Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue Monoid

$35^{\text {th }}$ International Symposium on Theoretical Aspects of Computer Science, Caen

Chris Köcher

Automata and Logics Group
Technische Universität IImenau
March 2, 2018

What is a Partially Lossy Queue?

- there are two types of fifo-queues:
- Reliable Queues

■ nothing can be forgotten or injected

- applications: software and algorithms engineering

■ Lossy Queues

- everything can be forgotten, nothing can be injected
- applications: verification and telematics
- natural combination of both: Partially Lossy Queues (PLQs)

■ some parts can be forgotten

- nothing can be injected

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U \ldots$ forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \\
\quad v=b b \bar{a} \bar{b} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \\
\quad v=b b \bar{a} \bar{b} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \\
\quad v=b b \bar{a} \bar{b} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U \ldots$ forgettable letters

■ two actions for each $a \in A$:

- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b a \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:

- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:

- write letter $a \rightsquigarrow a$
- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U \ldots$ forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$

■ non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.

■ U ... unforgettable letters

- $A \backslash U$... forgettable letters

■ two actions for each $a \in A$:
■ write letter $a \rightsquigarrow a$

- read letter $a \rightsquigarrow \bar{a}$
- $\bar{A}:=\{\bar{a} \mid a \in A\}$
- $\Sigma:=A \uplus \bar{A}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \bar{b}
\end{gathered}
$$

PLQ Monoids: Definition

Definition

$u, v \in \Sigma^{*}$ act equally (in symbols $u \equiv v$) if, and only if,

$$
\forall p, q \in A^{*}: p \xrightarrow{u} q \Longleftrightarrow p \xrightarrow{v} q
$$

Theorem (K., Kuske 2017, cf. CSR 2017)

\equiv is the least congruence satisfying the following equations:
$1 a \bar{b} \equiv \bar{b} a$ if $a \neq b$
2 $a \overline{a c} \equiv \bar{a} a \bar{c}$
$3 c w a \bar{a} \equiv c w \bar{a} a$ if $c \in U \cup\{a\}$
for any $a, b, c \in A$ and $w \in A^{*}$.

Definition

$\mathcal{Q}(A, U):=\Sigma^{*} / \equiv \ldots$ the plq monoid

Rational and Recognizable Sets (1)

Definition

Let \mathcal{M} be a monoid and $S \subseteq \mathcal{M}$.

- S is rational if it can be constructed from finite subsets of \mathcal{M} using \cup, \cdot, and *
- i.e., generalizes regular expressions
- S is recognizable if there is a homomorphism η into a finite monoid with $\eta^{-1}(\eta(S))=S$.
- i.e., generalizes acceptance of finite automata
- closure properties: \cup, \cap, \}

Theorem (Kleene 1951)

$S \subseteq \Gamma^{*}$ is rational if, and only if, it is recognizable.

Rational and Recognizable Sets (2)

Question

Is $S \subseteq \mathcal{Q}(A, U)$ rational if, and only if, it is recognizable? NO!

Proposition

- The class of rational sets is not closed under intersection.

■ The class of recognizable sets is not closed under • and *.

- BUT: each recognizable set is rational due to [McKnight 1964]

Question

When is a rational set recognizable?

Theorem

Recognizability of rational sets is undecidable.

Definition

- $S \subseteq \mathcal{Q}(A, U)$ is q^{+}-rational if there is a rational set $R \subseteq A^{*}$ s.t. $S=\left[R \amalg \bar{A}^{*}\right]_{\equiv}$.
- Similar: $S \subseteq \mathcal{Q}(A, U)$ is q^{-}-rational if there is a rational set $\bar{R} \subseteq \bar{A}^{*}$ s.t. $S=\left[A^{*} \amalg \bar{R}\right]_{\equiv}$.
- $S \subseteq \mathcal{Q}(A, U)$ is q-rational if
- S is q^{+}- or q^{-}-rational
- $S=S_{1} \cup S_{2}$ for some S_{1}, S_{2} q-rational
- $S=S_{1} \cdot \mathcal{Q}(A, U) \cdot S_{2}$ for some $S_{1} \mathrm{q}^{+}$-rational, $S_{2} \mathrm{q}^{-}$-rational s.t. $S=\left[A^{*} \amalg \bar{F}\right]_{\equiv}$ for a finite set $\bar{F} \subseteq \bar{A}^{*}$.
- $S=\mathcal{Q}(A, U) \backslash S_{1}$ for some S_{1} q-rational

Main Theorem

Theorem

Let $S \subseteq \mathcal{Q}(A, U)$. Then the following are equivalent:
$1 S$ is recognizable
$2 S$ is q-rational

Proof.

