
Noname manuscript No.
(will be inserted by the editor)

Reachability Problems on Reliable and Lossy Queue
Automata

Chris Köcher

the date of receipt and acceptance should be inserted later

Abstract We study the reachability problem for queue automata and lossy
queue automata. Concretely, we consider the set of queue contents which are
forwards resp. backwards reachable from a given set of queue contents. Here, we
prove the preservation of regularity if the queue automaton loops through some
special sets of transformation sequences. This is a generalization of the results
by Boigelot et al. and Abdulla et al. regarding queue automata looping through
a single sequence of transformations. We also prove that our construction is
possible in polynomial time.

Keywords Partially Lossy Queue · Queue Automaton · Reachability ·
Verification

1 Introduction

Nearly all problems in verification ask whether in a program or automaton one
can reach some given configurations from other given configurations. In some
computational models this question is decidable, e.g., in finite state machines,
pushdown automata [7,13,11], or counter automata without zero-tests (resp.
Petri-nets or vector addition systems) [22,21]. In some other, mostly Turing-
complete computational models this reachability problem is undecidable. For
example, the reachability problem for two-counter automata with zero-tests
(so called Minsky-machines) is undecidable [24].

For queue automata reachability is undecidable [9], while this problem is
decidable for so-called lossy queue automata [3] which are allowed to forget
any parts of their content at any time. In this case, for a regular set of config-
urations, the set of reachable configurations is regular [15] but it is impossible

This is the full version of the conference contribution [19].

Technische Universität Ilmenau, Automata and Logics Group
E-mail: chris.koecher@tu-ilmenau.de
ORCID: 0000-0003-4575-9339

2 Chris Köcher

to compute finite automata accepting these sets [2,23]. Surprisingly, the set of
backwards reachable configurations is effectively regular [3], even though this
construction is not primitive recursive [26,10]. This positive reachability result
for lossy queue automata was generalized by Finkel and Schnoebelen [12] to
so-called well-structured transition systems, which are systems with an infinite
state space and some special restrictions on their transitions.

Another variation of queue automata are automata with priority queues:
here, each queue entry has some priority and entries with high priority can
supersede or overtake entries with low priority. Haase et al. [14] have proven
that the reachability problem is decidable for these priority queue automata
with superseding semantics, but it is undecidable for priority queue automata
with overtaking semantics.

In this paper we will focus on the reachability problem for reliable and
lossy queue automata. Due to its undecidability resp. inefficiency, one may
consider approximations of this problem. One trivial approach is to simulate
the automaton’s computation step by step until a given configuration (or a
given set of configurations) was found. In this case, starting from a given set
of configurations we simply add or remove a single letter from the queue’s
contents. An even better and more efficient approach is to consider so-called
“meta-transformations” as described in [5,6]. Such a meta-transformation is
a combination of multiple transitions of the queue. In particular, given a loop
in the queue’s control component one can combine iterations of this loop to
one big step of the queue automaton. With this trick it is possible to explore
infinitely many contents of the queue in a small amount of time.

Considering reliable queue automata, we know from Boigelot et al. [6]
that, starting from a regular language of queue contents, the set of reachable
queue contents after iterated application of a single transformation sequence
is effectively regular. The authors of that paper also generalized this result to
automata having multiple queues. However, in this case we need some special
restrictions to the considered loops. Bouajjani and Habermehl [8] extended
this result to arbitrary loops. But this requires to consider some proper super-
class of the regular languages representing the queues contents. Abdulla et al.
also considered in [1] loops in automata having some lossy queues and proved
the preservation of regularity.

Here, we consider some extension of these results. Concretely, we consider
iterations through certain regular languages, so-called read-write independent
sets. Such language is the product of some language consisting of write action
sequences, only, with another language consisting of read action sequences. For
these new meta-transformations we prove the preservation of regularity of sets
of configurations. We will see that our construction is possible in polynomial
time. Additionally, we show some extensions of our result. For example, we
will construct from a given single transformation sequence some read-write
independent set. In other words, the result from Boigelot et al. is a corollary
of our construction.

Additionally, we consider another type of meta-transformations: sets of
transformations which are closed under some special (context-sensitive) com-

Reachability Problems on Reliable and Lossy Queue Automata 3

mutations of the atomic transformations. For such meta-transformations, the
set of reachable configurations is also effectively regular. Moreover, if we start
from a context-free set of configurations, the set of reachable configurations is
effectively context-free, again. Both constructions can be carried out in poly-
nomial time.

In the last section of this paper we consider so-called partially lossy queue
automata which were first introduced in [20,18]. This is a generalization of
reliable and lossy queue automata where we can specify which letters can be
forgotten at any time. These partially lossy queues can also be seen as some
kind of the aforementioned priority queues with superseding semantics: here,
the forgettable letters have low priority and the unforgettable letters have high
priority. In this case, letters with low priority can be superseded by any letter
and letters with high priority cannot be superseded by any letter.

We will see, that the sets of reachable configurations can be computed from
the ones of a reliable queue automaton. Hence, all of our results do also hold
for arbitrary partially lossy queue automata. In particular, we will see that
the results from [1,6] follow from our result. So, we also have a new, unified
proof of these two results.

2 Preliminaries

2.1 Words and Languages

At first, we have to introduce some basic definitions. To this end, let Γ be an
alphabet. A word v ∈ Γ ∗ is a prefix of w ∈ Γ ∗ iff w ∈ vΓ ∗. Similarly, v is a
suffix of w iff w ∈ Γ ∗v and v is an infix of w iff w ∈ Γ ∗vΓ ∗. The complementary
prefix (resp. suffix) of w wrt. v is the word w/v ∈ Γ ∗ (resp. v\w ∈ Γ ∗) with
w = w/v · v (resp. w = v · v\w). The right quotient of a language L ⊆ Γ ∗ wrt.
K ⊆ Γ ∗ is the language L/K = {u ∈ Γ ∗ | ∃v ∈ K : uv ∈ L}. Similarly, we can
define the left quotient K\L = {v ∈ Γ ∗ | ∃u ∈ K : uv ∈ L} of L wrt. K.

For a word w = a1a2 . . . an ∈ Γ ∗ we define its reversal by wR := an . . . a2a1.
The reversal of a language L is LR = {wR |w ∈ L}. The shuffle of two
languages L and K is the following language:

L�K :=

{
v1w1v2w2 . . . vnwn

∣∣∣∣ n ∈ N, vi, wi ∈ Γ ∗,
v1v2 . . . vn ∈ L,w1w2 . . . wn ∈ K

}
.

Let ∼ be an equivalence relation on Γ ∗. The equivalence class of v ∈ Γ ∗
wrt. ∼ is [v]∼ = {u ∈ Γ ∗ |u ∼ v}. A language L ⊆ Γ ∗ is closed under ∼ if for
each v ∈ L we have [v]∼ ⊆ L.

Let S ⊆ Γ . Then the projection πS : Γ ∗ → S∗ to S is the monoid ho-
momorphism induced by πS(a) = a for each a ∈ S and πS(a) = ε for each
a ∈ Γ r S. Additionally, for w ∈ Γ ∗ we write |w|S := |πS(w)|.

4 Chris Köcher

2.2 Finite Automata

A (nondeterministic) finite automaton (NFA for short) is a quintuple A =
(Q,Γ, I,∆, F) where Q is a finite set of states, I, F ⊆ Q are the sets of initial
and final states, and ∆ ⊆ Q × Γ × Q is the transition relation. Then, the
configuration graph of A is GA := (Q,∆) which is a finite, edge-labeled, and

directed graph. For p, q ∈ Q and w ∈ Γ ∗ we write p
w−→A q if there is a

w-labeled path in GA from p to q. For Q1, Q2 ⊆ Q and w ∈ Γ ∗ we write
Q1

w−→A Q2 if there are q1 ∈ Q1 and q2 ∈ Q2 with q1
w−→A q2. The accepted

language of A is L(A) := {w ∈ Γ ∗ | I w−→A F}. A language L ⊆ Γ ∗ is regular,
if there is an NFA A accepting L. The class of regular languages is effectively
closed under Boolean operations, left and right quotients, shuffle, reversal, and
projections.

Let A = (Q,Γ, I,∆, F) be an NFA, Qi, Qf ⊆ Q. Then we set AQi→Qf
:=

(Q,Γ,Qi, ∆,Qf), i.e., AQi→Qf
is the NFA constructed from A with initial

states Qi and final states Qf . For example, we have

L(A) =
⋃
q∈Q

L(AI→q)L(Aq→F) .

3 Queue and Pushdown Automata

In this section we will recall basic knowledge on (fifo-)queues and (lifo-)stacks.
Both data structures can store entries from a given alphabet A. Then, the
contents of such a queue or stack are words from A∗. For each letter a ∈ A we
have two actions (or transformations): writing of a into the structure (denoted
by a) and reading of a from the structure (denoted by a). We assume that the
alphabet A containing each such reading operation a is a disjoint copy of A.
By ΣA := A ∪ A we denote the set of all actions on the data structure. For
w = a1a2 . . . an ∈ A∗ we also write w := a1 a2 . . . an and for L ⊆ A∗ we write
L := {w |w ∈ L}.

In the following two subsections we will consider queues and stacks sepa-
rately.

3.1 Queue Automata

In queues (or channels) we always write letters on one end of the queue’s
content and read them from the other end. Hence, writing the letter a ∈ A
into the queue with content w ∈ A∗ results in wa and reading a from aw
yields the queue content w. It is impossible to read a from the empty queue
or whenever the queue’s content is bw with a 6= b.

Formally, a queue automaton is a tuple Q = (Q,Γ,A, I,∆, F) where Q is
a finite set of states, Γ and A are two (not necessarily disjoint) alphabets,
I, F ⊆ Q are the sets of initial and final states, respectively, and ∆ ⊆ Q ×
(Γ ∪ {ε})× (ΣA ∪ {ε})×Q is the transition relation. A configuration of Q is

Reachability Problems on Reliable and Lossy Queue Automata 5

a tuple from ConfQ := Q×A∗. We denote the set of initial configurations by
InitQ := I ×{ε} and the set of accepting configurations by FinalQ := F ×A∗.
For p, q ∈ Q, v, w ∈ A∗, and α ∈ Γ ∪ {ε} we write (p, v)

α−→Q (q, w) if one of
the following holds:

(1) there is a ∈ A with (p, α, a, q) ∈ ∆ and va = w,
(2) there is a ∈ A with (p, α, a, q) ∈ ∆ and v = aw, or
(3) we have (p, α, ε, q) ∈ ∆ and v = w.

Then GQ := (ConfQ,
⋃
α∈Γ∪{ε}

α−→Q) is called the configuration graph of Q.

For (p, v), (q, w) ∈ ConfQ and γ ∈ Γ ∗ we write (p, v)
γ−→Q (q, w) if there is

a γ-labeled path from (p, v) to (q, w) in GQ. The accepted language of Q is

L(Q) := {γ ∈ Γ ∗ | InitQ
γ−→Q FinalQ}.

