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m Vector Addition Systems with States (VASS)
m NFA with finitely many non-negative counters
m Equivalent to Petri Nets
m Model the behavior of concurrent systems

m Why (regular) separability?
m Safety verification consists of deciding disjointness of two languages, like event
sequences

m that are consistent with the behavior of a system component and
® reaching an undesirable state.

m A regular separator certifies disjointness.
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Vector Addition Systems with States (2)

Reachability language:
L Lreach(%) = {W ex* | (S,()) 1"3 (t’())}

Coverability language:
B L () = {wex* |3 e N (s,0) Sy (8,9) > (£,0)}



Regular Separability (1)

Problem

m Given two languages K, L € X*.
m Is there a regular language R € X* with K€ Rand LN R = &?

R? z*

m Note: Regular Separability # Disjointness!



Regular Separability (2)

Theorem (Czerwinski et al. @ CONCUR 2018)

Let 0 and 20 be two VASS. Then Leoy(0) and Leoy (20) are regular separable if, and only if,
LA 20 17 1L (DUET)) = 7

m Hence: Regular Separability for VASS coverability languages is decidable!
m Note: Decidability of Regular Separability for Lyeach () and Lyeacn (20) is still open!

What is the size of a regular separator of Loy () and Loy (20)?

m Czerwinski et al.: doubly exp. lower bound & triply exp. upper bound



Main Theorem

Theorem

Let 0 and 20 be two VASS with < n states and updates of norm < m. If
ly(d)

Leov (D) N Leoy (W) = @ then there is an separating NFA with at most (n +m)>" " many
states.



Proof (1): Reduce to Counter Instructions

m [, ={a5a|1<i<d}
m a; increase counter i by 1
m a; decrease counter i by 1
m Cy={welj|Vprefixesvof w,1<i<d:|vly >|v[z}

Lemma (Jantzen 1979)

L € 2 is a VASS coverability language iff there is a rational transduction T with L = T(Cy).

Corollary

Let 0 and 20 be two VASS and T be a rational transduction with Loy (20) = T(Cy). Then
Leov(0) is regularly separable from Loy (20) iff T~ (Leoy (0)) is regularly separable from C,.
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Proof (1): Reduce to Counter Instructions
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Let 0 and 20 be two VASS and T be a rational transd.uction with Loy (20) = T(Cy). Then
Leov(0) is regularly separable from Loy (20) iff T (Leoy () is regularly separable from C,.




Proof (2): Basic Separators

m For k € Nlet B, € I'j be the following language: w € By iff there is 1 < i < d with

m there is a prefix v of w with |v[,, <[v|; and
m each proper prefix u of v satisfies 0 < |ul, — |ul;- < k

m B is accepted by a DFA of size O(k?).

Theorem (Czerwinski & Zetzsche @ LICS 2020)

Let 0 and 20 be two VASS with Leoy(0) N Leoy () = @ and let T be a rational transduction
with Leoy(20) = T(C,). Then By is a regular separator of T~ (Leoy(0)) and C4 for a k € N.
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Proof (3): Covering

Theorem (Rackoff 1978)

Let %0 be a VASS, ¢ be a configuration of 0, and a vector v € N with ¢ -4 (,7) 2 (t,0).

oly(d N . . -
Then there is 0 < £ < (n + m)% "D and w e N with ¢ —& (t,w) > (,0).
[ —
=: Rackoff (1)
Here, n is the number of states in *0 and m is the norm of the counter updates in 3.

Theorem

Let 0 and 20 be two VASS with Leoy(0) N Leoy () = @ and let T be a rational transduction
with Leoy () = T(Cq). Then By, o (21.0n) is a regular separator of T (Leoy(V)) and C,.

m Finally, T(Brackoff(wxap)) i a regular separator of Leoy(0) and Leoy (20). ]



Conclusion

NFAs DFAs
unary binary wunary binary

d as input

d>2

d fixed J-1

Thank you!



