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1. Introduction14

In this paper, we introduce the model of cooperating multi-pushdown systems215

and study the reachability relation for such systems. To explain the idea of16

a cooperating multi-pushdown system, we first look at well-studied pushdown17

systems. They model the behavior of a sequential recursive program and possess18

a control state as well as a pushdown. The top symbol of the pushdown stores19

the execution context, e.g., parameters and local variables, the state can be used20

to return values from a subroutine to the calling routine. Such a system can,21

depending on the state and the top symbol, do three types of moves: it can call22

a subroutine (i.e., change state and top symbol and add a new symbol on top of23

the pushdown), it can do an internal action (i.e., change state and top symbol),24

and it can return from a subroutine (i.e., delete the top symbol and store the25

necessary information into the state). This leads to the unifying definition of a26

transition that, depending on state and top symbol, changes state and replaces27

the top symbol by a (possibly empty) word.28

A cooperating multi-pushdown system consists of a finite family of pushdown29

systems (indexed by a set P ). Cooperation is realized by the formation of30

temporary coalitions that perform a possibly recursive subroutine in a joint31

manner. Suppose the system is in a configuration where C ⊆ P forms one of32

the coalitions. The execution context of the joint task is distributed between33

the top symbols of the pushdowns from the coalition and can only be changed34

in all these components at once. As above, there are three types of moves35

depending on the top symbols and the states of the systems from the coalition.36

First, a (further) subroutine can be called on a sub-coalition C0 ⊆ C. Even37

more, several subroutines can be called in parallel on disjoint sub-coalitions of38

C. This is modeled as a change of states and top symbols of C and addition of39

some further symbols on the pushdowns from subsets of C. Internal actions of40

the coalition C can change the (common) top symbol as well as the states of the41

systems that form the coalition C. Similarly, a return move deletes the common42

top symbol and changes the states of the systems from C, in this moment, the43

coalition C is dissolved and the systems from C are free to be assigned to new44

coalitions and tasks by the calling routine. Since several, mutually disjoint45

coalitions can exist and operate at any particular moment, the cooperating46

multi-pushdown system is a non-sequential model.47

Since a cooperating multi-pushdown system consists of several pushdown48

systems, a configuration consists of a tuple of local states and a tuple of push-49

down contents; the current division into coalitions is modeled by the top symbols50

of the pushdowns: any component forms a coalition with all components that51

have the same top symbol a on their stack. Since all these occurrences of the52

letter a can only change at once, there is some dependency in the tuple of push-53

down contents of a configuration. It turns out to be convenient and fruitful to54

2A more descriptive name would be “cooperating systems of pushdown systems”, but we
refrain from using this term.
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understand such a “consistent” tuple of pushdown contents as a Mazurkiewicz55

trace. Since the set of all Mazurkiewicz traces forms a monoid, we can define56

recognizable and rational sets of traces and therefore of configurations: Both57

these classes of sets of traces enjoy finite representations (by asynchronous au-58

tomata [1] and NFAs, resp.) that allow to decide membership, any recognizable59

set is rational but not vice versa, any singleton is both, recognizable and ratio-60

nal, and inclusion of a rational set (and therefore in particular of a recognizable61

set) in a recognizable set is efficiently decidable (but not vice versa).62

As our main results, we obtain that backwards reachability (1) efficiently63

preserves the recognizability of sets of configurations while (2) it does not pre-64

serve rationality. We also show that asynchronous multi-pushdown systems (a65

slight generalization of our model) can model 2-pushdown systems and therefore66

have an undecidable reachability relation.67

From our positive result, we infer that the reachability relation as well as68

certain safety and liveness properties are decidable in polynomial time. Fur-69

thermore, the first result implies that EF-model checking is decidable, although70

one only obtains a non-elementary complexity bound.71

Related work. Multiple algorithms for computing the forwards or backwards72

reachable configurations in pushdown systems where rationality and recogniz-73

ability coincide [2] can be found (e.g.) in [3, 4, 5, 6]. Our proof of (1) generalizes74

the one by Bouajjani et al.75

Other forms of multi-pushdown systems have been considered by different76

groups of authors, e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. These alternative77

models may contain a central control or, similarly to our cooperating systems,78

local control states. The models can have a fixed number of processes and79

pushdowns or they are allowed to spawn or terminate other processes. Local80

processes can differ in their communication mechanism, e.g., by rendevouz or81

FIFO-channels. The decidability results concern logical formulas of some form82

or bounded model checking problems.83

Mazurkiewicz traces as a form of storage mechanism have been considered84

by Hutagalung et al. in [18], where multi-buffer systems were studied.85

The results of this paper were announced in the conference contribution [19].86

2. Preliminaries87

For a binary relation R ⊆ S2 and s, t ∈ S we define the sets sR := {t ∈ S | sR t}88

and R t := {s ∈ S | sR t}.89

For n ∈ N, [n] = {1, . . . , n}. Let (Si)i∈[n] be a tuple of sets, I, J ⊆ [n] be90

two disjoint sets, and s = (si)i∈[n] and t be tuples from
∏n

i=1 Si. We write91

s�I = (si)i∈I ∈
∏

i∈I Si for the restriction of s to the components in I and92

(s�I , t�J) for the joint tuple r ∈
∏

i∈I∪J Si with r�I = s�I and r�J = t�J .93

For a word w ∈ A∗, we write Alph(w) for the set of letters occurring in w.94

A non-deterministic finite automaton or NFA is a tuple A = (Q,A, I, δ, F )95

where Q is a finite set of states, A is an alphabet, I, F ⊆ Q are sets of initial96