It is well-known that queue automata can simulate Turing-machines [9].
Hence, queue automata accept exactly the class of recursively enumerable
languages.

In the following, we remove the input tape of our queue automata and
focus on the behavior of the memory component (i.e. the queue). Formally, we
describe a queue’s behavior by a function ◦ associating a word v ∈ A∗ and a
sequence of transformations t ∈ Σ∗A with another word v ◦ t ∈ A∗ which is the
queue’s content after application of t on the content v. Since it is impossible
to read a from a queue with content ε or bw with a 6= b, the function ◦ is not
total. However, we may introduce a new content ⊥ /∈ A∗ (the so-called error
state) and set v ◦ t = ⊥ whenever the application of t on v is not possible.

Definition 3.1 Let A be an alphabet and ⊥ /∈ A. Then the map ◦ : (A∗ ∪
{⊥})×Σ∗A → (A∗ ∪ {⊥}) is defined for each v ∈ A∗, a, b ∈ A with a 6= b, and
t ∈ Σ∗A as follows:

(i) v ◦ ε = v
(ii) v ◦ at = va ◦ t
(iii) av ◦ at = v ◦ t
(iv) bv ◦ at = ε ◦ at = ⊥ ◦ t = ⊥

We will say “v ◦ t is undefined” if v ◦ t = ⊥.

Let Q = (Q,Γ,A, I,∆, F) be some queue automaton. Construct the fol-
lowing NFA (with ε-transition) T = (Q,ΣA, I,∆

′, F) with

∆′ = {(p, α, q) | ∃γ ∈ Γ ∪ {ε} : (p, γ, α, q) ∈ ∆} .

Then (ε◦L(T))r{⊥} is exactly the set of all queue contents after any compu-
tation of Q. Note that Q will not end up in an error state if it is impossible to
read the letter from the queue’s head position. Instead the queue automaton
will stop in such situation. Hence, we exclude ⊥ from ε ◦ L(T).

More generally, we will consider sets L ◦ T for some set of initial queue
contents L ⊆ A∗ and some set of transformation sequences T ⊆ Σ∗A. At this
juncture, it suffices to regard only regular languages T ⊆ Σ∗A since the control
component T of a queue automaton is always an NFA. All in all, we may define
our reachability problems as follows:

6 Chris Köcher

Problem 3.2 Let A be an alphabet, L ⊆ A∗ be a set of queue contents,
and T ⊆ Σ∗A be a regular set of transformation sequences. The set of queue
contents that are reachable from L via T is

Reach(L, T) := (L ◦ T) r {⊥}

and the set of queue contents that can reach L via T is

BackReach(L, T) := {v ∈ A∗ | (v ◦ T) ∩ L 6= ∅} .

From the definition of ◦ we already know that v ◦ a = va and av ◦ a = v
holds. In this sense, we may see some duality between the write and read
actions a and a. This duality can be extended as follows: by d : Σ∗A → Σ∗A we
denote the map defined by

d(ε) = ε, d(av) = d(v)a, and d(av) = d(v)a

for each a ∈ A and v ∈ Σ∗A. We can see that d is a bijective antimorphism
and an involution. Additionally, from [17, Lemma 3.3] we know that v ◦ t = w
holds if, and only if, wR ◦ d(t) = vR for each v, w ∈ A∗ and t ∈ Σ∗A. From
this equivalence we also obtain the following duality between Reach and
BackReach:

Theorem 3.3 Let A be an alphabet, K,L ⊆ A∗, and T ⊂ Σ∗A. Then we have

BackReach(L, T) = Reach(LR, d(T))
R
.

Proof Let v ∈ BackReach(L, T). By definition we have (v ◦ T) ∩ L 6= ∅. So,
there are w ∈ L and t ∈ T with v ◦ t = w. By [17, Lemma 3.3] we also have

wR ◦ d(t) = vR implying vR ∈ Reach(LR, d(T)), i.e., v ∈ Reach(LR, d(T))
R

.

Conversely, let v ∈ Reach(LR, d(T))
R

. We know vR ∈ Reach(LR, d(T)).
Hence, there is w ∈ L and t ∈ T such that wR ◦ d(t) = vR. Due to [17,
Lemma 3.3] we also have v ◦ t = w implying w ∈ (v ◦ T) ∩ L. In other words,
we have v ∈ BackReach(L, T). ut

So, with the help of Theorem 3.3 it suffices to consider forwards reachability
from now on.

Now, let L ⊆ A∗ be a recursively enumerable language of queue contents
and T ⊆ Σ∗A a regular language of queue transformations. Then the language
Reach(L, T) is (effectively) recursively enumerable. However, since queue au-
tomata can simulate Turing-machines, the language Reach(L, T) can be any
recursively enumerable language - even if L and T are somewhat “simple”
languages:

Remark 3.4 Let K ⊆ Γ ∗ be a recursively enumerable language. Then there
is a (type-0) grammar G = (N,Γ, P, S) with K = L(G). Let # /∈ N ∪ Γ be
some new letter. We set our alphabet A := N ∪Γ ∪{#} (recall that this is the

Reachability Problems on Reliable and Lossy Queue Automata 7

set of possible queue entries). We construct the language of transformations
T ⊆ Σ∗A as follows:

T :=
(
{`r | (`, r) ∈ P} ∪ {aa | a ∈ N ∪ Γ ∪ {#}}

)∗
,

i.e., the queue automaton can apply any rule from G and move any letter from
the head to its end. Then we have

Reach({#S}, T) ∩ Γ ∗ = L(G) = K .

In other words, Reach(L, T) can be any recursively enumerable language K
even if L is a singleton and T is the Kleene-closure of a finite set of transfor-
mation sequences.

Due to Remark 3.4 there are regular languages L and T such that Reach(L, T)
is undecidable. Therefore, we need some approximation to decide whether a
given regular set of configurations can be reached from the regular language
L of queue inputs by application of the transformation sequences from T .
A trivial approach is to simulate the computation of the queue automaton
step-by-step. That means, starting with L we iteratively compute the set of
all queue contents which are reachable from L after n steps. Formally, for
the set Tn ⊆ Σ∗A of prefixes of length at most n of T we compute Ln =
Reach(L, Tn) for increasing n ∈ N. Unfortunately, this algorithm is not very
efficient: consider a finite language of queue contents L ⊆ A∗ and a regular
language of transformation sequences T ⊆ Σ∗A. Then T ∩Σn

A is finite for any
n ∈ N and, hence, Ln = Reach(L, Tn) is finite.

Boigelot et al. improved this trivial approximation in [5,6] by the intro-
duction of so-called meta-transformations. These are certain regular languages
S ⊆ Σ∗A such that the sets Reach(L, S) (for any regular set L ⊆ A∗) are ef-
fectively regular. Then the trivial approximation can be modified as follows:
whenever we compute Ln+1 from Ln we search for such meta-transformation
in the queue automaton’s control component starting from Tn and apply these
on Ln. In [6] the authors considered meta-transformations of the form S = {t}∗
for some t ∈ Σ∗A. In fact, this approach is more efficient than the trivial one,
since we can explore an infinite state space in just one step of the algorithm.

From the following proposition we can obtain some more simple meta-
transformations. Concretely, we consider the case that T contains only se-
quences of write actions or only sequences of read actions.

Proposition 3.5 Let A be an alphabet and L, T ⊆ A∗. Then the following
statements hold:

(1) Reach(L, T) = LT
(2) Reach(L, T) = T\L

Note that this proposition is a generalization of Theorems 1 and 2 in [5]. In
that paper, Boigelot and Godefroid have proven the effective recognizability
of Reach(L, t) and Reach(L, t) where L ⊆ A∗ is regular and t ∈ A∗ is some
single transformation sequence.

8 Chris Köcher

Proof First, consider equation (1): let w ∈ Reach(L, T) = (L ◦ T) r {⊥}.
Then there are v ∈ L and t ∈ T with w = v ◦ t. Since t ∈ T ⊆ A∗ we have,
by iterated application of (ii) in Definition 3.1, w = v ◦ t = vt ∈ LT . Now, let
w ∈ LT . Then there are v ∈ L and t ∈ T with w = vt. Again, by application
of (ii) in Definition 3.1 we have w = vt = v ◦ t ∈ L ◦ T . Since L, T ⊆ A∗ we
infer that w ∈ (L ◦ T) r {⊥} = Reach(L, T) holds.

Using (iii) in Definition 3.1, we can similarly prove equation (2). ut

Combining Theorem 3.3 and Proposition 3.5 we obtain the following two equa-
tions:

BackReach(L, T) = L/T and BackReach(L, T) = TL

for each pair of languages L, T ⊆ A∗.
Now, let L, T ⊆ A∗ be two regular languages accepted by the NFAs

L and T, respectively. Then, using the classical constructions, we can con-
struct an NFA accepting Reach(L, T) in quadratic time. An NFA accepting
Reach(L, T) can be constructed in cubic time. The number of states of these
NFAs is linear in the number of states in L and T.

If we require these languages to be accepted by a DFA, then we additionally
need to determinize the given NFAs resulting in exponential size and time.
The complexities of BackReach are similar to the ones of Reach due to the
duality stated in Proposition 3.5. However, if L is a DFA, we still can compute
a DFA accepting BackReach(L, T) in cubic time having a linear number of
states (in this case we only modify the accepting states of L).

Later in this paper we consider two further types of meta-transformations
T having mappings L 7→ Reach(L, T) and L 7→ BackReach(L, T) which
preserve regularity efficiently.

3.2 Pushdown Automata

Recall that stacks (or pushdowns) have the same set of actions on their content
as queues. In other words, we are able to write a letter into the stack’s content
or read a letter from the stack. While queues apply their read and write actions
on different ends of their content, stacks execute these actions always on the
same end. Formally, writing a letter a ∈ A into the stack w ∈ A∗ results in
the content aw and reading a from aw makes w. Note that it is impossible to
read a from bw where a 6= b. Similarly, the stack blocks when reading a from
ε.

In this paper, a pushdown automaton (or PDA for short) is defined simi-
larly to queue automata. Also the definitions of their configuration graphs and
accepted languages are similar. The only exception is Transition (1) which has
to be rephrased as follows:

(1’) there is a ∈ A with (p, α, a, q) ∈ ∆ and av = w,

Reachability Problems on Reliable and Lossy Queue Automata 9

Note that our definition of pushdown automata slightly differs from the
classical definitions in textbooks (cf. for example [16]). While our automata
apply at most one action on their stack on each transition, in the classical
definition the PDAs always read one letter and write a sequence of letters
afterwards. However, both definitions are equivalent. A classical PDA can be
transformed into our model by splitting transitions into a sequence of transi-
tions applying exactly one action. Conversely, a transition writing a from our
definition can be translated into transitions applying bba for each b ∈ A.

Due to the equivalence of these models, we are allowed to call a language
L ⊆ Γ ∗ context-free if there is a PDA P with L = L(P).

Let C ⊆ ConfP be a set of configurations of P. Then we denote the set of
configurations of P reachable from C by

post∗(C) := {d ∈ ConfP | ∃γ ∈ Γ ∗ : C
γ−→P d} .

