The Separability Problem for Presburger Definable Sets and Parikh Automata

Workshop on Recent Developments in Arithmetic Theories and Applications @ ICLA 2025, Kolkata

Elias Rojas Collins¹ <u>Chris Köcher</u>² Georg Zetzsche²

¹ Massachusetts Institute of Technology, Cambridge
² Max Planck Institute for Software Systems, Kaiserslautern

February 1, 2025

1

Section 1 Verification Problems

Reachability Problem (1)

Reachability Problem

Given: A program \mathfrak{P} and two configurations *c* and *d* of \mathfrak{P} Question: Is there a run of \mathfrak{P} starting in *c* and eventually arriving in *d*, i.e. $c \to_{\mathfrak{M}}^* d$?

Classical correctness checks:

- Run program \mathfrak{P} with input *x*. Is the output *y*, i.e. $[\mathfrak{P}](x) = y$?
- Run program 𝔅 with input *x*. Will 𝔅 throw the exception *e*?
- Generalized problem:

Given: A program \mathfrak{P} and two sets of configurations *C* and *D* of \mathfrak{P} Question: Is there a run of \mathfrak{P} starting in $c \in C$ and eventually arriving in $d \in D$?

Safety Problem

Safety Problem

Input: Given a program \mathfrak{P} , a configuration *c*, and a set of configurations *S* of \mathfrak{P} Question: Does any run of \mathfrak{P} starting in *c* stay in the set *S*?

- Can we avoid reaching an undesired configuration (like an unhandled exception)?
- The complementary problem of Reachability:
 - Check whether there is no run starting from *c* eventually arriving in a $d \in Conf_{\mathfrak{P}} \setminus S$.

Separability Problem

Separability Problem (of two sets from a class C by a set from a class D)

```
Input: Two sets K, L \in C.
```

Question: Is there a set $S \in \mathcal{D}$ such that $K \subseteq S$ and $L \cap S = \emptyset$?

• Certifies safety of programs:

- *K* is the set of reachable configurations in \mathfrak{P}
- L is the set of undesired configurations in \mathfrak{P}

Section 2

Separability in Presburger Definable Sets

Presburger Logic

Definition

Presburger logic is the first order logic of the structure $\mathcal{N} = (\mathbb{N}, +, \leq, 0, 1)$. A set $S \subseteq \mathbb{N}^d$ is Presburger definable if there is a Presburger formula $\phi(\vec{x})$ with *d* free variables \vec{x} such that $S = \{\vec{v} \in \mathbb{N}^d \mid \mathcal{N}, \vec{v} \models \phi(\vec{x})\}.$

Satisfiability Problem

Given A Presburger sentence ϕ (a formula without free variables) Question Does $\mathcal{N} \vDash \phi$ hold?

Theorem (Presburger 1929)

Satisfiability of Presburger formulas is decidable. Satisfiability of *existential* Presburger formulas is in NP.

Presburger Logic

Definition

Presburger logic is the first order logic of the structure $\mathcal{N} = (\mathbb{N}, +, \leq, 0, 1)$. A set $S \subseteq \mathbb{N}^d$ is Presburger definable if there is a Presburger formula $\phi(\vec{x})$ with *d* free variables \vec{x} such that $S = \{\vec{v} \in \mathbb{N}^d \mid \mathcal{N}, \vec{v} \models \phi(\vec{x})\}.$

Satisfiability Problem

Given A Presburger sentence ϕ (a formula without free variables) Question Does $\mathcal{N} \vDash \phi$ hold?

 $\exists \vec{x}: \psi(\vec{x}, \vec{y}), \text{ where } \psi \text{ contains no quantifiers}$ Satisfiability of Prest formulas is decidable. Satisfiability of existential Presburger formulas is in NP.

A set $S \subseteq \mathbb{N}^d$ is

■ linear if there is a vector $\vec{u} \in \mathbb{N}^d$ and a finite set $P \subseteq \mathbb{N}^d$ with $S = \vec{u} + P^*$.

semilinear if it is a finite union of linear sets.

Theorem (Ginsburg & Spanier 1964)

Let $S \subseteq \mathbb{N}^d$ be a set of vectors. The following are equivalent:

1 *S* is Presburger definable.

2 S is semilinear.

The equivalence is effective.

Recognizable Sets (1)

Definition

A set $S \subseteq \mathbb{N}^d$ is recognizable if *S* accepted by a DFA \mathfrak{A} labeled with vectors from \mathbb{N}^d such that $p \xrightarrow{\vec{v}} q \xrightarrow{\vec{w}} r$ implies the existence of q' with $p \xrightarrow{\vec{w}} q' \xrightarrow{\vec{v}} r$.