3



and accepting states, respectively, and δ ⊆ Q × A × Q is a set of transitions;97

its size ‖A‖ is |Q|+ |A|. We write Q1
w−→A Q2 if there is a run from some state98

p ∈ Q1 to some state q ∈ Q2 labeled with w in A; {p} w−→A {q} is abbreviated99

p
w−→A q. The language accepted by A is L(A) := {w ∈ A∗ | I w−→A F}.100

We will model the contents of our multi-pushdown systems with the help101

of Mazurkiewicz traces; for a comprehensive survey of this topic we refer to102

[20]. Traces were first studied in [21] as “heaps of pieces” and later introduced103

into computer science by Mazurkiewicz to model the behavior of a distributed104

system [22]. The fundamental idea is that any letter a ∈ A is assigned a set of105

locations or processes aL ⊆ P it operates on (where P is some set):106

Definition 1. A distributed alphabet is a triple D = (A,P,L) where A and107

P are two alphabets of letters and processes, respectively, and L ⊆ A × P108

associates letters to processes such that aL 6= ∅ for each a ∈ A. In this paper,109

D will always denote a distributed alphabet (A,P,L).110

For a word w ∈ A∗ we denote the set of processes associated with w by111

wL :=
⋃

a∈Alph(w) aL ⊆ P . In particular, we set εL := ∅. By πi : A∗ → A∗i we112

denote the projection onto Ai := L i (the alphabet of all letters associated to113

process i), i.e., the monoid morphism with πi(a) = a for a ∈ Ai and πi(b) = ε114

for b ∈ A \Ai.115

Note that
∏

i∈P A
∗
i is a direct product of monoids and therefore a monoid116

itself (with componentwise concatenation). Since πi : A∗ → A∗i is a monoid117

morphism for all i ∈ [n], also the mapping118

π : A∗ →
∏

i∈P
A∗i : w 7→ (πi(w))i∈P

is a monoid morphism. For w ∈ A∗, we call π(w) the (Mazurkiewicz) trace119

induced by w. The trace monoid is the submonoid of
∏

i∈P A
∗
i with universe120

M(D) = {π(w) | w ∈ A∗}; its elements are traces and its subsets are trace121

languages.122

We call two words v, w ∈ A∗ with vL∩wL = ∅ independent and denote123

this fact by v ‖ w. We can see that v ‖ w implies π(vw) = π(wv).124

Let A = (Q,A, I, δ, F ) be an NFA. The accepted trace language of A is125

T (A) := {π(w) | I w−→A F}. In other words, T (A) is the image of L(A) under126

the morphism π. A trace language L ⊆ M(D) is called rational if there is an127

NFA A with T (A) = L, i.e., iff L is the image of some regular language in A∗128

under the morphism π. A trace language L is recognizable iff its preimage under129

the morphism π, i.e. {w ∈ A∗ | π(w) ∈ L}, is regular. Clearly, any recognizable130

trace language is rational. The converse implication holds only in case any two131

letters are dependent.132

A finite automaton that reads letters of a distributed alphabet should consist133

of components for all i ∈ P such that any letter a ∈ A acts only on the compo-134

nents from aL. This idea leads to the following definition of an asynchronous135

automaton. But first, we fix a particular notation: For a tuple (Qi)i∈P of finite136

sets Qi, we write Q for the direct product
∏

i∈P Qi.137
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Definition 2. Let D = (A,P,L) be a distributed alphabet. An asynchronous138

automaton or AA is an NFA A = (Q, A, I, δ, F ) where Q =
∏

i∈P Qi is the139

product of finite sets Qi of local states — accordingly, the tuples from Q are140

called global states — and where, for every (p, a, q) ∈ δ and r ∈
∏

i∈P\aLQi,141

we have142

(i) p�P\aL = q�P\aL and143

(ii) ((p�aL, r), a, (q�aL, r)) ∈ δ.144

Here, (i) ensures that any a-transition of A only modifies components from145

aL while the other components are left untouched, and (ii) guarantees that a-146

transitions are insensitive to the local states of the components in P \ aL. Due147

to these two properties we can also see the transition relation δ as a collection148

of local transition relations δa (for a ∈ A) where δa ⊆
∏

i∈aLQi ×
∏

i∈aLQi.149

Note that in literature asynchronous automata are often defined with the help150

of these local transition relations.151

Every asynchronous automaton accepts a recognizable trace language. Con-152

versely, Zielonka’s celebrated result [1] states that, even more, every recogniz-153

able trace language L ⊆M(D) is accepted by some deterministic asynchronous154

automaton.155

3. Introducing Cooperating Multi-Pushdown Systems156

An AA consists of several NFAs that synchronize by joint actions. In a similar157

manner, we will now consider several pushdown systems synchronizing by joint158

actions.159

Recall that a pushdown system (or PDS) consists of a control unit (that can160

be in any of finitely many control states) and a pushdown (that can hold words161

over the pushdown alphabet A). Its transitions read the top letter a from the162

pushdown, write a word w onto it, and change the control state. In our model,163

we have a pushdown system Pi for every i ∈ P whose pushdown alphabet is Ai.164

These systems synchronize by the letters read and written onto their pushdown.165