The following result is well-known in verification:

Theorem 3.6 ([13,11,25]) Let P = (Q,Γ,A, I,∆, F) be a PDA, p ∈ Q,
and A be an NFA over A. Then we can compute an NFA Bq over A for each
q ∈ Q such that

post∗({p} × L(A)) =
⋃
q∈Q
{q} × L(Bq)

holds. The construction of the NFAs Bq is possible in polynomial time. ut

Concretely, using the construction from [13], we obtain NFAs Bq having
O(nP + nA) states, where nP and nA is the number of states of some given
PDA P and NFA A, respectively.

4 Behavioral Equivalence

The first type of meta-transformations we want to consider are languages that
are closed under the so-called behavioral equivalence. To this end, let v ∈ A∗
be an arbitrary queue content and a ∈ A. Then we have

v ◦ aaa = vaa ◦ a = (va ◦ a) · a = v ◦ aaa .

In other words, the queue transformation sequences aaa and aaa have the same
effect on any queue content. Then we say that these two sequences behave
equivalently. On the other hand, we have ε ◦ aa = ε 6= ⊥ = ε ◦ aa which
witnesses that aa and aa do not behave equivalently.

Formally, this equivalence is defined as follows:

Definition 4.1 Let A be an alphabet and s, t ∈ Σ∗A. Then s and t behave
equivalently (denoted by s ≡ t) if v ◦ s = v ◦ t for each v ∈ A∗. The induced
relation ≡ is called the behavioral equivalence.

10 Chris Köcher

In other words, we have s ≡ t if for each queue input the application of s and
t lead to the same output of the queue automaton. As we have seen above we
know aaa ≡ aaa and aa 6≡ aa.

This equivalence relation was first introduced by Huschenbett et al. in [17].
It was used in that paper to define the transformation monoid of a queue (the
so-called queue monoid). This monoid consists of the equivalences classes of
the behavioral equivalence with composition. Moreover, they proved that ≡ is
a congruence on Σ∗A which is described by a finite set of equations. We recall
these context-sensitive commutations in the following theorem:

Theorem 4.2 ([17, Theorem 4.3]) Let A be an alphabet. Then ≡ is the
least congruence on Σ∗A satisfying the following equations for each a, b ∈ A:

(1) ab ≡ ba if a 6= b,
(2) aab ≡ aab, and
(3) baa ≡ baa. ut

In this section we want to prove that regular languages that are closed
under the behavioral equivalence, the mappings L 7→ Reach(L, T) and L 7→
BackReach(L, T) effectively and efficiently preserve regularity. We prove this
with the help of the following corollary of Theorem 4.2 stating that each trans-
formation sequence t ∈ Σ∗A has some equivalently behaving transformation
sequence s ∈ Σ∗A which is in some sense “simple”:

Proposition 4.3 ([17, Lemma 5.2]) Let A be an alphabet and t ∈ Σ∗A.

Then there is s ∈ A∗A∗A∗ with s ≡ t. From a given word t we can compute
such a word s in polynomial time.

Proof (idea) We construct some confluent and terminating semi-Thue sys-
tem R by ordering the equations in Theorem 4.2 from left to right. Then from
t ∈ Σ∗A we can compute a unique word r ∈ A∗

(⋃
a∈A aa

)∗
A∗. This word r iden-

tifies the whole equivalence class of t. Assume that r = r1 a1a1a2a2 . . . anan r2
(where r1, r2 ∈ A∗, a1, . . . , an ∈ A) is this unique word. Then we can set
s := r1 a1a2 . . . anr2 a1a2 . . . an and we have t ≡ r ≡ s. ut

Remark 4.4 The algorithm from Proposition 4.3 returns a word s ∈ A∗A∗A∗

which is unique for each word from the equivalence class [t]≡ . However, there

are words t ∈ A∗ having multiple s ∈ A∗A∗A∗ which behave equivalent. For
example, let a, b ∈ A be two distinct letters and t = aaba. Then the algorithm
outputs abaa but we also have aaab, aaab ∈ [t]≡ .

The behavioral equivalence was further considered in [17,18]. Concretely,
in that papers the authors studied those regular languages which are closed
under the behavioral equivalence ≡. In [18, Theorem 4.1] we defined some
kind of rational expressions constructing these sets as well as some MSO-
logic describing them. In particular, let T ⊆ Σ∗A be a language that is closed

under ≡. Then, we know that T is regular if, and only if, T ∩A∗A∗A∗ is regular
due to [17, Theorem 9.4].

Reachability Problems on Reliable and Lossy Queue Automata 11

Example 4.5 Let R,W ⊆ A∗ be regular languages. Then R can be accepted
by some NFA R = (Q,A, I,∆, F). In this case, we have

[R�W]≡ ∩A
∗
A∗A

∗
=
⋃
q∈Q

L(RI→q)WL(Rq→F) ,

which is regular (recall that [L]≡ is the closure of L ⊆ Σ∗A under ≡ and � is
the shuffle of two languages). Hence, [R�W]≡ is regular and closed under ≡.

Now, let a ∈ A. Then [(aa)∗]≡ is not regular since (by Theorem 4.2) we

can prove [(aa)∗]≡ ∩A
∗
A∗A

∗
= {anan |n ∈ N} which is not regular.

The following lemma states that closure under behavioral equivalence is de-
cidable for regular languages:

Lemma 4.6 Let A be an alphabet. Then the following problem is decidable:

Input: An NFA A over ΣA
Question: Is L(A) closed under behavioral equivalence?

Proof (idea) We can check this question with the help of some rational trans-
duction (cf. [4]): let τ be the transduction with the graph

G := I∗ΣA
{(`, r), (r, `) | ` ≡ r is equation in Theorem 4.2}I∗ΣA

∪ I∗ΣA

where IΣA
= {(α, α) | α ∈ ΣA} is the identity on ΣA. It is a simple task to

prove that G is rational in Σ∗A × Σ∗A. Then L(A) ⊆ Σ∗A is closed under ≡ if,
and only if, L(A) = τ(L(A)) holds. We can check this equation since τ(L(A))
is effectively regular. ut

However, it is undecidable whether the closure of a given regular language T
under ≡ is regular as well [17, Theorem 8.4].

Finally, we are able to prove the main theorem in this section:

Theorem 4.7 Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗A be regu-
lar and closed under ≡. Then Reach(L, T) and BackReach(L, T) are effec-
tively regular. In particular, from NFAs accepting L and T we can construct
NFAs accepting Reach(L, T) and BackReach(L, T) in polynomial time.

Proof We first prove that

Reach(L, T) = Reach(L, T ∩A∗A∗A∗)

holds. The inclusion “⊇” is trivial. Towards the converse inclusion, let w ∈
Reach(L, T). Then there are v ∈ L and t ∈ T with v ◦ t = w. Due to

Proposition 4.3 there is s ∈ A∗A∗A∗ with s ≡ t. By definition of ≡ we also
have v ◦ s = v ◦ t = w. Since T is closed under ≡ we have s ∈ T ∩ A∗A∗A∗.
This finally implies w ∈ Reach(L, T ∩A∗A∗A∗).

Next, we compute Reach(L, T∩A∗A∗A∗). To this end, let T = (Q,ΣA, I,∆, F)

be an NFA with L(T) = T . We partition T ∩A∗A∗A∗ as follows: let p, q ∈ Q be

12 Chris Köcher

any pair of states. Then we can compute the following three regular languages
in polynomial time:

Kp,q
1 = L(TI→p)∩A

∗
, Kp,q

2 = L(Tp→q)∩A∗ , and Kp,q
3 = L(Tq→F)∩A∗ .

Then it is easy to see that T ∩A∗A∗A∗ =
⋃
p,q∈QK

p,q
1 Kp,q

2 Kp,q
3 holds. Hence,

we have

Reach(L, T) = Reach

L, ⋃
p,q∈Q

Kp,q
1 Kp,q

2 Kp,q
3


=

⋃
p,q∈Q

Reach(L,Kp,q
1 Kp,q

2 Kp,q
3) .

So, let p, q ∈ Q. By Proposition 3.5 reading from the queue corresponds to tak-
ing the left-quotient and writing into the queue corresponds to concatenation.
Therefore, we have:

Reach(L,Kp,q
1 Kp,q

2 Kp,q
3) = Kp,q

3
\((Kp,q

1
\L) ·Kp,q

2) .

Hence, due to closure properties of the class of regular languages, Reach(L, T)
is effectively regular. Since all of the needed closure properties are also efficient
and since we are considering only O(|Q|2) many languages Kp,q

i , an NFA
accepting Reach(L, T) can be computed in polynomial time. This NFA has
a cubic number of states.

Finally, we have to show that BackReach(L, T) is effectively and effi-

ciently regular. Recall that BackReach(L, T) = Reach(LR, d(T))
R

holds.
Due to [17, Proposition 3.4] the language d(T) is still closed under behavioral
equivalence. Additionally, d(T) is effectively regular since we only have to re-
place a by a and vice versa and to invert the edges of the automaton accepting
T . Since the class of regular languages is efficiently closed under reversal we
can compute an automaton accepting BackReach(L, T) in polynomial time
which has a cubic number of states. ut

Note that, due to the proof of this theorem, the map L 7→ Reach(L, T)

preserves regularity if T ⊆ A
∗
A∗A

∗
holds. It is also possible to extend the

result of the previous theorem to context-free languages:

Theorem 4.8 Let A be an alphabet, L ⊆ A∗ be context-free, and T ⊆ Σ∗A be
regular and closed under ≡. Then Reach(L, T) and BackReach(L, T) are
effectively context-free. In particular, from a PDA accepting L and an NFA ac-
cepting T , we can construct PDAs accepting Reach(L, T) and BackReach(L, T),
respectively, in polynomial time.

Proof (idea) This is similar to the proof of Theorem 4.7 due to the effective
and efficient closure properties of context-free languages (note that the left or
right quotient of a context-free language wrt. a regular language is context-
free, again). ut

Reachability Problems on Reliable and Lossy Queue Automata 13

5 Read-Write Independence

In this section we want to consider another kind of meta-transformations:
cyclic regular languages. In other words, given two regular languages L ⊆ A∗

and T ⊆ Σ∗A, we want to compute an NFA accepting Reach(L, T ∗). The
case |T | = 1 was first considered by Boigelot et al. in [6,5] (and similarly by
Abdulla et al. [1] for lossy queues). In these papers the authors proved that
Reach(L, T ∗) is effectively regular in this case. So, a natural question would
be to ask, whether this result also holds if T is no singleton. Unfortunately, we
have seen in Remark 3.4 that Reach(L, T ∗) can be undecidable if T is a finite
language. The following example proves that Reach(L, T ∗) is not necessarily
regular anymore even if T consists of two words:

Example 5.1 Let A be an alphabet and a, b ∈ A be distinct letters. Then we
have

Reach({a}, {abb, ba}∗) ∩ {a}∗ = {a2
n

|n ∈ N}

which is not even context-free.

