
The Separability Problem for Presburger Definable Sets
and Parikh Automata

Workshop on Recent Developments in Arithmetic Theories and Applications @ ICLA 2025,
Kolkata

Elias Rojas Collins1 Chris Köcher2 Georg Zetzsche2

1 Massachusetts Institute of Technology, Cambridge
2 Max Planck Institute for Software Systems, Kaiserslautern

February 1, 2025

1



Section 1

Verification Problems

2



Reachability Problem (1)

Reachability Problem

Given: A programP and two configurations c and d ofP
Question: Is there a run ofP starting in c and eventually arriving in d, i.e. c →∗P d?

c d

Classical correctness checks:
Run programP with input x. Is the output y, i.e. ⟦P⟧(x) = y?
Run programP with input x. WillP throw the exception e?

Generalized problem:
Given: A programP and two sets of configurations C and D ofP

Question: Is there a run ofP starting in c ∈ C and eventually arriving in d ∈ D?3



Safety Problem

Safety Problem

Input: Given a programP, a configuration c, and a set of configurations S ofP
Question: Does any run ofP starting in c stay in the set S?

good bad

Can we avoid reaching an undesired configuration (like an unhandled exception)?
The complementary problem of Reachability:

Check whether there is no run starting from c eventually arriving in a d ∈ ConfP ∖ S.
4



Separability Problem

Separability Problem (of two sets from a class C by a set from a classD)

Input: Two sets K , L ∈ C.
Question: Is there a set S ∈D such that K ⊆ S and L ∩ S = ∅?

S

✓

K L K L

✗

S

K L

✗

Certifies safety of programs:
K is the set of reachable configurations inP
L is the set of undesired configurations inP

5



Section 2

Separability in Presburger Definable Sets

6



Presburger Logic

Definition
Presburger logic is the first order logic of the structureN = (N,+, ≤, 0, 1). A set S ⊆ Nd is
Presburger definable if there is a Presburger formula ϕ(x⃗) with d free variables x⃗ such that

S = {v⃗ ∈ Nd
∣N , v⃗ ⊧ ϕ(x⃗)} .

Satisfiability Problem

Given A Presburger sentence ϕ (a formula without free variables)
Question DoesN ⊧ ϕ hold?

Theorem (Presburger 1929)

Satisfiability of Presburger formulas is decidable.
Satisfiability of existential Presburger formulas is in NP.

∃x⃗∶ψ(x⃗ , y⃗), where ψ contains no quantifiers

7



Presburger Logic

Definition
Presburger logic is the first order logic of the structureN = (N,+, ≤, 0, 1). A set S ⊆ Nd is
Presburger definable if there is a Presburger formula ϕ(x⃗) with d free variables x⃗ such that

S = {v⃗ ∈ Nd
∣N , v⃗ ⊧ ϕ(x⃗)} .

Satisfiability Problem

Given A Presburger sentence ϕ (a formula without free variables)
Question DoesN ⊧ ϕ hold?

Theorem (Presburger 1929)

Satisfiability of Presburger formulas is decidable.
Satisfiability of existential Presburger formulas is in NP.

∃x⃗∶ψ(x⃗ , y⃗), where ψ contains no quantifiers

7



Semilinear Sets

Definition
A set S ⊆ Nd is

linear if there is a vector u⃗ ∈ Nd and a finite set P ⊆ Nd with S = u⃗ + P∗.
semilinear if it is a finite union of linear sets.

Theorem (Ginsburg & Spanier 1964)

Let S ⊆ Nd be a set of vectors. The following are equivalent:
1 S is Presburger definable.
2 S is semilinear.

The equivalence is effective.

8



Recognizable Sets (1)

Definition
A set S ⊆ Nd is recognizable if S accepted by a DFA A labeled with vectors from Nd such

that p v⃗
Ð→ q w⃗
Ð→ r implies the existence of q′ with p w⃗

Ð→ q′ v⃗
Ð→ r.

Example

0 1

2 3

(8, 1) ∈ L(A)?

(5, 0)

(1, 1)

(2, 0)

(5, 0)

(2, 0)

(5, 0)

(1, 1)

(5, 0)9



Recognizable Sets (2)

Theorem
Let S ⊆ Nd be a set of vectors. The following are equivalent:

1 S is recognizable.
2 S is definable by a monadic Presburger formula.

each atom in ϕ(x⃗) contains at most one variable

10



MainTheorem 1

Theorem
Given two semilinear sets defined by existential Presburger formulas, separability via
recognizable sets is coNP-complete.

coNP-hardness:
Reduction from emptiness of semilinear sets (given as existential Presburger formulas)
Let K ⊆ Nd be defined by a formula ϕ.
K is empty iff K is separable from Nd by a recognizable set.

