

Verifying Multi-Pushdown Automata

Highlights on Games, Logic and Automata 2022, Paris

Chris Köcher Dietrich Kuske

Automata and Logics Group Technische Universität Ilmenau

June 30, 2022

Motivation

- Consider automata with one or more pushdowns.
 - Model distributed systems with recursive programs.
- 2-pushdown automata are Turing-complete!
 - ⇒ Verification problems are undecidable.
- Here: consider a special restriction to the automata.
 - → cooperating multi-pushdown systems

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

.

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

.

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

■ A cooperating multi-pushdown system (CMPDS) \mathfrak{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathfrak{S}_1, \ldots, \mathfrak{S}_n$:

Backwards Reachability

- Let \mathfrak{S} be a CMPDS and C a set of configurations.

Theorem

- **1** Let \mathfrak{S} be a CMPDS and C a recognizable set of configurations (i.e., accepted by an asynchronous automaton). Then $\operatorname{pre}_{\mathfrak{S}}^*(C)$ is effectively recognizable (in polynomial time).
- There are a CMPDS $\mathfrak S$ and a rational set C of configurations (i.e., accepted by an NFA) such that $\operatorname{pre}_{\mathfrak S}^*(C)$ is not rational.
- Construction generalizes the one by Bouajjani, Esparza, and Maler.

Forwards Reachability

- Let \mathfrak{S} be a CMPDS and C a set of configurations.

Theorem

- **1** Let \mathfrak{S} be a CMPDS and C a rational set of configurations. Then $\operatorname{post}_{\mathfrak{S}}^*(C)$ is effectively rational (in polynomial time).
- There are a CMPDS \mathfrak{S} and a recognizable set C of configurations such that $\operatorname{post}_{\mathfrak{S}}^*(C)$ is not recognizable.
- Construction is inspired by the one by Finkel, Willems, and Wolper (but more involved).

Thank you!