

# 1 The complexity of separability for semilinear sets and 2 Parikh automata

<sup>3</sup> Elias Rojas Collins<sup>a</sup>, Chris Köcher<sup>b</sup>, Georg Zetsche<sup>b</sup>

<sup>a</sup>Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA

<sup>b</sup>Max Planck Institute for Software Systems, Paul-Ehrlich-Str. 26, Kaiserslautern, 67663, RP, Germany

#### 4 Abstract

5 In a *separability problem*, we are given two sets  $K$  and  $L$  from a class  $\mathcal{C}$ , and we  
6 want to decide whether there exists a set  $S$  from a class  $\mathcal{S}$  such that  $K \subseteq S$  and  
7  $S \cap L = \emptyset$ . In this case, we speak of *separability of sets in  $\mathcal{C}$  by sets in  $\mathcal{S}$* .

We study two types of separability problems. First, we consider separability of semilinear sets (i.e. subsets of  $\mathbb{N}^d$  for some  $d$ ) by sets definable by quantifier-free monadic Presburger formulas (or equivalently, the recognizable subsets of  $\mathbb{N}^d$ ). Here, a formula is monadic if each atom uses at most one variable. Second, we consider separability of languages of Parikh automata by regular languages. A Parikh automaton is a machine with access to counters that can only be incremented, and have to meet a semilinear constraint at the end of the run. Both of these separability problems are known to be decidable with elementary complexity.

Our main results are that both problems are  $\text{coNP}$ -complete. In the case of semilinear sets,  $\text{coNP}$ -completeness holds regardless of whether the input sets are specified by existential Presburger formulas, quantifier-free formulas, or semilinear representations. Our results imply that recognizable separability of rational subsets of  $\Sigma^* \times \mathbb{N}^d$  (shown decidable by Choffrut and Grigorieff) is  $\text{coNP}$ -complete as well. Another application is that regularity of deterministic Parikh automata (where the target set is specified using a quantifier-free Presburger formula) is  $\text{coNP}$ -complete as well.

<sup>17</sup> *Keywords:* Vector Addition System, Separability, Regular Language

## 18 1. Introduction

**Separability** In a *separability problem*, we are given two sets  $K$  and  $L$  from a class  $\mathcal{C}$ , and we want to decide whether there exists a set  $S$  from a class  $\mathcal{S}$  such that  $K \subseteq S$  and  $S \cap L = \emptyset$ . Here, the sets in  $\mathcal{S}$  are the admissible separators, and  $S$  is said to *separate* the sets  $K$  and  $L$ . In the case where  $\mathcal{C}$  is a class of non-regular languages and  $\mathcal{S}$  is the class of regular languages, then the problem is called *regular separability (problem) for  $\mathcal{C}$* . While

25 the problem turned out to be undecidable for context-free languages in the  
26 1970s [1, 2], the last decade saw a significant amount of attention on regular  
27 separability for subclasses (or variants) of *vector addition systems with states*  
28 (*VASS*). Regular separability was studied for coverability languages of VASS  
29 (and, more generally, well-structured transition systems) [3–5], one-counter au-  
30 tomata and one-dimensional VASS [6], Parikh automata [7], commutative VASS  
31 languages [8], concerning its relationship with the intersection problem [9], Büchi  
32 VASS [10, 11], and also for settings where one input language is an arbitrary  
33 VASS and the other is from some subclass [12]. Recently, this line of work cul-  
34 inated in the breakthrough result that regular separability for general VASS  
35 languages is decidable and Ackermann-complete [13]. However, for subclasses  
36 of VASS languages, the complexity landscape is far from understood.

37 **Separating Parikh automata** An important example of such a sub-  
38 class is the class of languages accepted by *Parikh automata*, which are non-  
39 deterministic automata equipped with counters that can only be incremented.  
40 Here, a run is accepting if the final counter values belong to a particular semi-  
41 linear set. Languages of Parikh automata have received significant attention  
42 over many decades [14–25], including a lot of work in recent years [26–31]. This  
43 is because they are expressive enough to model non-trivial counting behavior,  
44 but still enjoy low complexity for many algorithmic tasks (e.g. the emptiness  
45 problem is coNP-complete). Example applications are monadic second-order  
46 logic with cardinalities [32] (this paper introduced the specific model of Parikh  
47 automata), solving subword constraints [33], and model-checking FIFO channel  
48 systems [34]. Moreover, these languages have other equivalent characterizations,  
49 such as reversal-bounded counter automata—a classic (and intensely studied)  
50 type of infinite-state systems with nice decidability properties [14, 22]—and  
51 automata with  $\mathbb{Z}$ -counters, also called  $\mathbb{Z}$ -VASS [15, 35]<sup>1</sup>.

52 Decidability of regular separability was shown by Clemente, Czerwiński, La-  
53 sota, and Paperman [7] in 2017 as one of the first decidability results for regular  
54 separability. Moreover, this result was a key ingredient in Keskin and Meyer’s  
55 algorithm to decide regular separability for general VASS [13]. However, despite  
56 the strong interest in Parikh automata and in regular separability, the complex-  
57 ity of this problem remained unknown. In [7, Section 7], the authors provide an  
58 elementary complexity upper bound.

59 **Separating semilinear sets: Monadic interpolants** One of the steps  
60 in the algorithm from [7] is to decide separability of sets defined in Pres-  
61 burger arithmetic, the first-order theory of  $(\mathbb{N}; +, \leq, 0, 1)$ . Separators of logi-  
62 cally defined sets can also be viewed as *interpolants*. If  $\varphi(\mathbf{x}, \mathbf{y})$  and  $\psi(\mathbf{y}, \mathbf{z})$  are  
63 (first-order or propositional) formulas such that  $\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z} (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \psi(\mathbf{y}, \mathbf{z}))$   
64 holds, then a formula  $\chi(\mathbf{y})$  is a *Craig interpolant* if  $\forall \mathbf{x} \forall \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \chi(\mathbf{y}))$  and

---

<sup>1</sup>See [16] for efficient translation among Parikh automata, reversal-bounded counter au-  
tomata, and  $\mathbb{Z}$ -VASS.

65  $\forall \mathbf{y} \forall \mathbf{z} (\chi(\mathbf{y}) \rightarrow \psi(\mathbf{y}, \mathbf{z}))$  both hold. Here,  $\mathbf{x}, \mathbf{y}, \mathbf{z}$  are each a vector of variables,  
 66 meaning  $\chi$  only mentions variables that occur both in  $\varphi$  and  $\psi$ . Equivalently,  
 67 the set defined by  $\chi$  is a separator of the sets defined by the existential for-  
 68 mula  $\exists \mathbf{x}: \varphi(\mathbf{x}, \mathbf{y})$  and  $\exists \mathbf{z}: \neg\psi(\mathbf{y}, \mathbf{z})$ . In Interpolation-Based Model Checking  
 69 (ITP) [36, 37], Craig interpolants are used to safely overapproximate sets of  
 70 states: If  $\varphi$  describes reachable states and  $\psi$  describes the set of safe states,  
 71 then  $\chi$  overapproximates  $\varphi$  without adding unsafe states. Note that in Pres-  
 72 burger logic there are implications that do not have a Craig interpolant (this  
 73 is in contrast to propositional logic). So, before constructing an interpolant, a  
 74 first step of ITP is to decide whether there even exists such an interpolant.

75 In the case of Presburger arithmetic, the definable sets are the *semilinear*  
 76 *sets*. For many infinite-state systems, the step relation (or even the reachability  
 77 relation) is semilinear, and thus, separators can play the role of Craig inter-  
 78 polants in infinite-state model checking. For the separators, a natural choice is  
 79 the class of *recognizable sets*, which are those defined by *monadic* Presburger  
 80 formulas, meaning each atom refers to at most one variable. Monadic formulas  
 81 have recently received attention [38–41] because of their applications in query  
 82 optimization in constraint databases [42, 43] and symbolic automata [38]. Thus,  
 83 deciding recognizable separability of semilinear sets can be viewed as synthesiz-  
 84 ing monadic Craig interpolants.

85 Recognizable separability was shown decidable by Choffrut and Grigorieff [44] (see [8] for an extension beyond semilinear sets). This was a key in-  
 86 gredient for separability of Parikh automata in [7]. Choffrut and Grigorieff’s  
 87 algorithm has elementary complexity [7, Section 7], but the exact complexity of  
 88 recognizable separability of semilinear sets remained unknown.

90 **Contribution** Our *first main result* is that for given existential Presburger  
 91 formulas, recognizable separability (i.e. monadic separability) is  $\text{coNP}$ -complete.  
 92 In particular, recognizable separability is  $\text{coNP}$ -complete for given semilinear  
 93 representations. Moreover, our result implies that recognizable separability is  
 94  $\text{coNP}$ -complete for rational subsets of monoids  $\Sigma^* \times \mathbb{N}^d$  as considered by Choffrut  
 95 and Grigorieff [44]. Building on the methods of the first result, our *second main*  
 96 *result* is that regular separability for Parikh automata is  $\text{coNP}$ -complete.