Definition 3. Let D = (A,P,L) be a distributed alphabet. An asynchronous166

multi-pushdown system or aPDS is a tuple P = (Q,∆) where Q =
∏

i∈P Qi167

holds for some finite sets Qi of local states — accordingly, the tuples from Q168

are called global states — and ∆ ⊆ Q×A×A∗×Q is a finite set of transitions169

such that, for each transition (p, a, w, q) ∈ ∆ and r ∈
∏

i∈P\awLQi, we have170

(i) p�P\awL = q�P\awL and171

(ii) ((p�awL, r), a, w, (q�awL, r)) ∈ ∆.172

Its size ‖P‖ is |Q|+ k · |∆| where k− 1 is the maximal length of a word written173

by any of the transitions (i.e., ∆ ⊆ Q×A×A<k ×Q).174
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The set of configurations ConfP of P equals Q×M(D). For two configura-175

tions (p, π(u)), (q, π(v)) ∈ ConfP we set (p, π(u)) ` (q, π(v)) if there is a transi-176

tion (p, a, w, q) ∈ ∆ and a word x ∈ A∗ with π(u) = π(ax) and π(v) = π(wx).177

The reflexive and transitive closure of ` is the reachability relation `∗.178

Let C and D be sets of configurations.179

• We write C `∗ D if there are c ∈ C and d ∈ D with c `∗ d. If C = {c} or180

D = {d}, resp., is a singleton, we also write c `∗ D resp. C `∗ d. We use181

analogous notations for the relation `.182

• The set C is rational (recognizable, resp.) if, for all q ∈ Q, the trace183

language Cq := {π(u) | (q, π(u)) ∈ C} is rational (recognizable, resp.).184

• preP(C) := {c ∈ ConfP | c ` C} is the set of predecessors of configurations185

from C, and186

pre∗P(C) :=
⋃

k∈N
prekP(C)

is the set of configurations backwards reachable from some configuration187

in C.188

The reachability relation for configurations of asynchronous multi-pushdown189

systems is, in general, undecidable:190

Theorem 4. There exists an aPDS with undecidable reachability relation `∗.191

Proof. We start with a classical 2-pushdown system P with an undecidable192

reachability relation (its set of states is Q and the two pushdowns use disjoint193

alphabets A1 and A2). Let A = A1 ∪ A2 ∪ {>} and P = {1, 2}. We consider194

the distributed alphabet D with aL = {i} for a ∈ Ai and >L = {1, 2}.195

We simulate P by an aPDS P′ over D as follows. The first process of P′196

stores the state of the simulated system P together with a letter from A1 or ε,197

i.e., Q1 = Q(A1 ∪ {ε}), the second process can store a letter from A2 or the198

empty word, i.e., Q2 = A2 ∪ {ε}.199

A transition (p, (a, b), (u, v), q) of P (that replaces a and b by u and v on the200

two pushdowns) is simulated by three transitions of the aPDS: ((pε, .), a, ε, (pa, .))201

reads a from the first pushdown and stores it in the first local state; then202

((., ε), b,>, (., b)) reads b from the second pushdown, stores it in the second local203

state, and puts > onto both pushdowns; finally, ((pa, b),>, uv, (qε, ε)) replaces204

> by uv (i.e., π1(uv) = u is written onto the first pushdown and π2(uv) = v205

onto the second). �206

To obtain a model with a decidable reachability relation, we therefore have207

to restrict aPDS.3 To this aim, we require that any transition can only write208

onto pushdowns it reads from.209

3The proof of Theorem 4 shows that requiring aw to be connected for any transition
(p, a, w, q) does not yield decidability.
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P :

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

a | ab

c | ε

a | ab, b | ε

a | ε, c | ε

c | ε

b | ε, c | ε

Figure 1: The cPDS P from Example 6.

Definition 5. Let D = (A,P,L) be a distributed alphabet. A cooperating210

multi-pushdown system or cPDS is an aPDS P = (Q,∆) with wL ⊆ aL for211

each transition (p, a, w, q) ∈ ∆.212

Let P = (Q,∆) be a cPDS and (p, a, w, q) ∈ ∆ be a transition of P. Since213

we have wL ⊆ aL, the asynchronicity properties in cPDS can be simplified to214

(i) p�P\aL = q�P\aL and215

(ii) ((p�aL, r), a, w, (q�aL, r)) ∈ ∆ for each r ∈
∏

i∈P\aLQi.216

This means, such transition does not touch the state of the processes not in aL217

and is, additionally, independent of the actual state of the processes in P \aL. So218

we can see the transition relation ∆ also as a family of local transition relations219

∆a (for a ∈ A) where ∆a ⊆
∏

i∈aLQi×A∗×
∏

i∈aLQi. In the following we will220

use these local transition relations to emphasize the asynchronicity properties221

of P.222

Example 6. Suppose D = (A,P,L) with A = {a, b, c}, P = {1, 2}, aL = P ,223

bL = {1}, and cL = {2}. We consider the cPDS P from Fig. 1 where edges224

from global state p to global state q labeled a | w visualize global transitions225

(p, a, w, q). The set of global states of P is the product {p1, q1} × {p2, q2}.226

Additionally, the transitions reading b and c only depend on process 1 and 2,227

resp. Since bL, cL ⊆ aL, any global transition (p, x, w, q) satisfies wL ⊆ xL,228

i.e., P is, indeed, a cPDS.229

The following sequence is a run of P from ((p1, p2), π(ac)) to ((q1, q2), π(bb)):

((p1, p2), π(ac)) ` ((q1, p2), π(abc)) ` ((q1, p2), π(abbc))

` ((q1, q2), π(bbc)) ` ((q1, q2), π(bb)) .

