The Cayley-Graph of the Queue Monoid: Logic and Decidability

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science 2018, Ahmedabad

Faried Abu Zaid1,2 Chris Köcher2

1 Camelot Management Consultants, Munich
2 Automata and Logics Group, Technische Universität Ilmenau

December 12, 2018
Motivation

Question

Is the Queue Monoid automatic?

- Queue Monoid is algebraic description of a queue’s behavior
- Automatic structures have nice properties
 - e.g. decidable FO-theory [Khoussainov, Nerode 1995]
- The Queue Monoid’s FO-theory is undecidable

Answer

No!
Motivation

Question (Huschenbett, Kuske, Zetzsche 2014)

Is the Cayley-graph of the Queue Monoid automatic?

- Queue Monoid is algebraic description of a queue’s behavior
- Automatic structures have nice properties
 - e.g. decidable FO-theory [Khoussainov, Nerode 1995]
- The Queue Monoid’s FO-theory is undecidable

Possible Approach

Prove that the FO-theory of the Queue Monoid’s Cayley-graph is undecidable.
Motivation

Question (Huschenbett, Kuske, Zetzsche 2014)

Is the Cayley-graph of the Queue Monoid automatic?

- Queue Monoid is algebraic description of a queue’s behavior
- Automatic structures have nice properties
 - e.g. decidable FO-theory [Khoussainov, Nerode 1995]
- The Queue Monoid’s FO-theory is undecidable

Here

The FO-theory of the Queue Monoid’s Cayley-graph is decidable.
Let A be an alphabet ($|A| \geq 2$).

- two actions for each $a \in A$:
 - write letter a, denoted: a
 - read letter a, denoted: \bar{a}

- $\Sigma := \{a, \bar{a} \mid a \in A\}$

Example

$q = abaa$
$t = b\bar{a}b\bar{b}$

\[
\begin{array}{cccc}
 a & b & a & a \\
\end{array}
\]
Let A be an alphabet ($|A| \geq 2$).

- two actions for each $a \in A$:
 - write letter a, denoted: a
 - read letter a, denoted: \bar{a}

- $\Sigma := \{a, \bar{a} | a \in A\}$

Example

$q = abaa$

$t = b\bar{a}b\bar{b}$
Let A be an alphabet ($|A| \geq 2$).

- two actions for each $a \in A$:
 - write letter a, denoted: a
 - read letter a, denoted: \overline{a}

- $\Sigma := \{a, \overline{a} | a \in A\}$

Example

$q = abaa$ $t = b\overline{a}b\overline{b}$

\[
\begin{array}{cccccc}
 a & b & a & a & b & \text{\underline{}} \\
\end{array}
\]
Let A be an alphabet ($|A| \geq 2$).

- two actions for each $a \in A$:
 - write letter a, denoted: a
 - read letter a, denoted: \bar{a}

- $\Sigma := \{a, \bar{a} \mid a \in A\}$

Example

$q = abaa$

$t = b\bar{a}b\bar{b}$

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
</table>
```

a
Let A be an alphabet ($|A| \geq 2$).

- Two actions for each $a \in A$:
 - Write letter a, denoted: a
 - Read letter a, denoted: \bar{a}

- $\Sigma := \{a, \bar{a} \mid a \in A\}$

Example

$q = abaa$ \hspace{1cm} $t = b\bar{a}b\bar{b}$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>
Let A be an alphabet ($|A| \geq 2$).

two actions for each $a \in A$:

- write letter a, denoted: a
- read letter a, denoted: \bar{a}

$\Sigma := \{ a, \bar{a} | a \in A \}$

Example

$q = abaa$ \hspace{1cm} t = b\bar{a}b\bar{b}$

```
  b  a  a  b
  
  \hline
  b
```
Let A be an alphabet ($|A| \geq 2$).

two actions for each $a \in A$:

- write letter a, denoted: a
- read letter a, denoted: \bar{a}

$\Sigma := \{a, \bar{a} \mid a \in A\}$

Example

$q = abaa$
$t = b\bar{a}b\bar{b}$