97 **Application I: Monadic decomposability** Our first main result strength-  
 98 ens a recent result on monadic decomposability. A formula in Presburger arith-  
 99 metic is *monadically decomposable* if it has a monadic equivalent. It was shown  
 100 recently that (i) deciding whether a given quantifier-free formula is *monadically*  
 101 *decomposable* (i.e. whether it has a monadic equivalent) is  $\text{coNP}$ -complete [40,  
 102 Theorem 1] (see [39, Corollary 8.1] for an alternative proof; and see [45, Proposi-  
 103 tion 3] for improved bounds for the approach in [40]), whereas (ii) for existential  
 104 formulas, the problem is  $\text{coNEXP}$ -complete [41, Corollary 3.6]. Our first main  
 105 result strengthens (i): If  $\varphi(\mathbf{x})$  is a quantifier-free formula, then the sets defined  
 106 by  $\varphi(\mathbf{x})$  and  $\neg\varphi(\mathbf{x})$  are separable by a monadic formula if and only if  $\varphi(\mathbf{x})$  is  
 107 monadically decomposable. Perhaps surprisingly, our  $\text{coNP}$  upper bound still

108 holds for existential Presburger formulas, for which monadic decomposability is  
109 known to be  $\text{coNEXP}$ -complete<sup>2</sup>.

110 **Application II: Regularity of Parikh automata** Another consequence  
111 of our results is that regularity of deterministic Parikh automata, i.e. deciding  
112 whether a given deterministic Parikh automaton accepts a regular language, is  
113  $\text{coNP}$ -complete: Given a deterministic Parikh automaton for a language  $L \subseteq \Sigma^*$ ,  
114 one can construct in polynomial time a Parikh automaton for  $K = \Sigma^* \setminus L$ .  
115 Then,  $L$  is regular if and only if  $L$  and  $K$  are regularly separable. Here, we  
116 assume that the semilinear target set is given as a quantifier-free Presburger  
117 formula. Decidability of this problem has been shown by Cadilhac, Finkel, and  
118 McKenzie [20, Theorem 25] (even in the more general case of unambiguous  
119 constrained automata).

120 **Key ingredients** The existing elementary-complexity algorithm for recog-  
121 nizable separability of semilinear sets works with semilinear representations and  
122 distinguishes two cases: If in one component  $j$ , one of the input sets  $S_1, S_2 \subseteq \mathbb{N}^d$   
123 is bounded by some  $b \geq 0$ , then it considers each  $x \in [0, b]$  and recursively decides  
124 separability of  $S_1[j \mapsto x]$  and  $S_2[j \mapsto x]$ , where  $S_i[j \mapsto x]$  is just  $S_i$  restricted  
125 to having  $x$  in this bounded component. If, however, all components in both  
126 sets are unbounded, then it checks feasibility of a system of linear Diophantine  
127 equations. This approach leads to repeated intersection of semilinear sets, and  
128 thus exponential time. We provide a characterization (Proposition 4.5) that  
129 describes inseparability directly as the non-empty intersection of two semilinear  
130 sets  $\hat{S}_1, \hat{S}_2 \subseteq \mathbb{N}^d$  associated with  $S_1, S_2$ . This easily yields an  $\text{NP}$  procedure for  
131 inseparability, even if the input sets are given as existential Presburger formulas.

132 This characterization is then the first key ingredient for deciding regular  
133 separability of Parikh automata in  $\text{coNP}$ . This is because in [7], it is shown  
134 that, after some preprocessing, the languages of Parikh automata  $\mathcal{A}_1$  and  $\mathcal{A}_2$   
135 are separable if and only if two semilinear sets  $C_1, C_2 \subseteq \mathbb{N}^d$  associated with  
136  $\mathcal{A}_1$  and  $\mathcal{A}_2$  are separable by a recognizable set. These semilinear sets consist  
137 of vectors, each of which counts for some run of  $\mathcal{A}_i$ , how many times each  
138 simple cycles occurs in this run. Thus, our first result tells us that it suffices  
139 to decide whether  $\hat{C}_1$  and  $\hat{C}_2$  are disjoint. Unfortunately, the vectors of  $C_1, C_2$   
140 have exponential dimension  $d$ , since there are exponentially many simple cycles  
141 in each  $\mathcal{A}_i$ . Thus, applying our first result directly using existential Presburger  
142 arithmetic would only yield a  $\text{coNEXP}$  upper bound.

143 To avoid this blowup, the second key idea is to *encode the vectors in  $\hat{C}_1$  and*

144  $\hat{C}_2$  as words, where the cycle occurrences appear as a concatenation in some  
145 order. By constructing  $\mathbb{Z}$ -VASS  $\mathcal{W}_1, \mathcal{W}_2$  for the encodings of the vectors in  
146  $\hat{C}_1, \hat{C}_2$ , we reduce separability to intersection emptiness of  $\mathcal{W}_1$  and  $\mathcal{W}_2$ . The

---

2This is not a contradiction to the above reduction from monadic decomposability to recognizable separation, since this reduction would require complementing an existential formula.

147 latter, in turn, easily reduces to non-reachability in a product  $\mathbb{Z}$ -VASS, which  
148 is in  $\text{coNP}$ .

149 **2. Preliminaries**

150 By  $\mathbb{N} = \{0, 1, 2, \dots\}$  we denote the set of all non-negative integers. Let  $d \in \mathbb{N}$   
151 be a number and  $I \subseteq [1, d]$  be a set of indices. By  $\pi_I: \mathbb{N}^d \rightarrow \mathbb{N}^I$  we denote the  
152 *projection* of vectors in  $\mathbb{N}^d$  to vectors in  $\mathbb{N}^I$ , i.e.,  $\pi_I(\mathbf{v})[i] = \mathbf{v}[i]$  for each  $\mathbf{v} \in \mathbb{N}^d$   
153 and  $i \in I$ . The *support* of a vector  $\mathbf{v} \in \mathbb{N}^d$  is the set of all coordinates in  $\mathbf{v}$  with  
154 non-zero value, i.e.  $\text{supp}(\mathbf{v}) = \{i \in [1, d] \mid \mathbf{v}[i] \neq 0\}$ .

155 **Semilinear sets** A set  $S \subseteq \mathbb{N}^d$  is *linear* if there is a vector  $\mathbf{u} \in \mathbb{N}^d$  and a  
156 finite set  $P \subseteq \mathbb{N}^d$  of so-called *periods* such that  $S = \mathbf{u} + P^*$  holds. Here, for  $P =$   
157  $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ , the set  $P^*$  is defined as  $P^* = \{\lambda_1 \mathbf{u}_1 + \dots + \lambda_n \mathbf{u}_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N}\}$ .  
158 A subset  $S \subseteq \mathbb{N}^d$  is called *semilinear* if it is a finite union of linear sets. In case  
159 we specify  $S$  by way of a finite union of linear sets, then we call this description a  
160 *semilinear representation*. The set  $S \subseteq \mathbb{N}^d$  is called *hyperlinear* if there are finite  
161 sets  $B, P \subseteq \mathbb{N}^d$  such that  $S = B + P^*$  holds. It is well known that the semilinear  
162 sets are precisely those definable in *Presburger arithmetic* [46], the first-order  
163 theory of the structure  $(\mathbb{N}; +, \leq, 0, 1, (\equiv_m)_{m \in \mathbb{N} \setminus \{0\}})$ . Here  $\equiv_m$  is the predicate  
164 where  $x \equiv_m y$  if and only if  $x - y$  is divisible by  $m$ . By quantifier elimination,  
165 every formula in Presburger arithmetic has a quantifier-free equivalent.

166 **Parikh automata** Intuitively, a Parikh automaton has finitely many con-  
167 trol states and access to  $d \geq 0$  counters. Upon reading a letter (or the empty  
168 word), it can add a vector  $\mathbf{u} \in \mathbb{N}^d$  to its counters. Moreover, for each state  $q \in Q$ ,  
169 it specifies a target set  $C_q \subseteq \mathbb{N}^d$ . An input word is accepted if at the end of the  
170 run, the accumulated counter values belong to  $C_q$ , where  $q$  is the state at the end  
171 of the run. Formally, a *Parikh automaton* is a tuple  $\mathcal{A} = (Q, \Sigma, T, q_0, (C_q)_{q \in Q})$ ,  
172 where  $Q$  is a finite set of states,  $T \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times \mathbb{N}^d \times Q$  is its finite set  
173 of *transitions*,  $q_0 \in Q$  is the *initial state*, and  $C_q \subseteq \mathbb{N}^d$  is the *target set* in  
174 state  $q$ , for each  $q \in Q$ . For an input word  $w \in \Sigma^*$ , a *run on*  $w$  is a sequence  
175  $(q_0, w_1, \mathbf{u}_1, q_1) \dots (q_{n-1}, w_n, \mathbf{u}_n, q_n)$  of transitions in  $T$  with  $w = w_1 \dots w_n$ . The  
176 run is *accepting* if  $\mathbf{u}_1 + \dots + \mathbf{u}_n \in C_{q_n}$ . The *language* of  $\mathcal{A}$  is then the set of all  
177 words  $w \in \Sigma^*$  such that  $\mathcal{A}$  has an accepting run on  $w$ .