In both cases, Example 5.1 and Remark 3.4, the write actions of any se-
quence t ∈ T depend on the read actions in t. So, we are able to copy data
from the head of the queue into its tail. Then, we can see the queue as a
Turing-tape and we are able to move the head on this tape in any direction.
Hence, we consider languages T ⊆ Σ∗A in which for each pair s, t ∈ T there is
another word r ∈ T consisting of the write actions from s and the read actions
from t. In this case, independently of the word from πA(T) we write into the
queue, we can read any word from πA(T). Formally, we are considering the
following sets of sequences of transformations:

Definition 5.2 Let A be an alphabet. A set T ⊆ Σ∗A is read-write independent
if, for each s, t ∈ T , we have πA(s)πA(t) ∈ T . In other words, T is read-write
independent if, and only if, πA(T)πA(T) ⊆ T holds.

We may see read-write independent sets T as some kind of a Cartesian prod-
uct of a set of sequences of write actions W ⊆ A∗ with a set of read action
sequences R ⊆ A

∗
where for each element (w, r) ∈ W ×R we have the trans-

formation wr ∈ T . Some simple read-write independent sets are listed in the
following example:

Example 5.3 Let W,R ⊆ A∗. Then WR and W�R are read-write independent
sets.

Since the class of regular languages is closed under projections and concate-
nation and due to the decidability of the inclusion problem, we can decide
whether a given regular language T ⊆ Σ∗A is read-write independent.

For our further considerations of read-write independent sets we need the
following lemma. It states that we can “de-shuffle” those languages:

14 Chris Köcher

Lemma 5.4 ([20, Lemma 3.11]) Let A be an alphabet, L ⊆ A∗, and T ⊆
Σ∗A be read-write independent. Then we have

Reach(L, T) = Reach(L, πA(T)πA(T)) . ut

Note that Lemma 5.4 does not hold for arbitrary languages T ⊆ Σ∗A. For
example, consider L = {ε} and T = {aa}. Then we know ε ◦ aa = ⊥ and
ε ◦ aa = ε resulting in Reach(ε, aa) = ∅ ({ε} = Reach(ε, aa). However,
the following inequation holds for any language T ⊆ Σ∗A - even if T is not
read-write independent:

Reach(L, T) ⊆ Reach(L, πA(T)πA(T)) .

Now, consider T := πA(t)� πA(t) for some word t ∈ Σ∗A. This language is
read-write independent. Due to Theorem 4.2 T is also closed under behavioral
equivalence, i.e., we can compute Reach(L, T) in polynomial time. However,
T ∗ is not necessarily closed. Hence, we cannot apply Theorem 4.7 to compute
Reach(L, T ∗). By Lemma 5.4 we infer

Reach(L, T ∗) = Reach(L, (πA(T)πA(T))∗) = Reach(L, (πA(t)πA(t))∗) .

Since πA(t)πA(t) ∈ Σ∗A the map L 7→ Reach(L, T ∗) preserves regularity effi-
ciently by [6].

In the following, we will prove that, provided T is any regular and read-
write independent language, the mapping L 7→ Reach(L, T ∗) preserves reg-
ularity effectively and efficiently (Theorem 5.11). By Lemma 5.4 it suffices to
consider languages T = WR where W,R ⊆ A∗ are two regular languages.
But before we show this general case, we make some additional assumptions
on the languages W and R. Afterwards we derive the general case from this
particular case. Concretely, we consider regular subsets WR ⊆ A∗A∗ where A
is some alphabet having a special letter $ which marks the beginning of each
word from W and is used for synchronization between writing and reading
actions. In this connection, we have to ensure that the $ can be read whenever
it occurs on the queue’s head. We do this by insertion of arbitrarily many $’s
at any position in R. In other words, we require R = $∗ �R.

Theorem 5.5 Let A be an alphabet and $ ∈ A be some letter. Additionally,
let L ⊆ (A r {$})∗, W ⊆ $(A r {$})∗, and R ⊆ A∗ be regular languages
such that R = $∗ � R holds. Then Reach(L, (WR)∗) is effectively regular.
In particular, from NFAs accepting L, W , and R we can construct an NFA
accepting Reach(L, (WR)∗) in polynomial time.

The proof of this result can be found on page 17.

Reachability Problems on Reliable and Lossy Queue Automata 15

5.1 The Reduction to Pushdown Automata

We prove Theorem 5.5 by reduction to the reachability problem in pushdown
automata. A first, trivial idea would be a simple replacement of the queue by
a stack, i.e., from the queue’s content v we reach w if, and only if, the PDA
reaches w from v. Unfortunately, this construction is not possible since our
queue automaton modifies its content at both ends which cannot be simulated
with a single stack. Hence, we need a more abstract presentation of the queue’s
contents.

To this end, we consider some non-failing computation t ∈ (WR)∗ of the
queue with initial content v ∈ L, i.e., v ◦ t 6= ⊥. So, let v0, . . . , vm ∈ A∗ and
α1, . . . , αm ∈ ΣA with v0 = v, vi+1 = vi ◦ αi+1 6= ⊥ for each 0 ≤ i < m,
and t = α1 . . . αm ∈ (WR)∗. By vi+1 = vi ◦ αi+1 6= ⊥ we have viπA(αi+1) =
πA(αi+1)vi+1 for each 0 ≤ i < k. Hence, we have v0πA(t) = πA(t)vm. Since
t ∈ (WR)∗ holds, we have πA(t) ∈ W ∗ and, therefore, v0πA(t) ∈ LW ∗. Let C
be an NFA accepting the regular language LW ∗ (this is the set of all possible
queue Contents). Then there is an accepting run p0, . . . , p` in C labeled with
v0wrt(t).

Due to closure properties, the language (WR)∗ is regular. Let T be some
NFA accepting this language (i.e., T accepts all possible Transformation se-
quences). Then there is an accepting run of s0, . . . , sk in T labeled with
t = α0 . . . αk−1.

Now, we want to abstract any configuration (si, vi) of our queue automaton
with the help of the following information:

1. the state si from T which corresponds to the control state of our queue
automaton,

2. two states pxi
and pyi from C such that pxi

, . . . , pyi is a run in C labeled
with vi, and

3. the natural number |vi|$.

Initially, we abstract (s0, v0) by (p0, p|v|, s0, 0) since p0, . . . , p|v| is a run in C
labeled with v0 = v and |v0|$ = |v|$ = 0 by v ∈ L ⊆ (Ar {$})∗. Next, we can
obtain the abstraction of (si+1, vi+1) from (si, vi) as follows: let (pxi

, pyi , si, ni)
be the abstraction of (si, vi). By the choice of our run in T we have some edge

si
αi−→T si+1. Additionally, we have to distinguish the following two cases:

1. If αi = a ∈ A, we can extend the run pxi
, . . . , pyi by the edge pyi

a−→C pyi+1.
Additionally, if αi = $ then the number of $’s in vi will be increased. Hence,
we abstract (si+1, vi+1) in this case by (pxi , pyi+1, si+1, ni + |a|$).

2. If αi = a ∈ A, the run pxi , . . . , pyi starts with the edge pxi

a−→C pxi+1. If
a = $ then the number of $’s in vi decreases. The resulting abstraction of
(si+1, vi+1) in this case is (pxi+1, pyi , si+1, ni − |a|$).

All in all, (pxi
, pyi , si, ni) is an abstraction of the queue automaton’s con-

figuration (si, vi). These information can be simulated with the help of some
pushdown automaton P. In this case, the control states of P are composed
of the states pxi

, pyi , and si and the stack contains $ni . Note that this PDA

16 Chris Köcher

pxi pxi+1 pyi pyi+1

suffix of L ∪W prefix of W

∈ W

a b

$

$

Fig. 1 A run labeled with vi from pxi to pyi in C.

is essentially a (partially blind) one-counter automaton, but due to technical
reasons we will utilize this more powerful automata model.

To this end, let C = (QC, A, IC, ∆C, FC) be an NFA accepting LW ∗ and T =
(QT, ΣA, IT, ∆T, FT) be an NFA accepting (WR)∗. W.l.o.g., we can assume
that both, C and T, are trim in the sense that each state is reachable from the
initial state and can reach some final state. Additionally, we assume that C and
T have exactly one final state called fC resp. fT. Note that we can compute
these two automata in polynomial time from NFAs accepting L, W , and R.

Recall that the queue’s configuration is abstracted by states from C and T
and by some natural number. Then the PDA P = (QP, ΣA, {$}, IP, ∆P, FP)
is defined as follows:

– QP := QC×QC×QT. Here, the first and second component represent the
two states characterizing the queue’s content as described above. The third
component represents the control state of the queue automaton.

– IP := IC ×QL × IT where QL := {q ∈ QC | ∃v ∈ L : IC
v−→C q} is the set of

states being reachable via L
– FP := QC × FC × FT

– ∆P contains exactly the following transitions for a ∈ A, p, p′, q, q′ ∈ QC,
and s, s′ ∈ QT:

(W) Simulate writing of the letter a into the queue:
((p, q, s), a, π$(a), (p, q′, s′)) ∈ ∆P if (q, a, q′) ∈ ∆C and (s, a, s′) ∈ ∆T.

(R) Simulate reading of the letter a from the queue:
((p, q, s), a, π$(a), (p′, q, s′)) ∈ ∆P if (p, a, p′) ∈ ∆C and (s, a, s′) ∈ ∆T.

In other words, we have the following four cases:

1. ((p, q, s), $n)
a−→P ((p, q′, s′), $n) iff a ∈ Ar {$}, q a−→C q

′ and s
a−→T s

′.

2. ((p, q, s), $n)
$−→P ((p, q′, s′), $n+1) iff q

$−→C q
′ and s

$−→T s
′.

3. ((p, q, s), $n)
a−→P ((p′, q, s′), $n) iff a ∈ Ar {$}, p a−→C p

′ and s
a−→T s

′.

4. ((p, q, s), $n)
$−→P ((p′, q′, s′), $n−1) iff p

$−→C p
′ and s

$−→T s
′.

Now, we assign to the configuration ((p, q, s), $n) the set of all words being
the labeling of some run from p to q in C and containing n appearances of

Reachability Problems on Reliable and Lossy Queue Automata 17

the letter $ (which marks the beginning of a word from W). Formally, our
assignment is the mapping v.w : ConfP → 2A

∗
with

v((p, q, s), $n)w = L(Cp→q) ∩ ($n � (Ar {$})∗)

for each p, q ∈ QC, s ∈ QT, and n ∈ N. This language represents the set of all
configurations (s, v) whose abstraction (as explained above) is ((p, q, s), n).

Next, we prove that the set of reachable queue contents coincides with this
semantics of the reachable, accepting configurations of the PDA P.

Proposition 5.6 We have Reach(L, (WR)∗) =
⋃
σ∈post∗(InitP)∩FinalPvσw.

With the help of Proposition 5.6 we are able to prove Theorem 5.5. So, we will
first prove this theorem and afterwards we show the correctness of the PDA
P and its semantics.

