The Transformation Monoid of a Partially Lossy Queue

12th International Computer Science Symposium in Russia, Kazan

Chris Köcher Dietrich Kuske

Fachgebiet Automaten und Logik
Technische Universität IImenau

$$
\text { June 9, } 2017
$$

What is a Partially Lossy Queue?

- we consider classical fifo-queues

Reliable Queues

- nothing can be forgotten or injected
- undecidable reachability [Brand, Zafiropulo 1983]
- can be "simulated" by queue with two distinct letters [Huschenbett, Kuske, Zetzsche 2014]

Lossy Queues

- everything can be forgotten, nothing can be injected
- decidable reachability [Abdulla, Jonsson 1994]
- cannot be "simulated" by lossy queues with less letters [Köcher 2016]

1 Model the transformations on PLQs as monoid $\Longrightarrow P L Q$ monoid

2 Characterize which PLQ monoids embed into which others \Longrightarrow kind of simulation of one PLQ by another

3 Characterize the trace monoids embedding into PLQ monoid

1 Model the transformations on PLQs as monoid \Longrightarrow PLQ monoid

2 Characterize which PLQ monoids embed into which others \Longrightarrow kind of simulation of one PLQ by another

3 Characterize the trace monoids embedding into PLQ monoid

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

a	a	b	a					

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

a	a	b	a	b				

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

a	a	b	a	b	b			

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$

■ $\Sigma:=\{\mathbf{a}, \overline{\mathbf{a}} \mid a \in A\}$

- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

a	a	b		b	b			

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

a	a	b	b	b				

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$

■ $\Sigma:=\{\mathbf{a}, \overline{\mathbf{a}} \mid a \in A\}$

- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

a	b	b	b					

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$

■ $\Sigma:=\{\mathbf{a}, \overline{\mathbf{a}} \mid a \in A\}$

- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$

■ $\Sigma:=\{\mathbf{a}, \overline{\mathbf{a}} \mid a \in A\}$

- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$

■ $\Sigma:=\{\mathbf{a}, \overline{\mathbf{a}} \mid a \in A\}$

- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a
\end{gathered}
$$

PLQs: Basics

- Let A be an alphabet $(|A| \geq 2)$ and $U \subseteq A$.
- U ... unforgettable letters
- $A \backslash U$... forgettable letters
- two controllable operations for each $a \in A$:
- write letter $a \rightsquigarrow \mathbf{a}$
- read letter $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma:=\{\mathbf{a}, \mathbf{a} \mid a \in A\}$
- non-controllable operation: forgetting letters from $A \backslash U$

Example

$$
\begin{gathered}
A=\{a, b\}, U=\{b\} \\
q=a a b a \quad v=b b \bar{a} \overline{\mathrm{~b}}
\end{gathered}
$$

b	b							

Definition

The map $\circ:\left(A^{*} \cup\{\perp\}\right) \times \boldsymbol{\Sigma}^{*} \rightarrow\left(A^{*} \cup\{\perp\}\right)$ is defined for each $q \in A^{*}, a, b \in A$ and $\mathbf{v} \in \boldsymbol{\Sigma}^{*}$ as follows:
$1 q \circ \varepsilon=q$
$2 \boldsymbol{q} \circ \mathbf{a v}=q a \circ \mathbf{v}$
3 $b q \circ \overline{\mathbf{a}} \mathbf{v}= \begin{cases}q \circ \mathbf{v} & \text { if } a=b \\ q \circ \overline{\mathbf{a}} \mathbf{v} & \text { if } a \neq b, b \in A \backslash U \\ \perp & \text { otherwise }\end{cases}$
$4 \perp \circ \mathbf{v}=\perp=\varepsilon \circ \overline{\mathbf{a}} \mathbf{v}$

Example

Let $A=\{a, b\}$ and $U=\{b\}$.
$a a b a \circ \mathbf{b} \mathbf{b} \overline{\mathbf{a}} \overline{\mathbf{b}}=a a b a b \circ \mathbf{b} \overline{\mathbf{a}} \overline{\mathbf{b}}=a a b a b b \circ \overline{\mathbf{a}} \overline{\mathbf{b}}=a b a b b \circ \overline{\mathbf{b}}=a b b$