```
  b  a  a  b  b
```

Let A be an alphabet ($|A| \geq 2$).

- two actions for each $a \in A$:
 - write letter a, denoted: a
 - read letter a, denoted: \bar{a}

- $\Sigma := \{a, \bar{a} \mid a \in A\}$

Example

$q = abaa$

$t = b\bar{a}b\bar{b}$

```
  b  a  a  b  b
  b
```
Let A be an alphabet ($|A| \geq 2$).

Two actions for each $a \in A$:
- Write letter a, denoted: a
- Read letter a, denoted: \overline{a}

$\Sigma := \{a, \overline{a} | a \in A\}$

Example

$q = abaa$
$t = b\overline{a}b\overline{b}$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>
The Queue Monoid

Definition

$s, t \in \Sigma^*$ act equally (in symbols $s \equiv t$) if, and only if,

$$\forall p, q \in A^*: p \xrightarrow{s} q \iff p \xrightarrow{t} q.$$

Theorem (Huschenbett, Kuske, Zetzsche 2014)

\equiv is the least congruence on Σ^* satisfying the following equations:

1. $ab \equiv ba$ if $a \neq b$
2. $aac \equiv \overline{aac}$
3. $c\overline{a}a \equiv c\overline{aa}$

for each $a, b, c \in A$.

Definition

$Q := \Sigma^*/\equiv$ is called the queue monoid.
Let $[w] \equiv \in Q$. A **characteristic** of $[w] \equiv$ is a triple $(\lambda, a_1 \ldots a_m, \rho) \in (A^*)^3$ with

$$\bar{\lambda} \cdot a_1 \bar{a}_1 a_2 \bar{a}_2 \ldots a_m \bar{a}_m \cdot \rho \equiv w.$$

Example

Let $t = \overline{[abacabacabaaba]} \equiv$.
- $\overline{abaca\bar{a}b\bar{b}a\bar{a}caba} \equiv \overline{abacabacabaaba}$
- $(abac, aba, caba)$ is a characteristic of t
Characteristics

Definition

Let \([w]_\equiv \in Q\). A **characteristic** of \([w]_\equiv\) is a triple
\((\lambda, a_1 \ldots a_m, \rho) \in (A^*)^3\) with

\[
\bar{\lambda} \cdot a_1 \bar{a_1} a_2 \bar{a_2} \ldots a_m \bar{a_m} \cdot \rho \equiv w.
\]

Proposition (cf. Huschenbett, Kuske, Zetzsche 2014)

Each \(t \in Q\) *has exactly one characteristic.*

Definition

Let \(t \in Q\) and \((w_L, w_M, w_R)\) be its characteristic. We denote the second component by \(\mu(t) := w_M\).
The queue monoid’s Cayley-graph is the Σ-labeled graph

$\mathcal{G} := (Q, (E_\alpha)_{\alpha \in \Sigma})$ with

$$E_\alpha = \{(t, t\alpha) \mid t \in Q\}.$$
Properties of the Cayley-Graph

Proposition

1. \mathcal{C} is an acyclic graph with root ε.
2. \mathcal{C} has bounded out-degree and unbounded in-degree.
3. \mathcal{C} contains an infinite 2-dimensional grid as induced subgraph.

Corollary (cf. Seese 1991)

The MSO-theory of \mathcal{C} is undecidable.
Main Theorem

Theorem

The FO-theory of \(C \) is primitive recursive.

Idea (cf. Ferrante, Rackoff 1979)

For each element from \(Q \), find another one which is equivalent and close to the root \(\varepsilon \).

- We prove this by induction on quantifier depth of an FO-formula.
Induction Step

- Let $\phi(\vec{y}) = \exists x : \psi(\vec{y}, x) \in \text{FO}$ with m free variables and quantifier rank $\leq r + 1$.
- Let $\vec{s}, \vec{t} \in Q^m$ with $(\mathcal{C}, \vec{s}) \models \phi$ and $(\mathcal{C}, \vec{t}) \models \phi$; and let $s_{m+1} \in Q$ with $(\mathcal{C}, \vec{s}, s_{m+1}) \models \psi$.
