in A^* \colon p \xrightarrow{u} q \iff p \xrightarrow{v} q$$

Theorem (K., Kuske 2017, cf. CSR 2017)

 \equiv is the least congruence satisfying the following equations:

$$\mathbf{1} \quad a\overline{b} \equiv \overline{b}a \text{ if } a \neq b$$

 $2 \quad a\overline{ac} \equiv \overline{a}a\overline{c}$

3
$$cwa\overline{a} \equiv cw\overline{a}a \text{ if } c \in U \cup \{a\}$$

for any $a, b, c \in A$ and $w \in A^*$.

Definition

 $\mathcal{Q}(A, U) := \Sigma^*/_{\equiv} \dots$ the plq monoid

Definition

Let \mathcal{M} be a monoid and $S \subseteq \mathcal{M}$.

- S is rational if it can be constructed from finite subsets of M using ∪, ·, and *
 - i.e., generalizes regular expressions
- *S* is recognizable if there is a homomorphism η into a finite monoid with $\eta^{-1}(\eta(S)) = S$.
 - i.e., generalizes acceptance of finite automata
 - **closure** properties: \cup , \cap , \setminus

Theorem (Kleene 1951)

 $S \subseteq \Gamma^*$ is rational if, and only if, it is recognizable.

Question

Is $S \subseteq Q(A, U)$ rational if, and only if, it is recognizable? NO!

Proposition

- The class of rational sets is not closed under intersection.
- The class of recognizable sets is not closed under · and *.
- BUT: each recognizable set is rational due to [McKnight 1964]

Question

When is a rational set recognizable?

Theorem

Recognizability of rational sets is undecidable.

Definition

- $S \subseteq Q(A, U)$ is q⁺-rational if there is a rational set $R \subseteq A^*$ s.t. $S = [R \sqcup \overline{A}^*]_{\equiv}$.
- Similar: $S \subseteq Q(A, U)$ is q⁻-rational if there is a rational set $\overline{R} \subseteq \overline{A}^*$ s.t. $S = [A^* \sqcup \overline{R}]_{\equiv}$.
- $S \subseteq Q(A, U)$ is q-rational if
 - *S* is q⁺- or q⁻-rational
 - $S = S_1 \cup S_2$ for some S_1, S_2 q-rational
 - $S = S_1 \cdot Q(A, U) \cdot S_2$ for some $S_1 q^+$ -rational, $S_2 q^-$ -rational s.t. $S = [A^* \sqcup \overline{F}]_=$ for a *finite* set $\overline{F} \subseteq \overline{A}^*$.
 - $S = Q(A, U) \setminus S_1$ for some S_1 q-rational

Theorem

- Let $S \subseteq Q(A, U)$. Then the following are equivalent:
 - **1** S is recognizable
 - **2** S is q-rational

Proof.

■ "(1)⇒(2)": With the help of several intermediate characterizations.

• Let w = abbacba.

• <u>w</u> is the following linear order:

 $a \longrightarrow b \longrightarrow b \longrightarrow a \longrightarrow c \longrightarrow b \longrightarrow a$

- FO ... first-order logic on these linear orders
- MSO ... FO + quantification of sets

Theorem (Büchi 1960)

 $S \subseteq \Gamma^*$ is recognizable if, and only if, there is $\phi \in MSO$ with $S = \{w \in \Gamma^* \mid \underline{w} \models \phi\}.$

Structures for PLQs

- Let $a, b \in A, b \notin U$. Consider $q = [\overline{b}\overline{a}baaa\overline{a}]_{\equiv}$.
- We model q as a structure \tilde{q} with infinitely many relations:
 - \leq_+, \leq_-, P_n for any $n \in \mathbb{N}$

■ babaaaa ≡ babaaaa

Structures for PLQs

- Let $a, b \in A, b \notin U$. Consider $q = [\overline{b}\overline{a}baaa\overline{a}]_{\equiv}$.
- We model q as a structure \tilde{q} with infinitely many relations:
 - \leq_+, \leq_-, P_n for any $n \in \mathbb{N}$

FO_q ... first-order logic on these structures
MSO_q ... FO_q + quantification of sets

Theorem

Let $S \subseteq Q(A, U)$. Then the following are equivalent:

- **1** S is recognizable
- **2** S is q-rational

3
$$S = \{q \in \mathcal{Q}(A, U) \,|\, \widetilde{q} \models \phi\}$$
 for some $\phi \in \mathsf{MSO}_{\mathsf{q}}$

Proof.

- "(1)⇒(2)": With the help of several intermediate characterizations.
- "(2) \Rightarrow (3)": Special product corresponds to some P_n .
- "(3) \Rightarrow (1)": Translation of MSO_q-formulas into Büchi's MSO.

Data Structure	Transformation Monoid	Recognizable Sets
finite memory	finite monoid ${\cal F}$	$S\subseteq \mathcal{F}$
blind counter	$(\mathbb{Z},+)$	$\bigcup_{\substack{(m,n)\in I,\\n\neq 0}} m+n\mathbb{Z}$
pushdown	polycyclic monoid ${\cal P}$	\emptyset, \mathcal{P}
plq	$\mathcal{Q}(A, U)$	
reliable queue	$\mathcal{Q}(A,A)$	q-rational sets / MSO_q
lossy queue	$\mathcal{Q}(A, \emptyset)$	

Data Structure	Transformation Monoid	Aperiodic Sets
finite memory	finite monoid ${\cal F}$	[]
blind counter	$(\mathbb{Z},+)$	\emptyset,\mathbb{Z}
pushdown	polycyclic monoid ${\cal P}$	\emptyset, \mathcal{P}
plq	$\mathcal{Q}(A,U)$	
reliable queue	$\mathcal{Q}(A,A)$	q-star-free sets / FO_q
lossy queue	$\mathcal{Q}(A, \emptyset)$	

Thank you!