11



Proof Plan

We will show that the inseparability problem is in NP.
Given two existential Presburger formulas ϕ(x⃗) and ψ(x⃗).
We will construct another existential Presburger sentence χ such that

N ⊧ χ ⇐⇒ the solution sets of ϕ and ψ are inseparable .

12



Simplifying Formulas

Let ϕ = ∃ y⃗∶ ξ1(x⃗ , y⃗) and ψ = ∃ y⃗∶ ξ2(x⃗ , y⃗) where
ξ i(x⃗ , y⃗) contains no quantifiers, no negation, and only atoms of the form t ≥ 0

There are formulas ϕ1, . . . , ϕk ,ψ1, . . . ,ψℓ using only conjunctions such that
ξ1 ≡ ϕ1 ∨⋯ ∨ ϕk and ξ2 ≡ ψ1 ∨⋯ ∨ ψℓ.

i.e., we can transform ξ1 and ξ2 into disjunctive normal form.
Problem: k and ℓ are of exponential size!

ϕ and ψ are inseparable if, and only if, there are i , j such that ϕi and ψ j are inseparable.
We can guess in polynomial time such ϕi and ψ j:

∨

∧

x + y ≥ 0 2x ≥ 0

∧

∨

x + 5 ≥ 0 y − 2 ≥ 0

x − y ≥ 0

13



Formulas to Diophantine Equations

Now, we can assume that ϕ and ψ are finite conjunctions of atoms of the form t ≥ 0.
Adding further variables, we can replace each t ≥ 0 by a t′ = 0.
We can turn ϕ and ψ into

R = π({x⃗ ∈ Ne
∣ Ax⃗ = ⃗b}) and S = π({ y⃗ ∈ Ne

∣ Cy⃗ = ⃗d}) .

R and S are hyperlinear sets.

R and S are of the form A+U∗ for finite sets A,U ⊆ Nd

14



Intermezzo: An Idea for Simplification

Assume R is bounded at coordinate j, i.e., there is aM ∈ N such that v⃗[ j] ≤ M for all
v⃗ ∈ R.
Then R and S are inseparable iff there is x ∈ [0,M] such that R[ j ↦ x] and S[ j ↦ x]
are inseparable

R[ j ↦ x] contains all vectors v⃗ ∈ R with v⃗[ j] = x, projected to coordinates [1, d] ∖ { j}.

Guess such x and then continue with R[ j ↦ x] and S[ j ↦ x].

Problem: Constructing R[ j ↦ x] is expensive!

[Choffrut & Grigorieff 2006, Clemente et al. @ STACS 2017]

15



Strongly Unbounded Coordinates

For a vector v⃗ ∈ Nd the support is supp(v⃗) = { j ∈ [1, d] ∣ v⃗[ j] ≠ 0}.
Let R = A+U∗ and S = B + V∗.
Repeat the following until stabilization. For each j ∈ [1, d]:

If S is bounded at j, remove all vectors v⃗ ∈ U with j ∈ supp(v⃗).
If R is bounded at j, remove all vectors v⃗ ∈ V with j ∈ supp(v⃗).

The remaining (unbounded) coordinates are called strongly unbounded.
Let J ⊆ [1, d] be the set of all strongly unbounded coordinates.
UJ and VJ are the sets of all remaining vectors in U resp. V after the procedure above.

16



A Technical Lemma

Lemma
Let R = A+U∗ and S = B + V∗ be two hyperlinear sets. Then R and S are not separable by a
recognizable set if, and only if, the intersection

(A+U∗ −U∗J ) ∩ (B + V
∗
− V∗J )

is not empty.

Lemma
Let R = A+U∗ and S = B + V∗ be two hyperlinear sets. Then R and S are not separable by a
recognizable set if, and only if, the intersection

(A+U∗ + V∗J ) ∩ (B + V
∗
+U∗J )

is not empty.

R extended by the group generated by UJ

17



A Technical Lemma

Lemma
Let R = A+U∗ and S = B + V∗ be two hyperlinear sets. Then R and S are not separable by a
recognizable set if, and only if, the intersection

(A+U∗ −U∗J ) ∩ (B + V
∗
− V∗J )

is not empty.

Lemma
Let R = A+U∗ and S = B + V∗ be two hyperlinear sets. Then R and S are not separable by a
recognizable set if, and only if, the intersection

(A+U∗ + V∗J ) ∩ (B + V
∗
+U∗J )

is not empty.