In order to decide the reachability relation, we will compute, from a set230

of configurations C, the set pre∗P(C), i.e., the set of configurations that allow231

to reach some configuration from C or, put alternatively, the set of config-232

urations backwards reachable from C. To represent possibly infinite sets of233

configurations, we use finite representations of sets of configurations. If the234
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set of configurations C is rational, then (by definition) all the trace languages235

Cq = {π(w) | (q, π(w)) ∈ C} are rational. Hence we can represent C by a tuple236

of NFAs Aq accepting the trace language Cq (one for each global state q of P).237

Alternatively, C can be recognizable such that, by definition, all the lan-238

guages Cq are recognizable. Then we can represent each of the languages Cq by239

an asynchronous automaton Aq. Since q is a P -tuple, we can assume, without240

loss of generality, that q is the only initial state of the AA Aq. Following Boua-241

jjani et al. [3], we can further assume that all these AAs differ in their initial242

state, only. — This idea leads to the concept of a P-AA given next.243

Definition 7. Let D = (A,P,L) be a distributed alphabet and P = (Q,∆) be244

a cPDS. A P-asynchronous automaton or P-AA is an AA A = (S, A, ∅, δ, F )245

such that Qi ⊆ Si for all i ∈ P .246

The P-AA A accepts the following set C(A) of configurations of P:247

{(q, π(w)) ∈ ConfP | q ∈ Q, q
w−→A F}

In other words, the P-AA A accepts a configuration (q, π(w)) if, from the state248

q of A, the AA A can reach some accepting state.249

The above arguments prove the following result.250

Observation 8. Let D = (A,P,L) be a distributed alphabet and P = (Q,∆)251

be a cPDS. A set of configurations C ⊆ ConfP is recognizable if, and only if,252

there is a P-AA A with C(A) = C.253

4. Computing the Backwards Reachable Configurations254

In this section we want to compute the backwards reachable configurations in a255

cPDS P. The main result of this section states that the mapping pre∗P effectively256

preserves the recognizability of sets of configurations.257

Theorem 9. Let D = (A,P,L) be a distributed alphabet, P = (Q,∆) be a258

cPDS, and C ⊆ ConfP be a recognizable set of configurations. Then the set259

pre∗P(C) is recognizable.260

Even more, from D, P, and a P-AA A(0), one can construct in polynomial261

time a P-AA A that accepts the set pre∗P(C(A(0))).262

The rest of this section is devoted to the proof of this result.263

Adapting ideas by Bouajjani et al. [3] from NFAs to AA, we construct a P-264

AA A that accepts the set pre∗P(C(A(0))) of configurations backwards reachable265

from C(A(0)). To this aim, we will inductively add new transitions to the266

P-AA A(0) = (S, A, ∅, δ(0), F ), but leave the sets of states, initial states, and267

accepting states unchanged. We can assume (and this assumption is crucial for268

the correctness of the construction) that the automaton cannot enter a local269

state from the cPDS P, i.e., we have q ∈
∏

i∈aL Si \Qi for any local transition270

(p, q) ∈ δ(0)a and any letter a ∈ A.271
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p q q s

p

f
a | u u x

a

P : A(k+1) :

Figure 2: Visualization of the construction of A(k+1).

For a start, and to explain the idea, let (p, π(v)) and (q, π(w)) be config-272

urations such that (p, π(v)) ` (q, π(w)) and (q, π(w)) ∈ C(A(0)). Then the273

configuration (p, π(v)) is backwards reachable from C(A(0)) and we will add, in274

a first step, a transition to the P-AA A(0) making sure that also this configu-275

ration (p, π(v)) is accepted (cf. Fig. 2). Since (p, π(v)) ` (q, π(w)), there is a276

local a-transition (p�aL, u, q�aL) in P and a word x ∈ A∗ with π(v) = π(ax)277

and π(w) = π(ux). Since the configuration (q, π(w)) = (q, π(ux)) is accepted278

by the P-AA A(0), there is a state s ∈ S such that279

q
u−→A(0) s

x−→A(0) F .

We now add the local a-transition (p�aL, s�aL) to A(0), i.e., δ
(1)
a contains, in280

addition to all a-transitions from δ
(0)
a , this local transition. Let A(1) denote the281

result of this addition. Then we get282

p
a−→A(1) s

x−→A(1) F

implying that the configuration (p, π(v)) = (p, π(ax)) is accepted by the P-NFA283

A(1).284

Since we added a local a-transition we can ensure that the P- NFA A(1) is285

also asynchronous.286

Remark 10. The construction as described above requires P to be cooper-287

ating. Assume that (p, a, u, q) is a transition in P violating the cooperation288

property uL ⊆ aL and that there is a process i ∈ uL\aL with pi 6= qi. If289

A(0) satisfies q
u−→A(0) s, then the new transition (p, a, s) would depend also on290

process i. This implies that A(1) is not asynchronous anymore.291

Formally, we construct P-asynchronous automata A(k) = (S, A, ∅, δ(k), F )292

for k ≥ 1 as follows: for k ∈ N we define δ
(k+1)
a to be the set293

δ(k)a ∪
{(
p�aL, s�aL

) ∣∣∣∣ p ∈ Q, s ∈ S,

∃ q ∈ Q, u ∈ A∗ : (p�aL, u, q�aL) ∈ ∆a, q
u−→A(k) s

}
.

