Reachability Problems on (Partially Lossy) Queue Automata $13^{\text {th }}$ International Conference on Reachability Problems, Brussels

Chris Köcher

Automata and Logics Group
Technische Universität Ilmenau

September 11, 2019

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$

■ $\mathrm{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$

■ $\mathrm{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$

■ $\mathrm{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$
- $\mathbf{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$

■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$

■ $\mathrm{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$
- $\mathbf{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$

■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$

■ $\mathrm{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$
■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Queue Automata

Example

- Let A be an alphabet.
- Two actions for each $a \in A$:
- write letter $a \leadsto \mathbf{a}$
- read letter $a \leadsto \overline{\mathbf{a}}$
- $\mathbf{A}:=\{\mathbf{a} \mid a \in A\}, \overline{\mathrm{A}}:=\{\overline{\mathbf{a}} \mid a \in A\}$

■ $\Sigma:=\mathbf{A} \uplus \overline{\mathbf{A}}$

Reachability Problem

Example

Inputs:

■ $\mathbf{T} \subseteq \Sigma^{*}$ regular language of transformation sequences

- $L \subseteq A^{*}$ regular language of queue contents

Compute:

- Reach $(L, T):=$ the set of all queue contents after application of \mathbf{T} on L

Reachability Problem

Example

Inputs:

■ $\mathbf{T} \subseteq \boldsymbol{\Sigma}^{*}$ regular language of transformation sequences

- $L \subseteq A^{*}$ regular language of queue contents

Compute:

- $\operatorname{Reach}(L, T):=$ the set of all queue contents after application of \mathbf{T} on L

Turing-Completeness

Theorem (Brand, Zafiropulo 1983)

Queue Automata can simulate Turing-machines.
■ $\operatorname{Reach}(L, \mathbf{T})$ can be any recursively enumerable language
■ holds already for some fixed $\mathbf{T}=\left\{\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}}\right\}^{*}$ with $\mathbf{t}_{\mathbf{1}}, \ldots, \mathbf{t}_{\mathbf{n}} \in \mathbf{\Sigma}^{*}$

Approximations of the Reachability Problem

■ Iterative approach: for $i=0,1,2, \ldots$ do

- compute the prefixes $\mathbf{T}_{\mathbf{i}}$ of length i from \mathbf{T}
- apply $\mathbf{T}_{\mathbf{i}}$ on L
- Faster approach:

Theorem (Boigelot, Godefroid, Willems, Wolper 1997)

Let $L \subseteq A^{*}$ be regular and $\mathbf{t} \in \mathbf{\Sigma}^{*}$. Then $\operatorname{Reach}\left(L, \mathrm{t}^{*}\right)$ is effectively regular.
\Rightarrow Combine multiple iterations of a loop to a meta-transformation

Aim

Generalize this result.

The Main Theorem

Theorem

Let $L, W, R \subseteq A^{*}$ be regular. Then $\operatorname{Reach}\left(L,(\mathrm{~W} \overline{\mathrm{R}})^{*}\right)$ is effectively regular (in polynomial time).

- We slightly modify W and R :
- Let $\$ \notin A$ be some new letter.
- Set $\mathbf{W}^{\prime}:=\$ \mathbf{W}$ and $\overline{\mathbf{R}^{\prime}}:=\operatorname{shuffle}\left(\overline{\mathbf{R}}, \overline{\$}^{*}\right)$.
- Easy: $\operatorname{Reach}\left(L,(\mathbf{W} \overline{\mathbf{R}})^{*}\right)=\operatorname{proj}_{A}\left(\operatorname{Reach}\left(L,\left(\mathbf{W}^{\prime} \overline{\mathbf{R}^{\prime}}\right)^{*}\right)\right)$.
- We prove that $\operatorname{Reach}\left(L,\left(\mathbf{W}^{\prime} \overline{\mathbf{R}^{\prime}}\right)^{*}\right)$ is regular.

■ From now on, we write W and \bar{R} instead of W^{\prime} and $\overline{R^{\prime}}$, resp.