- Find "small" t_{m+1} with $(\mathcal{C}, \vec{t}, t_{m+1}) \models \psi$.

First case:
Induction Step

- Let $\phi(\vec{y}) = \exists x : \psi(\vec{y}, x) \in FO$ with m free variables and quantifier rank $\leq r + 1$.
- Let $\bar{s}, \bar{t} \in Q^m$ with $(\mathcal{C}, \bar{s}) \models \phi$ and $(\mathcal{C}, \bar{t}) \models \phi$; and let $s_{m+1} \in Q$ with $(\mathcal{C}, \bar{s}, s_{m+1}) \models \psi$.
- Find “small” t_{m+1} with $(\mathcal{C}, \bar{t}, t_{m+1}) \models \psi$.

second case:
Consider the transformations having \(abacaba\) as subsequence of write and read actions:

\[
\begin{align*}
(abacaba, \varepsilon, abacaba) & \leadsto \underline{abacabaabacaba} \\
(abacab, a, bacaba) & \leadsto \underline{abacaba\bar{a}bacaba} \\
(abac, aba, caba) & \leadsto \underline{abaca\bar{a}bba\bar{a}caba} \\
(\varepsilon, abacaba, \varepsilon) & \leadsto \underline{a\bar{a}b\bar{a}a\bar{c}\bar{a}a\bar{a}b\bar{b}\bar{a}\bar{a}}
\end{align*}
\]

Shortest path between \(abacabaabacaba\) and \(a\bar{a}b\bar{b}a\bar{a}c\bar{c}a\bar{a}b\bar{b}a\bar{a}\)?
Consider the transformations having \textit{abacaba} as subsequence of write and read actions:

\[(\text{abacaba}, \varepsilon, \text{abacaba}) \leadsto \underline{\text{abacaba}}\underline{\text{abacaba}}\]

\[(\text{abacab}, a, \text{bacaba}) \leadsto \underline{\text{abacaba}}\underline{\text{abacaba}}\]

\[(\text{abac}, aba, caba) \leadsto \underline{\text{abaca}}\underline{\text{abhaa}}\underline{\text{acaba}}\]

\[(\varepsilon, \text{abacaba}, \varepsilon) \leadsto \underline{a\bar{a}b\bar{b}a\bar{c}\bar{c}a\bar{a}}\underline{b\bar{b}a\bar{a}}\]

\begin{definition}

Let \(v, w \in A^*\).

- \(v\) is a \textbf{border} of \(w\) if it is a prefix and a suffix of \(w\).
- The \textbf{border-decomposition} \((w_0, \ldots, w_n)\) of \(w\) is the sequence of all borders of \(w\) in length-increasing order.

\end{definition}
Recall \(\vec{w} = (\varepsilon, a, aba, abacaba) \) is the border-decomposition of \(abacaba \).

Here: \(w_{i+1} = w_i x_i w_i \) for each \(0 \leq i < 3 \) and some \(x_i \in A^* \)

Definition

Let \((w_0, \ldots, w_n) \) be the border-decomposition of \(w \in A^* \) and \(r \in \mathbb{N} \). The \(r \)-skeleton \(S_r(w) \) of \(w \) is the sequence \((s_0, \ldots, s_{n-1}) \) where \(s_i \) is the maximal prefix of length at most \(r \) of \(w_i^{-1} w \).

Example \((w = abacaba, r = 2) \)

- \(abacaba \)
- \(abacaba \)
- \(abacaba \)

\(\Rightarrow S_2(w) = (ab, ba, ca) \)
Skeletons & Instantiations

- Recall $\vec{w} = (\varepsilon, a, aba, abacaba)$ is the border-decomposition of $abacaba$.
- Here: $w_{i+1} = w_ix_iw_i$ for each $0 \leq i < 3$ and some $x_i \in A^*$

Definition

Let (w_0, \ldots, w_n) be the border-decomposition of $w \in A^*$ and $r \in \mathbb{N}$. The r-skeleton $S_r(w)$ of w is the sequence (s_0, \ldots, s_{n-1}) where s_i is the maximal prefix of length at most r of $w_i^{-1}w$.

Definition

