

Reachability Problems in Multi-Queue Automata

Highlights on Games, Logic and Automata 2020, (not in) Aachen

Chris Köcher

Automata and Logics Group Technische Universität Ilmenau

September 17, 2020

1

Question

Question

Question

Question

Question

Question

Inputs:

- $L \subseteq (A^*)^n$ a rational language of queue contents
- **T** \subseteq {**a**, $\overline{\mathbf{a}} \mid a \in A$ }* a rational language of transformation sequences

Compute:

■ REACH $(L, \mathbf{T}) \subseteq (A^*)^n$ the set of all queue contents after application of **T** on *L*

Theorem (Brand, Zafiropulo 1983)

There are L and T such that REACH(L, T) is undecidable.

 \Rightarrow Approximate REACH(*L*, **T**) step-by-step!

• A word *w* is connected if its *sequence diagram* is a connected graph:

 \Rightarrow **ab** \overline{a} is not connected, **abc** is connected

A language *L* is connected if each $w \in L$ is connected

• A generalization of [Boigelot et al. 1997] and [K. 2019]:

Theorem

Let $L \subseteq (A^*)^n$ be recognizable, $W, R \subseteq A^*$ be recognizable such that W is connected. Then REACH $(L, (W\overline{R})^*)$ is effectively recognizable. The construction is possible in polynomial time.

• *Proof idea*: Simulate such multi-queue automaton by a 1-counter automaton.

Thank you!