Elias Rojas Collins¹ Chris Köcher² Georg Zetzsche²

 $^{\rm 1}$ Massachusetts Institute of Technology, Cambridge, USA $^{\rm 2}$ Max Planck Institute for Software Systems, Kaiserslautern, Germany

August 28, 2025

Separability Problem

Separability Problem (of two sets from a class C by a set from a class D)

Input: Two sets $K, L \in C$.

Question: Is there a set $S \in \mathcal{D}$ such that $K \subseteq S$ and $L \cap S = \emptyset$?

- lacktriangle Regular separability: class $\mathcal D$ is the class of regular languages
- Certifies safety of programs:
 - \blacksquare *K* is the set of reachable configurations in the program
 - *L* is the set of undesired configurations in the program

Historical Context

- Regular separability is undecidable for context-free languages [Szymanski & Williams 1976, Hunt III 1982]
- Regular separability is decidable for:
 - languages of Integer Vector Addition Systems with States (Z-VASS) / Parikh automata [Clemente et al @ STACS 2017]
 - Complexity: elementary, coNP-hard
 - coverability languages of VASS [Czerwiński et al. @ CONCUR 2018]
 - Complexity: EXPSPACE-complete
 - (reachability) languages of VASS [Keskin & Meyer @ LICS 2024]
 - Complexity: Ackermann-complete

Definition

A set $S \subseteq \mathbb{N}^d$ is

- linear if there is a vector $\vec{u} \in \mathbb{N}^n$ and a finite set $P \subseteq \mathbb{N}^n$ with $S = \vec{u} + P^*$.
- hyperlinear (or hybrid linear) if there are finite sets $U, P \subseteq \mathbb{N}^n$ with $S = U + P^*$.
- semilinear if it is a finite union of (hyper-)linear sets.

Definition

A set $S \subseteq \mathbb{N}^d$ is

- linear if there is a vector $\vec{u} \in \mathbb{N}^n$ and a finite set $P \subseteq \mathbb{N}^n$ with $S = \vec{u} + P^*$.
- hyperlinear (or hybrid linear) if there are finite sets $U, P \subseteq \mathbb{N}^n$ with $S = U + P^*$.
- semilinear if it is a finite union of (hyper-)linear sets.

Definition

A set $S \subseteq \mathbb{N}^d$ is

- linear if there is a vector $\vec{u} \in \mathbb{N}^n$ and a finite set $P \subseteq \mathbb{N}^n$ with $S = \vec{u} + P^*$.
- hyperlinear (or hybrid linear) if there are finite sets $U, P \subseteq \mathbb{N}^n$ with $S = U + P^*$.
- semilinear if it is a finite union of (hyper-)linear sets.

Definition

A set $S \subseteq \mathbb{N}^d$ is

- linear if there is a vector $\vec{u} \in \mathbb{N}^n$ and a finite set $P \subseteq \mathbb{N}^n$ with $S = \vec{u} + P^*$.
- hyperlinear (or hybrid linear) if there are finite sets $U, P \subseteq \mathbb{N}^n$ with $S = U + P^*$.
- semilinear if it is a finite union of (hyper-)linear sets.

Results

Main Theorem

- The regular separability problem for Parikh automata is coNP-complete.
- The recognizable separability problem for semilinear sets is coNP-complete.
- We first show that recognizable inseparability of semilinear sets is in NP.

Observation

 $R = \bigcup_{1 \le i \le m} U_i + P_i^*$ and $S = \bigcup_{1 \le j \le n} V_j + Q_j^*$ are inseparable iff there are i and j such that $U_i + P_i^*$ and $V_j + Q_j^*$ are inseparable.

■ We guess these *i* and *j* in a first step. From now on, assume that *R* and *S* are hyperlinear.

Results

Main Theorem

- The regular separability problem for Parikh automata is coNP-complete.
- The recognizable separability problem for semilinear sets is coNP-complete.

 $S \subseteq \mathbb{M}$ is recognizable in the monoid \mathbb{M} if there is a finite monoid \mathbb{F} and a morphism $f: \mathbb{M} \to \mathbb{F}$ with $S = f^{-1}(f(S))$.

f semilinear sets is in NP.

 $R = \bigcup_{1 \le i \le m} U_i + P_i^*$ and $S = \bigcup_{1 \le j \le n} V_j + Q_j^*$ are inseparable iff there are i and j such that $U_i + P_i^*$ and $V_j + Q_j^*$ are inseparable.

■ We guess these *i* and *j* in a first step. From now on, assume that *R* and *S* are hyperlinear.

■ Assume *S* is bounded at coordinate *j*, i.e., there is an $M \in \mathbb{N}$ such that $\vec{v}[j] \leq M$ for all $\vec{v} \in S$.

■ Problem: Constructing R' and S' is expensive!

[Choffrut & Grigorieff 2006, Clemente et al. @ STACS 2017]

■ Assume *S* is bounded at coordinate *j*, i.e., there is an $M \in \mathbb{N}$ such that $\vec{v}[j] \leq M$ for all $\vec{v} \in S$.

R and S can be partitioned according to their values in coordinate j.

■ Problem: Constructing K and S is expensive:

[Choffrut & Grigorieff 2006, Clemente et al. @ STACS 2017]

■ Assume *S* is bounded at coordinate *j*, i.e., there is an $M \in \mathbb{N}$ such that $\vec{v}[j] \leq M$ for all $\vec{v} \in S$.

