Reachability Problems in Multi-Queue Automata

Highlights on Games, Logic and Automata 2020, (not in) Aachen

Chris Köcher

Automata and Logics Group
Technische Universität Ilmenau

September 17, 2020
Multi-Queue Automata

\[A_1: \]
\[a \quad a \quad a \]
\[\bar{a} \quad \bar{a} \]

\[A_2: \]
\[b \quad b \quad b, \bar{c}, c \]
\[\bar{a} \quad \bar{a} \quad \bar{a} \]

\[A_3: \]
\[a \quad a \quad a, \bar{c} \quad \bar{c} \]
\[\bar{a} \quad \bar{a} \quad \bar{a}, c \]

Question

Given some configuration, is it possible to clear each queue?
Multi-Queue Automata

\(\mathcal{A}_1: \)

- Create task \(a \)
- Finalize / execute task \(a \)

\(\mathcal{A}_2: \)

- \(a \rightarrow b \)
- \(b \rightarrow b, c \)
- \(b, b, c, \overline{c} \)

\(\mathcal{A}_3: \)

- \(\overline{a} \rightarrow a \)
- \(a \rightarrow a, \overline{c} \)
- \(a, \overline{c}, \overline{c} \)
- \(a, c \)

Question

Given some configuration, is it possible to clear each queue?
Multi-Queue Automata

A_1:
$\overline{a} \xrightarrow{a} a \xleftarrow{\overline{a}}$
$a \overline{a}$

A_2:
$b \xrightarrow{b} b, c$
$c b$

A_3:
$a \xrightarrow{\overline{a}} a, c \xrightarrow{a, \overline{c}} \overline{a}, c$
$a c a$

Question

Given some configuration, is it possible to clear each queue?
Multi-Queue Automata

\(A_1: \)

\[\begin{array}{c}
\bar{a} \\
\downarrow \quad \downarrow \\
\overline{a} \\
\end{array} \]

\[\begin{array}{c}
a \\
\rightarrow \\
a \\
\end{array} \]

\[\begin{array}{c}
\bar{a} \\
\downarrow \quad \downarrow \\
\overline{a} \\
\end{array} \]

\(A_2: \)

\[\begin{array}{c}
b \\
\rightarrow \\
b, c \\
\end{array} \]

\(A_3: \)

\[\begin{array}{c}
a \\
\rightarrow \\
a, c \\
\end{array} \]

\[\begin{array}{c}
\bar{a} \\
\downarrow \quad \downarrow \\
\overline{a} \\
\end{array} \]

\[\begin{array}{c}
a, \bar{c} \\
\rightarrow \\
\bar{a}, c \\
\end{array} \]

\[\begin{array}{c}
\bar{a}, c \\
\rightarrow \\
\overline{a}, c \\
\end{array} \]

\(a\ a \\
\) \(b\ b\ b \)

\(a\ c\ a \)

Question

Given some configuration, is it possible to clear each queue?
Multi-Queue Automata

\(\mathcal{A}_1: \quad \overline{a} \xrightarrow{a} a \xrightarrow{a} \overline{a} \)

\(\mathcal{A}_2: \quad b \xrightarrow{b, c} b, c \)

\(\mathcal{A}_3: \quad a \xrightarrow{a} \overline{a} \xrightarrow{a, c} a, \overline{c} \xrightarrow{\overline{c}} \overline{a}, c \)

\[\begin{array}{c}
\text{Signal} \quad \text{Signal} \\
\begin{array}{c}
a \\
a \\
a \\
a \\
a \\
a \\
\end{array} \\
\begin{array}{c}
a \\
a \\
c \\
c \\
c \\
\end{array} \\
\begin{array}{c}
a \\
c \\
\end{array} \\
\begin{array}{c}
\end{array}
\end{array} \]

Question

Given some configuration, is it possible to clear each queue?
Multi-Queue Automata

\mathcal{A}_1: \[\bar{a} \quad a \quad a \]

\mathcal{A}_2: \[\quad b \quad b, c \quad \bar{c} \]

\mathcal{A}_3: \[\bar{a} \quad a, c \quad \bar{c} \quad \bar{a}, c \]

Question

Given some configuration, is it possible to clear each queue?
Reachability Problem

Inputs:
- $L \subseteq (A^*)^n$ a rational language of queue contents
- $T \subseteq \{a, \overline{a} \mid a \in A\}^*$ a rational language of transformation sequences

Compute:
- $\text{REACH}(L, T) \subseteq (A^*)^n$ the set of all queue contents after application of T on L

Theorem (Brand, Zafiropulo 1983)

There are L and T such that $\text{REACH}(L, T)$ is undecidable.

\Rightarrow Approximate $\text{REACH}(L, T)$ step-by-step!
A word w is **connected** if its *sequence diagram* is a connected graph:

- A_1:
 \[\begin{array}{c}
 \text{a} \\
 \text{a} \\
 \text{a} \\
 \text{a} \\
 \end{array} \quad \text{is not connected,} \\
 \begin{array}{c}
 \text{b} \\
 \text{b} \\
 \text{b} \\
 \text{b} \\
 \end{array} \quad \text{is connected} \]

- A_2:
 \[\begin{array}{c}
 \text{a} \\
 \text{b} \\
 \text{c} \\
 \text{c} \\
 \end{array} \quad \text{is connected} \]

- A_3:
 \[\begin{array}{c}
 \text{a} \\
 \text{a} \\
 \text{a} \\
 \text{a} \\
 \end{array} \quad \text{is not connected,} \\
 \begin{array}{c}
 \text{b} \\
 \text{b} \\
 \text{b} \\
 \text{b} \\
 \end{array} \quad \text{is connected} \]

\Rightarrow **$ab\overline{a}$** is not connected, **abc** is connected

A language L is **connected** if each $w \in L$ is connected
A generalization of [Boigelot et al. 1997] and [K. 2019]:

Theorem

Let $L \subseteq (A^*)^n$ be recognizable, $W, R \subseteq A^*$ be recognizable such that W is connected. Then $\text{REACH}(L, (W\overline{R})^*)$ is effectively recognizable. The construction is possible in polynomial time.

Proof idea: Simulate such multi-queue automaton by a 1-counter automaton.

Thank you!