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Motivation

Vector Addition Systems with States (VASS)
NFA with finitely many non-negative counters
Equivalent to Petri Nets
Model the behavior of concurrent systems

Why (regular) separability?
Safety verification consists of deciding disjointness of two languages, like event
sequences

that are consistent with the behavior of a system component and
reaching an undesirable state.

A regular separator certifies disjointness.
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Vector Addition Systems with States (1)

V = (Q , Σ , ∆ , s , t )

finite set of states
input alphabet

s, t ∈ Q source and target state

finite set of transitions p
a ∣ v⃗ÐÐ→ q

with p, q ∈ Q, a ∈ Σ ∪ {ε}, v⃗ ∈ Zd

s

t

a ∣ (2, 1)

b ∣ (−1, 1)
a ∣ (1, 1)

b ∣ (1, 0)

a ∣ (2,−4)

V
a a b a0 0

2 13 22 3

fails, since 3 − 4 < 0
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Vector Addition Systems with States (2)

1 Reachability language:
Lreach(V) = {w ∈ Σ∗ ∣ (s, 0⃗)

wÐ→V (t, 0⃗)}

2 Coverability language:
Lcov(V) = {w ∈ Σ∗ ∣ ∃v⃗ ∈ Nd ∶ (s, 0⃗) wÐ→V (t, v⃗) ≥ (t, 0⃗)}
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Regular Separability (1)

Problem

Given two languages K , L ⊆ Σ∗.
Is there a regular language R ⊆ Σ∗ with K ⊆ R and L ∩ R = ∅?

R?

K L

Σ∗

Note: Regular Separability ≠ Disjointness!
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Regular Separability (2)

Theorem (Czerwiński et al. @ CONCUR 2018)

LetV andW be two VASS. Then Lcov(V) and Lcov(W) are regular separable if, and only if,
Lcov(V) ∩ Lcov(W) = ∅.

Hence: Regular Separability for VASS coverability languages is decidable!
Note: Decidability of Regular Separability for Lreach(V) and Lreach(W) is still open!

Question
What is the size of a regular separator of Lcov(V) and Lcov(W)?

Czerwiński et al.: doubly exp. lower bound & triply exp. upper bound
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MainTheorem

Theorem
LetV andW be two VASS with ≤ n states and updates of norm ≤ m. If

Lcov(V) ∩ Lcov(W) = ∅ then there is an separating NFA with at most (n +m)2poly(d) many

states.
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Proof (1): Reduce to Counter Instructions

Γd = {ai, ai ∣ 1 ≤ i ≤ d}
ai increase counter i by 1
ai decrease counter i by 1

Cd = {w ∈ Γ∗d ∣ ∀ prefixes v of w , 1 ≤ i ≤ d∶ ∣v∣ai ≥ ∣v∣ai}

Lemma (Jantzen 1979)

L ⊆ Σ∗ is a VASS coverability language iff there is a rational transduction T with L = T(Cd).

Corollary

LetV andW be two VASS and T be a rational transduction with Lcov(W) = T(Cd). Then

Lcov(V) is regularly separable from Lcov(W) iff T−1(Lcov(V)) is regularly separable from Cd .

∣v∣ai − ∣v∣ai

t

V∶

s t

a ∣ (0, 1)
b ∣ (1,−1)

b ∣ (1,−2)

ε ∣ (0, 0)

TV∶

Ô⇒ s t

a2 ∣ a
a1a2 ∣ b

a1a2a2 ∣ b

ε ∣ ε

⇒ W

a b

V ⇒

T−1 ( S ( Cd ))
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Proof (2): Basic Separators

For k ∈ N let Bk ⊆ Γ∗d be the following language: w ∈ Bk iff there is 1 ≤ i ≤ d with
there is a prefix v of w with ∣v∣ai < ∣v∣ai and
each proper prefix u of v satisfies 0 ≤ ∣u∣ai − ∣u∣ai ≤ k

Bk is accepted by a DFA of size O(kd).

Theorem (Czerwiński & Zetzsche @ LICS 2020)

LetV andW be two VASS with Lcov(V) ∩ Lcov(W) = ∅ and let T be a rational transduction

with Lcov(W) = T(Cd). Then Bk is a regular separator of T
−1(Lcov(V)) and Cd for a k ∈ N.

∣w∣ai − ∣w∣ai

t

kBk,i ∶

Bk = ⋃1≤i≤d L(Bk,i)

−1 0 1 2 . . . k k+1

Γd

ai

ai

Γd ∖ {ai, ai}

ai

ai

Γd ∖ {ai, ai}

ai

ai

Γd ∖ {ai, ai}

ai

ai

ai

ai

Γd ∖ {ai, ai} Γd
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Proof (3): Covering

Theorem (Rackoff 1978)

LetV be a VASS, c be a configuration ofV, and a vector v⃗ ∈ Nd with c →∗V (t, v⃗) ≥ (t, 0⃗).
Then there is 0 ≤ ℓ ≤ (n +m)2poly(d)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Rackoff(V)

and w⃗ ∈ Nd with c →ℓ
V (t, w⃗) ≥ (t, 0⃗).

Here, n is the number of states inV and m is the norm of the counter updates inV.

Theorem
LetV andW be two VASS with Lcov(V) ∩ Lcov(W) = ∅ and let T be a rational transduction

with Lcov(W) = T(Cd). Then BRackoff(V×W) is a regular separator of T
−1(Lcov(V)) and Cd .

Finally, T(BRackoff(V×W)) is a regular separator of Lcov(V) and Lcov(W). ◻
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Conclusion

NFAs DFAs
unary binary unary binary

d as input 2-exp. 3-exp.
d ≥ 2 poly. exp. exp. 2-exp.

d fixed
d = 1 poly. exp. exp. exp.

Thank you!
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