# Forwards- and Backwards-Reachability for Cooperating Multi-Pushdown Systems 

$24^{\text {th }}$ International Symposium on Fundamentals of Computation Theory, Trier

## Chris Köcher ${ }^{1,(2)} \quad$ Dietrich Kuske ${ }^{2}$

${ }^{1}$ Max Planck Institute for Software Systems, Kaiserslautern
${ }^{2}$ Technische Universität Ilmenau

September 21, 2023

## Motivation

- Consider automata with one or more pushdowns.
- Model distributed systems with recursive function calls.
- In general, 2-pushdown automata are Turing-complete!
$\Rightarrow$ Verification problems are undecidable.
- Here: consider a special restriction to the automata.
$\leadsto$ cooperating multi-pushdown systems


## (Mazurkiewicz) Traces

■ Distributed alphabet:


## (Mazurkiewicz) Traces

■ Distributed alphabet:


- $\mathcal{D}$ induces vectors: $\binom{a}{\varepsilon},\left(\begin{array}{l}\varepsilon \\ b \\ b\end{array}\right),\binom{c}{c}$
- Trace monoid (or free partially commutative monoid): $\left.\mathbb{M}(\mathcal{D})=\left\{\begin{array}{l}a \\ \varepsilon\end{array}\right),\binom{\varepsilon}{b},\binom{c}{c}\right\}^{*}$
- $\binom{a}{\varepsilon} \cdot\left(\begin{array}{l}\varepsilon \\ b \\ b\end{array}\right)=\left(\begin{array}{l}a \\ b \\ b\end{array}\right)=\left(\begin{array}{l}\varepsilon \\ b \\ b\end{array}\right) \cdot\binom{a}{\varepsilon}$
- ( $\left.\begin{array}{c}a \\ \varepsilon \\ \varepsilon\end{array}\right) \cdot\binom{c}{c}=\binom{a c}{c} \neq\binom{ c a}{c}=\binom{c}{c} \cdot\binom{a}{\varepsilon}$
- Processes in $\tau \in \mathbb{M}(\mathcal{D}): P_{\tau}=\{i \in P \mid \tau[i] \neq \varepsilon\}$


## Cooperating Multi-Pushdown Systems (CPDS)



## Example



## Configurations

- A configuration of $\mathfrak{P}$ is a tuple from $\prod_{i \in P} Q_{i} \times \mathbb{M}(\mathcal{D})$.
- Let $C$ be a set of configurations of $\mathfrak{P}$.
- $\operatorname{pre}_{\mathfrak{P}}^{*}(C):=\left\{d \mid \exists c \in C: d \rightarrow_{\mathfrak{P}}^{*} c\right\}$
- $\operatorname{post}_{\mathfrak{\beta}}^{*}(C):=\left\{d \mid \exists c \in C: c \rightarrow_{\mathfrak{P}}^{*} d\right\}$
- $C$ is recognizable iff for each $\bar{q} \in \prod_{i \in P} Q_{i}$ the language $C_{\bar{q}}=\{\tau \in \mathbb{M}(\mathcal{D}) \mid(\bar{q}, \tau) \in C\}$ is recognizable.
$\leadsto$ accepted by an asynchronous automaton.
- $C$ is rational iff for each $\bar{q} \in \prod_{i \in P} Q_{i}$ the language $C_{\bar{q}}$ is rational.
$\leadsto$ constructed from finite sets using $\cup, \cdot$, and ${ }^{*}$.


## Lemma

$$
C \text { is recognizable } \quad \underset{ }{\rightleftarrows} C \text { is rational. }
$$

## Backwards Reachability

## Theorem

Let $\mathfrak{P}$ be a CPDS and $C$ be a recognizable set of configurations of $\mathfrak{P}$. Then pre $_{\mathfrak{P}}^{*}(C)$ is effectively recognizable (in polynomial time).

Proof idea: The construction adapts ideas by Bouajjani, Maler, and Esparza (CONCUR 1997) from NFAs to asynchronous automata.

## Forwards Reachability

Theorem
Let $\mathfrak{P}$ be a CPDS and $C$ be a rational set of configurations of $\mathfrak{P}$. Then post $\mathfrak{P}^{*}(C)$ is effectively rational. If the underlying distributed alphabet $\mathcal{D}$ is fixed, our construction is possible in polynomial time.

## Proof Idea: The One Stack Case [Finkel et al. 1997]




Proof Idea: The One Stack Case [Finkel et al. 1997]





## Proof Idea: The One Stack Case [Finkel et al. 1997]



## Proof Idea: The One Stack Case [Finkel et al. 1997]



## Proof Idea: The One Stack Case [Finkel et al. 1997]



## Proof Idea: The One Stack Case [Finkel et al. 1997]



- PDS is saturated if we cannot add more shortcut transitions.


## Proof Idea: The One Stack Case [Finkel et al. 1997]



- PDS is saturated if we cannot add more shortcut transitions.


## Proof Idea: The One Stack Case [Finkel et al. 1997]



- PDS is saturated if we cannot add more shortcut transitions.
- Computing the effect of a decrease / increase phase in saturated PDS is easy!


## Proof Idea: The General Case



1 Saturate the CPDS $\mathfrak{P}$.
2 Decompose $\mathfrak{P}$ into homogeneous CPDS.

## Proof Idea: The General Case



1 Saturate the CPDS $\mathfrak{P}$.
2. Decompose $\mathfrak{P}$ into homogeneous CPDS.

■ each transition in such system

- only reads letters
- reads from the processes $X \subseteq P$, writes at least one letter
$\leadsto$ Computation of post* is "easy" in such CPDS
- Note: There are shortest runs with more than two phases!


## Proof Idea: The General Case



1 Saturate the CPDS $\mathfrak{P}$.
2 Decompose $\mathfrak{P}$ into homogeneous CPDS.
3 Reduce the number of phases of our run.

- Use shortcuts and/or transpose transitions


## Proof Idea: The General Case



1 Saturate the CPDS $\mathfrak{P}$.
2 Decompose $\mathfrak{P}$ into homogeneous CPDS.
3 Reduce the number of phases of our run.

- Use shortcuts and/or transpose transitions


## Proof Idea: The General Case



1 Saturate the CPDS $\mathfrak{P}$.
2 Decompose $\mathfrak{P}$ into homogeneous CPDS.
3 Reduce the number of phases of our run.

- Use shortcuts and/or transpose transitions


## Proof Idea: The General Case



1 Saturate the CPDS $\mathfrak{P}$.
2 Decompose $\mathfrak{P}$ into homogeneous CPDS.
3 Reduce the number of phases of our run.

- Use shortcuts and/or transpose transitions
$\Rightarrow$ Number of phases can be bounded by $O(|A|)$ resp. $O\left(2^{|P|}\right)$


## Conclusion

| C is $\ldots$ | recognizable | rational |
| :---: | :---: | :---: |
| $\operatorname{pre}_{\mathfrak{P}}^{*}(C)$ is $\ldots$ | recognizable | recursively enumerable |
| $\operatorname{post}_{\mathfrak{P}}^{*}(C)$ is $\ldots$ | rational | rational |

## Thank you!