■ "(1) $\Rightarrow(2)$ ": With the help of several intermediate characterizations.

Büchi's Theorem

- Let $w=a b b a c b a$.
- \underline{w} is the following linear order:
$a \longrightarrow b \longrightarrow b \longrightarrow a \longrightarrow c \longrightarrow a$

■ FO ... first-order logic on these linear orders

- MSO ... FO + quantification of sets

Theorem (Büchi 1960)

$S \subseteq \Gamma^{*}$ is recognizable if, and only if, there is $\phi \in$ MSO with $S=\left\{w \in \Gamma^{*}|\underline{w}|=\phi\right\}$.

Structures for PLQs

- Let $a, b \in A, b \notin U$. Consider $q=[\bar{b} \bar{a} b a a a \bar{a}]_{\equiv}$.
- We model q as a structure \widetilde{q} with infinitely many relations:
- $\leq_{+}, \leq_{-}, P_{n}$ for any $n \in \mathbb{N}$

- $\bar{b} \bar{a} b a a a \bar{a} \equiv b a \bar{b} \bar{a} a \bar{a} a$

Structures for PLQs

- Let $a, b \in A, b \notin U$. Consider $q=[\bar{b} \bar{a} b a a a \bar{a}]_{\equiv}$.

■ We model q as a structure \widetilde{q} with infinitely many relations:

- $\leq_{+}, \leq_{-}, P_{n}$ for any $n \in \mathbb{N}$

- FO_{q}... first-order logic on these structures
- $\mathrm{MSO}_{\mathrm{q}} \ldots \mathrm{FO}_{\mathrm{q}}+$ quantification of sets

Main Theorem

Theorem

Let $S \subseteq \mathcal{Q}(A, U)$. Then the following are equivalent:
$1 S$ is recognizable
$2 S$ is q-rational
$3 S=\{q \in \mathcal{Q}(A, U) \mid \widetilde{q} \models \phi\}$ for some $\phi \in \mathrm{MSO}_{\mathrm{q}}$

Proof.

■ "(1) $\Rightarrow(2) "$: With the help of several intermediate characterizations.
■ "(2) $\Rightarrow(3)$ ": Special product corresponds to some P_{n}.

- " $(3) \Rightarrow(1)$ ": Translation of MSO $_{q}$-formulas into Büchi's MSO.

Comparison

Data Structure	Transformation Monoid	Recognizable Sets
finite memory	finite monoid \mathcal{F}	$S \subseteq \mathcal{F}$
blind counter	$(\mathbb{Z},+)$	$(m, n) \in I$, $n \neq 0$ pushdown
	polycyclic monoid \mathcal{P}	\emptyset, \mathcal{Z}
plq	$\mathcal{P}(A, U)$	
reliable queue	$\mathcal{Q}(A, A)$	q-rational sets $/ \mathrm{MSO}_{\mathrm{q}}$
lossy queue	$\mathcal{Q}(A, \emptyset)$	

Comparison

Data Structure	Transformation Monoid	Aperiodic Sets
finite memory	finite monoid \mathcal{F}	$[\ldots]$
blind counter	$(\mathbb{Z},+)$	\emptyset, \mathbb{Z}
pushdown	polycyclic monoid \mathcal{P}	\emptyset, \mathcal{P}
plq	$\mathcal{Q}(A, U)$	
reliable queue	$\mathcal{Q}(A, A)$	q-star-free sets / FO_{q}
lossy queue	$\mathcal{Q}(A, \emptyset)$	
	Thank you!	

