

The Cayley-Graph of the Queue Monoid: Logic and Decidability

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science 2018, Ahmedabad

Faried Abu Zaid^{1,2} Chris Köcher²

¹ Camelot Management Consultants, Munich

² Automata and Logics Group, Technische Universität Ilmenau

December 12, 2018

Question

Is the Queue Monoid automatic?

- Queue Monoid is algebraic description of a queue's behavior
- Automatic structures have nice properties
 - e.g. decidable FO-theory [Khoussainov, Nerode 1995]
- The Queue Monoid's FO-theory is undecidable

Answer No!

Question (Huschenbett, Kuske, Zetzsche 2014)

Is the Cayley-graph of the Queue Monoid automatic?

- Queue Monoid is algebraic description of a queue's behavior
- Automatic structures have nice properties
 - e.g. decidable FO-theory [Khoussainov, Nerode 1995]
- The Queue Monoid's FO-theory is undecidable

Possible Approach

Prove that the FO-theory of the Queue Monoid's Cayley-graph is undecidable.

Question (Huschenbett, Kuske, Zetzsche 2014)

Is the Cayley-graph of the Queue Monoid automatic?

- Queue Monoid is algebraic description of a queue's behavior
- Automatic structures have nice properties
 - e.g. decidable FO-theory [Khoussainov, Nerode 1995]
- The Queue Monoid's FO-theory is undecidable

Here

The FO-theory of the Queue Monoid's Cayley-graph is decidable.

 $s, t \in \Sigma^*$ act equally (in symbols $s \equiv t$) if, and only if,

$$\forall p,q \in A^* \colon p \xrightarrow{s} q \iff p \xrightarrow{t} q.$$

Theorem (Huschenbett, Kuske, Zetzsche 2014)

≡ is the least congruence on Σ* satisfying the following equations:
1 ab ≡ ba if a ≠ b
2 aac ≡ aac
3 caā ≡ cāa

for each $a, b, c \in A$.

Definition

 $\mathcal{Q} := \Sigma^*/_{\equiv}$ is called the queue monoid.

Let $[w]_{\equiv} \in \mathcal{Q}$. A characteristic of $[w]_{\equiv}$ is a triple $(\lambda, a_1 \dots a_m, \rho) \in (A^*)^3$ with

$$\overline{\lambda} \cdot a_1 \overline{a_1} a_2 \overline{a_2} \dots a_m \overline{a_m} \cdot \rho \equiv w.$$

- Let $t = [\overline{abac}abacaba\overline{aba}]_{\equiv}$.
 - $\overline{abac}a\overline{a}b\overline{b}a\overline{a}caba \equiv \overline{abac}abacaba\overline{aba}$
 - (*abac*, *aba*, *caba*) is a characteristic of *t*

Let $[w]_{\equiv} \in Q$. A characteristic of $[w]_{\equiv}$ is a triple $(\lambda, a_1 \dots a_m, \rho) \in (A^*)^3$ with

$$\overline{\lambda} \cdot a_1 \overline{a_1} a_2 \overline{a_2} \dots a_m \overline{a_m} \cdot \rho \equiv w$$
.

Proposition (cf. Huschenbett, Kuske, Zetzsche 2014)

Each $t \in Q$ has exactly one characteristic.

Definition

Let $t \in Q$ and (w_L, w_M, w_R) be its characteristic. We denote the second component by $\mu(t) := w_M$.

The queue monoid's Cayley-graph is the Σ -labeled graph $\mathfrak{C} := (\mathcal{Q}, (E_{\alpha})_{\alpha \in \Sigma})$ with

$$\mathsf{E}_{\alpha} = \{(t, t\alpha) \mid t \in \mathcal{Q}\}.$$

Proposition

- **1** \mathfrak{C} is an acyclic graph with root ε .
- 2 C has bounded out-degree and unbounded in-degree.
- **3** C contains an infinite 2-dimensional grid as induced subgraph.

Corollary (cf. Seese 1991)

The MSO-theory of \mathfrak{C} is undecidable.

Theorem

The FO-theory of C is primitive recursive.

Idea (cf. Ferrante, Rackoff 1979)

For each element from Q, find another one which is equivalent and close to the root ε .

• We prove this by induction on quantifier depth of an FO-formula.

Induction Step

Induction Step

Consider the transformations having *abacaba* as subsequence of write and read actions:

(abacaba, ε , abacaba)	\rightsquigarrow	abacabaabacaba
(abacab, a, bacaba)	\rightsquigarrow	abacabaābacaba
(abac, aba, caba)	\rightsquigarrow	abacaābbaācaba
($arepsilon,$ abacaba, $arepsilon$)	\rightsquigarrow	aābbaāccaābbaā

Shortest path between *abacabaabacaba* and *aabbaaccaabbaa*?