■ Problem: Constructing R' and S' is expensive!

[Choffrut & Grigorieff 2006, Clemente et al. @ STACS 2017]

■ Assume *S* is bounded at coordinate *j*, i.e., there is an $M \in \mathbb{N}$ such that $\vec{v}[j] \leq M$ for all $\vec{v} \in S$.

■ Problem: Constructing R' and S' is expensive!

[Choffrut & Grigorieff 2006, Clemente et al. @ STACS 2017]

■ Assume *S* is bounded at coordinate *j*, i.e., there is an $M \in \mathbb{N}$ such that $\vec{v}[j] \leq M$ for all $\vec{v} \in S$.

■ Problem: Constructing R' and S' is expensive!

[Choffrut & Grigorieff 2006, Clemente et al. @ STACS 2017]

Twin-Unbounded Coordinates

- Let $R = U + P^*$ and $S = V + Q^*$.
- Repeat the following until stabilization. For each $1 \le j \le n$:
 - If *S* is bounded at *j*, remove all vectors $\vec{v} \in P$ with $\vec{v}[j] > 0$.
 - If *R* is bounded at *j*, remove all vectors $\vec{v} \in Q$ with $\vec{v}[j] > 0$.
- \hat{P} and \hat{Q} are the sets of all remaining vectors in P resp. Q after the procedure above.
- The remaining (unbounded) coordinates are called twin-unbounded.

Our Swiss Army Knife

Lemma

Let $R = U + P^*$ and $S = V + Q^*$ be two hyperlinear sets. Then the following are equivalent:

- **T** R and S are inseparable by recognizable sets,
- $(R \hat{P}^*) \cap (S \hat{Q}^*) \neq \emptyset, and$
- $(R+\hat{Q}^*)\cap (S+\hat{P}^*)\neq\varnothing.$
- Note that $R + \hat{Q}^*$ and $S + \hat{P}^*$ are still hyperlinear.
- Intersection non-emptiness of two semilinear sets is in NP.

Our Swiss Army Knife

Lemma

Let $R = U + P^*$ and $S = V + Q^*$ be two hyperlinear sets. Then the following are equivalent:

- **R** and S are inseparable by recognizable sets,
- $(R \hat{P}^*) \cap (S \hat{Q}^*) \neq \emptyset, and$
- $(R + \hat{D}^*) + \alpha$

R extended by the group generated by \hat{P}

- Note that $R + Q^*$ and $S + P^*$ are still hyperlinear.
- Intersection non-emptiness of two semilinear sets is in NP.

Inseparability of Parikh Automata (1)

Main Theorem

- The regular separability problem for Parikh automata is coNP-complete.
- The recognizable separability problem for semilinear sets is coNP-complete.
- We show that regular inseparability of Parikh automata is in NP.
- Let (\mathfrak{A}_1, C_1) and (\mathfrak{A}_2, C_2) be two Parikh automata.
- Construct in polynomial time a DFA \mathfrak{B} and semilinear sets D_1 , D_2 such that $L(\mathfrak{A}_1, C_1)$ and $L(\mathfrak{A}_2, C_2)$ are regularly separable if, and only if, $L(\mathfrak{B}, D_1)$ and $L(\mathfrak{B}, D_2)$ are regularly separable.
- There are hyperlinear sets $R, S \subseteq \mathbb{N}^k$ such that $L(\mathfrak{B}, D_1)$ and $L(\mathfrak{B}, D_2)$ are regularly separable if, and only if, R and S are separable by a recognizable set.
 - In R and S we count the occurrences of (simple) cycles in accepting runs of \mathfrak{B} .
 - Dimension k is the number of all (simple) cycles in \mathfrak{B} .
 - Attention: This number can be exponential!

[Clemente et al. @ STACS 2017]

Inseparability of Parikh Automata (2)

- Recall $L(\mathfrak{B}, D_1)$ and $L(\mathfrak{B}, D_2)$ are regularly inseparable iff R and S are recognizably inseparable.
- We know: $R = U + P^*$ and $S = V + Q^*$ are inseparable iff $(R + \hat{Q}^*) \cap (S + \hat{P}^*) \neq \emptyset$
- Under-approximate \hat{P} and \hat{Q} by guessing a set of transitions participating in twin-unbounded coordinates.
 - Can be verified in NP.
- Construct in polynomial time Parikh automata (\mathfrak{C}_1, E_1) and (\mathfrak{C}_2, E_2) accepting sequences of cycles in $R + \hat{Q}^*$ resp. $S + \hat{P}^*$.
- Check whether the intersection of $L(\mathfrak{C}_1, E_1)$ and $L(\mathfrak{C}_2, E_2)$ is non-empty (in NP).

Summary

Theorem

The following problems are coNP-complete:

- **■** recognizable separability of semilinear sets.
 - also holds if the semilinear sets are given as existential or quantifier-free Presburger formulas
- **2** recognizable separability of two rational subsets of $\Sigma^* \times \mathbb{N}^k$.
- **3** regular separability of two Parikh-automata.
- regularity of deterministic Parikh-automata with target sets given by quantifier-free Presburger formulas.

Thank you!