

Reachability Problems on (Partially Lossy) Queue Automata 13th International Conference on Reachability Problems, Brussels

Chris Köcher

Automata and Logics Group Technische Universität Ilmenau

September 11, 2019

1

- Let *A* be an alphabet.
- Two actions for each $a \in A$:
 - write letter $a \sim \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$
$$\mathbf{\Sigma} := \mathbf{A} \uplus \overline{\mathbf{A}}$$

Example b b a q_0 q_1 ā b ā ā a ā q_2 *q*₃ a a h b b b а а

- Let *A* be an alphabet.
- Two actions for each $a \in A$:
 - write letter $a \sim \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$
$$\mathbf{\Sigma} := \mathbf{A} \uplus \overline{\mathbf{A}}$$

- Let A be an alphabet.
 Two actions for each a ∈ A:
 - write letter $a \sim \mathbf{a}$ • read letter $a \sim \overline{\mathbf{a}}$

•
$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$

• $\Sigma := \mathbf{A} \uplus \overline{\mathbf{A}}$

- Let *A* be an alphabet.
- Two actions for each $a \in A$:
 - write letter $a \sim \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$
$$\mathbf{\Sigma} := \mathbf{A} \uplus \overline{\mathbf{A}}$$

- Let *A* be an alphabet.
- Two actions for each $a \in A$:
 - write letter $a \sim \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$
$$\mathbf{\Sigma} := \mathbf{A} \uplus \overline{\mathbf{A}}$$

- Let *A* be an alphabet.
- Two actions for each $a \in A$:
 - write letter $a \sim \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$
$$\mathbf{\Sigma} := \mathbf{A} \uplus \overline{\mathbf{A}}$$

- Let *A* be an alphabet.
- Two actions for each $a \in A$:
 - write letter $a \sim \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$
$$\mathbf{\Sigma} := \mathbf{A} \uplus \overline{\mathbf{A}}$$

Example b b a qo q_1 ā b ā ā a ā q_2 q_3 a a n b b b

- Let *A* be an alphabet.
- Two actions for each $a \in A$:
 - write letter $a \sim \mathbf{a}$
 - read letter $a \rightsquigarrow \overline{\mathbf{a}}$

$$\mathbf{A} := \{\mathbf{a} \mid a \in A\}, \, \overline{\mathbf{A}} := \{\overline{\mathbf{a}} \mid a \in A\}$$
$$\mathbf{\Sigma} := \mathbf{A} \uplus \overline{\mathbf{A}}$$

Inputs:

- T ⊆ Σ* regular language of transformation sequences
- L ⊆ A* regular language of queue contents

Compute:

REACH(L, T) := the set of all queue contents after application of T on L

Inputs:

- T ⊆ Σ* regular language of transformation sequences
- L ⊆ A* regular language of queue contents

Compute:

■ REACH(*L*, **T**) := the set of all queue contents after application of **T** on *L*

Theorem (Brand, Zafiropulo 1983)

Queue Automata can simulate Turing-machines.

- **REACH** (L, \mathbf{T}) can be any recursively enumerable language
- holds already for some fixed $T = \{t_1, \ldots, t_n\}^*$ with $t_1, \ldots, t_n \in \Sigma^*$

- Iterative approach: for $i = 0, 1, 2, \dots$ do
 - compute the prefixes T_i of length *i* from T
 - apply T_i on L
- Faster approach:

Theorem (Boigelot, Godefroid, Willems, Wolper 1997)

Let $L \subseteq A^*$ be regular and $\mathbf{t} \in \Sigma^*$. Then $\text{REACH}(L, \mathbf{t}^*)$ is effectively regular.

⇒ Combine multiple iterations of a loop to a meta-transformation

Aim

Generalize this result.

Theorem

Let $L, W, R \subseteq A^*$ be regular. Then REACH $(L, (WR)^*)$ is effectively regular (in polynomial time).

- We slightly modify *W* and *R*:
 - Let $\notin A$ be some new letter.
 - Set W' := \$W and $\overline{R'} := \text{shuffle}(\overline{R}, \overline{\$}^*)$.
 - Easy: REACH $(L, (W\overline{R})^*) = \text{proj}_A(\text{REACH}(L, (W'\overline{R'})^*)).$
 - We prove that $REACH(L, (W'\overline{R'})^*)$ is regular.