Borders: Definition

Consider the transformations having *abacaba* as subsequence of write and read actions:

(abacaba, ε , abacaba)	\rightsquigarrow	abacabaabacaba
(abacab, <mark>a</mark> , bacaba)	\rightsquigarrow	abacabaābacaba
(abac, <mark>aba</mark> , caba)	\rightsquigarrow	<u>abac</u> aābbāācaba
$(\varepsilon, abacaba, \varepsilon)$	\rightsquigarrow	aābbaācīcaābbaā

Definition

Let $v, w \in A^*$.

- *v* is a border of *w* if it is a prefix and a suffix of *w*.
- The border-decomposition (*w*₀,..., *w_n*) of *w* is the sequence of all borders of *w* in length-increasing order.

Skeletons & Instantiations

- Recall $\vec{w} = (\varepsilon, a, aba, abacaba)$ is the border-decomposition of *abacaba*.
- Here: $w_{i+1} = w_i x_i w_i$ for each $0 \le i < 3$ and some $x_i \in A^*$

Definition

Let (w_0, \ldots, w_n) be the border-decomposition of $w \in A^*$ and $r \in \mathbb{N}$. The *r*-skeleton $S_r(w)$ of *w* is the sequence (s_0, \ldots, s_{n-1}) where s_i is the maximal prefix of length at most *r* of $w_i^{-1}w$.

Example (w = abacaba, r = 2)

- abacaba
- $abacaba \Rightarrow S_2(w) = (ab, ba, ca)$
- ∎ aba<mark>caba</mark>

Skeletons & Instantiations

- Recall $\vec{w} = (\varepsilon, a, aba, abacaba)$ is the border-decomposition of *abacaba*.
- Here: $w_{i+1} = w_i x_i w_i$ for each $0 \le i < 3$ and some $x_i \in A^*$

Definition

Let (w_0, \ldots, w_n) be the border-decomposition of $w \in A^*$ and $r \in \mathbb{N}$. The *r*-skeleton $S_r(w)$ of *w* is the sequence (s_0, \ldots, s_{n-1}) where s_i is the maximal prefix of length at most *r* of $w_i^{-1}w$.

Definition

An *r*-instantiation of an *r*-skeleton (s_0, \ldots, s_{n-1}) is the word v_n with $v_0 = \varepsilon$ and $v_{i+1} = v_i s_i y_i v_i$ (for some special $y_i \in A^{\mathcal{O}(n+r)}$).

Lemma

Let v be an r-instantiation of an r-skeleton (s_0, \ldots, s_{n-1}) . Then $|v| = O(2^{nr})$ and $S_r(v) = (s_0, \ldots, s_{n-1})$.

Induction Step

Shortening of Words

• find $s' \in Q$ close to s_{m+1} with

- $\mu(s')$ has as many borders as possible
- hence, $S_{\mathcal{O}(2^{r+m})}(\mu(s'))$ is as long as possible
- we can construct an automaton $\mathcal{A}_{s'}$ with

$$L(\mathcal{A}_{s'}) = \left\{ V \in (\mathcal{A}^{\mathcal{O}(2^{r+m})})^* \mid V \equiv_{r+1}^{\mathsf{Büchi}} S_{\mathcal{O}(2^{r+m})}(\mu(s')) \right\}$$

■ $\equiv_{r+1}^{\text{Büchi}}$ is related to Büchi's logic on words

- find some small word $V \in L(\mathcal{A}_{s'})$ and construct an $\mathcal{O}(2^{r+m})$ -instantiation v of V
- choose $t' \in \mathcal{Q}$ with $\mu(t') = v$ appropriately
- recall the path from s' to s_{m+1} and go a similar path from t' to new t_{m+1}

Problem

There may be multiple nodes t_{m+1} with path from t' labelled with w.

Choosing the Right Node (1)

- Let (w₀,..., w_n) and (v₀,..., v_{n'}) be the border-decompositions of μ(s') resp. μ(t').
- Recall that $S_{\mathcal{O}(2^{r+m})}(\mu(s')) \equiv_{r+1}^{\text{Büchi}} S_{\mathcal{O}(2^{r+m})}(\mu(t')).$
- Let $0 \le k \le n$ be maximal such that w_k is a prefix of $\mu(s_{m+1})$.
- Hence, there is ℓ with $(\mathcal{S}_{\mathcal{O}(2^{r+m})}(\mu(s')), k) \equiv_r^{\text{Büchi}} (\mathcal{S}_{\mathcal{O}(2^{r+m})}(\mu(t')), \ell).$
- Find t_{m+1} such that v_{ℓ} is maximal with v_{ℓ} is prefix of $\mu(t_{m+1})$.

Induction Step

• s_{m+1} is close to s_i ($1 \le i \le m$ minimal)

• Let s' and t' be constructed from s_i as in 2nd case.

Theorem

The FO-theory of \mathfrak{C} is primitive recursive.

Open Problems

- Is the FO-theory of ℭ decidable in elementary time?
- Is C automatic?
- Is the FO-theory of the (Partially) Lossy Queue Monoid's Cayley-graph decidable?
 - (Partially) Lossy Queues can forget parts of their content at any time.

Thank you!