

The Transformation Monoid of a Partially Lossy Queue 12th International Computer Science Symposium in Russia, Kazan

Chris Köcher Dietrich Kuske

Fachgebiet Automaten und Logik Technische Universität Ilmenau

June 9, 2017

1

we consider classical fifo-queues Reliable Queues

- nothing can be forgotten or injected
- undecidable reachability [Brand, Zafiropulo 1983]
- can be "simulated" by queue with two distinct letters [Huschenbett, Kuske, Zetzsche 2014]

Lossy Queues

- everything can be forgotten, nothing can be injected
- decidable reachability
 [Abdulla, Jonsson 1994]
- cannot be "simulated" by lossy queues with less letters [Köcher 2016]

Partially Lossy Queues (PLQs)

Model the transformations on PLQs as monoid ⇒ PLQ monoid

- 2 Characterize which PLQ monoids embed into which others ⇒ kind of simulation of one PLQ by another
- 3 Characterize the trace monoids embedding into PLQ monoid

Model the transformations on PLQs as monoid ⇒ PLQ monoid

- 2 Characterize which PLQ monoids embed into which others ⇒ kind of simulation of one PLQ by another
- 3 Characterize the trace monoids embedding into PLQ monoid

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\bullet \Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $q = aaba$ $v = \mathbf{b}\mathbf{b}\mathbf{\overline{a}}\mathbf{\overline{b}}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $y = aaba$ $v = bb\overline{a}\overline{b}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\bullet \Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $q = aaba$ $v = bb\overline{a}\overline{b}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $g = aaba$ $v = bb\overline{a}\overline{b}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $q = aaba$ $v = bb\overline{a}\overline{b}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\bullet \Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $q = aaba$ $v = bb\overline{a}\overline{b}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $q = aaba$ $v = bb\overline{a}\overline{b}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

q

$$\Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, U = \{b\}$$
$$= aaba \qquad v = bbab$$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\bullet \Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$

 $q = aaba$ $v = bba\overline{b}$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

q

$$\Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, U = \{b\}$$
$$= aaba \qquad v = bbak$$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter a ~→ ā

q

$$\bullet \Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$
$$= aaba \qquad v = bbak$$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter a ~→ ā

q

$$\bullet \Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, U = \{b\}$$
$$= aaba \qquad v = bbak$$

• Let A be an alphabet $(|A| \ge 2)$ and $U \subseteq A$.

- *U* ... unforgettable letters
- $A \setminus U$... forgettable letters
- two controllable operations for each $a \in A$:
 - write letter *a* ~→ **a**
 - read letter $a \rightsquigarrow \overline{a}$

$$\bullet \Sigma := \{\mathbf{a}, \overline{\mathbf{a}} \mid \mathbf{a} \in A\}$$

• non-controllable operation: forgetting letters from $A \setminus U$

$$A = \{a, b\}, \ U = \{b\}$$
$$q = aaba \qquad v = bbaa$$

Definition

The map $\circ: (A^* \cup \{\bot\}) \times \Sigma^* \to (A^* \cup \{\bot\})$ is defined for each $q \in A^*$, $a, b \in A$ and $\mathbf{v} \in \Sigma^*$ as follows: $q \circ \varepsilon = q$ $q \circ \mathbf{av} = qa \circ \mathbf{v}$ $bq \circ \overline{\mathbf{av}} = \begin{cases} q \circ \mathbf{v} & \text{if } a = b \\ q \circ \overline{\mathbf{av}} & \text{if } a \neq b, b \in A \setminus U \\ \bot & \text{otherwise} \end{cases}$ $\bot \circ \mathbf{v} = \bot = \varepsilon \circ \overline{\mathbf{av}}$

Example

Let $A = \{a, b\}$ and $U = \{b\}$.

 $aaba \circ bb\overline{a}\overline{b} = aabab \circ b\overline{a}\overline{b} = aababb \circ \overline{a}\overline{b} = ababb \circ \overline{b} = abb$

Definition

•
$$\mathbf{v} \equiv \mathbf{w}$$
 for $\mathbf{v}, \mathbf{w} \in \mathbf{\Sigma}^*$ iff $q \circ \mathbf{v} = q \circ \mathbf{w}$ for any $q \in A^*$

•
$$\mathcal{Q}(A, U) := \mathbf{\Sigma}^*/_{\equiv} \dots$$
 PLQ monoid

$$Q'(f, u) := Q(\{1, ..., f + u\}, \{1, ..., u\})$$

Theorem

The word problem of $\mathcal{Q}(A, U)$ is decidable in polynomial time. In other words: Given $\mathbf{v}, \mathbf{w} \in \mathbf{\Sigma}^*$. We can decide, whether $\mathbf{v} \equiv \mathbf{w}$ holds.

Model the transformations on PLQs as monoid ⇒ PLQ monoid

2 Characterize which PLQ monoids embed into which others ⇒ kind of simulation of one PLQ by another

Main Theorem

Let $u + f, u' + f' \ge 2$. Then $Q'(f, u) \hookrightarrow Q'(f', u')$ if, and only if, all of the following hold: 1 $f \le f'$ 2 $u' = 0 \Rightarrow u = 0$ 3 $u' = 1 \Rightarrow u \le 1$ or f < f'

Model the transformations on PLQs as monoid ⇒ PLQ monoid

2 Characterize which PLQ monoids embed into which others ⇒ kind of simulation of one PLQ by another

3 Characterize the trace monoids embedding into PLQ monoid

Definition

• An independence alphabet is a finite, undirected, irreflexive graph (Γ, I) .

• \equiv_I is the least congruence on Γ^* satisfying

 $ab \equiv_I ba$ for any $(a, b) \in I$.

• $\mathbb{M}(\Gamma, I) := \Gamma^*/_{\equiv_I} \dots$ trace monoid on (Γ, I) .

Trace Monoids: Overview

Theorem

Let $f + 2u \ge 3$ and (Γ, I) be an independence all following are equivalent: $\mathbb{M}(\Gamma, I) \hookrightarrow \mathcal{Q}'(f, u).$	phabet. Then the
 2 M(Γ, I) → Q'(0, 2). 3 M(Γ, I) → {a, b}* × {c, d}*. 4 One of the following conditions holds: a All nodes in (Γ, I) have degree ≤ 1. b The only non-trivial connected component of (Γ, I) is complete bipartite. 	[Kuske, } Prianychnykova 2016]
• •	

Theorem

Let (Γ, I) be an independence alphabet. Then the following are equivalent:

1 $\mathbb{M}(\Gamma, I) \hookrightarrow \mathcal{Q}'(2, 0).$

2 One of the following conditions holds:

- a All nodes in (Γ, I) have degree ≤ 1 .
- b The only non-trivial connected component of (Γ, I) is a star graph.

Submitted:

- Kleene-type characterization of recognizable subsets:
 - Recognizable($\mathcal{Q}(A, X)$) \subsetneq Rational($\mathcal{Q}(A, X)$)
 - Recognizable(Q(A, X)) = q-Rational(Q(A, X))
- Schützenberger-type characterization of aperiodic subsets:
 - Aperiodic($\mathcal{Q}(A, X)$) \neq Star-free($\mathcal{Q}(A, X)$)
 - Aperiodic(Q(A, X)) = q-Star-free(Q(A, X))

Not yet submitted:

- Algorithmic properties of Rational(Q(A, X)), e.g.,
 - Recognizability is undecidable

Summary

