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What are Transformers?

Introduced in “Attention is all you need” [Vaswani et al. @ NeurIPS 2017]

Basic model used in recent Large Language Models (like ChatGPT, Gemini, . . . )

Applications in natural language processing, computer vision, language recognition,
time series analysis, . . .

Verifying Transformers?
Sometimes their output is just wrong:

(Spoiler: “arbitrary” contains three “R”s)
Questions:
1 What can be expressed via transformers?

e.g. Parity = {w ∈ {a, b}∗ : |w |a is even} is accepted by a transformer [Chiang & Cholak @ ACL 2022]
2 What can transformers learn?

e.g. Parity is not trainable via known algorithms [Bhattamishra et al. @ EMNLP 2020]

3 Can we verify the (in)correctness of a transformer? If yes, how?

Already a lot of work done for transformers on words.

Not (much) covered yet: transformers taking complex input data (like pictures,
videos, voice, . . . )

Unique Hard Attention Transformers (UHAT)
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of arbitrary length n
given: function PE: N× N → Re
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v⃗i =

(
u⃗i

PE(i , n)

)
∈ Rd+e

Attention layer:
v⃗1 v⃗2 v⃗3 v⃗4 v⃗5 v⃗6 v⃗7 v⃗8 v⃗9

0 −2 π 1 42 21 42 e
√
2

v⃗1
v⃗1

v⃗2

v⃗2

v⃗3

v⃗3

v⃗4

v⃗4

v⃗5

v⃗5

v⃗6

v⃗6

v⃗7

v⃗7

v⃗8

v⃗8

v⃗9

v⃗9

s4,7

attention score
si ,j = S(v⃗i , v⃗j)

with given S : R2r → Rs

for each row i :
pick left-most v⃗j
with maximal si ,j
⇝ attention vector a⃗i

v⃗ ′i = V (v⃗i , a⃗i)
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V : R2r → Rt is given

vector z⃗ ∈ Rt is given

UHATfin = all languages over finite Σ ⊆ Qd accepted by a UHAT

UHATinf = all languages over infinite Σ ⊆ Qd accepted by a UHAT

UHAT vs. Circuit Complexity

Circuit Complexity Classes AC0 and TC0

AC0 = all languages accepted by family of circuits of

constant depth,

polynomial size, and

Boolean gates with unbounded fan-in.

TC0 extends AC0 by majority gates.
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Figure: Circuit for a1a0 + b1b0 = r2r1r0. In general, addition is in AC0.

Well-known: AC0 ⊂ TC0

Known Result

UHATfin ⊂ AC0

[Hao et al. @ TACL 2022; Barceló et al. @ ICLR 2024]

Theorem

UHATinf ⊆ TC0

Theorem

Compare =
{
(ab) · w ∈ (Q2)∗

∣∣ a > b
}

is in UHATinf ∖ AC0.

Proof. The following UHAT (without positional encod-
ing) and 0 layers accepts Compare:
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UHAT vs. Regular Languages

Known Result

UHATfin (without positional encoding but with mask-
ing) = StarFree ⊂ Regular [Yang et al. @ NeurIPS 2024]

(StarFree = languages constructed from finite lan-
guages using Boolean operations and concatenation)

Symbolic Automata and Regular Data Languages

Symbolic automata = NFA with arithmetic
constraints as edge labels
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x⃗−→ q if there is a transition (p, ϕ, q) with
x⃗ ∈ vϕw

(x⃗1, x⃗2, . . . , x⃗n) ∈ L(A) ⇐⇒ I
x⃗1−→ x⃗2−→ · · · x⃗n−→ F

Theorem

Define Double ⊆ Q∗:

{(x1, x2, . . . , xn) ∈ Q∗ | ∀1 ≤ i < n : 2xi < xi+1} .

Double /∈ Regular, but Double ∈ UHATinf (with-
out positional encoding but with masking)

Proof. Non-regularity is shown by Pumping Lemma.
Double is accepted by a UHAT with two layers:

1 For each position i choose the j > i maximizing

2xi − xj

and let yi be this maximal value.

2 Check whether all yi ’s are non-positive.

UHAT vs. Logic

Linear Temporal Logic (LTL)

LTL describes words via following syntax and seman-
tics:

a b b a c a a b

Atoms a :
Boolean ops. a ∨ b :
NeXt op. X a :
Until op. a U b :
Finally op. F c :
Globally op. G(a ∨ b) :

t f f t f t t f
t t t t f t t t
f f t f t t f f
t t t f f t t t
t t t t t f f f
f f f f f t t t

L(ϕ) = {w ∈ Σ∗ | ϕ holds in first position of w}
Well-known: LTL = StarFree [Kamp 1968]

LTL(Mon) extends LTL by positional predicates.

Known Result

LTL(Mon) ⊆ UHATfin [Barceló et al. @ ICLR 2024]

Locally Testable LTL (LTLTL)

LTLTL extends LTL(Mon) to alphabet Σ = Qd by
adding arithmetic constraints of the form

⟨(x⃗i , x⃗i+1, . . . , x⃗i+k), a⃗⟩ > b .

Theorem

LTLTL ⊆ UHATinf

Example: 7-day Simple Moving Average

Check for an “uptrend” in a time series

Describes time sequences where the value at
each time t is above the average of the week
ending at t.

G
(
X6 true → 7xi+6 > xi + xi+1 + · · · + xi+6

)
.

time

value

average