Proof (of Theorem 5.5) Due to Theorem 3.6 we can compute NFAs describing
the set of configurations post∗(InitP) in polynomial time. So, for (p, q, s) ∈ QP

let A(p,q,s) be an NFA such that

post∗(InitP) =
⋃

(p,q,s)∈QP

{(p, q, s)} × L(A(p,q,s))

holds. Since, $ is the only stack symbol in P, we get L(A(p,q,s)) ⊆ $∗. Further-
more, $n ∈ L(A(p,q,s)) holds if, and only if, ((p, q, s), $n) ∈ ConfP is reachable
from some initial configuration of P.

The following language is regular as well:

K :=
⋃

(p,q,s)∈FP

(
L(Cp→q) ∩

(
L(A(p,q,s))� (Ar {$})∗

))
.

Later we will see K = Reach(L, (WR)∗). But before, we want to give some
intuition on the definition of K. This language contains all words v ∈ A∗ such
that

– v is the label of some run in C from p to q, where q is accepting in C (note
that p is not necessarily initial),

– v contains n $’s (for some n ∈ N), and
– the configuration ((p, q, s), $n) is reachable in P from some initial configu-

ration.

Since each intermediate step of our computation is possible in polynomial
time, we can compute an NFA accepting K in polynomial time as well.

Finally, we prove K = Reach(L, (WR)∗). Applying Proposition 5.6 it
suffices to prove K =

⋃
σ∈post∗(InitP)∩FinalPvσw.

First, let v ∈ vσw for some σ = ((p, q, s), $n) ∈ post∗(InitP)∩FinalP. Then
we have (p, q, s) ∈ FP and $n ∈ L(A(p,q,s)). Hence, we have

v ∈ vσw = L(Cp→q) ∩
(
$n � (Ar {$})∗

)
⊆ L(Cp→q) ∩

(
L(A(p,q,s))� (Ar {$})∗

)
⊆ K .

18 Chris Köcher

Conversely, let v ∈ K. Then there is (p, q, s) ∈ FP with

v ∈
(
L(Cp→q) ∩

(
L(A(p,q,s))� (Ar {$})∗

))
.

Set n := |v|$. Then we have $n ∈ L(A(p,q,s)) implying that ((p, q, s), $n) is
reachable from an initial configuration of P. Additionally, this configuration is
final since (p, q, s) ∈ FP. In other words, we have ((p, q, s), $n) ∈ post∗(InitP)∩
FinalP. Finally, we have

v ∈ L(Cp→q) ∩
(
$n � (Ar {$})∗

)
= v((p, q, s), $n)w . ut

5.2 The Correctness of the Construction

Next, we want to prove the correctness of Proposition 5.6. We prove this with
the help of two lemmas each proving one inclusion. First, we show that each
reachable queue content belongs to the semantics of some reachable configura-
tion of P. To this end, we consider some v ∈ L and t ∈ (WR)∗ with v ◦ t 6= ⊥.
We construct a t-labeled run of P such that the ith intermediate result vi is
covered by the semantics of the ith step in our constructed run.

Concretely, we have runs p0, . . . , p` and s0, . . . , sm in C and T labeled with
vπA(t) and t, respectively, from an initial state to some accepting state. The
ith configuration σi on our run of P consists of two states pxi

and pyi (where
0 ≤ xi ≤ yi ≤ `), si, and the number of $’s on the sub-path pxi

, . . . , pyi . Then
we will see that vi ∈ vσiw, which finally implies vm = v ◦ t ∈ vσmw.

Example 5.7 Consider L = {ε}, W = {$a, $b}, and R = $∗� b = $∗b$∗. Then
the languages LW ∗ and (WR)∗ are accepted by the NFAs C and T in Fig. 2.
Let t := bb ∈ (WR)∗. Then we have

ε ◦ bb = $ ◦ b$b = $b ◦ $b = b ◦ b = ε 6= ⊥ .

Consider the accepting runs p1
$−→C p2

b−→C p1 and s1
$−→T s2

b−→T s3
$−→T s3

b−→T

s4 in C and T labeled with vπA(t) = $b and t, respectively. Then we construct
the following run in P:

InitP 3 ((p1, p1, s1), 0)
$−→P ((p1, p2, s2), 1)

b−→P ((p1, p1, s3), 1)

$−→P ((p2, p1, s3), 0)
b−→P ((p1, p1, s4), 0) ∈ FinalP .

Then we can see v ◦ t = ε ∈ v((p1, p1, s4), 0)w.

Lemma 5.8 Let t ∈ (WR)∗ and v ∈ L with v ◦ t 6= ⊥. Then there is σ ∈
post∗(InitP) ∩ FinalP with (v ◦ t) ∈ vσw.

Reachability Problems on Reliable and Lossy Queue Automata 19

C : T :p1 p2

$

a, b

s1 s2

s3s4

$

a, b

$
b

$

$

Fig. 2 NFAs C and T accepting LW ∗ and (WR)∗, respectively, from Example 5.7.

Proof Let t = w1r1 . . . wkrk with w1, . . . , wk ∈ W and r1, . . . , rk ∈ R. We
have vw1 . . . wk ∈ LW ∗ = L(C). Hence, there is a run (p0, . . . , p`) labeled with
vw1 . . . wk in C with p0 ∈ IC and p` ∈ FC. Additionally, we have t ∈ (WR)∗ =
L(T) and therefore a run (s0, . . . , sm) with labeling t in T with s0 ∈ IT and
sm ∈ FT.

By t ∈ Σ∗A there are α0, . . . , αm−1 ∈ ΣA with t = α0 . . . αm−1. Since
v ◦ t 6= ⊥ there are v0, . . . , vm ∈ A∗ with v0 = v and vi+1 = vi ◦ αi for each
0 ≤ i < m. This implies vi = v ◦ α0 . . . αi−1 and, hence, vπA(α0 . . . αi−1) =
πA(α0 . . . αi−1)vi. Since vπA(α0 . . . αi−1) is a prefix of vw1 . . . wk we infer that
vi is a factor of the word vw1 . . . wk. Therefore, vi is the labeling of some
fragment of the run (p0, . . . , p`) in C.

Now, we want to construct a run (σ0, . . . , σm) in P from an initial config-
uration to a final configuration with labeling t. To this end, we define

– xi := |α0 . . . αi−1|A,
– yi := |v|+ |α0 . . . αi−1|A, and
– ni := |vi|$.

By definition we have 0 ≤ xi ≤ |t|A ≤ m and |v| ≤ yi ≤ |vt|A ≤ ` for each
0 ≤ i ≤ m. Set σi := ((pxi

, pyi , si), $
ni) ∈ ConfP for each 0 ≤ i ≤ m. We will

prove that σ0, . . . , σm is a run in P with labeling t from InitP to FinalP such
that vi ∈ vσiw. But first, we have to show ni = |α0 . . . αi−1|$ − |α0 . . . αi−1|$
for each 0 ≤ i ≤ m. We do this by induction on i. The case i = 0 is obvious
since n0 = 0 by v0 = v ∈ L ⊆ (Ar {$})∗ and α0 . . . αi−1 = ε. Now, let i ≥ 0.
The induction hypothesis holds for i and we prove the equation for i+1. Then
we have to consider three cases:

1. αi /∈ {$, $}. Then we have

ni+1 = |vi+1|$ = |vi|$ = ni = |α0 . . . αi−1|$ − |α0 . . . αi−1|$
= |α0 . . . αi|$ − |α0 . . . αi|$.

2. αi = $. Then we have

ni+1 = |vi+1|$ = |vi|$ + 1 = ni + 1 = |α0 . . . αi−1|$ − |α0 . . . αi−1|$ + 1

= |α0 . . . αi−1$|$ − |α0 . . . αi−1$|
$

= |α0 . . . αi|$ − |α0 . . . αi|$.

20 Chris Köcher

3. αi = $. Then, by vi+1 = vi ◦ $ 6= ⊥ we have vi = $vi+1. Hence, we have

ni+1 = |vi+1|$ = |vi|$ − 1 = ni − 1 = |α0 . . . αi−1|$ − |α0 . . . αi−1|$ − 1

= |α0 . . . αi−1$|$ − |α0 . . . αi−1$|
$

= |α0 . . . αi|$ − |α0 . . . αi|$.

To prove that σm ∈ post∗(InitP)∩FinalP and v◦ t ∈ vσmw we demonstrate

that σ0 ∈ InitP, σi
αi−→P σi+1, vi+1 ∈ vσi+1w, and σm ∈ FinalP. This is done

by induction on i.
First, we show σ0 ∈ InitP. By definition, we have x0 = n0 = 0 and y0 = |v|.

Due to the choice of the run (p0, . . . , p`) we have p0 ∈ IC and p0
v−→C p|v| and

therefore p|v| ∈ {q ∈ QC | ∃u ∈ L : IC
u−→C q} = QL. Additionally, by to the

choice of (s0, . . . , sm) we have s0 ∈ IT. Hence, σ0 = ((p0, p|v|, s0), ε) ∈ InitP.
By v ∈ L ⊆ (Ar{$})∗ we can also infer v ∈ L(Cp0→p|v|)∩ ($0� (Ar{$})∗) =
vσ0w.

Next, let i ≥ 0. We have to consider two cases:

(W) αi ∈ A. Then we have xi+1 = xi, yi+1 = yi + 1, and ni+1 = ni + |αi|$. By
the choice of the run (p0, . . . , p`) we have (pyi , αi, pyi+1

) ∈ ∆C and by choice
of (s0, . . . , sm) we have (si, αi, si+1) ∈ ∆T. Hence, there is a transition

((pxi , pyi , si), αi, π$(αi), (pxi+1 , pyi+1 , si+1)) ∈ ∆P

and, therefore, σi
αi−→P σi+1. Furthermore, we have

vi+1 = vi ◦ αi = viαi
i.h.
∈ vσiw · αi

=
(
L(Cpxi

→pyi) ∩ ($ni
� (Ar {$})∗)

)
· αi

⊆
(
L(Cpxi

→pyi) ∩ ($ni
� (Ar {$})∗)

)(
L(Cpyi→pyi+1

) ∩ (π$(αi)� (Ar {$})∗)
)

⊆
(
L(Cpxi

→pyi)L(Cpyi→pyi+1
)
)
∩
(
$niπ$(αi)� (Ar {$})∗

)
⊆L(Cpxi

→pyi+1
) ∩ ($ni+|αi|$

� (Ar {$})∗) = vσi+1w .

(R) αi = a ∈ A. Here, we have xi+1 = xi+1, yi+1 = yi, and ni+1 = ni−|a|$ ≥ 0.
Due to vi+1 = vi ◦ a 6= ⊥ we have vi = avi+1. Since (pxi

, . . . , pyi) is a run
labeled with vi and a is a prefix of vi, this run begins with an a-edge.
This implies (pxi , a, pxi+1) ∈ ∆C. Additionally, since (s0, . . . , sm) is a run
labeled with t, we have (si, αi, si+1) ∈ ∆T. Hence, we have

((pxi
, pyi , si), a, π$(a), (pxi+1

, pyi+1
, si+1)) ∈ ∆P

implying σi
αi−→P σi+1. By the induction hypothesis we have vi ∈ vσiw =

L(Cpxi
→pyi)∩ ($ni� (Ar {$})∗). Since vi = avi+1 and (pxi

, a, pxi+1
) ∈ ∆C

we know that

vi ∈ a ·
(
L(Cpxi+1

→pyi) ∩ ($ni−|a|$
� (Ar {$})∗)

)
= a · vσi+1w

which implies vi+1 = a\vi ∈ vσi+1w (recall that vi+1 = avi holds).