An r-instantiation of an r-skeleton (s_0, \ldots, s_{n-1}) is the word v_n with $v_0 = \varepsilon$ and $v_{i+1} = v_is_iy_iv_i$ (for some special $y_i \in A^O(n+r)$).

Lemma

Let v be an r-instantiation of an r-skeleton (s_0, \ldots, s_{n-1}). Then $|v| = O(2^{nr})$ and $S_r(v) = (s_0, \ldots, s_{n-1})$.
Induction Step

- Let $\phi(\vec{y}) = \exists x : \psi(\vec{y}, x) \in \text{FO}$ with m free variables and quantifier rank $\leq r + 1$.
- Let $\vec{s}, \vec{t} \in Q^m$ with $(\mathcal{C}, \vec{s}) \models \phi$ and $(\mathcal{C}, \vec{t}) \models \phi$; and let $s_{m+1} \in Q$ with $(\mathcal{C}, \vec{s}, s_{m+1}) \models \psi$.
- Find “small” t_{m+1} with $(\mathcal{C}, \vec{t}, t_{m+1}) \models \psi$.
 - second case:
Shortening of Words

- find \(s' \in Q \) close to \(s_{m+1} \) with
 - \(\mu(s') \) has as many borders as possible
 - hence, \(S_{O(2^{r+m})}(\mu(s')) \) is as long as possible
- we can construct an automaton \(A_{s'} \) with
 \[
 L(A_{s'}) = \left\{ V \in (A^{O(2^{r+m})})^* \mid V \equiv_{r+1}^{\text{B"uchi}} S_{O(2^{r+m})}(\mu(s')) \right\}
 \]
 - \(\equiv_{r+1}^{\text{B"uchi}} \) is related to Büchi’s logic on words
- find some small word \(V \in L(A_{s'}) \) and construct an \(O(2^{r+m}) \)-instantiation \(v \) of \(V \)
- choose \(t' \in Q \) with \(\mu(t') = v \) appropriately
- recall the path from \(s' \) to \(s_{m+1} \) and go a similar path from \(t' \) to new \(t_{m+1} \)

Problem

There may be multiple nodes \(t_{m+1} \) with path from \(t' \) labelled with \(w \).
Let \((w_0, \ldots, w_n)\) and \((v_0, \ldots, v_{n'})\) be the border-decompositions of \(\mu(s')\) resp. \(\mu(t')\).

Recall that \(S_{\mathcal{O}(2^{r+m})}(\mu(s')) \equiv_{r+1}^\text{Büchi} S_{\mathcal{O}(2^{r+m})}(\mu(t'))\).

Let \(0 \leq k \leq n\) be maximal such that \(w_k\) is a prefix of \(\mu(s_{m+1})\).

Hence, there is \(\ell\) with
\[(S_{\mathcal{O}(2^{r+m})}(\mu(s')), k) \equiv_{r}^\text{Büchi} (S_{\mathcal{O}(2^{r+m})}(\mu(t')), \ell)\).

Find \(t_{m+1}\) such that \(v_\ell\) is maximal with \(v_\ell\) is prefix of \(\mu(t_{m+1})\).
Induction Step

- Let $\phi(\vec{y}) = \exists x : \psi(\vec{y}, x) \in \text{FO}$ with m free variables and quantifier rank $\leq r + 1$.
- Let $\vec{s}, \vec{t} \in Q^m$ with $(\mathcal{C}, \vec{s}) \models \phi$ and $(\mathcal{C}, \vec{t}) \models \phi$; and let $s_{m+1} \in Q$ with $(\mathcal{C}, \vec{s}, s_{m+1}) \models \psi$.
- Find “small” t_{m+1} with $(\mathcal{C}, \vec{t}, t_{m+1}) \models \psi$.
- third case:
- s_{m+1} is close to s_i ($1 \leq i \leq m$ minimal)

- Let s' and t' be constructed from s_i as in 2nd case.
Conclusion & Open Problems

Theorem

The FO-theory of \mathcal{C} is primitive recursive.

Open Problems

1. Is the FO-theory of \mathcal{C} decidable in elementary time?
2. Is \mathcal{C} automatic?
3. Is the FO-theory of the (Partially) Lossy Queue Monoid’s Cayley-graph decidable?
 - (Partially) Lossy Queues can forget parts of their content at any time.

Thank you!