The “limit” of this construction is the P-AA A(∞) = (S, A, ∅, δ(∞), F ) with294

δ(∞) =
⋃

k∈N δ
(k).295
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Example 11. Recall the cPDS P from Example 6. In Fig. 3 we depict our296

algorithm on input P and the set of configurations C = {((q1, q2), ε)}. A P-AA297

A(0) = (S1 × S2, A, ∅, δ, F ) accepting this set is depicted in the left.298

In A(1), we have (q1, p2)
ab−→A(1) (q1, q2) (depicted in bold and red) and, in299

P, we have the transition ((p1, p2), a, ab, (q1, p2)) ∈ ∆. The definition of δ(2)300

implies that ((p1, p2), a, (q1, q2)) is a new local transition.301

The construction terminates with A(2). This is a P-AA accepting the union302

of the sets of configurations
{

((p1, p2), π(w))
∣∣ w ∈ a{b, c}∗},

{
((q1, p2), π(w))

∣∣303

w ∈ b∗{a, c}{b, c}∗
}

, and
{

((q1, q2), π(w))
∣∣ w ∈ {b, c}∗}. But this is exactly the304

set of configurations backwards reachable from C =
{

((q1, q2), ε)
}

.305

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

c

c

b

a, c

b, c

c

a c

b

a, c

b, c

Figure 3: The P-AA A(0), A(1), and A(2) (from left to right) from Example 11.

Remark 12. The inductive construction of A(k) is not possible if A(0) is not306

asynchronous. To this end, let (q, a, u, p) ∈ δ be a transition of P and b ∈ A307

with a ‖ b. Now, assume that (p, π(ubx)) ∈ ConfP is accepted by a P-NFA308

A(k). Then we have (q, π(abx)) ∈ pre∗P(C(A(k))). Suppose that the only run of309

A(k) accepting π(ubx) is the following one:310

p
b−→A(k) s′

u−→A(k) s
x−→A(k) F .

Then we have to add a new path from q to s labeled with ab. To this end, we311

have to introduce one new state. Hence, the number of states of A(k+1) may312

increase in each iteration.313

In contrast, runs starting with some independent letters are not a problem314

if A(k) is asynchronous: since b-edges only modify the processes in bL, the u-315

labeled run only affects the processes in uL ⊆ aL, and since aL∩ bL = ∅ holds316

due to a ‖ b, there would be another run317

p
u−→A(k) s′′

b−→A(k) s
x−→A(k) F

which starts with u.318
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Now, we show C(A(∞)) = pre∗P(C(A(0))) with the help of the following three319

lemmas. First, by induction on k ∈ N, one can easily prove prekP(C(A(0))) ⊆320

C(A(k)) (which ensures the inclusion “⊇”).321

Lemma 13. Let k ∈ N. Then prekP(C(A(0))) ⊆ C(A(k)). In particular, we322

have pre∗P(C(A(0))) ⊆ C(A(∞)).323

Proof. We prove the first statement by induction on k ∈ N. The case k =324

0 is obvious by pre0P(C(A(0))) = C(A(0)). Now, let k ≥ 0 and (q, π(w)) ∈325

prek+1
P (C(A(0))). Then there is a configuration (p, π(v)) ∈ prekP(C(A(0))) with326

(q, π(w)) ` (p, π(v)). By definition of ` there is a transition (p, a, u, q) ∈ ∆327

and a word x ∈ A∗ with π(w) = π(ax) and π(v) = π(ux). By the induction328

hypothesis we know (p, π(ux)) = (p, π(v)) ∈ C(A(k)). Hence, there is s ∈ S329

with330

p
u−→A(k) s

x−→A(k) F .

By (p, a, u, q) ∈ ∆ and p
u−→A(k) s, we obtain a transition (q, a, s) ∈ δ(k+1) and,331

hence,332

q
a−→A(k+1) s

x−→A(k) F .

Since δ(k) ⊆ δ(k+1) we finally obtain (q, π(w)) = (q, π(ax)) ∈ C(A(k+1)).333

Towards the second statement, recall that we have δ(0) ⊆ δ(1) ⊆ · · · ⊆ δ(∞).334

From this fact we can infer C(A(0)) ⊆ C(A(1)) ⊆ · · · ⊆ C(A(∞)). Then the first335

statement of this lemma implies the following inclusion:336

pre∗P(C(A(0))) =
⋃
k∈N

prekP(C(A(0))) ⊆
⋃
k∈N

C(A(k)) = C(A(∞)) . �

Next, we want to show the converse inclusion C(A(∞)) ⊆ pre∗P(C(A(0))).337

However, we could not just prove C(A(k)) ⊆ prekP(C(A(0))) inductively for each338

k ∈ N. The P-AA A(k) can in particular accept more configurations than339

those that are backwards reachable from C(A(0)) in at most k steps: consider340

Example 11. The configuration c = ((p1, p2), π(c5)) is accepted by A(2). On the341