Definition

■ $\mathbf{v} \equiv \mathbf{w}$ for $\mathbf{v}, \mathbf{w} \in \boldsymbol{\Sigma}^{*}$ iff $q \circ \mathbf{v}=q \circ \mathbf{w}$ for any $q \in A^{*}$

- $\mathcal{Q}(A, U):=\boldsymbol{\Sigma}^{*} / \equiv \ldots$ PLQ monoid

■ $\mathcal{Q}^{\prime}(f, u):=\mathcal{Q}(\{1, \ldots, f+u\},\{1, \ldots u\})$

Theorem

The word problem of $\mathcal{Q}(A, U)$ is decidable in polynomial time. In other words: Given $\mathbf{v}, \mathbf{w} \in \mathbf{\Sigma}^{*}$. We can decide, whether $\mathbf{v} \equiv \mathbf{w}$ holds.

1 Model the transformations on PLQs as monoid \Longrightarrow PLQ monoid

2 Characterize which PLQ monoids embed into which others \Longrightarrow kind of simulation of one PLQ by another

3 Characterize the trace monoids embedding into PLQ monoid

Main Theorem

Main Theorem

Let $u+f, u^{\prime}+f^{\prime} \geq 2$.
Then $\mathcal{Q}^{\prime}(f, u) \hookrightarrow \mathcal{Q}^{\prime}\left(f^{\prime}, u^{\prime}\right)$ if, and only if, all of the following hold:
$1 f \leq f^{\prime}$
$2 u^{\prime}=0 \Rightarrow u=0$
3 $u^{\prime}=1 \Rightarrow u \leq 1$ or $f<f^{\prime}$

1. Model the transformations on PLQs as monoid \Longrightarrow PLQ monoid

2 Characterize which PLQ monoids embed into which others \Longrightarrow kind of simulation of one PLQ by another

3 Characterize the trace monoids embedding into PLQ monoid

Trace Monoids: Definition

Definition

- An independence alphabet is a finite, undirected, irreflexive graph (Γ, l).
■ \equiv, is the least congruence on Γ^{*} satisfying

$$
a b \equiv \text { । ba for any }(a, b) \in I
$$

- $\mathbb{M}(\Gamma, l):=\Gamma^{*} / \equiv, \ldots$ trace monoid on (Γ, I).

Trace Monoids: Overview

Trace Monoids: Large Queue Alphabets

Theorem

Let $f+2 u \geq 3$ and (Γ, I) be an independence alphabet. Then the following are equivalent:
1 $\mathbb{M}(\Gamma, I) \hookrightarrow \mathcal{Q}^{\prime}(f, u)$.
$2 \mathbb{M}(\Gamma, I) \hookrightarrow \mathcal{Q}^{\prime}(0,2)$.
3 $\mathbb{M}(\Gamma, I) \hookrightarrow\{a, b\}^{*} \times\{c, d\}^{*}$.
4 One of the following conditions holds:
a All nodes in (Γ, I) have degree ≤ 1.
b The only non-trivial connected component of (Γ, I) is complete bipartite.
[Kuske,
Prianychnykova 2016]

Trace Monoids: Binary Queue Alphabet

Theorem

Let (Γ, I) be an independence alphabet. Then the following are equivalent:
$1 \mathbb{M}(\Gamma, I) \hookrightarrow \mathcal{Q}^{\prime}(2,0)$.
2 One of the following conditions holds:
a All nodes in (Γ, I) have degree ≤ 1.
b The only non-trivial connected component of (Γ, I) is a star graph.

Further Research

Submitted:

■ Kleene-type characterization of recognizable subsets:

- Recognizable $(\mathcal{Q}(A, X)) \subsetneq \operatorname{Rational}(\mathcal{Q}(A, X))$
- Recognizable $(\mathcal{Q}(A, X))=\mathrm{q}$-Rational $(\mathcal{Q}(A, X))$

■ Schützenberger-type characterization of aperiodic subsets:

- Aperiodic $(\mathcal{Q}(A, X)) \neq \operatorname{Star-free}(\mathcal{Q}(A, X))$
- Aperiodic $(\mathcal{Q}(A, X))=\mathrm{q}$ - $\operatorname{Star-free}(\mathcal{Q}(A, X))$

Not yet submitted:

- Algorithmic properties of Rational $(\mathcal{Q}(A, X))$, e.g.,
- Recognizability is undecidable