Reachability Problems on Reliable and Lossy Queue Automata 21

Finally, we have ym = ` implying pym = p` ∈ FC and sm ∈ FT. Hence, we
have σm ∈ FinalP which finishes our proof. ut

Let v ∈ L and t ∈ (WR)∗ with v◦t 6= ⊥. Recall that we have proven Lemma 5.8
by combining runs in C and T to a t-labeled run in P which simulates the
computation v ◦ t. A first approach to prove the converse inclusion would be
the following: let σ ∈ post∗(InitP) ∩ FinalP and w ∈ vσw. Then there is a run
in P from InitP to σ labeled with t ∈ Σ∗A. From this run we obtain some
accepting run in T labeled with t implying t ∈ L(T) = (WR)∗. Unfortunately,
we cannot infer v ◦ t 6= ⊥ as the following example proves:

Example 5.9 We continue Example 5.7. Consider the following accepting run
of P:

InitP 3 ((p1, p1, s1), 0)
$−→P ((p1, p2, s2), 1)

a−→P ((p1, p1, s3), 1)

$−→P ((p2, p1, s3), 0)
b−→P ((p1, p1, s4), 0) =: σ ∈ FinalP .

Then we have vσw = {ε} and, indeed, ε ∈ Reach(L, (WR)∗). However, t =
ab is not an allowed computation of our queue automaton since

ε ◦ ab = $ ◦ a$b = $a ◦ $b = a ◦ b = ⊥ .

The reason of this problem is the lack of memory of our pushdown automaton
P which allows that the subsequences of write and read actions, respectively,
do not match. However, we can avoid this problem by a modification of write
actions in our run t. Since the application of a read action in P always requires
a step in the NFA C, we can obtain a transformation sequence t′ ∈ (WR)∗ in
which we only read letters that have been written into the queue before. This
will finally result in w = v ◦ t′ ∈ Reach(L, (WR)∗).

Lemma 5.10 Let σ ∈ post∗(InitP) ∩ FinalP. Then we have

vσw ⊆ Reach(L, (WR)∗) .

Proof Let σ = ((p, q, s), $n) ∈ post∗(InitP) ∩ FinalP and v ∈ vσw. Since v ∈
vσw = L(Cp→q)∩($n�(Ar{$})∗), L(C) = LW ∗, and q ∈ FC there are a suffix
y of a word from L ∪W and $z1, . . . , $zn ∈ W such that v = y$z1$z2 . . . $zn.
By v ∈ vσw we have y ∈ L(Cp→fC) ∩ (A r {$})∗. Furthermore, there is some
word t ∈ Σ∗A labeling a path from InitP to σ. Since every transition of the
PDA P simulates a transition of the NFA T, we obtain t ∈ L(T) = (WR)∗.
Hence, there are k ≥ 0, $w1, . . . , $wk ∈ W , and r1, . . . , rk ∈ R with t =
$w1r1 . . . $wkrk.

The PDA P lacks a memory of the concrete paths in C and T and, hence,
lacks a memory of the letters that were written into the queue. Therefore,
it is possible that the transformation t cannot be applied to any word from
L (i.e., L ◦ t = {⊥}). But due to this lack of memory we can replace the
infixes $w1, . . . , $wk in t by arbitrary words from W . Hence, we construct a
new transformation t′ ∈ L(T) = (WR)∗ which is a labeling of some other path

22 Chris Köcher

in P from InitP to σ which corresponds to some “valid” computation of the
queue automaton (i.e., L ◦ t′ 6= {⊥}).

Recall that $-transitions in P increase the number of $s in the stack and
$-transitions in P decrease the number of $s in the stack. Therefore, since t is
some labeling of a path in P each prefix of t contains at least as many $s as
$. Hence, we have |r1 . . . ri|$ ≤ |$w1 . . . $wi|$ = i for each 1 ≤ i ≤ k.

Due to r1, . . . , rk ∈ R ⊆ A∗ there is ` ∈ N and words x0, . . . , x` ∈ (Ar{$})∗
with r1 . . . rk = x0$. . . $x`. Hence, since |r1 . . . ri|$ ≤ i we know that r1 . . . ri
is a prefix of x0$. . . $xi for each 1 ≤ i ≤ `. In particular, we have k = |t|$ and
` = |t|

$
implying k − ` = n.

Now, we distinguish two cases: first, suppose ` = 0, i.e., k = n and x0 =
r1 . . . rk ∈ A∗. Therefore, a path in P with labeling t from InitP to σ requires
some $-free path in C labeled with r1 . . . rk from IC to p ∈ QC (this path
is represented in the first component of P’s states). Due to L(C) = LW ∗,
L ⊆ (A r {$})∗, and W ⊆ $(A r {$})∗, the word r1 . . . rk is some prefix
of a word from L. Hence, we have x0 ∈ L(CIC→p) ∩ (A r {$})∗ and y ∈
L(Cp→fC) ∩ (Ar {$})∗ implying x0y ∈ L. Now, we prove

v = x0y ◦ $z1r1$. . . $zkrk ∈ Reach(L, (WR)∗) .

Then we can prove the following

x0y ◦ $z1r1$. . . $zkrk = r1 . . . rky ◦ $z1r1$. . . $zkrk

= r2 . . . rky$z1 ◦ $z2r2$. . . $zkrk

...

= ri+1 . . . rky$z1 . . . $zi ◦ $zi+1ri+1$. . . $zkrk

...

= y$z1 . . . $zk = v .

Since $z1, . . . , $zk ∈W and r1, . . . , rk ∈ R we have $z1r1$. . . $zkrk ∈ (WR)∗.
Then, from x0y ∈ L we can infer v ∈ Reach(L, (WR)∗).

Next, we assume ` ≥ 1. Since t is the labeling of some path from InitP to σ
in P we can prove (by observing the first component of P’s state) that there
is a path in C from IC to p labeled with r1 . . . rk = x0$. . . $x`. By definition
of L(C) = LW ∗, L ⊆ (A r {$})∗, and W ⊆ $(A r {$})∗ we have x0 ∈ L,
$x1, . . . , $x`−1 ∈W , and $x` is a prefix of a word in W .

Since x0$. . . $x` ∈ L(CIC→p) and v = y$z1$. . . $zn ∈ L(Cp→FC
) ⊆ vσw we

have

x0$. . . $x`y$z1$. . . $zn ∈ L(C) = LW ∗ ,

i.e., $x`y ∈W . We want to prove now

v = x0 ◦ $x1r1$x2r2 . . . $x`yr`$z1r`+1 . . . $znrk ∈ Reach(L, (WR)∗) .

Reachability Problems on Reliable and Lossy Queue Automata 23

First, we prove by induction on 1 ≤ i < ` that

x0 ◦ $x1r1$x2r2 . . . $xiri = r1...ri\(x0$. . . $xi)

holds. To this end, let i = 1. Then we have

x0 ◦ $x1r1 = x0$x1 ◦ r1 = r1\(x0$x1)

which is defined since r1 is a prefix of x0$x1 as mentioned above. Now, let
1 < i < `. Then we have

x0 ◦ $x1r1$x2r2 . . . $xiri = r1...ri−1
\(x0$. . . $xi−1) ◦ $xiri (by ind. hyp.)

= r1...ri−1
\(x0$. . . $xi−1) · $xi ◦ ri

= r1...ri−1
\(x0$. . . $xi−1$xi) ◦ ri

= ri\
(
r1...ri−1

\(x0$. . . $xi)
)

= r1...ri\(x0$. . . $xi) .

The last two equations hold since r1 . . . ri is a prefix of x0$. . . $xi as we have
mentioned above. Next, we can prove the following equalities:

x0 ◦ $x1r1$x2r2 . . . $x`yr`$z1r`+1 . . . $znrk

= r1...r`−1
\(x0$. . . $x`−1) ◦ $x`yr`$z1r`+1 . . . $znrk

= r1...r`−1
\(x0$. . . $x`−1$x`y) ◦ r`$z1r`+1 . . . $znrk

= r1...r`−1
\(r1 . . . rky) ◦ r`$z1r`+1 . . . $znrk

= r` . . . rky ◦ r`$z1r`+1 . . . $znrk

= r`+1 . . . rky ◦ $z1r`+1 . . . $znrk

= r`+2 . . . rky$z1 ◦ $z2r`+2 . . . $znrk

...

= y$z1$. . . $zn = v

From $x1, . . . , $x`y, $z1, . . . , $zn ∈W and r1, . . . , rk ∈ R we can infer

$x1r1$x2r2 . . . $x`yr`$z1r`+1 . . . $znrk ∈ (WR)∗ .

With x0 ∈ L we can finally infer v ∈ Reach(L, (WR)∗). ut

5.3 The Main Result

Until now we have seen the effective preservation of regularity if the read-write
independent set T ⊆ Σ∗A satisfies a special condition, namely, T = WR where
W ⊆ $(A r {$})∗ and R = $∗ � R. From this special case we infer now the
effective preservation of regularity for arbitrary read-write independent sets.

24 Chris Köcher

Theorem 5.11 (Main Theorem) Let A be an alphabet, L ⊆ A∗ be regular,
and T ⊆ Σ∗A be read-write independent and regular. Then Reach(L, T ∗) and
BackReach(L, T ∗) are effectively regular. In particular, from NFAs accepting
L and T we can compute NFAs accepting Reach(L, T ∗) and BackReach(L, T ∗)
in polynomial time.

We first consider the effective and efficient regularity of Reach(L, T ∗). Recall
that we are able to de-shuffle T by Lemma 5.4, i.e., we have

Reach(L, T) = Reach(L, πA(T)πA(T)) .

So, when computing Reach(L, T ∗) it suffices to only consider the de-shuffled
words in T . The following lemma states that we are allowed to insert the
synchronizing letter $ into our de-shuffled words:

Lemma 5.12 Let A be an alphabet, $ /∈ A be another symbol, and L,W,R ⊆
A∗. Set W ′ := $W and R′ := R � $∗. Then we have Reach(L,WR) =
πA(Reach(L,W ′R′)).