other hand, any configuration from C(A(0)) has an empty pushdown and any342

step in the cPDS P decreases the size of the pushdowns by at most one. Hence,343

indeed, c is not backwards reachable from C(A(0)) in two steps.344

Therefore, to prove C(A(∞)) ⊆ pre∗P(C(A(0))) we need the following, more345

technical lemma.346

Lemma 14. Let k ∈ N, v ∈ A∗, p ∈ Q, and s ∈ S with p
v−→A(k) s. Then there347

are a global state r ∈ Q and a word w ∈ A∗ with the following properties:348

(a) (p, π(v)) `∗ (r, π(w)) and349

(b) r
w−→A(0) s.350
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Proof. The proof of this lemma proceeds by double induction, the first one351

over k and the inductive step for this induction proceeds by induction on the352

length of the word v. To simplify bookkeeping, let Cl(k, n) (for natural numbers353

k and n) be the following claim:354

“For all v ∈ An, p ∈ Q, and s ∈ S with p
v−→A(k) s, there are r ∈ Q and355

w ∈ A∗ satisfying (a) and (b).”356

Then Cl(k) is the claim “Cl(k, n) holds for all n ∈ N”.357

So we prove the lemma by showing Cl(k) for all k ∈ N by induction on k.358

The claim Cl(0, n) is trivial for all n ∈ N since we can set r = p and w = v.359

Hence Cl(0) holds.360

Now let k ∈ N and suppose the claim Cl(k) holds. We prove Cl(k + 1), i.e.,361

validity of Cl(k + 1, n) for all n ∈ N, by induction on n.362

For n = 0, we only have to consider the word v = ε. But then p = s. Hence363

setting q = p and w = v = ε yields (a) and (b).364

Before we proceed inductively, we also prove Cl(k + 1, 1) explicitly. So let365

v = a ∈ A, p ∈ Q, and s ∈ S with p
a−→A(k+1) s.366

p

q

r

sk + 1

k
0

a

u

w

Figure 4: Proof of Lemma 14, validation of Cl(k + 1, 1). The natural number ` at the tip of
an arrow indicates a path in the P-AA A(`).

If even p
a−→A(k) s, claim Cl(k) yields r and w as desired. Otherwise, we have367

(p�aL, s�aL) ∈ δ(k+1)
a \δ(k)a (see Fig. 4). By the definition of this local transition368

relation, there are global states p′, q′ ∈ Q and s′ ∈ S and a word u ∈ A∗ such369

that370

• p�aL = p′�aL and s�aL = s′�aL,371

• (p′�aL, u, q′�aL) ∈ ∆a, and372

• q′
u−→A(k) s′.373

Set q = (q′�aL, p�P\aL). Then q is a global state from Q. Since P is a cPDS374

and (p′�aL, u, q′�aL) ∈ ∆a, we can infer375

(p, π(a)) = ((p′�aL, p�P\aL), π(a)) ` ((q′�aL, p�P\aL), π(u)) = (q, π(u)) .

From p
a−→A(k+1) s, the asynchronicity of A(k+1) implies that the global states p376

and s agree on the components from P \ aL. Hence we get377

q = (q′�aL, p�P\aL) = (q′�aL, s�P\aL) .
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Since the local a-transition (p′�aL, u, q′�aL) ∈ ∆a reads a and writes u and since378

P is cooperating, we have uL ⊆ aL. Hence q′
u−→A(k) s′ and the asynchronicity379

of A(k+1) implies380

q = (q′�aL, s�P\aL)
u−→A(k) (s′�aL, s�P\aL) .

Finally, s�aL = s′�aL implies381

(s′�aL, s�P\aL) = s .

In summary, we have382

q
u−→A(k) s .

From Cl(k), we obtain a global state r ∈ Q and a word w ∈ A∗ such that383

(q, π(u)) `∗ (r, π(w)) and r
w−→A(0) s

Putting everything together, we obtain384

(a) (p, π(v)) = (p, π(a)) ` (q, π(u)) `∗ ((r), π(w)) and385

(b) r
w−→A(0) s386

which completes the proof of Cl(k + 1, 1).387

From now on, assume that Cl(k + 1, n) as well as Cl(k) hold. To verify388

Cl(k+1, n+1) for n ≥ 1, let p ∈ Q, s ∈ S, and v ∈ An+1 such that p
v−→A(k+1) s.389

Then we can write v = v′a with v′ ∈ An and a ∈ A. Since p
v′a−−→A(k+1) s, there390

is some global state s′ ∈ S with391

p
v′

−→A(k+1) s′
a−→A(k+1) s .

Since |v′| = n, claim Cl(k + 1, n) provides a global state q′ ∈ Q and a word392

w′ ∈ A∗ with393

(p, π(v′)) `∗ (q′, π(w′)) and q′
w′

−→A(0) s′ .

Note that the former implies in particular (p, π(v)) = (p, π(v′a)) `∗ (q′, π(w′a)).394

p

q′

r

s′ s
k + 1 k

0 0

v′ a

w′

w

Figure 5: Proof of Lemma 14, validation of Cl(k + 1, n + 1) with s′
a−→A(k) s
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Suppose that we do not only have s′
a−→A(k+1) s, but even s′

a−→A(k) s (see395

Fig. 5). Then A(k) has a w′a-labeled run from q′ to s. Hence, claim Cl(k)396

implies the existence of r ∈ Q and w ∈ A∗ with397

(q′, π(w′a)) `∗ (r, π(w)) and r
w−→A(0) s .

