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Motivation

�estion

(Huschenbe�, Kuske, Zetzsche 2014)

Is the�eue Monoid automatic?

�eue Monoid is algebraic description of a queue’s behavior
Automatic structures have nice properties

e.g. decidable FO-theory [Khoussainov, Nerode 1995]

The�eue Monoid’s FO-theory is undecidable

Answer
No!
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Motivation

�estion (Huschenbe�, Kuske, Zetzsche 2014)

Is the Cayley-graph of the�eue Monoid automatic?

�eue Monoid is algebraic description of a queue’s behavior
Automatic structures have nice properties

e.g. decidable FO-theory [Khoussainov, Nerode 1995]

The�eue Monoid’s FO-theory is undecidable

Possible Approach

Prove that the FO-theory of the�eue Monoid’s Cayley-graph is
undecidable.
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Motivation

�estion (Huschenbe�, Kuske, Zetzsche 2014)

Is the Cayley-graph of the�eue Monoid automatic?

�eue Monoid is algebraic description of a queue’s behavior
Automatic structures have nice properties

e.g. decidable FO-theory [Khoussainov, Nerode 1995]

The�eue Monoid’s FO-theory is undecidable

Here
The FO-theory of the�eue Monoid’s Cayley-graph is decidable.
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�eues

Let A be an alphabet (|A| ≥ 2).
two actions for each a ∈ A:

write le�er a, denoted: a
read le�er a, denoted: a

Σ := {a, a | a ∈ A}

Example

q = abaa t = babb
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The�eue Monoid

Definition
s, t ∈ Σ∗ act equally (in symbols s ≡ t) if, and only if,

∀p, q ∈ A∗ : p s−→ q ⇐⇒ p t−→ q .

Theorem (Huschenbe�, Kuske, Zetzsche 2014)

≡ is the least congruence on Σ∗ satisfying the following equations:

1 ab ≡ ba if a 6= b

2 aac ≡ aac

3 caa ≡ caa

for each a, b, c ∈ A.

Definition
Q := Σ∗/≡ is called the queue monoid.
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Characteristics

Definition
Let [w]≡ ∈ Q. A characteristic of [w]≡ is a triple
(λ, a1 . . . am, ρ) ∈ (A∗)3 with

λ · a1a1a2a2 . . . amam · ρ ≡ w .

Example

Let t = [abacabacabaaba]≡.

abacaabbaacaba ≡ abacabacabaaba

(abac, aba, caba) is a characteristic of t
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Characteristics

Definition
Let [w]≡ ∈ Q. A characteristic of [w]≡ is a triple
(λ, a1 . . . am, ρ) ∈ (A∗)3 with

λ · a1a1a2a2 . . . amam · ρ ≡ w .

Proposition (cf. Huschenbe�, Kuske, Zetzsche 2014)

Each t ∈ Q has exactly one characteristic.

Definition
Let t ∈ Q and (wL,wM,wR) be its characteristic. We denote the
second component by µ(t) := wM.
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The�eue Monoid’s Cayley-Graph

Definition
The queue monoid’s Cayley-graph is the Σ-labeled graph
C := (Q, (Eα)α∈Σ) with

Eα = {(t, tα) | t ∈ Q} .

Example (A = {a, b})
Ea Eb

EbEaε

a b a b

aa aa ab ba ba bb bb aa aa ab ab ba bb bb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .
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Properties of the Cayley-Graph

Proposition

1 C is an acyclic graph with root ε.

2 C has bounded out-degree and unbounded in-degree.

3 C contains an infinite 2-dimensional grid as induced subgraph.

Corollary (cf. Seese 1991)

The MSO-theory of C is undecidable.
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Main Theorem

Theorem
The FO-theory of C is primitive recursive.

Idea (cf. Ferrante, Racko� 1979)

For each element from Q, find another one which is equivalent and
close to the root ε.

We prove this by induction on quantifier depth of an
FO-formula.
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Induction Step

Let φ(~y) = ∃x : ψ(~y, x) ∈ FO with m free variables and
quantifier rank ≤ r + 1.
Let~s,~t ∈ Qm with (C,~s) |= φ and (C,~t) |= φ; and let sm+1 ∈ Q
with (C,~s, sm+1) |= ψ.
Find “small” tm+1 with (C,~t, tm+1) |= ψ.

first case:
ε

s1

t1

s2

t2

s3

t3
smtm

sm+1

sm+1 = tm+1

sm+1

tm+1

sm+1tm+1
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Borders: Motivation

Consider the transformations having abacaba as subsequence
of write and read actions:
(abacaba, ε, abacaba)  abacabaabacaba
(abacab, a, bacaba)  abacabaabacaba
(abac, aba, caba)  abacaabbaacaba
(ε, abacaba, ε)  aabbaaccaabbaa

Shortest path between abacabaabacaba and aabbaaccaabbaa?

abacabaabacaba aabbaaccaabbaa

ε

abacabaaabacaba
a a
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Borders: Definition

Consider the transformations having abacaba as subsequence
of write and read actions:
(abacaba, ε, abacaba)  abacabaabacaba
(abacab, a, bacaba)  abacabaabacaba
(abac, aba, caba)  abacaabbaacaba
(ε, abacaba, ε)  aabbaaccaabbaa

Definition
Let v,w ∈ A∗.

v is a border of w if it is a prefix and a su�ix of w .