Proof Idea (1)

- Consider the following example:

Proof Idea (1)

- Consider the following example:

NFA $\mathcal{L} W^{*}$ accepting $L W^{*}$:

Proof Idea (1)

- Consider the following example:

NFA $\mathcal{L} W^{*}$ accepting $L W^{*}$:

Proof Idea (1)

- Consider the following example:

NFA $\mathcal{L} W^{*}$ accepting $L W^{*}$:

Proof Idea (1)

- Consider the following example:

Proof Idea (1)

- Consider the following example:

Proof Idea (1)

- Consider the following example:

Proof Idea (2)

- A configuration of the queue automaton can be abstracted as follows:
1 the current state in $(\mathcal{W} \bar{R})^{*}$
2 the starting state of the path in $\mathcal{L} W^{*}$
3 the ending state of the path in $\mathcal{L W}{ }^{*}$
4 the number of $\$$ s on the path $\}$ counter of C
\Rightarrow The queue automaton can be simulated by a one-counter automaton C

Proof Idea (2)

- A configuration of the queue automaton can be abstracted as follows:
1 the current state in $(\mathcal{W} \overline{\mathcal{R}})^{*}$
2 the starting state of the path in $\mathcal{L} W^{*}$ control state of C
3 the ending state of the path in $\mathcal{L W}{ }^{*}$
4 the number of $\$$ s on the path $\}$ counter of C
\Rightarrow The queue automaton can be simulated by a one-counter automaton C

Proof Idea (2)

- A configuration of the queue automaton can be abstracted as follows:
1 the current state in $(\mathcal{W} \bar{R})^{*}$
2 the starting state of the path in $\mathcal{L W}^{*}$
3 the ending state of the path in $\mathcal{L W}{ }^{*}$
4 the number of $\$$ s on the path $\}$ counter of C
\Rightarrow The queue automaton can be simulated by a one-counter automaton C

Proof Idea (2)

- A configuration of the queue automaton can be abstracted as follows:

1 the current state in $(\mathcal{W} \bar{R})^{*}$
2 the starting state of the path in $\mathcal{Z W ^ { * }}$
3 the ending state of the path in $\mathcal{L W}{ }^{*}$
4 the number of $\$$ s on the path $\}$ counter of C
\Rightarrow The queue automaton can be simulated by a one-counter automaton C

Semantics of C

- C's configurations consist of:

1 the current state in $(\mathcal{W} \bar{R})^{*}$
2 the starting state of the path in $\mathcal{L} W^{*}$
3 the ending state of the path in $\mathcal{L} W^{*}$
4 the number of $\$$ s on the path $\}$ counter of C
■ Let $(p, q, r, n) \in \operatorname{Conf}_{C}$ be a configuration of C.

- $\llbracket p, q, r, n \rrbracket:=L\left(\mathcal{L} \mathcal{W}_{q \rightarrow r}^{*}\right) \cap \operatorname{shuffle}\left(\$^{n}, A^{*}\right)$

Proposition

$$
\operatorname{ReACH}\left(L,(\mathbf{W} \overline{\mathbf{R}})^{*}\right)=\bigcup_{\sigma \in \operatorname{Conf}_{c}, \text { reach. }+ \text { acc. }} \llbracket \sigma \rrbracket,
$$

i.e., $\operatorname{REACH}\left(L,(\mathbf{W} \overline{\mathbf{R}})^{*}\right)$ is a rational image of the set of reachable and accepting configurations of C.

Finishing the Proof

- Consider the set of reachable and accepting configurations of C.

■ By [Bouajjani, Esparza, Maler 1997] this set is semilinear.

- Using a rational transduction implies effective regularity of $\operatorname{Reach}\left(L,(\mathbf{W} \overline{\mathbf{R}})^{*}\right)$.
\Rightarrow We have seen:

Theorem (Main Theorem)

Let $L, W, R \subseteq A^{*}$ be regular. Then $\operatorname{Reach}\left(L,(W \bar{R})^{*}\right)$ is effectively regular (in polynomial time).

Consequences

Corollary

Let $L \subseteq A^{*}$ and $\mathbf{T} \subseteq \Sigma^{*}$ be regular. Then $\operatorname{Reach}\left(L, \mathbf{T}^{*}\right)$ is regular if
${ }_{1} \mathbf{T}=\overline{\mathbf{R}_{\mathbf{1}}} \mathbf{W} \overline{\mathbf{R}_{\mathbf{2}}}$ for regular $W, R_{1}, R_{\mathbf{2}} \subseteq A^{*}$,
2 $\mathbf{T}=\mathbf{W} \cup \overline{\mathbf{R}}$ for regular $W, R \subseteq A^{*}$,
[3 $\mathbf{T}=\{\mathbf{t}\}$ for $\mathbf{t} \in \mathbf{\Sigma}^{*}$ (cf. [Boigelot et al. 1997]), or
$4 \mathbf{T}=\operatorname{shuffle}(\mathbf{W}, \overline{\mathbf{R}})$ for regular $W, R \subseteq A^{*}$.

- Remark: Proofs of 3 and 4 use some result from [K. 2018, cf. STACS'18]

Thank you!