Proof First, let x ∈ Reach(L,WR). Then there are v ∈ L, w ∈W , and r ∈ R
with v◦wr = x 6= ⊥. Due to Definition 3.1 we have rx = vw. We can construct
r′ ∈ {r}� $∗ ⊆ R� $∗ = R′ and x′ ∈ {x}� $∗ satisfying r′x′ = v$w, i.e., we
have x′ = r′\v$w. Hence, the following holds:

⊥ 6= x′ = r′\v$w = v$w ◦ r′ = v ◦ $wr′ ∈ Reach(L,W ′R′)

implying x = πA(x′) ∈ πA(Reach(L,W ′R′)).
Now, let x ∈ πA(Reach(L,W ′R′)). Then there is x′ ∈ Reach(L,W ′R′)

with x = πA(x′), i.e., we have v ∈ L, w′ ∈ W ′, and r′ ∈ R′ with v ◦ w′r′ =
x′ 6= ⊥. Again, by Definition 3.1 we have r′x′ = vw′. Since πA is a homo-
morphism, we can infer πA(r′)πA(x′) = πA(v)πA(w′) and, therefore, πA(x′) =

πA(r′)\πA(v)πA(w′). Hence, the following equations hold:

⊥ 6= x = πA(x′) = πA(r′)\πA(v)πA(w′) = πA(v) ◦ πA(w′)πA(r′) .

Since πA(v) = v, πA(w′) ∈ πA(W ′) = W , and πA(r′) ∈ πA(R′) = R we can
finally infer x ∈ Reach(L,WR). ut

Now we can prove our main theorem in this section:

Proof (of Theorem 5.11) Let W := πA(T) and R := πA(T) which are both
regular by closure properties of regular languages. We introduce a new letter
$ /∈ A. Then we can compute NFAs accepting W ′ := $W and R′ := R�$∗. By
Theorem 5.5 we know that Reach(L, (W ′R′)∗) is effectively regular as well.
By iterated application of the Lemmas 5.4 and 5.12 we can infer that

Reach(L, T ∗) = Reach(L, (WR)∗) = πA(Reach(L, (W ′R′)∗))

holds. Hence, due to the closure properties of the class of regular languages,
Reach(L, T ∗) is effectively regular. Note that the modifications of W and R

Reachability Problems on Reliable and Lossy Queue Automata 25

as well as the projection to A are possible in linear time and space. Hence, an
NFA accepting Reach(L, T ∗) can be computed in still in polynomial time.

Finally, we have to consider BackReach(L, T ∗). Due to Lemma 5.4 and
Theorem 3.3 we have

BackReach(L, T ∗) = BackReach(L, (WR)∗) = Reach(LR, (RRWR)∗)
R
.

By closure properties and the statement above we obtain the effective and
efficient regularity of BackReach(L, T ∗). ut

We can use Theorem 5.11 to prove the effective preservation of regularity
of some other language classes. The following corollary lists some of them:

Corollary 5.13 Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗A be
regular. Then Reach(L, T ∗) and BackReach(L, T ∗) are effectively regular if

(1) T = R1WR2 for some regular sets W,R1, R2 ⊆ A∗,
(2) T = {t} for some t ∈ Σ∗A (cf. [6]), or

(3) T ⊆ A∗ ∪A∗.
In all of these cases the computation of NFAs accepting Reach(L, T ∗) and
BackReach(L, T ∗), respectively, is possible in polynomial time.

Proof First, we prove (1). Then we have

(R1WR2)∗ = {ε} ∪R1(WR2R1)∗WR2 .

Then, due to Proposition 3.5 and Theorem 5.11 Reach(L, (R1WR2)∗) is ef-
fectively regular.

Next, we consider (2). Due to Proposition 4.3 we can compute a word

s ∈ A∗A∗A∗ with s ≡ t. Using (1) we know that Reach(L, s∗) is effectively
regular. Hence Reach(L, t∗) is regular as well.

Finally, we consider (3). Let W,R ⊆ A∗ with T = W ∪ R. Then we have

T ∗ = (W ∗R
∗
)∗. Hence, due to Theorem 5.11 Reach(L, T ∗) is effectively reg-

ular. ut
As we have seen, Theorem 5.11 implies the effective preservation of regu-

larity for a large class of sets of transformation sequences. However, we think
our result can be generalized to an even larger class of languages. Recall that
T ⊆ Σ∗A is read-write independent if for each pair s, t of words in T there
is some particular de-shuffled combination πA(s)πA(t) of these words in T .
A possible generalization is to drop the requirement that this combination is
de-shuffled:

Conjecture 5.14 Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗A
be regular such that for each s, t ∈ T there is r ∈ T with πA(r) = πA(s)
and πA(r) = πA(t) holds. We conjecture that in this case Reach(L, T ∗) is
effectively regular.

The proof of Theorem 5.11 does not work in this case. At least the uti-
lization of Lemma 5.4, where we de-shuffle the words from T , is impossible
in certain cases. For example, we have Reach({ε}, (aaa)∗) = {ε} 6= a∗ =
Reach({ε}, (aaa)∗). However, possibly the construction of our PDA P in the
proof of Theorem 5.5 can be modified to this more general case.

26 Chris Köcher

6 Partially Lossy Queues

Until now we have only considered queues which are reliable. We can also prove
the results from the previous sections for (partially) lossy queue automata.
These partially lossy queue automata are queue automata with an additional
uncontrollable action which is forgetting parts of its contents that are specified
by a so-called lossiness alphabet.

Definition 6.1 A lossiness alphabet is a tuple L = (F,U) where F and U are
two finite sets with F ∩ U = ∅. We call F the set of forgettable letters and U
the set of unforgettable letters.

From a given lossiness alphabet L = (F,U) we also obtain the alphabet AL =
F ∪ U of all possible queue contents and the alphabet ΣL = AL ∪ AL of all
queue actions.

In fact, a partially lossy queue is allowed to forget any letter from F in
its content at any time. Here, we first consider partially lossy queues with
restricted lossiness. Concretely, we consider only the computations in which
the queue forgets letters when necessary. That is, if the queue tries to read
some letter which is preceded by some other, forgettable letters.

Formally, the computations of such restricted partially lossy queues are
defined as follows:

Definition 6.2 Let L = (F,U) be a lossiness alphabet and ⊥ /∈ AL. Then the
map ◦L : (A∗L∪{⊥})×Σ∗L → (A∗L∪{⊥}) is defined for each v ∈ A∗L, a, b ∈ AL,
and t ∈ Σ∗L as follows:

1. v ◦L ε = v
2. v ◦L at = va ◦L t

3. bv ◦L at =


v ◦L t if a = b

v ◦L at if b ∈ F r {a}
⊥ otherwise

4. ε ◦L at = ⊥ ◦L t = ⊥

Let A be some alphabet and v, w ∈ A∗ be two words. Then v is a subword
of w (denoted by v � w) if we have w ∈ {v} � A∗. The induced relation
�⊆ (A∗)2 is a partial ordering on A∗. Let L = (F,U) be a lossiness alphabet
and v, w ∈ A∗L. We say that v is an L-subword of w (denoted by v �L w)
if πU (w) � v � w holds, i.e., v is a subword of w which contains at least
all unforgettable letters from w. It is easy to see, that �(∅,U) is the equality
relation and �(F,∅) is the subword relation.

Next, we want to describe the computations of non-restricted partially lossy
queues. In [20] we have proven that the set of reachable queue contents after
application of t ∈ Σ∗L on some content v ∈ A∗L is the set of all L-subwords of
v ◦L t. To this end, we define up- and downclosures of some language L ⊆ A∗L
with respect to �L: the downclosure of L

↓LL := {v ∈ A∗L | ∃w ∈ L : v �L w} .

Reachability Problems on Reliable and Lossy Queue Automata 27

Similarly, the upclosure of L is

↑LL := {w ∈ A∗L | ∃v ∈ L : v �L w} .

Hence, the set of reachable contents of a (non-restricted) partially lossy queue
after application of t on the input v is ↓L(v ◦L t). Therefore, we define our
reachability problems as follows:

Problem 6.3 Let L = (F,U) be a lossiness alphabet, L ⊆ A∗L be a set of
queue contents, and T ⊆ Σ∗L be a regular set of transformation sequences.
The set of queue contents that are reachable from L via T is

ReachL(L, T) := ↓�L((L ◦L T) r {⊥})

and the set of queue contents that can reach L via T is

BackReachL(L, T) := ↑�L{v ∈ A
∗
L | (v ◦L T) ∩ L 6= ∅} .

Partially lossy queue automata with lossiness alphabets L = (∅, U) are reli-
able. Hence, we have ReachL = Reach and BackReachL = BackReach
in this case. In this reliable case we have a strong duality between forwards
and backwards reachability. However, this duality does not hold for arbi-
trary lossiness alphabets: if L = (F,U) is a lossiness alphabet with a ∈
AL we have ReachL({ε}, a) = {ε, a}, which cannot be transformed into
BackReach({ε}, a) = F ∗aF ∗ using reversal. Hence, we have to consider for-
wards and backwards reachability in this case. Anyway, we will see later in this
section that we can reduce forwards and backwards reachability for arbitrary
partially lossy queues to reachability in reliable queues.

Now, we consider fully lossy queues: let L = (F, ∅) be a lossiness alphabet.
Then, for regular languages L ⊆ A∗L = F ∗ and T ⊆ Σ∗L, the set ReachL(L, T)
has a decidable membership problem [3] and, since it is downwards closed
under the subword ordering � [15], it is regular. Though, we cannot compute
an NFA accepting this set [2,23] and this holds even if we start from the
empty queue, only (i.e., L = {ε}). Surprisingly, the set BackReachL(L, T) is
effectively regular [3], but the computation of an NFA accepting this language
is not primitive recursive [26,10].

Hence, again we try to approximate the reachability problem with the help
of meta-transformations. To this end, we need another definition:

Definition 6.4 Let L = (F,U) be a lossiness alphabet and w = a1a2 . . . an ∈
A∗L with a1, a2, . . . , an ∈ AL. The set of the reduced L-superwords of w is

redsupL(w) := {w1a1w2a2 . . . wnan | ∀1 ≤ i ≤ n : wi ∈ (F r {ai})∗} .

Let w ∈ A∗L. Then it is easy to see, that a reduced L-superword v ∈ redsupL(w)
also is an L-superword of w, i.e., w �L v. However, in general w �L v does not
imply that v ∈ redsupL(w) since, e.g., for w �L v it is allowed to add some
forgettable letters at the end of w. If F = ∅ holds, then there is exactly one
reduced L-superword redsupL(w) = {w}. Note that redsupL(w) is effectively
regular. We can also extend this notion to languages:

28 Chris Köcher

Lemma 6.5 Let L = (F,U) be a lossiness alphabet and L ⊆ A∗L be regular.
Then the language redsupL(L) :=

⋃
w∈L redsupL(w) is effectively regular. An

NFA accepting redsupL(L) can be computed in polynomial time.

Proof (idea) Let A = (QA, AL, IA, ∆A, FA) be an NFA accepting L. We can
compute an NFA B = (QB, AL, IB, ∆B, FB) as follows:

– QB := QA ×AL,
– IB := IA ×AL,
– FB := FA ×AL, and
– ∆B = {((p, a), a, (q, b)) | (p, a, q) ∈ ∆A} ∪ {((p, b), a, (p, b)) | a ∈ F r {b}}.