The border-decomposition (w0, . . . ,wn) of w is the sequence of
all borders of w in length-increasing order.
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Skeletons & Instantiations

Recall ~w = (ε, a, aba, abacaba) is the border-decomposition of
abacaba.
Here: wi+1 = wixiwi for each 0 ≤ i < 3 and some xi ∈ A∗

Definition
Let (w0, . . . ,wn) be the border-decomposition of w ∈ A∗ and r ∈ N.
The r-skeleton Sr(w) of w is the sequence (s0, . . . , sn−1) where si is
the maximal prefix of length at most r of w−1i w .

Example (w = abacaba, r = 2)
abacaba

abacaba

abacaba

⇒ S2(w) = (ab, ba, ca)
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Skeletons & Instantiations

Recall ~w = (ε, a, aba, abacaba) is the border-decomposition of
abacaba.
Here: wi+1 = wixiwi for each 0 ≤ i < 3 and some xi ∈ A∗

Definition
Let (w0, . . . ,wn) be the border-decomposition of w ∈ A∗ and r ∈ N.
The r-skeleton Sr(w) of w is the sequence (s0, . . . , sn−1) where si is
the maximal prefix of length at most r of w−1i w .

Definition
An r-instantiation of an r-skeleton (s0, . . . , sn−1) is the word vn with
v0 = ε and vi+1 = vi siyi vi (for some special yi ∈ AO(n+r)).

Lemma
Let v be an r-instantiation of an r-skeleton (s0, . . . , sn−1). Then
|v| = O(2nr) and Sr(v) = (s0, . . . , sn−1).
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Induction Step

Let φ(~y) = ∃x : ψ(~y, x) ∈ FO with m free variables and
quantifier rank ≤ r + 1.
Let~s,~t ∈ Qm with (C,~s) |= φ and (C,~t) |= φ; and let sm+1 ∈ Q
with (C,~s, sm+1) |= ψ.
Find “small” tm+1 with (C,~t, tm+1) |= ψ.

second case:
ε

s1

t1

s2

t2

s3

t3
smtm

sm+1sm+1 = tm+1

sm+1

tm+1

sm+1tm+1
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Shortening of Words

find s′ ∈ Q close to sm+1 with
µ(s′) has as many borders as possible
hence, SO(2r+m)(µ(s′)) is as long as possible

we can construct an automaton As′ with

L(As′) =
{
V ∈ (AO(2

r+m))∗
∣∣∣V ≡Büchi

r+1 SO(2r+m)(µ(s
′))
}

≡Büchi
r+1 is related to Büchi’s logic on words

find some small word V ∈ L(As′) and construct an
O(2r+m)-instantiation v of V

choose t ′ ∈ Q with µ(t ′) = v appropriately

recall the path from s′ to sm+1 and go a similar path
from t ′ to new tm+1

sm+1

s′

w

t ′

tm+1

w

Problem
There may be multiple nodes tm+1 with path from t ′ labelled with w .
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Choosing the Right Node (1)

Let (w0, . . . ,wn) and (v0, . . . , vn′) be the border-decompositions
of µ(s′) resp. µ(t ′).
Recall that SO(2r+m)(µ(s′)) ≡Büchi

r+1 SO(2r+m)(µ(t ′)).
Let 0 ≤ k ≤ n be maximal such that wk is a prefix of µ(sm+1).
Hence, there is ` with
(SO(2r+m)(µ(s′)), k) ≡Büchi

r (SO(2r+m)(µ(t ′)), `).
Find tm+1 such that v` is maximal with v` is prefix of µ(tm+1).

sm+1

s′ t ′

ε µ(s′) ε µ(t ′)

≡Büchi
r+1

wk v`≡Büchi
r

tm+1
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Induction Step

Let φ(~y) = ∃x : ψ(~y, x) ∈ FO with m free variables and
quantifier rank ≤ r + 1.
Let~s,~t ∈ Qm with (C,~s) |= φ and (C,~t) |= φ; and let sm+1 ∈ Q
with (C,~s, sm+1) |= ψ.
Find “small” tm+1 with (C,~t, tm+1) |= ψ.

third case:
ε

s1

t1

s2

t2

s3

t3
smtm

sm+1sm+1 = tm+1

sm+1

tm+1

sm+1tm+1
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Choosing the Right Node (2)

sm+1 is close to si (1 ≤ i ≤ m minimal)

Let s′ and t ′ be constructed from si as in 2nd case.

si ti

sj tj

sm+1
s′ t ′

ε µ(s′) ε µ(t ′)wkjwki wkm+1 v`j v`i

≡Büchi
r+1

v`m+1≡Büchi
r

tm+1
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Conclusion & Open Problems

Theorem
The FO-theory of C is primitive recursive.

Open Problems

1 Is the FO-theory of C decidable in elementary time?

2 Is C automatic?
3 Is the FO-theory of the (Partially) Lossy�eue Monoid’s

Cayley-graph decidable?
(Partially) Lossy�eues can forget parts of their content at any
time.

Thank you!
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