From now on, we write W and \overline{R} instead of W' and $\overline{R'}$, resp.

- A configuration of the queue automaton can be abstracted as follows:
 - 1 the current state in $(W\overline{R})^*$
 - ² the starting state of the path in \mathcal{LW}^*

control state of C

3 the ending state of the path in \mathcal{LW}^*

the number of \$s on the path

 $\$ counter of C

⇒ The queue automaton can be simulated by a one-counter automaton C

- A configuration of the queue automaton can be abstracted as follows:
 - 1 the current state in $(\mathcal{W}\overline{\mathcal{R}})^*$
 - ² the starting state of the path in \mathcal{LW}^*

control state of ${\cal C}$

- 3 the ending state of the path in \mathcal{LW}^*
- 4 the number of \$s on the path

 $\$ counter of C

⇒ The queue automaton can be simulated by a one-counter automaton C

- A configuration of the queue automaton can be abstracted as follows:
 - 1 the current state in $(\mathcal{W}\overline{\mathcal{R}})^*$
 - ² the starting state of the path in \mathcal{UW}^*

control state of C

3 the ending state of the path in \mathcal{LW}^*

counter of *C*

- 4 the number of \$s on the path
- ⇒ The queue automaton can be simulated by a one-counter automaton C

- A configuration of the queue automaton can be abstracted as follows:
 - 1 the current state in $(W\overline{\mathcal{R}})^*$
 - ² the starting state of the path in \mathcal{LW}^*
 - 3 the ending state of the path in \mathcal{LW}^*
 - 4 the number of \$s on the path

control state of ${\cal C}$

 $\$ counter of C

⇒ The queue automaton can be simulated by a one-counter automaton C

C's configurations consist of:

- 1 the current state in $(W\overline{R})^*$
- ² the starting state of the path in \mathcal{LW}^*
- 3 the ending state of the path in \mathcal{IW}^*
- 4 the number of \$s on the path

control state of C

 $\$ counter of C

Let $(p, q, r, n) \in \text{Conf}_{\mathcal{C}}$ be a configuration of \mathcal{C} .

$$[[p,q,r,n]] \coloneqq L(\mathcal{IW}_{q \to r}^*) \cap \text{shuffle}(\$^n, A^*)$$

Proposition

$$\operatorname{REACH}(L, (\mathbf{W}\overline{\mathbf{R}})^*) = \bigcup_{\sigma \in \operatorname{Conf}_{\mathcal{C}}, \text{ reach. } + \operatorname{acc.}} \llbracket \sigma \rrbracket,$$

i.e., REACH $(L, (W\overline{R})^*)$ is a rational image of the set of reachable and accepting configurations of *C*.

- Consider the set of reachable and accepting configurations of *C*.
- By [Bouajjani, Esparza, Maler 1997] this set is semilinear.
- Using a rational transduction implies effective regularity of $REACH(L, (W\overline{R})^*)$.

 \Rightarrow We have seen:

Theorem (Main Theorem)

Let $L, W, R \subseteq A^*$ be regular. Then REACH $(L, (WR)^*)$ is effectively regular (in polynomial time).

Corollary

Let $L \subseteq A^*$ and $\mathbf{T} \subseteq \Sigma^*$ be regular. Then $\operatorname{REACH}(L, \mathbf{T}^*)$ is regular if

- **1** $\mathbf{T} = \overline{\mathbf{R_1}} \mathbf{W} \overline{\mathbf{R_2}}$ for regular $W, R_1, R_2 \subseteq A^*$,
- **2** $\mathbf{T} = \mathbf{W} \cup \overline{\mathbf{R}}$ for regular $W, R \subseteq A^*$,
- **3** $T = {t}$ for $t \in \Sigma^*$ (cf. [Boigelot et al. 1997]), or
- **4** \mathbf{T} = shuffle($\mathbf{W}, \overline{\mathbf{R}}$) for regular $W, R \subseteq A^*$.

Remark: Proofs of 3 and 4 use some result from [K. 2018, cf. STACS'18]

Thank you!