Example

Theorem

Let $S \subseteq \mathbb{N}^d$ be a set of vectors. The following are equivalent:

- **S** is recognizable.
- **2** *S* is definable by a monadic Presburger formula.

each atom in $\phi(\vec{x})$ contains at most one variable

Theorem

Given two semilinear sets defined by existential Presburger formulas, separability via recognizable sets is coNP*-complete.*

- coNP-hardness:
 - Reduction from emptiness of semilinear sets (given as existential Presburger formulas)
 - Let $K \subseteq \mathbb{N}^d$ be defined by a formula ϕ .
 - *K* is empty iff *K* is separable from \mathbb{N}^d by a recognizable set.

- We will show that the inseparability problem is in NP.
- Given two existential Presburger formulas $\phi(\vec{x})$ and $\psi(\vec{x})$.
- We will construct another existential Presburger sentence χ such that

 $\mathcal{N} \vDash \chi \iff$ the solution sets of ϕ and ψ are inseparable.

Simplifying Formulas

- Let $\phi = \exists \vec{y} : \xi_1(\vec{x}, \vec{y})$ and $\psi = \exists \vec{y} : \xi_2(\vec{x}, \vec{y})$ where
 - $\xi_i(\vec{x}, \vec{y})$ contains no quantifiers, no negation, and only atoms of the form $t \ge 0$
- There are formulas $\phi_1, \ldots, \phi_k, \psi_1, \ldots, \psi_\ell$ using only conjunctions such that $\xi_1 \equiv \phi_1 \lor \cdots \lor \phi_k$ and $\xi_2 \equiv \psi_1 \lor \cdots \lor \psi_\ell$.
 - i.e., we can transform ξ_1 and ξ_2 into disjunctive normal form.
 - Problem: k and ℓ are of exponential size!
- ϕ and ψ are inseparable if, and only if, there are *i*, *j* such that ϕ_i and ψ_j are inseparable.
- We can guess in polynomial time such ϕ_i and ψ_j :

- Now, we can assume that ϕ and ψ are finite conjunctions of atoms of the form $t \ge 0$.
- Adding further variables, we can replace each $t \ge 0$ by a t' = 0.
- We can turn ϕ and ψ into

$$R = \pi(\{\vec{x} \in \mathbb{N}^e \mid A\vec{x} = \vec{b}\}) \quad \text{and} \quad S = \pi(\{\vec{y} \in \mathbb{N}^e \mid C\vec{y} = \vec{d}\}).$$

• *R* and *S* are hyperlinear sets.

R and *S* are of the form $A + U^*$ for finite sets $A, U \subseteq \mathbb{N}^d$

Intermezzo: An Idea for Simplification

- Assume *R* is bounded at coordinate *j*, i.e., there is a $M \in \mathbb{N}$ such that $\vec{v}[j] \leq M$ for all $\vec{v} \in R$.
- Then *R* and *S* are inseparable iff there is $x \in [0, M]$ such that $R[j \mapsto x]$ and $S[j \mapsto x]$ are inseparable
 - $R[j \mapsto x]$ contains all vectors $\vec{v} \in R$ with $\vec{v}[j] = x$, projected to coordinates $[1, d] \setminus \{j\}$.
- Guess such x and then continue with $R[j \mapsto x]$ and $S[j \mapsto x]$.
- Problem: Constructing $R[j \mapsto x]$ is expensive!

[Choffrut & Grigorieff 2006, Clemente et al. @ STACS 2017]

- For a vector $\vec{v} \in \mathbb{N}^d$ the support is supp $(\vec{v}) = \{j \in [1, d] | \vec{v}[j] \neq 0\}.$
- Let $R = A + U^*$ and $S = B + V^*$.
- Repeat the following until stabilization. For each $j \in [1, d]$:
 - If *S* is bounded at *j*, remove all vectors $\vec{v} \in U$ with $j \in \text{supp}(\vec{v})$.
 - If *R* is bounded at *j*, remove all vectors $\vec{v} \in V$ with $j \in \text{supp}(\vec{v})$.
- The remaining (unbounded) coordinates are called strongly unbounded.
- Let $J \subseteq [1, d]$ be the set of all strongly unbounded coordinates.
- U_I and V_I are the sets of all remaining vectors in U resp. V after the procedure above.

Lemma

Let $R = A + U^*$ and $S = B + V^*$ be two hyperlinear sets. Then R and S are not separable by a recognizable set if, and only if, the intersection

$$(A + U^* - U_J^*) \cap (B + V^* - V_J^*)$$

is not empty.

Lemma

Let $R = A + U^*$ and $S = B + V^*$ be two hyperlinear sets. Then R and S are not separable by a recognizable set if, and only if, the intersection

 $(A + U^* + V_J^*) \cap (B + V^* + U_J^*)$

is not empty.