178 **Remark 2.1.** For our results on general Parikh automata, we assume that the  
179 target sets are specified using existential Presburger formulas. However, this  
180 is not an important aspect: Given a Parikh automaton, one can in polynomial  
181 time modify the automaton (and the target set) so that the target set is given,  
182 e.g. by a semilinear representation, or a quantifier-free Presburger formula. This  
183 is a simple consequence of the fact that one can translate Parikh automata into  
184 integer VASS in logarithmic space [16, Corollary 1]. However, this conversion  
185 does not preserve determinism, and for deterministic Parikh automata, it can  
186 be important how target sets are given (see Corollary 3.7 and the discussion

187 after it). Therefore, for deterministic Parikh automata, we always specify how  
188 the targets sets are given.

189 **Separability** A subset  $L \subseteq M$  of a monoid  $M$  is *recognizable* if there is a  
190 morphism  $\varphi: M \rightarrow F$  into some finite monoid  $F$  such that  $\varphi^{-1}(\varphi(L)) = L$ . The  
191 recognizable subsets of  $M$  form a Boolean algebra [47, Chapter III, Prop. 1.1].  
192 We say that sets  $K, L \subseteq M$  are *(recognizably) separable*, denoted  $K \mid L$ , if there  
193 is a morphism  $\varphi: M \rightarrow F$  into some finite monoid  $F$  such that  $\varphi(K) \cap \varphi(L) = \emptyset$ .  
194 Equivalently, we have  $K \mid L$  if and only if there is a recognizable  $S \subseteq M$  with  
195  $K \subseteq S$  and  $S \cap L = \emptyset$ . Here,  $S$  is called a *separator* of  $K$  and  $L$ . Clearly, we  
196 have  $K \mid L$  if and only if  $L \mid K$ : if  $S$  is a separator of  $K$  and  $L$  then  $M \setminus S$   
197 separates  $L$  and  $K$ .

198 In the case  $M = \Sigma^*$  for some alphabet  $\Sigma$ , the recognizable sets in  $\Sigma^*$  are  
199 exactly the regular languages (cf. [48, Theorem II.2.1]), and thus we speak of  
200 *regular separability*. In the case  $M = \mathbb{N}^d$  for some  $d \geq 0$ , then the recognizable  
201 subsets of  $\mathbb{N}^d$  are precisely the finite unions of cartesian products  $U_1 \times \dots \times U_d$ ,  
202 where each  $U_i \subseteq \mathbb{N}$  is ultimately periodic [47, Theorem 5.1]. Here, a set  $U \subseteq \mathbb{N}$   
203 is *ultimately periodic* if there are  $n_0, p \in \mathbb{N} \setminus \{0\}$  such that for all  $n \geq n_0$ , we  
204 have  $n \in U$  if and only if  $n + p \in U$ . This implies that the recognizable subsets  
205 of  $\mathbb{N}^d$  are precisely those definable by a *monadic Presburger formula*, i.e. one  
206 where every atom only refers to one variable [38]. For these reasons, in the case  
207 of  $M = \mathbb{N}^d$ , we also sometimes speak of *monadic separability*.

208 In a *recognizable separability problem*, we are given two subsets  $K$  and  $L$  from  
209 a monoid  $M$  as input, and we want to decide whether  $K$  and  $L$  are recognizably  
210 separable. Again, in the case of  $M = \Sigma^*$ , we also call this the *regular separability*  
211 *problem*.

### 212 3. Main results

213 **Recognizable separability of semilinear sets** Our first main result is  
214 the following.

215 **Theorem 3.1.** *Given two semilinear sets defined by existential Presburger for-  
216 mulas, recognizable separability is coNP-complete.*

217 The lower bound follows with a simple reduction from the emptiness problem  
218 for sets defined by existential Presburger formulas: If  $\varphi$  defines a subset  $K \subseteq \mathbb{N}^d$ ,  
219 then  $K \mid \mathbb{N}^d$  if and only if  $K$  is empty. We prove the coNP upper bound in  
220 Section 5. By the same argument, recognizable separability is coNP-hard for  
221 input sets given by quantifier-free formulas. Thus:

222 **Corollary 3.2.** *Given two semilinear sets defined by quantifier-free Presburger  
223 formulas, recognizable separability is coNP-complete.*

224 In particular, this re-proves the coNP upper bound for monadic decompos-  
225 ability of quantifier-free formulas, as originally shown by Hague, Lin, Rümmer,  
226 and Wu [40, Theorem 1].

227 **Remark 3.3.** Our result also implies that for existential Presburger formulas  
 228 over  $(\mathbb{Z}; +, \leq, 0, 1, (\equiv_m)_{m \in \mathbb{N} \setminus \{0\}})$  defining  $K, L \subseteq \mathbb{Z}^d$ , it is coNP-complete to de-  
 229 cide whether they are separable by a monadically defined subset of  $\mathbb{Z}^d$ . Indeed,  
 230 consider the injective map  $\nu: \mathbb{Z}^d \rightarrow \mathbb{N}^{2d}$ , where  $\nu(x_1, \dots, x_d) = (\sigma(x_1), |x_1|, \dots, \sigma(x_d), |x_d|)$   
 231 with  $\sigma(x) = 0$  for  $x \geq 0$  and  $\sigma(x) = 1$  for  $x < 0$ . Then  $S \subseteq \mathbb{Z}^d$  is monadically  
 232 definable if and only if  $\nu(S)$  is monadically definable<sup>3</sup>. Thus,  $K, L \subseteq \mathbb{Z}^d$  are  
 233 monadically separable if and only if  $\nu(K), \nu(L) \subseteq \mathbb{N}^{2d}$  are monadically separa-  
 234 ble. Finally, one easily constructs existential formulas for  $\nu(K), \nu(L)$ .

235 Since for a given semilinear representation of a set  $S \subseteq \mathbb{N}^d$ , it is easy to  
 236 construct an existential Presburger formula defining  $S$ , Theorem 3.1 also implies  
 237 the following.

238 **Corollary 3.4.** *Given two semilinear representations, recognizable separability  
 239 is coNP-complete.*

240 In this case, the coNP lower bound comes from the NP-hard membership  
 241 problem for semilinear sets (even if all numbers are written in unary) [49,  
 242 Lemma 10]: For a semilinear subset  $S \subseteq \mathbb{N}^d$  and a vector  $\mathbf{u} \in \mathbb{N}^d$ , we have  
 243  $\mathbf{u} \notin S$  if and only if  $S \mid \{\mathbf{u}\}$ . Finally, Theorem 3.1 allows us to settle the  
 244 complexity of recognizable separability of rational subsets of  $\Sigma^* \times \mathbb{N}^d$ .

245 **Corollary 3.5.** *Given  $d \in \mathbb{N}$  and two rational subsets of  $\Sigma^* \times \mathbb{N}^d$ , deciding  
 246 recognizable separability is coNP-complete.*

247 Decidability was first shown by Choffrut and Grigorieff [44, Theorem 1]. The  
 248 coNP upper bound follows because Choffrut and Grigorieff [44, Theorem 10] re-  
 249 duce recognizable separability of subsets of  $\Sigma^* \times \mathbb{N}^d$  to recognizable separability  
 250 of rational subsets of  $\mathbb{N}^{2d}$  (and their reduction is clearly in polynomial time).  
 251 Moreover, for a given rational subset of  $\mathbb{N}^{2d}$ , one can construct in polynomial  
 252 time an equivalent existential Presburger formula [50, Theorem 1]. Thus, the  
 253 upper bound follows from Theorem 3.1. Since semilinear sets in  $\mathbb{N}^d$  (given by a  
 254 semilinear representation) can be viewed as rational subsets of  $\mathbb{N}^d$  (and hence  
 255 of  $\Sigma^* \times \mathbb{N}^d$ ), the coNP lower bound is inherited from Corollary 3.4.

256 **Regular separability of Parikh automata** Our second main result is  
 257 the following:

258 **Theorem 3.6.** *Regular separability for Parikh automata is coNP-complete.*

259 The coNP lower bound comes via the coNP-complete emptiness problem:  
 260 For a given Parikh automaton accepting a language  $K \subseteq \Sigma^*$ , we have  $K \mid \Sigma^*$

---

<sup>3</sup>This is easily shown by translating each atomic formula (over a single variable) into a monadic formula in each direction. However, note that within  $\mathbb{Z}^d$ , monadic definability is not the same as recognizability. For example, the sets  $\{0\}$  and  $\mathbb{Z} \setminus \{0\}$  are monadically separable, but not separable by a recognizable subset of  $\mathbb{Z}$ , since every non-empty recognizable subset of  $\mathbb{Z}$  is infinite [47, Chapter III, Example 1.4].

261 if and only if  $K = \emptyset$ . Thus, the interesting part is the upper bound, which we  
262 prove in Section 6. This is a significant improvement to the previously known  
263 elementary (or finitely iterated exponential time) complexity upper bound by  
264 Clemente, Czerwiński, Lasota, and Paperman [7].