In other words, we simulate A in the first component of the states of B. In the
second component we guess the letter which A reads on its next step. With
the help of this information we are able to read some other forgettable letters.
Hence, we obtain L(B) = redsupL(L). ut

Now, we can state the following connection between partially lossy com-
putations ◦L and reduced L-superwords:

Lemma 6.6 Let L = (F,U) be a lossiness alphabet and v, w, t ∈ A∗L. Then
we have v ◦L t = w if, and only if, there is s ∈ redsupL(t) with v = sw.

Proof We prove this by induction on the length of t. First, assume t = ε. Then
we have v = v ◦L t = w, ε ∈ redsupL(t), and v = εw = w.

Next, let t = at′ for some a ∈ AL and t′ ∈ A∗L. Assume v◦L t = w. Then we
have w = v ◦L t = (v ◦L a) ◦L t′. By definition of ◦L there are v1 ∈ (F r {a})∗
and v2 ∈ A∗L with v = v1av2, v ◦L a = v2, and v2 ◦L t′ = w. By induction
hypothesis there is s′ ∈ redsupL(t′) with v2 = s′w. Set s := v1as

′. Then we
see s ∈ redsupL(at′) = redsupL(t) and v = v1av2 = v1as

′w = sw.
Conversely, let s ∈ redsupL(t) with v = sw. Then by definition there is

s1 ∈ (F r {a})∗ and s2 ∈ A∗L with s = s1as2 and s2 ∈ redsupL(t′). By v = sw
there is v2 ∈ A∗L with v = sw = s1as2w = s1av2, i.e., v2 = s2w. By induction
hypothesis we have v2 ◦L t′ = w. We also have v ◦L a = v2 implying

v ◦L t = (v ◦L a) ◦L t′ = v2 ◦L t′ = w . ut

With the help of Lemma 6.6 we can finally prove the following reductions from
reachability in partially lossy queues to reachability in reliable queues:

Proposition 6.7 Let L = (F,U) be a lossiness alphabet and L, T ⊆ A∗L. Then
the following statements hold:

(1) (L ◦L T) r {⊥} = (L ◦ T) r {⊥}
(2) (L ◦L T) r {⊥} = (L ◦ redsupL(T)) r {⊥}
(3) ReachL(L, T) = ↓LReach(L, T)
(4) ReachL(L, T) = ↓LReach(L, redsupL(T))
(5) BackReachL(L, T) = ↑LBackReach(L, T)
(6) BackReachL(L, T) = ↑LBackReach(L, redsupL(T))

Reachability Problems on Reliable and Lossy Queue Automata 29

Proof First, we prove (1):

(L ◦L T) r {⊥} = LT = (L ◦ T) r {⊥} .

To prove (2), let x ∈ L ◦L T . Then there are w ∈ L and t ∈ T with
x = w ◦L t. By Lemma 6.6 there is s ∈ redsupL(t) ⊆ redsupL(T) with w = sx.
Then we have x = w ◦ s and, hence, x ∈ L ◦ redsupL(T).

Now, let x ∈ L ◦ redsupL(T). Then there are w ∈ L and s ∈ redsupL(T)
with x = w ◦ s and, therefore, sx = w. There is t ∈ T with s ∈ redsupL(t). By
Lemma 6.6 we have x = w ◦L t and, therefore, x ∈ L ◦L T .

The equations (3)-(6) are direct consequences of (1) and (2) as well as
Theorem 3.3. ut

Finally, we can prove that our results from the previous sections also hold for
arbitrary partially lossy queues:

Theorem 6.8 Let L = (F,U) be a lossiness alphabet, L ⊆ A∗L be regular, and
T ⊆ Σ∗L be regular and closed under ≡L (where s ≡L t if v ◦L s = v ◦L t for
each v ∈ A∗L). Then ReachL(L, T) and BackReachL(L, T) are effectively
regular. ut

Theorem 6.9 Let L = (F,U) be a lossiness alphabet, L ⊆ A∗L be regular,
and T ⊆ Σ∗L be regular and read-write independent. Then ReachL(L, T ∗) and
BackReachL(L, T ∗) are effectively regular. ut

Theorem 6.10 Let L = (F,U) be a lossiness alphabet, L ⊆ A∗L be regular,
and T ⊆ Σ∗L be regular. Then ReachL(L, T ∗) and BackReachL(L, T ∗) are
effectively regular if

(1) T = R1WR2 for some regular sets W,R1, R2 ⊆ A∗L,
(2) T = {t} for some t ∈ Σ∗L (cf. [1,6]), or

(3) T ⊆ A∗L ∪AL
∗
. ut

7 Conclusion and Open Problems

In this paper we considered the reachability problem of reliable and lossy queue
automata having exactly one queue. We joined these two models to so-called
partially lossy queue automata (plq automata, for short). These automata are
allowed to forget a specified subset of their contents at any time. Depend-
ing on this specified set, the reachability problem of these automata is either
undecidable or inefficient. Hence, Boigelot et al. [6] and Abdulla et al. [1]
tried to approximate the reachability problem with the help of so-called meta-
transformations. These are regular languages of transformation sequences such
that we can easily compute the set of reachable queue contents. Here, we con-
sidered two special kinds of meta-transformations:

1. the set of possible sequences of queue transformations is closed under cer-
tain (context-sensitive) commutations of the atomic transformations.

30 Chris Köcher

2. the plq automaton alternates between writing of words from a regular lan-
guage and reading of words from another regular language. This is a gener-
alization of the results [6,1] where the authors considered queue automata
looping through a single sequence of transformations.

In both cases we could prove that, starting with a regular language of queue
contents the queue reaches a regular set of new contents.

Until now it is open, whether we can extend our second kind of meta-transfor-
mations to plq automata looping through a sequence of multiple such regular
languages of write and read actions. We may also ask, in which cases a plq
automaton having multiple queues reaches a recognizable set of states reach-
able from a recognizable set of initial contents. For example, in [6] there is
also a result considering multiple reliable queues looping through a sequence
of transformations. So, we could also try to generalize our result to multiple
queues.

We could also consider automata having other data structures as their
memory. So, we could also consider automata with multiple pushdowns. Since
these automata are as powerful as queue automata or Turing-machines, we
also have to approximate the reachability problem.

Acknowledgment

The author would like to thank Dietrich Kuske and the anonymous reviewers
of the conference version [19] and the submitted version of this full paper for
their helpful suggestions to improve this paper.

References

1. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using Forward Reach-
ability Analysis for Verification of Lossy Channel Systems. Formal Methods in System
Design 25(1), 39–65 (2004). DOI 10.1023/B:FORM.0000033962.51898.1a

2. Abdulla, P.A., Jonsson, B.: Undecidable Verification Problems for Programs with
Unreliable Channels. Information and Computation 130(1), 71–90 (1996). DOI
10.1006/inco.1996.0083

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information
and Computation 127(2), 91–101 (1996). DOI 10.1006/inco.1996.0053

4. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher (1979).
DOI 10.1007/978-3-663-09367-1

5. Boigelot, B., Godefroid, P.: Symbolic Verification of Communication Protocols with
Infinite State Spaces using QDDs. Formal Methods in System Design 14(3), 237–255
(1999). DOI 10.1023/A:1008719024240

6. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs. In: Static
Analysis, Lecture Notes in Computer Science, vol. 1302, pp. 172–186. Springer (1997).
DOI 10.1007/BFb0032741

7. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: A. Mazurkiewicz, J. Winkowski (eds.) CONCUR
1997, Lecture Notes in Computer Science, vol. 1243, pp. 135–150. Springer (1997).
DOI 10.1007/3-540-63141-0 10

Reachability Problems on Reliable and Lossy Queue Automata 31

8. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems
with nonregular sets of configurations. Theoretical Computer Science 221(1), 211–250
(1999). DOI 10.1016/S0304-3975(99)00033-X

9. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of the
ACM 30(2) (1983). DOI 10.1145/322374.322380

10. Chambart, P., Schnoebelen, P.: The Ordinal Recursive Complexity of Lossy Channel
Systems. In: LICS 2008, pp. 205–216. IEEE Computer Society Press (2008). DOI
10.1109/LICS.2008.47

11. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient Algorithms for Model
Checking Pushdown Systems. In: E.A. Emerson, A.P. Sistla (eds.) CAV 2000, Lecture
Notes in Computer Science, vol. 1855, pp. 232–247. Springer (2000). DOI 10.1007/
10722167 20

12. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical
Computer Science 256(1), 63–92 (2001). DOI 10.1016/S0304-3975(00)00102-X

13. Finkel, A., Willems, B., Wolper, P.: A Direct Symbolic Approach to Model Checking
Pushdown Systems. Electronic Notes in Theoretical Computer Science 9, 27–37 (1997).
DOI 10.1016/S1571-0661(05)80426-8

14. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems. Logical
Methods in Computer Science 10(4:4) (2014). DOI 10.2168/LMCS-10(4:4)2014

15. Haines, L.H.: On free monoids partially ordered by embedding. Journal of Combinatorial
Theory 6(1), 94–98 (1969). DOI 10.1016/S0021-9800(69)80111-0

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theorey, Lan-
guages, and Computation, third edn. Pearson (2006)

17. Huschenbett, M., Kuske, D., Zetzsche, G.: The monoid of queue actions. Semigroup
forum 95(3), 475–508 (2017). DOI 10.1007/s00233-016-9835-4

18. Köcher, C.: Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue
Monoid. In: STACS 2018, LIPIcs, vol. 96, pp. 45:1–45:14. Dagstuhl Publishing (2018).
DOI 10.4230/LIPIcs.STACS.2018.45

19. Köcher, C.: Reachability Problems on Partially Lossy Queue Automata. In: RP 2019,
Lecture Notes in Computer Science, vol. 11674, pp. 149–163. Springer (2019). DOI
10.1007/978-3-030-30806-3 12

20. Köcher, C., Kuske, D., Prianychnykova, O.: The Inclusion Structure of Partially Lossy
Queue Monoids and their Trace Submonoids. RAIRO - Theoretical Informatics and
Applications 52(1), 55–86 (2018). DOI 10.1051/ita/2018003

21. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In: 2015
30th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 56–67. IEEE
(2015)

22. Mayr, E.: An Algorithm for the General Petri Net Reachability Problem. SIAM Journal
on Computing 13(3), 441–460 (1984). DOI 10.1137/0213029

23. Mayr, R.: Undecidable problems in unreliable computations. Theoretical Computer
Science 297(1), 337–354 (2003). DOI 10.1016/S0304-3975(02)00646-1

24. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc. (1967)
25. Render, E., Kambites, M.: Rational subsets of polycyclic monoids and valence automata.

Information and Computation 207(11), 1329–1339 (2009). DOI 10.1016/j.ic.2009.02.012
26. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity.

Information Processing Letters 83(5), 251–261 (2002). DOI 10.1016/S0020-0190(01)
00337-4

	Introduction
	Preliminaries
	Queue and Pushdown Automata
	Behavioral Equivalence
	Read-Write Independence
	Partially Lossy Queues
	Conclusion and Open Problems