Note that the latter is (b). But also (a) holds since398

(p, π(v)) `∗ (q′, π(w′a)) `∗ (r, π(w))

which completes the proof in case we even have an a-labeled in run A(k).399

p

q′

r

s′ s

t

k + 1 k + 1

k + 1

0

0

0

v′ a

w′

a

w′′

w′

Figure 6: Proof of Lemma 14, validation of Cl(k + 1, n + 1) if s′
a−→A(k) s does not hold

It remains to consider the case that no such run exists, i.e., we have s′
a−→A(k+1)400

s, but not s′
a−→A(k) s (see Fig. 6). This is equivalent to saying401

(s′�aL, s�aL) ∈ δ(k+1)
a \ δ(k)a .

The definition of the local transition relation δ
(k+1)
a yields in particular s′�aL ∈402 ∏

i∈aLQi. Recall that in P-AA A(0) the local states from Qi have no in-edges,403

i.e., for each local a-transition (x, y) ∈ δ(0)a we have y ∈
∏

i∈aL Si\Qi. Hence the404

existence of some w′-labeled run in A(0) to s′ implies s′�i /∈ Qi for all i ∈ w′ L.405

Consequently, w′ L∩ aL = ∅ implying π(w′a) = π(aw′).406

Consider the global state407

t = (s�aL, q′�w′ L, s
′�P\w′aL) .

• Since A(k+1) is asynchronous, s′
a−→A(k+1) s implies that the global states408

s′ and s differ, at most, in the components of aL. Hence409

s = (s�aL, s′�w′ L, s
′�P\w′aL) .

Since A(0) is asynchronous and q′
w′

−→A(0) s′, this ensures t
w′

−→A(0) s.410

• Since A(0) is asynchronous, q′
w′

−→A(0) s′ implies that the global states q′411

and s′ differ, at most, in the components of w′ L. Hence412

q′ = (s′�aL, q′�w′ L, s
′�P\w′aL) .
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Since A(k+1) is asynchronous and s′
a−→A(k+1) s, this ensures q′

a−→A(k+1) t.413

From Cl(k + 1, 1), we obtain a global state r and a word w′′ ∈ A∗ such414

that415

(q′, π(a)) `∗ (r, π(w′′)) and r
w′′

−−→A(0) t .

In summary, we have416

(a) (p, π(v)) `∗ (q′, π(w′a)) = (q′, π(aw′)) and (q′, π(a)) `∗ (r, π(w′′)) imply417

(p, π(v)) `∗ (r, π(w′′w′)).418

(b) r
w′′

−−→A(0) t
w′

−→A(0) s.419

This completes the proof of Cl(k+ 1, n+ 1) from Cl(k), Cl(k+ 1, 1) and Cl(k+420

1, n).421

Therefore, we completed the inductive proof of Cl(k + 1) from Cl(k). But422

this means that Cl(k) holds for all k ∈ N. �423

Lemma 15. Let k ∈ N. Then we have C(A(k)) ⊆ pre∗P(C(A(0))).424

Proof. Now, let (p, π(v)) ∈ C(A(k)). Then we have p
v−→A(k) f for some final425

global state f ∈ F . By Lemma 14 there are a global state r ∈ Q and a word426

w ∈ A∗ with (p, π(v)) `∗ (r, π(w)) and r
w−→A(0) f implying (r, π(w)) ∈ C(A(0)).427

This finally implies (p, π(v)) ∈ pre∗P(C(A(0))). �428

All in all, from Lemmas 13 and 15 we obtain that A(∞) accepts exactly the429

set of configurations of P that are backwards reachable from C(A(0)):430

Proposition 16. We have C(A(∞)) = pre∗P(C(A(0))). �431

This proves the first claim of Theorem 9, namely that the backwards reach-432

ability relation preserves recognizability. It remains to be shown that A(∞) is433

efficiently constructible. To this aim, note that δ(0) ⊆ δ(1) ⊆ δ(2) ⊆ · · · ⊆434 ∏
i∈P Si × A ×

∏
i∈P Si, i.e., the sequence of transition relations is increas-435

ing. Since ` :=
∣∣∏

i∈P Si × A ×
∏

i∈P Si

∣∣ is finite, we have δ(`) = δ(`+1), i.e.,436

δ(∞) = δ(`). Similar to the construction from [3] our construction takes time437

O(|P|2 · |A(0)|2 · |A|) and results in a P-AA having the same set of states as A(0)
438

(however, the number of transitions increases).439

5. Backwards Reachability Does Not Preserve Rationality440

Suppose we have a pushdown system (i.e., consider the case |P | = 1). Then441

a set of configurations is rational if, and only if, it is recognizable. Hence, the442

backwards reachability relation pre∗P also preserves rationality.443

Now, recall that there are rational trace languages that are not recognizable444

(e.g., the language of all traces π((ab)n) with n ∈ N whenever a ‖ b). Then445

Theorem 9 does not imply that rationality is preserved under the backwards446

15



reachability relation. To the contrary, we will now prove that this preservation447

property does not hold. So, we will show now that in some special cases the set448

of backwards reachable configurations from a rational trace language is not even449

decidable (however, in any case pre∗P(C) will be semi-decidable if C is rational).450

