

Rational and Recognizable Sets in the Queue Monoid Highlights of Games, Logic and Automata 2018, Berlin

Chris Köcher

Automata and Logics Group Technische Universität Ilmenau

September 20, 2018

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$

$$\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$$

 $\bullet \ \Sigma := A \uplus \overline{A}$

$$q = abaa \qquad t = b\overline{a}b\overline{b}$$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$

$$\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$$

 $\bullet \ \Sigma := A \uplus \overline{A}$

$$q = abaa \qquad t = b\overline{a}b\overline{b}$$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \Sigma := A \uplus \overline{A}$

$$q = abaa \qquad t = b\overline{a}b\overline{b}$$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$

$$\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$$

 $\bullet \ \Sigma := A \uplus \overline{A}$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \Sigma := A \uplus \overline{A}$

$$q = abaa \qquad t = b\overline{a}b\overline{b}$$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \Sigma := A \uplus \overline{A}$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \Sigma := A \uplus \overline{A}$

$$q = abaa \qquad t = b\overline{a}b\overline{b}$$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$
- $\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$
- $\bullet \ \Sigma := A \uplus \overline{A}$

- Let *A* be an alphabet $(|A| \ge 2)$.
- Two actions for each $a \in A$:
 - write letter $a \rightsquigarrow a$
 - read letter $a \rightsquigarrow \overline{a}$

$$\blacksquare \overline{A} := \{\overline{a} \mid a \in A\}$$

 $\bullet \ \underline{\Sigma} := A \uplus \overline{A}$

$$q = abaa \qquad t = b\overline{a}b\overline{b}$$

Definition

 $s, t \in \Sigma^*$ act equally (in symbols $s \equiv t$) if, and only if,

$$\forall p, q \in A^* \colon p \xrightarrow{s} q \iff p \xrightarrow{t} q$$

Remark

 \equiv is the least congruence on Σ^* satisfying certain commutations of write and read actions, e.g., $a\overline{a}\overline{b} \equiv \overline{a}a\overline{b}$ for $a, b \in A$.

Definition

- $\mathcal{Q} := \Sigma^*/_{\equiv} \dots$ queue monoid
- $\eta: \Sigma^* \to Q: t \mapsto [t]_{\equiv} \dots$ natural homomorphism

Definition

- Let $S \subseteq Q$.
 - **1** *S* is rational if there is a regular language $L \subseteq \Sigma^*$ with $\eta(L) = S$.
 - **closure** properties: \cup , \cdot , *
 - generalizes regular expressions
 - **2** *S* is recognizable if $\eta^{-1}(S)$ is regular.
 - **closure** properties: \cup , \cap , \setminus
 - generalizes acceptance by finite automata

Theorem (Kleene 1951)

In the free monoid, a set is rational if, and only if, it is recognizable.

- Here: There are rational sets that are not recognizable!
- But: Each recognizable set is rational [McKnight 1964].
- Restrict the rational sets in an appropriate way
 - \rightsquigarrow q-rational sets
 - start from $\eta(\overline{A}^* a \overline{A}^*)$ and $\eta(A^* \overline{a} A^*)$ for $a \in A$
 - closure under union and complementation
 - restricted closure under product and iteration

Theorem

Let $S \subseteq Q$ *. Then the following are equivalent:*

- **1** S is recognizable
- **2** S is q-rational

- Let $a, b \in A$ be distinct. Consider $t = [\overline{b}\overline{a}baaa\overline{a}]_{\equiv}$.
- We model t as a structure \tilde{t} with infinitely many relations:

- Let $a, b \in A$ be distinct. Consider $t = [\overline{b}\overline{a}baaa\overline{a}]_{\equiv}$.
- We model t as a structure \tilde{t} with infinitely many relations:

- Let $a, b \in A$ be distinct. Consider $t = [\overline{b}\overline{a}baaa\overline{a}]_{\equiv}$.
- We model t as a structure t with infinitely many relations:
 ≤_-, ≤_+, P_n for any n ∈ N

Theorem

- Let $S \subseteq Q$. Then the following are equivalent:
 - **1** S is recognizable
 - **2** S is q-rational
 - **3** $S = \{t \in \mathcal{Q} \mid \tilde{t} \models \phi\}$ for some $\phi \in MSO$
 - Similar results for aperiodic sets and for (partially) lossy queues

Thank you!