265 Theorem 3.6 can also be applied to deciding regularity of deterministic  
266 Parikh automata.

267 **Corollary 3.7.** *For deterministic Parikh automata with target sets given as  
268 quantifier-free Presburger formulas, deciding regularity is  $\text{coNP}$ -complete.*

269 Decidability of regularity was shown by Cadilhac, Finkel, and McKenzie [20,  
270 Theorem 25] (in the slightly more general setting of unambiguous constrained  
271 automata). For the  $\text{coNP}$  upper bound, note that for a language  $L \subseteq \Sigma^*$  given  
272 by a deterministic Parikh automaton (with quantifier-free formulas for the tar-  
273 get sets), one can in polynomial time construct the same type of automaton  
274 for the complement  $\Sigma^* \setminus L$ . Since  $L$  is regular if and only if  $L$  and  $\Sigma^* \setminus L$  are  
275 separable by a regular language, we can invoke Theorem 3.6. The  $\text{coNP}$  lower  
276 bound is inherited from monadic decomposability of quantifier-free formulas.  
277 Indeed, given a quantifier-free Presburger formula  $\varphi(x_1, \dots, x_n)$  with free vari-  
278 ables  $(x_1, \dots, x_n)$ , one easily constructs a deterministic Parikh automaton (with  
279 quantifier-free target sets) for the language  $L_\varphi = \{a_1^{x_1} \cdots a_n^{x_n} \mid \varphi(x_1, \dots, x_n)\}$ .  
280 As shown by Ginsburg and Spanier [51, Theorem 1.2],  $L_\varphi$  is regular if and  
281 only if  $\varphi$  is monadically decomposable. However, monadic decomposability for  
282 quantifier-free formulas is  $\text{coNP}$ -complete [40, Theorem 1].

283 For the  $\text{coNP}$  upper bound in Corollary 3.7, we cannot drop the assumption  
284 that the formula be quantifier-free. This is because if the target sets can be exis-  
285 tential Presburger formulas, then the regularity problem is  $\text{coNEXP}$ -hard. This  
286 follows by the same reduction from monadic decomposability: If we construct  
287  $L_\varphi$  as above using an existential formula  $\varphi$ , then again,  $L_\varphi$  is regular if and  
288 only if  $\varphi$  is monadically decomposable. Moreover, monadic decomposability for  
289 existential formulas is  $\text{coNEXP}$ -complete [41, Corollary 3.6].

#### 290 4. A characterization of separability in hyperlinear sets

291 Before we prove our two main results, Theorems 3.1 and 3.6, we should recall  
292 the ideas of the existing algorithms [8, 44] for recognizable separability of linear  
293 sets. We will use these ideas to obtain a new characterization of separability in  
294 hyperlinear sets.

295 Let  $L_1, L_2 \subseteq \mathbb{N}^d$  be two linear sets. The algorithms [8, 44] rely on a procedure  
296 that successively eliminates “bounded components”: If, say,  $L_1$  is bounded in  
297 component  $j$  by some  $b \in \mathbb{N}$ , then one can observe that  $L_1 \mid L_2$  if, and only if,  
298  $L_1[j \mapsto x] \mid L_2[j \mapsto x]$  for every  $x \in [0, b]$ . Here,  $L_i[j \mapsto x]$  is  $L_i$  restricted to those  
299 vectors that have  $x$  in the  $j$ -th component, and then projected to all components  
300  $\neq j$ . Therefore, the algorithms of [8, 44] recursively check separability of  $L_1[j \mapsto$   
301  $x]$  and  $L_2[j \mapsto x]$  for each  $x \in [0, b]$ . This process invokes several expensive  
302 intersection operations on semilinear sets and thus has high complexity. Instead,

303 our approach immediately guesses and verifies the set of components that remain  
 304 after the elimination process. The corresponding checks involve the notion of  
 305 twin-unboundedness.

306 **Twin-unbounded components** Our notion applies, slightly more gener-  
 307 ally, to hyperlinear sets. Hence, let  $R = A + U^* \subseteq \mathbb{N}^d$  and  $S = B + V^* \subseteq \mathbb{N}^d$  be  
 308 two hyperlinear sets where  $A, B, U, V \subseteq \mathbb{N}^d$  are finite sets.

309 **Definition 4.1.** A coordinate  $j \in [1, d]$  is *twin-unbounded for R and S* if there  
 310 exist  $\mathbf{p} \in U^*$  and  $\mathbf{q} \in V^*$  such that  $j \in \text{supp}(\mathbf{p}) = \text{supp}(\mathbf{q})$ .

311 Hence, intuitively, twin-unbounded coordinates are those that can be made  
 312 large/driven up in  $R$  in the same way as in  $S$ . We will present yet another  
 313 characterization of twin-unbounded coordinates. Let  $j \in [1, d]$ . We say the  $j$ -th  
 314 coordinate of the hyperlinear set  $S = B + V^*$  is *bounded* if there is no period  
 315 vector in  $V$  with support on  $j$ , i.e.,  $j \notin \text{supp}(\mathbf{p})$  for all  $\mathbf{p} \in V$ . We say that a  
 316 subset  $J \subseteq [1, d]$  of coordinates is bounded in  $S$  if each  $j \in J$  is bounded in  $S$ .

317 Consider the following process: Given two hyperlinear sets  $R$  and  $S$ . We  
 318 modify  $R$  and  $S$  by performing each of the following three steps for each coor-  
 319 dinate  $j \in [1, d]$  until the sets of remaining period vectors in  $R$  and  $S$  stabilize:

- 320 • If neither  $R$  nor  $S$  is bounded at  $j$ , we leave  $S$  and  $R$  untouched.
- 321 • If only  $R$  is bounded at  $j$ , we remove all period vectors from  $S$  which have  
 322 support on  $j$ .
- 323 • If only  $S$  is bounded at  $j$ , we remove all period vectors from  $R$  which have  
 324 support on  $j$ .

325 Then, the coordinates that remain unbounded are precisely the twin-unbounded  
 326 ones.

327 **Example 4.2.** Consider  $R = \{(1, 0, 1)\}^*$  and  $S = \{(1, 1, 0), (0, 0, 1)\}^*$ . Then  $R$   
 328 is bounded by the value 0 at coordinate 2. So  $R$  and  $S$  are separable if and only  
 329 if  $R$  and  $S$  restricted to the vectors having the value 0 in the second coordinate.  
 330 So, we only consider this restriction of  $S$ —in our algorithm this is reflected by  
 331 the deletion of the period vector  $(1, 1, 0)$  of  $S$ . After deletion of the period vector  
 332  $(1, 1, 0)$ ,  $S$  is bounded at coordinate 1 by the value 0. So, we remove the period  
 333 vector  $(1, 0, 1)$  from  $R$ . Finally, the period vector  $(0, 0, 1)$  of  $S$  gets removed  
 334 since  $R$  is now bounded at coordinate 3. Hence, our algorithm terminates in  
 335 this case with no twin-unbounded coordinates. This example shows that even if  
 336  $R$  and  $S$  both are unbounded in coordinates 1 and 3, none of these coordinates  
 337 is twin-unbounded.

338 If  $R = \{(1, 0, 1), (0, 1, 0)\}^*$  and  $S = \{(1, 1, 0), (0, 0, 1)\}^*$ , then no coordinate  
 339 is bounded in  $R$  and  $S$ . Hence, all coordinates are twin-unbounded and no  
 340 period vector gets removed.

341 For  $J \subseteq [1, d]$ , we write  $U_J = \{\mathbf{p} \in U \mid \text{supp}(\mathbf{p}) \subseteq J\}$  and  $V_J = \{\mathbf{q} \in V \mid$   
 342  $\text{supp}(\mathbf{q}) \subseteq J\}$ .

343     **Separating by modular constraints** As observed in [8, 44], if all coor-  
 344     dinates of two linear sets  $L_1, L_2$  are unbounded, then separability holds if and  
 345     only if the two sets can be separated by modulo constraints. This relies on the  
 346     well known fact that finitely generated abelian groups are *subgroup separable*,  
 347     i.e. that for every element  $\mathbf{u} \in \mathbb{Z}^d$  that does not belong to a subgroup  $A \subseteq \mathbb{Z}^d$ ,  
 348     there exists a homomorphism  $\varphi: \mathbb{Z}^d \rightarrow \mathbb{F}$  into a finite group  $\mathbb{F}$  such that (i)  $A$  is  
 349     included in the kernel of  $\varphi$  and (ii)  $\varphi(\mathbf{u}) \neq 0$ . In our characterization (Propo-  
 350     sition 4.5) we will use similar arguments and therefore we will recall subgroup  
 351     separability here.