Proposition 17. There are a distributed alphabet D, a cPDS P, and a rational451

set of configurations C such that pre∗P(C) is not decidable.452

Proof. Consider a Turing-machine M with an undecidable word problem. Let453

Q be the set of states and Σ be the tape alphabet of M. We construct the454

distributed alphabet D = (A,P,L) as follows:455

• A = {$} ∪ (Q ∪ Σ ∪ {#}) ∪ (Q′ ∪ Σ′ ∪ {#′}) where Q′ = {q′ | q ∈ Q} and456

Σ′ = {a′ | a ∈ Σ} are disjoint copies of Q and Σ, respectively, and #,#′, $457

are new symbols,458

• P = {1, 2}, and459

• A1 = Q∪Σ∪{#, $} and A2 = Q′∪Σ′∪{#′, $} (note that A1∩A2 = {$}).460

In the following, for a word w = a1 . . . an ∈ (Q∪Σ∪{#})∗ we write w′ = a′1 . . . a
′
n461

for the copy of w.462

Now, we want to construct a cPDS P = (Q,∆) writing sequences of configu-463

rations of M into its stacks. Here, we use the letters # and #′ as separators be-464

tween two consecutive configurations and $ for synchronization between the two465

processes. The states of P are the following: Q1 = {q0, q′0, q1, q′1, q2, q′2, q′′2} and466

Q2 = {>}. For a better readability we write q for the tuple (q,>) with q ∈ Q1.467

Note that in the following P will store the configuration sequences backwards468

due to the usage of the distributed stack. To this end, for w = a1a2 . . . a` ∈ A∗469

we write wR for the word a` . . . a2a1.470

The cPDS P computes as follows: first it guesses an initial configuration471

ιw of M and writes (ι′w′#′)
R

onto its second stack. This can be done with472

the following transitions: (q0, $, $ι
′, q′0), (q′0, $, $a

′, q′0), (q′0, $, $#′, q1) ∈ ∆ where473

ι ∈ Q is the initial state of M and a ∈ Σ is any letter from the tape alphabet.474

Next, P simulates iteratively single computational steps of M. Let c and d475

be two configurations of M with c `M d. Then P writes (c#d′#′)
R

onto its476

stacks. We do this with help of the following transitions:477

• for each transition of M of the form (p, a, q, b,N) we have (q1, $, $apb
′q′, q′1) ∈478

∆,479

• for each transition of M of the form (p, a, q, b, L) and each c ∈ Σ we have480

(q1, $, $apcb
′c′q′, q′1) ∈ ∆,481

• for each transition of M of the form (p, a, q, b, R) and each c ∈ Σ we have482

(q1, $, $capc
′q′b′, q′1) ∈ ∆,483

• for each a ∈ Σ we have (q1, $, $aa
′, q1), (q′1, $, $aa

′, q′1) ∈ ∆, and484

• (q′1, $, $##′, q1), (q′1, $, $##′, q2) ∈ ∆.485
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Finally, P guesses an accepting configuration fw of M and pushes (fw#)
R

486

onto its stacks. To this end, we have the transitions (q2, $, $#f, q′2) ∈ ∆ for each487

accepting state f of M, (q′2, $, $a, q
′
2) ∈ ∆ for each a ∈ Σ, and (q′2, $,#, q

′′
2 ) ∈ ∆.488

Now, let C = {q′′2} × {aa′ | a ∈ Q ∪ Σ ∪ {#}}∗. This set of configurations489

clearly is rational. Then for any w ∈ Σ∗ we can see (q′0, (ι
′w′#$)

R
) ∈ pre∗P(C)490

holds if, and only if, there is a sequence of configurations c0, c1, . . . , ck of M with491

(q′0, (ι
′w′#$)

R
) `∗P (q′′2 , (c0c

′
0##′c1c

′
1##′ . . . ckc

′
k##′)

R
) ∈ C and c0 = ιw. But492

then, by construction of P, we learn c0 is initial, ci−1 `M ci for each 1 ≤ i ≤ k,493

and ck is accepting, i.e., c0 `M c1 `M · · · `M ck is an accepting run of M. In494

other words, we have (q′0, (ι
′w′#$)

R
) ∈ pre∗P(C) if, and only if, w is accepted495

by M. Since the latter problem is undecidable by assumption, the membership496

problem of pre∗P(C) also is undecidable. �497

6. Summary, Consequences, and Open Questions498

We proved that the backwards reachability relation of cooperating multi-pushdown499

systems efficiently preserves the recognizability of a set of configurations. Con-500

versely, we demonstrated that the backwards reachability relation does not pre-501

serve rationality (i.e., there is a cPDS and a rational set C of configurations502

such that pre∗(C) is not rational anymore).503

From the positive result, it follows that the reachability relation is decidable.504

It implies that is is decidable whether all predecessors of a recognizable set C1505

of configurations are contained in some recognizable set of configurations C2.506

In particular, we can decide the control state reachability problem and the EF-507

model checking problem — although our result allows to bound the running508

time only non-elementary. However, our result can be understood as the first509

step towards the verification of cooperating multi-pushdown systems.510

The next and obvious open question regarding the verification of cPDS, one511

would have to consider the recurrent reachability, i.e., the question whether,512

starting from some configuration, there is an infinite run that visits some global513

state infinitely often. This could then form the basis for algorithms deciding514

properties that are given by formulas from linear time temporal logics.515

Since we can see cPDS as a natural extension of pushdown systems from word516

semantics to trace semantics, another open problem is to find some generalized517

context-free grammars accepting the class of languages of cPDS. Additionally,518

one could compare this new model with other known models for multi-pushdown519

systems.520
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