Verifying Multi-Pushdown Automata
Highlights on Games, Logic and Automata 2022, Paris

Chris Köcher Dietrich Kuske

Automata and Logics Group
Technische Universität Ilmenau

June 30, 2022
Consider automata with one or more pushdowns.

- Model distributed systems with recursive programs.
- 2-pushdown automata are Turing-complete!
 \[\Rightarrow\] Verification problems are undecidable.
- Here: consider a special restriction to the automata.
 \[\sim\] cooperating multi-pushdown systems
A cooperating multi-pushdown system (CMPDS) \mathcal{G} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{G}_1, \ldots, \mathcal{G}_n$.
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:

\mathcal{S}_1: $c \mid aa \xrightarrow{a} 1 \xleftarrow{c} 2 \xrightarrow{a \mid \varepsilon} 1$

\mathcal{S}_2: $c \mid cb \xrightarrow{c \mid b} 1 \xleftarrow{b \mid \varepsilon} 2 \xrightarrow{b \mid \varepsilon} 2$

\mathcal{S}
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:

\mathcal{S}_1:

$$
\begin{array}{c}
\text{c | aa} \\
\text{1} \quad \text{a | } \varepsilon \\
\text{2}
\end{array}
$$

\mathcal{S}_2:

$$
\begin{array}{c}
\text{c | cb} \\
\text{1} \quad \text{b | } \varepsilon \\
\text{2}
\end{array}
$$
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:

$$\begin{align*}
\mathcal{S}_1: & \quad c \mid aa \\
& \quad a \mid \varepsilon
\end{align*}$$

$$\begin{align*}
\mathcal{S}_2: & \quad c \mid cb \\
& \quad b \mid \varepsilon
\end{align*}$$
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{G} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{G}_1, \ldots, \mathcal{G}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:

\[\begin{align*}
\mathcal{S}_1: & \quad c \mid aa \quad \xrightarrow{a} \quad 1 \quad \xrightarrow{\varepsilon} \quad 2 \\
\mathcal{S}_2: & \quad c \mid cb \quad \xrightarrow{b} \quad 1 \quad \xrightarrow{\varepsilon} \quad 2
\end{align*} \]
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$:

\begin{align*}
\mathcal{S}_1: & \quad c \mid aa \\
\mathcal{S}_2: & \quad c \mid cb
\end{align*}

\begin{align*}
(\epsilon) & \mid (\epsilon) \\
(\epsilon) & \mid (\epsilon) \\
(\epsilon) & \mid (\epsilon)
\end{align*}

\begin{align*}
(\epsilon) & \mid (\epsilon) \\
(\epsilon) & \mid (\epsilon) \\
(\epsilon) & \mid (\epsilon) \\
(\epsilon) & \mid (\epsilon)
\end{align*}
A cooperating multi-pushdown system (CMPDS) \mathcal{S} is a (special) subsystem of the synchronous product of 1-pushdown systems $\mathcal{S}_1, \ldots, \mathcal{S}_n$.
Let \mathcal{G} be a CMPDS and C a set of configurations.

$\text{pre}^{*}_{\mathcal{G}}(C) := \{ d \mid \exists c \in C: d \vdash^{*}_{\mathcal{G}} c \}$

Theorem

1. *Let \mathcal{G} be a CMPDS and C a recognizable set of configurations (i.e., accepted by an asynchronous automaton). Then $\text{pre}^{*}_{\mathcal{G}}(C)$ is effectively recognizable (in polynomial time).*

2. *There are a CMPDS \mathcal{G} and a rational set C of configurations (i.e., accepted by an NFA) such that $\text{pre}^{*}_{\mathcal{G}}(C)$ is not rational.*

Construction generalizes the one by Bouajjani, Esparza, and Maler.
Forwards Reachability

- Let \mathcal{G} be a CMPDS and C a set of configurations.
- $\text{post}^*_\mathcal{G}(C) := \{ d \mid \exists c \in C: c \vdash^*_\mathcal{G} d\}$

Theorem

1. Let \mathcal{G} be a CMPDS and C a rational set of configurations. Then $\text{post}^*_\mathcal{G}(C)$ is effectively rational (in polynomial time).
2. There are a CMPDS \mathcal{G} and a recognizable set C of configurations such that $\text{post}^*_\mathcal{G}(C)$ is not recognizable.

- Construction is inspired by the one by Finkel, Willems, and Wolper (but more involved).

Thank you!