352     **Lemma 4.3** (Subgroup separability). *If  $A \subseteq \mathbb{Z}^d$  is a subgroup and  $\mathbf{u} \in \mathbb{Z}^d \setminus A$ ,  
 353     then there is an  $s \in \mathbb{N}$ ,  $s > 0$ , and a morphism  $\varphi: \mathbb{Z}^d \rightarrow \mathbb{Z}/s\mathbb{Z}$  with (i)  $\varphi(A) = 0$   
 354     and (ii)  $\varphi(\mathbf{u}) \neq 0$ .*

355     *Proof.* Consider the quotient group  $\mathbb{Z}^d/A$ . It is finitely generated and abelian  
 356     and thus isomorphic to a group  $\bigoplus_{j=1}^n \mathbb{Z}/r_j\mathbb{Z}$  for some numbers  $r_1, \dots, r_n \in \mathbb{N}$ .  
 357     The projection map  $\pi: \mathbb{Z}^d \rightarrow \mathbb{Z}^d/A$  can thus be composed with the isomorphism  
 358     above to yield a morphism  $\psi: \mathbb{Z}^d \rightarrow \bigoplus_{j=1}^n \mathbb{Z}/r_j\mathbb{Z}$  with  $\ker \psi = A$ . Since  $\mathbf{u} \notin A$   
 359     and thus  $\psi(\mathbf{u}) \neq 0$ , say the  $j$ -th component of  $\psi(\mathbf{u})$  is not zero. We distinguish  
 360     two cases:

- 361     (1) If  $r_j > 0$ , then we can choose  $\varphi: \mathbb{Z}^d \rightarrow \mathbb{Z}/r_j\mathbb{Z}$  to be  $\psi$  followed by the  
 362       projection to the  $j$ -th component.
- 363     (2) If  $r_j = 0$ , then  $\mathbb{Z}/r_j\mathbb{Z} = \mathbb{Z}$  and thus the  $j$ -th component of  $\psi(\mathbf{u})$  is an  
 364       integer  $k \in \mathbb{Z}$ . We pick some  $s > |k|$  and let  $\varphi: \mathbb{Z}^d \rightarrow \mathbb{Z}/s\mathbb{Z}$  yield the  $j$ -th  
 365       component of  $\psi$ , modulo  $s$ .

366     These choices clearly satisfy  $\varphi(A) = 0$  and  $\varphi(\mathbf{u}) \neq 0$ . □

367     **Separability vs. intersection emptiness** We will now characterize in-  
 368     separability of hyperlinear sets  $R, S$  via the intersection of two hyperlinear sets  
 369      $\hat{R}$  and  $\hat{S}$  associated with  $R, S$ . The proof will rely on an equivalence relation of  
 370     vectors. For vectors  $\mathbf{u}, \mathbf{v} \in \mathbb{N}^d$  and  $k \in \mathbb{N} \setminus \{0\}$ , we write  $\mathbf{u} \sim_k \mathbf{v}$  if for every  
 371      $i \in [1, d]$ , we have

- 372     (1)  $\mathbf{u}[i] = \mathbf{v}[i] \leq k$  or
- 373     (2)  $\mathbf{u}[i], \mathbf{v}[i] > k$  and  $\mathbf{u}[i] \equiv \mathbf{v}[i] \pmod{k}$ .

374     The following was shown in [8, Prop. 18].

375     **Lemma 4.4.** *For any sets  $X, Y \subseteq \mathbb{N}^d$ , the following are equivalent:*

- 376     (1)  $X$  and  $Y$  are not separable by a recognizable set.
- 377     (2) for each  $k \in \mathbb{N} \setminus \{0\}$  there are  $\mathbf{x}_k \in X$  and  $\mathbf{y}_k \in Y$  with  $\mathbf{x}_k \sim_k \mathbf{y}_k$ .

378     Let  $k, \ell \in \mathbb{N} \setminus \{0\}$  be such that  $k$  divides  $\ell$ . We can observe that  $\mathbf{u} \sim_\ell \mathbf{v}$   
 379     implies  $\mathbf{u} \sim_k \mathbf{v}$  in this case. Thus, to show recognizable inseparability of two  
 380     sets  $X, Y \subseteq \mathbb{N}^d$ , it suffices to find  $\mathbf{x}_k \in X$  and  $\mathbf{y}_k \in Y$  for almost all numbers  
 381      $k \in \mathbb{N} \setminus \{0\}$ . We will use this fact in the proof of the following characterization  
 382     of inseparability.

383 **Proposition 4.5.** *Let  $R = A + U^* \subseteq \mathbb{N}^d$  and  $S = B + V^* \subseteq \mathbb{N}^d$  be hyperlinear  
384 sets. Then  $R$  and  $S$  are not separable by a recognizable set if and only if the  
385 intersection*

$$(A + U^* - U_J^*) \cap (B + V^* - V_J^*) \quad (1)$$

386 *is non-empty, where  $J \subseteq [1, d]$  is the set of coordinates that are twin-unbounded  
387 for  $R, S$ .*

388 *Proof.* Suppose there is a vector  $\mathbf{x}$  in the intersection (1). Then we can write  
389  $\mathbf{x} = \mathbf{u} - \bar{\mathbf{u}}$  and  $\mathbf{x} = \mathbf{v} - \bar{\mathbf{v}}$  with  $\mathbf{u} \in A + U^*$ ,  $\mathbf{v} \in B + V^*$ ,  $\bar{\mathbf{u}} \in U_J^*$ , and  $\bar{\mathbf{v}} \in V_J^*$ .  
390 Since  $J$  is twin-unbounded for  $R$  and  $S$ , there are—by definition— $\mathbf{p}_j \in U^*$  and  
391  $\mathbf{q}_j \in V^*$  with  $j \in \text{supp}(\mathbf{p}_j) = \text{supp}(\mathbf{q}_j)$  for each  $j \in J$ . Then for  $\mathbf{p} := \sum_{j \in J} \mathbf{p}_j$   
392 and  $\mathbf{q} := \sum_{j \in J} \mathbf{q}_j$  we infer  $J \subseteq \text{supp}(\mathbf{p}) = \text{supp}(\mathbf{q})$ . Now for each  $k \in \mathbb{N} \setminus \{0\}$ ,  
393 consider the vectors

$$\mathbf{u}_k = \mathbf{u} - \bar{\mathbf{u}} + 2k \cdot \mathbf{p} + k \cdot \bar{\mathbf{u}} \quad \text{and} \quad \mathbf{v}_k = \mathbf{v} - \bar{\mathbf{v}} + 2k \cdot \mathbf{q} + k \cdot \bar{\mathbf{v}}.$$

394 Then we have  $\mathbf{u}_k, \mathbf{v}_k \in \mathbb{N}^d$  for each  $k \in \mathbb{N} \setminus \{0\}$ . We claim that  $\mathbf{u}_k \sim_k \mathbf{v}_k$  for all  
395  $k$ . Indeed, on coordinates  $j \in [1, d] \setminus \text{supp}(\mathbf{p})$ , the vectors  $\mathbf{u}_k$  and  $\mathbf{v}_k$  coincide  
396 with  $\mathbf{x}$ . Moreover, on coordinates  $j \in \text{supp}(\mathbf{p})$ , both vectors  $\mathbf{u}_k$  and  $\mathbf{v}_k$  are  
397 larger than  $k$  and also congruent to  $\mathbf{x}[j] \bmod k$ . Hence,  $\mathbf{u}_k \sim_k \mathbf{v}_k$ . Since clearly  
398  $\mathbf{u}_k = \mathbf{u} + 2k \cdot \mathbf{p} + (k-1) \cdot \bar{\mathbf{u}} \in R$  and  $\mathbf{v}_k = \mathbf{v} + 2k \cdot \mathbf{q} + (k-1) \cdot \bar{\mathbf{v}} \in S$ , Lemma 4.4  
399 implies that  $R$  and  $S$  are not separable.

400 Conversely, suppose that  $R$  and  $S$  are not separable. Then by Lemma 4.4  
401 there are  $\mathbf{u}_k \in R$  and  $\mathbf{v}_k \in S$  with  $\mathbf{u}_k \sim_k \mathbf{v}_k$  for every  $k \in \mathbb{N} \setminus \{0\}$ . We claim  
402 that the sequences  $\mathbf{u}_1, \mathbf{u}_2, \dots$  and  $\mathbf{v}_1, \mathbf{v}_2, \dots$  have subsequences  $\mathbf{u}'_1, \mathbf{u}'_2, \dots$  and  
403  $\mathbf{v}'_1, \mathbf{v}'_2, \dots$  such that for every  $k \geq 1$ , we have (i)  $\mathbf{u}'_{k+1} \in \mathbf{u}'_k + U_J^*$ , (ii)  $\mathbf{v}'_{k+1} \in$   
404  $\mathbf{v}'_k + V_J^*$  and (iii)  $\mathbf{u}'_k \sim_k \mathbf{v}'_k$ .

