Forwards- and Backwards-Reachability for Cooperating Multi-Pushdown Systems

24th International Symposium on Fundamentals of Computation Theory, Trier

<u>Chris Köcher</u>^{1,(2)} Dietrich Kuske²

¹Max Planck Institute for Software Systems, Kaiserslautern ²Technische Universität Ilmenau

September 21, 2023

- Consider automata with one or more pushdowns.
 - Model distributed systems with recursive function calls.
- In general, 2-pushdown automata are Turing-complete!
 - ⇒ Verification problems are undecidable.
- Here: consider a special restriction to the automata.
 - → cooperating multi-pushdown systems

(Mazurkiewicz) Traces

Distributed alphabet:

Distributed alphabet:

- \mathcal{D} induces vectors: $\binom{a}{\varepsilon}$, $\binom{\varepsilon}{b}$, $\binom{c}{c}$
- Trace monoid (or free partially commutative monoid): $\mathbb{M}(\mathcal{D}) = \{ \begin{pmatrix} a \\ \varepsilon \end{pmatrix}, \begin{pmatrix} c \\ b \end{pmatrix}, \begin{pmatrix} c \\ c \end{pmatrix} \}^*$

$$\begin{pmatrix} a \\ \varepsilon \end{pmatrix} \cdot \begin{pmatrix} \varepsilon \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \varepsilon \\ b \end{pmatrix} \cdot \begin{pmatrix} a \\ \varepsilon \end{pmatrix}$$

$$\binom{a}{\varepsilon} \cdot \binom{c}{c} = \binom{ac}{c} \neq \binom{ca}{c} = \binom{c}{c} \cdot \binom{a}{\varepsilon}$$

• Processes in $\tau \in \mathbb{M}(\mathcal{D})$: $P_{\tau} = \{i \in P \mid \tau[i] \neq \varepsilon\}$

4

Configurations

- A configuration of \mathfrak{P} is a tuple from $\prod_{i \in P} Q_i \times \mathbb{M}(\mathcal{D})$.
- Let *C* be a set of configurations of \mathfrak{P} .

$$pre_{\mathfrak{P}}^{*}(C) \coloneqq \{d \mid \exists c \in C : d \to_{\mathfrak{P}}^{*} c\} post_{\mathfrak{P}}^{*}(C) \coloneqq \{d \mid \exists c \in C : c \to_{\mathfrak{P}}^{*} d\}$$

- *C* is recognizable iff for each $\overline{q} \in \prod_{i \in P} Q_i$ the language $C_{\overline{q}} = \{\tau \in \mathbb{M}(\mathcal{D}) \mid (\overline{q}, \tau) \in C\}$ is recognizable.
 - → accepted by an asynchronous automaton.
- *C* is rational iff for each $\overline{q} \in \prod_{i \in P} Q_i$ the language $C_{\overline{q}}$ is rational.
 - $\rightsquigarrow\,$ constructed from finite sets using $\cup,\cdot,$ and *.

Lemma

Theorem

Let \mathfrak{P} be a CPDS and C be a recognizable set of configurations of \mathfrak{P} . Then $\operatorname{pre}_{\mathfrak{P}}^*(C)$ is effectively recognizable (in polynomial time).

Proof idea: The construction adapts ideas by Bouajjani, Maler, and Esparza (CONCUR 1997) from NFAs to asynchronous automata.

Theorem

Let \mathfrak{P} be a CPDS and C be a rational set of configurations of \mathfrak{P} . Then $\text{post}_{\mathfrak{P}}^*(C)$ is effectively rational. If the underlying distributed alphabet \mathcal{D} is fixed, our construction is possible in polynomial time.

PDS is saturated if we cannot add more shortcut transitions.

PDS is saturated if we cannot add more shortcut transitions.

- PDS is saturated if we cannot add more shortcut transitions.
- Computing the effect of a decrease / increase phase in saturated PDS is easy!

1 Saturate the CPDS \mathfrak{P} .

2 Decompose \mathfrak{P} into homogeneous CPDS.

- 1 Saturate the CPDS \mathfrak{P} .
- **2** Decompose \mathfrak{P} into homogeneous CPDS.
 - each transition in such system
 - only reads letters
 - reads from the processes $X \subseteq P$, writes at least one letter
 - → Computation of post* is "easy" in such CPDS
 - Note: There are shortest runs with more than two phases!

- 1 Saturate the CPDS \mathfrak{P} .
- **2** Decompose \mathfrak{P} into homogeneous CPDS.
- **3** Reduce the number of phases of our run.
 - Use shortcuts and/or transpose transitions

- 1 Saturate the CPDS \mathfrak{P} .
- **2** Decompose \mathfrak{P} into homogeneous CPDS.
- **3** Reduce the number of phases of our run.
 - Use shortcuts and/or transpose transitions

- 1 Saturate the CPDS \mathfrak{P} .
- **2** Decompose \mathfrak{P} into homogeneous CPDS.
- **3** Reduce the number of phases of our run.
 - Use shortcuts and/or transpose transitions

- 1 Saturate the CPDS \mathfrak{P} .
- **2** Decompose \mathfrak{P} into homogeneous CPDS.
- **3** Reduce the number of phases of our run.
 - Use shortcuts and/or transpose transitions
 - ⇒ Number of phases can be bounded by O(|A|) resp. $O(2^{|P|})$

C is	recognizable	rational
$\operatorname{pre}^*_{\mathfrak{P}}(C)$ is \ldots	recognizable	recursively enumerable
$\operatorname{post}^*_\mathfrak{P}(C)$ is	rational	rational

Thank you!