Lemma

Let $R = A + U^*$ and $S = B + V^*$ be two hyperlinear sets. Then R and S are not separable by a recognizable set if, and only if, the intersection

$$\left(A+U^*_{A}-U^*_{J}\right)\cap\left(B+V^*-V^*_{J}\right)$$

is not empty.

R extended by the group generated by U_J

Lemma

Let $R = A + U^*$ and $S = B + V^*$ be two hyperlinear sets. Then R and S are not separable by a recognizable set if, and only if, the intersection

 $(A + U^* + V_J^*) \cap (B + V^* + U_J^*)$

is not empty.

Diophantine Equations to Satisfiability

Recall:

- $\blacksquare R = \pi(\{\vec{x} \in \mathbb{N}^e \mid A\vec{x} = \vec{b}\}) \text{ and } S = \pi(\{\vec{y} \in \mathbb{N}^e \mid C\vec{y} = \vec{d}\}).$
- *R* and *S* are inseparable iff $(A + U^* + V_J^*) \cap (B + V^* + U_J^*) \neq \emptyset$.

Lemma

R and *S* are inseparable if, and only if, there are vectors $\vec{u}, \vec{v}, \vec{x}, \vec{y} \in \mathbb{N}^e$ with

1 $A\vec{u} = \vec{0}, C\vec{v} = \vec{0}, \operatorname{supp}(\pi(\vec{u})) = \operatorname{supp}(\pi(\vec{v})), and$

2
$$A\vec{x} = \vec{b}, C\vec{y} = \vec{d}, and \pi(\vec{x} + \vec{v}) = \pi(\vec{y} + \vec{u}).$$

- We can express this in an existential Presburger formula χ .
- This formula is satisfiable if, and only if, *R* and *S* are inseparable.
- We can compute χ from ϕ and ψ in (non-deterministically) polynomial time.

Section 3 Separability in Parikh Automata

Let $\Sigma = \{a_1, a_2, \dots, a_d\}$ be an alphabet. The Parikh map is defined as

$$\Psi: \Sigma^* \to \mathbb{N}^d: w \mapsto (|w|_{a_1}, |w|_{a_2}, \dots, |w|_{a_d})$$

where $|w|_a$ is the number of occurrences of *a* in the word *w*. The Parikh image of a language $L \subseteq \Sigma^*$ is $\Psi(L) = \{\Psi(w) \mid w \in L\}$

Theorem (Parikh 1966)

The Parikh image of context-free languages is semilinear.

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

A Parikh automaton is a tuple (\mathfrak{A}, C) where $\mathfrak{A} = (Q, \Sigma, T, q_0, F)$ is an ε -NFA and $C \subseteq \mathbb{N}^T$ is semilinear. A word $w \in \Sigma^*$ is in $L(\mathfrak{A}, C)$ if there is an accepting *w*-labeled run ρ in \mathfrak{A} with $\Psi(\rho) \in C$.

Theorem

Theorem

The regular separability problem for Parikh automata is coNP-complete.

- Decidability was already known [Clemente et al. @ ICALP 2017], but complexity was unknown.
- coNP-hardness:
 - Reduction from emptiness problem for Parikh automata.
 - For a given Parikh automaton (\mathfrak{A}, C) , $L(\mathfrak{A}, C)$ is separable from Σ^* if, and only if, $L(\mathfrak{A}, C)$ is empty.

Proof Plan

- Again, we prove that regular inseparability is in NP.
- Let (\mathfrak{A}, C) and (\mathfrak{B}, D) be two Parikh automata.
 - Construct in polynomial time a DFA \mathfrak{C} and semilinear sets E_1, E_2 such that $L(\mathfrak{A}, C)$ and $L(\mathfrak{B}, D)$ are regularly separable if, and only if, $L(\mathfrak{C}, E_1)$ and $L(\mathfrak{C}, E_2)$ are regularly separable.
 - **2** There are hyperlinear sets R, S such that $L(\mathfrak{C}, E_1)$ and $L(\mathfrak{C}, E_2)$ are regularly separable if, and only if, R and S are separable by a recognizable set.
 - In *R* and *S* we count the simple cycles of 𝔅 on accepting runs.
 - Recall that $R = A + U^*$ and $S = B + V^*$ are inseparable iff $(A + U^* + V_t^*) \cap (B + V^* + U_t^*) \neq \emptyset$
 - Attention: The number of simple cycles in C can be exponential!
 - Guess and verify the set *J* (or actually the participating transitions) in polynomial time.
 - Construct from \mathfrak{C}, E_1, E_2 in polynomial time a Parikh automaton (\mathfrak{D}, F) such that $L(\mathfrak{D}, F) \neq \emptyset$ iff $(A + U^* + V_J^*) \cap (B + V^* + U_J^*) \neq \emptyset$.

Thank you!