405 The claim is easy to observe: Note that by picking subsequences, we may  
406 assume that even  $\mathbf{u}_k \sim_{k!} \mathbf{v}_k$  for every  $k \geq 1$ . Moreover, the latter property  
407 is preserved by taking subsequences. Thus, since  $A, B$  are finite, by picking  
408 subsequences again, we may assume that there are  $\mathbf{r} \in A$  and  $\mathbf{s} \in B$  such that  
409  $\mathbf{u}_k \in \mathbf{r} + U^*$  and  $\mathbf{v}_k \in \mathbf{s} + V^*$  and  $\mathbf{u}_k \sim_{k!} \mathbf{v}_k$  for  $k \geq 1$ . Then, by Dickson's  
410 lemma, we may assume that in addition  $\mathbf{u}_{k+1} \in \mathbf{u}_k + U^*$  and  $\mathbf{v}_{k+1} \in \mathbf{v}_k + V^*$  for  
411 every  $k \geq 1$  (here, we apply Dickson's lemma to the  $|U|$ -dimensional vectors of  
412 coefficients at period vectors in  $U$  and similarly for  $V$ ). Now since  $\mathbf{u}_k \sim_{k!} \mathbf{v}_k$  for  
413 every  $k$ , it follows that the sequences  $\mathbf{u}_1, \mathbf{u}_2, \dots$  and  $\mathbf{v}_1, \mathbf{v}_2, \dots$  are unbounded  
414 on the same set  $J \subseteq [1, d]$  of coordinates. Then clearly,  $J$  is twin-unbounded  
415 for  $R$  and  $S$ . This means, for all but finitely many  $k$ , we have  $\mathbf{u}_{k+1} \in \mathbf{u}_k + U_J^*$   
416 and  $\mathbf{v}_{k+1} \in \mathbf{v}_k + V_J^*$ . Hence, by picking another subsequence, we may assume  
417 that the latter holds for every  $k \geq 1$ . Then,  $\mathbf{u}_1, \mathbf{u}_2, \dots$  and  $\mathbf{v}_1, \mathbf{v}_2, \dots$  satisfy the  
418 properties (i–iii) above, establishing our claim.

419 We now claim that  $\mathbf{u}_1 - \mathbf{v}_1$  belongs to the group  $\langle U_J \cup V_J \rangle$  generated by  
420  $U_J \cup V_J$ . Towards a contradiction, suppose  $\mathbf{u}_1 - \mathbf{v}_1$  does not belong to  $\langle U_J \cup V_J \rangle$ .  
421 By Lemma 4.3, there must be an  $s \in \mathbb{N}$ ,  $s > 0$ , and a morphism  $\varphi: \mathbb{Z}^d \rightarrow \mathbb{Z}/s\mathbb{Z}$

422 such that  $\varphi(\langle U_J \cup V_J \rangle) = 0$  and  $\varphi(\mathbf{u}_1 - \mathbf{v}_1) \neq 0$ . However, the vector

$$(\mathbf{u}_s - \mathbf{v}_s) - (\mathbf{u}_1 - \mathbf{v}_1) = \underbrace{(\mathbf{u}_s - \mathbf{u}_1)}_{\in \langle U_J \rangle} - \underbrace{(\mathbf{v}_s - \mathbf{v}_1)}_{\in \langle V_J \rangle}$$

423 belongs to  $\langle U_J \cup V_J \rangle$ , but also agrees with  $\mathbf{u}_1 - \mathbf{v}_1$  under  $\varphi$  (since all components  
424 of  $\mathbf{u}_s - \mathbf{v}_s$  are divisible by  $s$ ), contradicting Lemma 4.3. Hence  $\mathbf{u}_1 - \mathbf{v}_1 \in$   
425  $\langle U_J \cup V_J \rangle$ .

426 This means, we can write  $\mathbf{u}_1 - \mathbf{v}_1 = \mathbf{v} - \bar{\mathbf{v}} - (\mathbf{u} - \bar{\mathbf{u}})$  with  $\mathbf{u}, \bar{\mathbf{u}} \in U_J^*$  and  
427  $\mathbf{v}, \bar{\mathbf{v}} \in V_J^*$ . But then the vector  $\mathbf{u}_1 + \mathbf{u} - \bar{\mathbf{u}} = \mathbf{v}_1 + \mathbf{v} - \bar{\mathbf{v}}$  belongs to the intersection  
428 (1).  $\square$

429 With Proposition 4.5, we have now characterized inseparability of subsets  
430 of  $\mathbb{N}^d$  via a particular intersection of two sets in  $\mathbb{Z}^d$ . It will later be more  
431 convenient to work with intersections of sets in  $\mathbb{N}^d$ , which motivates the following  
432 reformulation of Proposition 4.5.

433 **Theorem 4.6.** *Let  $R = A + U^* \subseteq \mathbb{N}^d$  and  $S = B + V^* \subseteq \mathbb{N}^d$  be hyperlinear  
434 sets. Then  $R$  and  $S$  are not separable by a recognizable set if and only if the  
435 intersection*

$$(A + U^* + V_J^*) \cap (B + V^* + U_J^*) \tag{2}$$

436 is non-empty, where  $J \subseteq [1, d]$  is the set of coordinates that are twin-unbounded  
437 for  $R, S$ .

438 *Proof.* Direct consequence of Proposition 4.5, since clearly  $A + U^* - U_J^*$  intersects  
439  $B + V^* - V_J^*$  if and only if  $A + U^* + V_J^*$  intersects  $B + V^* + U_J^*$ .  $\square$

440 **5. Separability of semilinear sets is in **coNP****

441 Using the characterization Theorem 4.6, we can now explain our algorithm  
442 for the **coNP** upper bound in Theorem 3.1. We describe an **NP** algorithm that  
443 establishes *inseparability*.

444 **Algorithm Step I: Solution sets to linear Diophantine equations**

445 Let us first see that we can reduce the problem to the case where both input  
446 sets are given as projections of solution sets of linear Diophantine equations. We  
447 may assume that the input formulas are of the form  $\exists \mathbf{x} : \kappa(\mathbf{x}, \mathbf{y})$ , where  $\kappa$  is a  
448 formula consisting of conjunction and disjunction (i.e. no negation) of atoms of  
449 the form  $t \geq a$ , where  $t$  is a linear combination of variables  $\mathbf{x} = (x_1, \dots, x_n)$ ,  $\mathbf{y} =$   
450  $(y_1, \dots, y_m)$  and integer coefficients, and  $a$  is a constant.

451 Let  $\varphi$  be a formula as described above. It is a well known fact that  $\varphi$  can  
452 be transformed into disjunctive normal form. This means,  $\varphi$  is equivalent to a  
453 formula  $\varphi_1 \vee \dots \vee \varphi_k$ , where each  $\varphi_i$  (a so-called *clause*) has the form  $\exists \mathbf{x} : \xi(\mathbf{x}, \mathbf{y})$   
454 such that  $\xi$  is a conjunction of atoms appearing in  $\varphi$ . In general, the number of  
455 clauses of  $\varphi$  is exponential.

456 Now, let  $\varphi$  and  $\psi$  be the input formulas of the algorithm and let  $\varphi_1 \vee \dots \vee \varphi_k$   
457 and  $\psi_1 \vee \dots \vee \psi_\ell$  be their equivalent formulas in disjunctive normal form. Since  
458 the number of clauses is exponential, we cannot compute all clauses for  $\varphi$  and  $\psi$ .  
459 However, the solution sets of  $\varphi$  and  $\psi$  are recognizably inseparable if, and only  
460 if, for some pair  $i, j$ , the solution sets of the formulas  $\varphi_i$  and  $\psi_j$  are recognizably  
461 inseparable. This is due to the following fact, which follows standard ideas.

462 **Lemma 5.1.** *Let  $K, K_1, \dots, K_n, L \subseteq M$  be sets from a monoid  $M$  such that  
463  $K = K_1 \cup \dots \cup K_n$ . Then  $K \mid L$  if, and only if,  $K_i \mid L$  for all  $1 \leq i \leq n$ .*

464 *Proof.* Assume  $K \mid L$ . Then there is a recognizable set  $S \subseteq M$  separating  $K$   
465 and  $L$ . Let  $1 \leq i \leq n$  be arbitrary. Since  $K_i \subseteq K$  holds, the set  $S$  is also a  
466 separator of  $K_i$  and  $L$ , i.e.,  $K_i \mid L$  for all  $1 \leq i \leq n$ .

467 Conversely, assume  $K_i \mid L$  for all  $1 \leq i \leq n$ . Then there are recognizable  
468 sets  $S_i \subseteq M$  separating  $K_i$  and  $L$ . Set  $S := \bigcup_{1 \leq i \leq n} S_i$ . Then  $S$  is recognizable  
469 (according to the closure properties of the class of recognizable sets). We also  
470 have

$$K = \bigcup_{1 \leq i \leq n} K_i \subseteq \bigcup_{1 \leq i \leq n} S_i = S$$

471 and

$$L \cap S = L \cap \left( \bigcup_{1 \leq i \leq n} S_i \right) = \bigcup_{1 \leq i \leq n} (L \cap S_i) = \bigcup_{1 \leq i \leq n} \emptyset = \emptyset.$$

472 In other words,  $S$  is a recognizable separator of  $K$  and  $L$ , i.e.,  $K \mid L$ .  $\square$

473 Thus, for deciding the inseparability of the solution sets of  $\varphi$  and  $\psi$  in NP  
474 it is sufficient to guess (in polynomial time) clauses  $\varphi_i$  and  $\psi_j$  and show that  
475 inseparability of the solution sets of these two formulas is decidable in NP.  
476 Therefore, from now on we can assume that the input formulas are (existentially  
477 quantified) conjunctions of atoms of the form  $t \geq a$ .