R extended by the group generated by UJ

17



Diophantine Equations to Satisfiability

Recall:
R = π({x⃗ ∈ Ne

∣ Ax⃗ = ⃗b}) and S = π({ y⃗ ∈ Ne
∣ Cy⃗ = ⃗d}).

R and S are inseparable iff (A+U∗ + V∗J ) ∩ (B + V
∗
+U∗J ) ≠ ∅.

Lemma
R and S are inseparable if, and only if, there are vectors u⃗, v⃗ , x⃗ , y⃗ ∈ Ne with

1 Au⃗ = 0⃗, Cv⃗ = 0⃗, supp(π(u⃗)) = supp(π(v⃗)), and
2 Ax⃗ = ⃗b, C y⃗ = ⃗d, and π(x⃗ + v⃗) = π( y⃗ + u⃗).

We can express this in an existential Presburger formula χ.
This formula is satisfiable if, and only if, R and S are inseparable.
We can compute χ from ϕ and ψ in (non-deterministically) polynomial time. ◻

18



Section 3

Separability in Parikh Automata

19



Parikh’s Theorem

Definition
Let Σ = {a1, a2, . . . , ad} be an alphabet. The Parikh map is defined as

Ψ ∶Σ∗ → Nd
∶w ↦ (∣w∣a1 , ∣w∣a2 , . . . , ∣w∣ad )

where ∣w∣a is the number of occurrences of a in the word w.
The Parikh image of a language L ⊆ Σ∗ is Ψ(L) = {Ψ(w) ∣ w ∈ L}

Theorem (Parikh 1966)

The Parikh image of context-free languages is semilinear.

20



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc 0 0 0 0 0

1 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc 0 0 0 0 0

1 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 0

1 0 0 0 0

2 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 0

1 0 0 0 0

2 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 0

2 0 0 0 0

2 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 0

2 0 0 0 0

2 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 0

2 1 0 0 0

2 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 0

2 1 0 0 0

2 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 0

2 1 1 0 0

2 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 0

2 1 1 0 0

2 1 2 0 02 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 0

2 1 2 0 0

2 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 0

2 1 2 0 0

2 1 2 1 02 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 0

2 1 2 1 0

2 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 0

2 1 2 1 0

2 1 2 1 12 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 0

2 1 2 1 1

2 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 0

2 1 2 1 1

2 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 1

2 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



Parikh Automata

Definition
A Parikh automaton is a tuple (A,C) where A = (Q , Σ, T , q0, F) is an ε-NFA and C ⊆ NT is
semilinear. A word w ∈ Σ∗ is in L(A,C) if there is an accepting w-labeled run ρ in A with
Ψ(ρ) ∈ C.

Example (C = (0, 1, 0, 1, 0) + {(1, 0, 1, 0, 1)}∗)

q0 q1 q2

a
1

ε
2

b
3

ε
4

c
5 counters:

check: aabbcc

0 0 0 0 01 0 0 0 02 0 0 0 02 1 0 0 02 1 1 0 02 1 2 0 02 1 2 1 02 1 2 1 1

2 1 2 1 2

Theorem
The emptiness problem for Parikh automata (where the target sets are given by existential
Presburger formulas) is NP-complete.

21



MainTheorem 2

Theorem
The regular separability problem for Parikh automata is coNP-complete.

Decidability was already known [Clemente et al. @ ICALP 2017], but complexity was
unknown.
coNP-hardness:

Reduction from emptiness problem for Parikh automata.
For a given Parikh automaton (A,C), L(A,C) is separable from Σ∗ if, and only if,
L(A,C) is empty.

22



Proof Plan

Again, we prove that regular inseparability is in NP.
Let (A,C) and (B,D) be two Parikh automata.

1 Construct in polynomial time a DFA C and semilinear sets E1 , E2 such that L(A,C) and
L(B,D) are regularly separable if, and only if, L(C, E1) and L(C, E2) are regularly
separable.

2 There are hyperlinear sets R, S such that L(C, E1) and L(C, E2) are regularly separable if,
and only if, R and S are separable by a recognizable set.

In R and S we count the simple cycles of C on accepting runs.
Recall that R = A+U∗ and S = B + V∗ are inseparable iff
(A+U∗ + V∗J ) ∩ (B + V∗ +U∗J ) ≠ ∅
Attention: The number of simple cycles in C can be exponential!

3 Guess and verify the set J (or actually the participating transitions) in polynomial time.
4 Construct from C, E1 , E2 in polynomial time a Parikh automaton (D, F) such that

L(D, F) ≠ ∅ iff (A+U∗ + V∗J ) ∩ (B + V
∗
+U∗J ) ≠ ∅. ◻

Thank you!
23


	Verification Problems
	Separability in Presburger Definable Sets
	Separability in Parikh Automata