478 In particular, each of the two input sets is a projection of the solution set  
479 of a system of linear Diophantine inequalities. By introducing slack variables  
480 (which will also be projected away), we can turn *inequalities* into *equations*.  
481 Thus, we have as input sets  $K, L \subseteq \mathbb{N}^d$  with

$$K = \pi(\{\mathbf{x} \in \mathbb{N}^r \mid A\mathbf{x} = \mathbf{b}\}) \quad \text{and} \quad L = \pi(\{\mathbf{x} \in \mathbb{N}^r \mid C\mathbf{x} = \mathbf{d}\}), \quad (3)$$

482 where  $\pi: \mathbb{Z}^r \rightarrow \mathbb{Z}^d$  is the projection to the first  $d$  components, and  $A, C \in \mathbb{Z}^{s \times r}$   
483 are integer matrices and  $\mathbf{b}, \mathbf{d} \in \mathbb{Z}^s$  are integer vectors. Note that here, assuming  
484 that the number  $r$  of columns and the number  $s$  of rows are the same for  $K$  and  
485  $L$  means no loss of generality.

486 **Algorithm Step II: Recognizable inseparability as satisfiability** In  
487 the second step, we will reduce recognizable inseparability of  $K$  and  $L$  to satis-  
488 fiability of an existential Presburger formula. To this end, we use the fact that  
489 the solution sets to  $A\mathbf{x} \geq \mathbf{b}$  (resp.  $C\mathbf{x} \geq \mathbf{d}$ ) are hyperlinear sets, which allows  
490 us to apply Theorem 4.6.

491 **Proposition 5.2.** *K and L are recognizably inseparable if, and only if, there  
492 are vectors  $\mathbf{p}, \mathbf{q}, \mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y} \in \mathbb{N}^r$  with*

493 (1)  $A\mathbf{p} = \mathbf{0}$ ,  $C\mathbf{q} = \mathbf{0}$ , and  $\text{supp}(\pi(\mathbf{p})) = \text{supp}(\pi(\mathbf{q}))$ ,  
494 (2)  $\text{supp}(\pi(\mathbf{u})), \text{supp}(\pi(\mathbf{v})) \subseteq \text{supp}(\pi(\mathbf{p}))$ ,  $A\mathbf{u} = \mathbf{0}$ , and  $C\mathbf{v} = \mathbf{0}$ ,  
495 (3)  $A\mathbf{x} = \mathbf{b}$ ,  $C\mathbf{y} = \mathbf{d}$ , and  $\pi(\mathbf{x} + \mathbf{v}) = \pi(\mathbf{y} + \mathbf{u})$ .

496 *Proof.* We apply Theorem 4.6. To this end, we use the standard hyperlinear  
497 representation for solution sets of systems of linear Diophantine equations. Let  
498  $A_0 \subseteq \mathbb{N}^r$  be the set of all (component-wise) minimal solutions to  $A\mathbf{x} = \mathbf{b}$ , and  
499 let  $U \subseteq \mathbb{N}^r$  be the set of all minimal solutions to  $A\mathbf{x} = \mathbf{0}$ . Then it is well  
500 known that  $K = \pi(A_0 + U^*) = \pi(A_0) + \pi(U)^*$ . In the same way, we obtain  
501 a hyperlinear representation  $L = \pi(B_0 + V^*) = \pi(B_0) + \pi(V)^*$ . Then, the  
502 proposition follows from Theorem 4.6.

503 Indeed, observe that then  $\pi(U)^*$  is exactly the set of  $\pi(\mathbf{p}) \in \mathbb{N}^d$  with  $A\mathbf{p} = \mathbf{0}$ .  
504 Likewise,  $\pi(V)^*$  is exactly the set of  $\pi(\mathbf{q}) \in \mathbb{N}^d$  with  $C\mathbf{q} = \mathbf{0}$ . Therefore, if  $J \subseteq$   
505  $[1, d]$  is the set of twin-unbounded components of  $K, L$ , and  $U_J, V_J$  are defined as  
506 in Theorem 4.6, then  $\pi(U_J)^*$  consists of exactly those  $\pi(\mathbf{u})$  for which (i) there  
507 are  $\mathbf{p}, \mathbf{q} \in \mathbb{N}^r$  with  $A\mathbf{p} = \mathbf{0}$  and  $C\mathbf{q} = \mathbf{0}$  with  $\text{supp}(\pi(\mathbf{u})) \subseteq \text{supp}(\pi(\mathbf{p})) =$   
508  $\text{supp}(\pi(\mathbf{q})) \subseteq J$ , and (ii)  $A\mathbf{u} = \mathbf{0}$ . The set  $\pi(V_J)^*$  has an analogous description.

509 Thus, if  $\mathbf{p}, \mathbf{q}, \mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y} \in \mathbb{N}^r$  exist as in the proposition, then clearly  $\pi(\mathbf{x} +$   
510  $\mathbf{v}) = \pi(\mathbf{y} + \mathbf{u})$  lies in the intersection  $(\pi(A_0) + \pi(U)^* + \pi(V_J)^*) \cap (\pi(B_0) +$   
511  $\pi(V)^* + \pi(U_J)^*)$ .

512 Conversely, an element in the intersection  $(\pi(A_0) + \pi(U)^* + \pi(V_J)^*) \cap (\pi(B_0) +$   
513  $\pi(V)^* + \pi(U_J)^*)$  can be written as  $\pi(\mathbf{x} + \mathbf{v}) = \pi(\mathbf{y} + \mathbf{u})$ , such that  $A\mathbf{x} = \mathbf{b}$ ,  
514  $C\mathbf{y} = \mathbf{d}$ , and there are  $\mathbf{p}_1, \mathbf{q}_1 \in \mathbb{N}^r$  witnessing  $\mathbf{u} \in U_J^*$  and also  $\mathbf{p}_2, \mathbf{q}_2 \in \mathbb{N}^r$   
515 witnessing  $\mathbf{v} \in V_J^*$ . This means,  $\text{supp}(\pi(\mathbf{u})) \subseteq \text{supp}(\pi(\mathbf{p}_1)) = \text{supp}(\pi(\mathbf{q}_1))$ ,  
516  $A\mathbf{p}_1 = \mathbf{0}$ , and  $C\mathbf{q}_1 = \mathbf{0}$ , but also  $\text{supp}(\mathbf{v}) \subseteq \text{supp}(\pi(\mathbf{p}_2)) = \text{supp}(\pi(\mathbf{q}_2))$ ,  $A\mathbf{p}_2 =$   
517  $\mathbf{0}$ , and  $C\mathbf{q}_2 = \mathbf{0}$ . But then we can use  $\mathbf{p} := \mathbf{p}_1 + \mathbf{p}_2$  and  $\mathbf{q} := \mathbf{q}_1 + \mathbf{q}_2$  to satisfy  
518 the requirements of the proposition.  $\square$

519 Finally, Proposition 5.2 can be used to complete the proof of our first main  
520 result:

521 *Proof of Theorem 3.1.* Let  $\varphi$  and  $\psi$  be two existential Presburger formulas with-  
522 out negation and using only atoms of the form  $t \geq 0$ , where  $t$  is a linear combi-  
523 nation of variables and integer coefficients. We give an NP algorithm deciding  
524 inseparability by a recognizable set.

525 Since the solution sets of  $\varphi$  and  $\psi$  are inseparable if, and only if, their  
526 disjunctive normal forms have at least one pair of inseparable clauses, we guess  
527 such a pair of these clauses  $\varphi_i$  and  $\psi_j$  (cf. Lemma 5.1). We can transform  $\varphi_i$  and  
528  $\psi_j$  into Diophantine equations  $A\mathbf{x} = \mathbf{b}$  and  $C\mathbf{x} = \mathbf{d}$ . Using Proposition 5.2 we  
529 obtain in polynomial time an existential Presburger formula that is satisfiable if,  
530 and only if, the solution sets of  $A\mathbf{x} = \mathbf{b}$  and  $C\mathbf{x} = \mathbf{d}$  are inseparable if, and only  
531 if,  $\varphi_i$  and  $\psi_j$  are inseparable. Finally, the result follows from NP-completeness  
532 of the existential fragment of Presburger arithmetic.  $\square$

533 **6. Regular separability of Parikh automata**

534 We now prove our second main result: the  $\text{coNP}$  upper bound of regular  
 535 separability of Parikh automata (Theorem 3.6). For this, it will be technically  
 536 simpler to work with  $\mathbb{Z}$ -VASS, which are equivalent to Parikh automata. In  
 537 [16, Corollary 1], it was shown that the two automata models can be converted  
 538 (while preserving the language) into each other in logarithmic space. Therefore,  
 539 showing the  $\text{coNP}$  upper bound for  $\mathbb{Z}$ -VASS implies it for Parikh automata.

540 **Integer VASS** A ( $d$ -dimensional) *integer vector addition system with states*  
 541 ( $\mathbb{Z}$ -VASS, for short) is a quintuple  $\mathcal{V} = (Q, \Sigma, T, \iota, f)$  where  $Q$  is a finite set of *states*,  
 542  $\Sigma$  is an *alphabet*,  $T \subseteq Q \times \Sigma_\varepsilon \times \mathbb{Z}^d \times Q$  is a finite set of *transitions*, and  
 543  $\iota, f \in Q$  are its *source* and *target state*, respectively. Here,  $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$ . A  
 544  $\mathbb{Z}$ -VASS  $\mathcal{V} = (Q, \Sigma, T, \iota, f)$  is called *deterministic* if  $\mathcal{V}$  has no  $\varepsilon$ -labeled transitions  
 545 and for each  $p \in Q$  and  $a \in \Sigma$  there is at most one transition of the form  
 546  $(p, a, \mathbf{v}, q) \in T$  (where  $\mathbf{v} \in \mathbb{Z}^d$  and  $q \in Q$ ).

547 A *configuration* of  $\mathcal{V}$  is a tuple from  $Q \times \mathbb{Z}^d$ . For two configurations  $(p, \mathbf{u}), (q, \mathbf{v})$  and a word  $w \in \Sigma^*$  we write  $(p, \mathbf{u}) \xrightarrow{w} \mathcal{V} (q, \mathbf{v})$  if there are states  $q_0, q_1, \dots, q_\ell \in Q$ , vectors  $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_\ell \in \mathbb{Z}^d$ , and letters  $a_1, \dots, a_\ell \in \Sigma_\varepsilon$  such that  $w = a_1 a_2 \cdots a_\ell$ ,  $(p, \mathbf{u}) = (q_0, \mathbf{v}_0)$ ,  $(q, \mathbf{v}) = (q_\ell, \mathbf{v}_\ell)$ , and for each  $1 \leq i \leq \ell$  we have  
 548 a transition  $t_i = (q_{i-1}, a_i, \mathbf{x}_i, q_i) \in T$  with  $\mathbf{v}_i = \mathbf{v}_{i-1} + \mathbf{x}_i$ . In this case, the  
 549 sequence  $t_1 t_2 \cdots t_\ell$  is called a ( $w$ -labeled) run of  $\mathcal{V}$ . The *accepted language* of  $\mathcal{V}$   
 550 is  $L(\mathcal{V}) = \{w \in \Sigma^* \mid (\iota, \mathbf{0}) \xrightarrow{w} \mathcal{V} (f, \mathbf{0})\}$ .

551 Let  $I \subseteq [1, d]$  be a set of indices. Then we can generalize the acceptance  
 552 behavior of the  $\mathbb{Z}$ -VASS  $\mathcal{V}$  as follows:

$$L(\mathcal{V}, I) = \{w \in \Sigma^* \mid \exists \mathbf{v} \in \mathbb{Z}^d: (\iota, \mathbf{0}) \xrightarrow{w} \mathcal{V} (f, \mathbf{v}) \text{ and } \pi_I(\mathbf{v}) = \mathbf{0}\}.$$

553 Note that  $L(\mathcal{V}, [1, d]) = L(\mathcal{V})$  holds.

554 **An overview of the proof of Theorem 3.6** The remaining part of this  
 555 section is dedicated to the proof of our second main result, Theorem 3.6. The  
 556 first few steps (Lemmas 6.1, 6.3, 6.4 and 6.7) are essentially the same as in [7],  
 557 for which we briefly give an overview: The authors reduce regular separability  
 558 to recognizable separability of semilinear sets in  $\mathbb{N}^d$  (for some dimension  $d$ ).  
 559 Concretely, instead of asking for the regular separability in two given  $\mathbb{Z}$ -VASS  
 560 we separate quantities of cycles within runs of these  $\mathbb{Z}$ -VASS. Accordingly, the  
 561 dimension corresponds to the number of (simple) cycles. Unfortunately, this  
 562 number is exponential in the size of the input and therefore we cannot just  
 563 use our first main result (Theorem 3.1) to prove the  $\text{coNP}$  upper complexity  
 564 bound. Instead we will construct two  $\mathbb{Z}$ -VASS (of polynomial dimension) ac-  
 565 cepting sequences of cycles such that their language intersection corresponds to  
 566 the intersection (2) from Theorem 4.6 (which is non-empty if, and only if, the  
 567  $\mathbb{Z}$ -VASS from the input are regularly inseparable). Intersection for  $\mathbb{Z}$ -VASS is  
 568 known to be in  $\text{NP}$  implying also the  $\text{NP}$  upper complexity bound for the regular  
 569 inseparability problem resp. the  $\text{coNP}$  upper bound for the separability problem  
 570 of  $\mathbb{Z}$ -VASS.

574    6.1. Reduction to separability of semilinear sets

575    6.1.1. Determinizing the automata

576    As announced, we will first follow the reduction from [7]. In the first step,  
 577    the regular separability problem of nondeterministic  $\mathbb{Z}$ -VASS can be reduced  
 578    to the same problem in *deterministic*  $\mathbb{Z}$ -VASS. This reduction is possible in  
 579    polynomial time which is a bit surprising at first glance since determinization  
 580    typically requires at least an exponential blowup. However, in this reduction  
 581    we determinize the  $\mathbb{Z}$ -VASS “up to some homomorphic preimage”, i.e., from two  
 582    given  $\mathbb{Z}$ -VASS  $\mathcal{V}_1$  and  $\mathcal{V}_2$  one constructs two deterministic  $\mathbb{Z}$ -VASS  $\mathcal{W}_1$  and  $\mathcal{W}_2$   
 583    with (i)  $L(\mathcal{W}_i) = h^{-1}(L(\mathcal{V}_i))$  where  $h: \Gamma^* \rightarrow \Sigma^*$  is a homomorphism and (ii)  
 584     $L(\mathcal{V}_1) \mid L(\mathcal{V}_2)$  if, and only if,  $L(\mathcal{W}_1) \mid L(\mathcal{W}_2)$  holds. Since our setting is technically  
 585    slightly different from [7], we include a proof below.

586    **Lemma 6.1** ([7, Lemma 7]). *Regular separability for  $\mathbb{Z}$ -VASS reduces in poly-  
 587    nomial time to the regular separability problem for deterministic  $\mathbb{Z}$ -VASS.*

588    Before we can prove Lemma 6.1 we first need the following statement.

589    **Claim 6.2.** *Let  $K, L \subseteq \Sigma^*$  be two languages and  $h: \Gamma^* \rightarrow \Sigma^*$  be an alphabetic  
 590    morphism<sup>4</sup>. If  $K' \subseteq h^{-1}(K)$  with  $h(K') = K$ , then we have*

$$K \mid L \iff K' \mid h^{-1}(L).$$

591    *Proof.* First, assume  $K \mid L$ . Then there is a regular separator  $R \subseteq \Sigma^*$  of  $K$  and  
 592     $L$ , i.e., we have  $K \subseteq R$  and  $L \cap R = \emptyset$ . Set  $R' := h^{-1}(R) \subseteq \Gamma^*$ .  $R'$  is regular  
 593    since the class of regular languages is closed under inverse morphisms. We also  
 594    have  $K' \subseteq h^{-1}(K) \subseteq h^{-1}(R) = R'$ . Additionally, we have  $h^{-1}(L) \cap h^{-1}(R) = \emptyset$   
 595    since the existence of an element  $w \in h^{-1}(L) \cap h^{-1}(R)$  would imply  $h(w) \in L \cap R$ .  
 596    This means,  $R'$  is a regular separator of  $K'$  and  $h^{-1}(L)$ , i.e.,  $K' \mid h^{-1}(L)$ .

597    Conversely, assume  $K' \mid h^{-1}(L)$ . Then there exists a regular separator  $R' \subseteq$   
 598     $\Gamma^*$  of  $K'$  and  $h^{-1}(L)$ , i.e., we have  $K' \subseteq R'$  and  $h^{-1}(L) \cap R' = \emptyset$ . Set  $R := h(R')$   
 599    which is a regular language since the class of regular languages is also closed  
 600    under morphisms. Then we have  $K = h(K') \subseteq h(R') = R$ . Also  $L \cap R = \emptyset$  holds:  
 601    towards a contradiction suppose there is  $w \in L \cap R$ . From  $w \in R = h(R')$  follows  
 602    the existence of a word  $w' \in R'$  with  $h(w') = w$ . We also infer  $w' \in h^{-1}(L)$   
 603    from  $w \in L$ . Hence, we have  $w' \in h^{-1}(L) \cap R' = \emptyset$ —a contradiction. All in all,  
 604    we proved that  $R$  is a regular separator of  $K$  and  $L$ , i.e.,  $K \mid L$ .  $\square$

605    *Proof of Lemma 6.1.* The proof of this lemma is similar to [7, Lemma 7]: let  
 606     $\mathcal{V}_i = (Q_i, \Sigma, T_i, \iota_i, f_i)$  with  $i = 1, 2$  be two  $\mathbb{Z}$ -VASS. From  $\mathcal{V}_1$  and  $\mathcal{V}_2$  we will  
 607    construct two  $\mathbb{Z}$ -VASS  $\mathcal{V}'_i = (Q_i, \Gamma, T'_i, \iota_i, f_i)$  such that  $\mathcal{V}'_1$  is deterministic and  
 608    we have

$$L(\mathcal{V}_1) \mid L(\mathcal{V}_2) \iff L(\mathcal{V}'_1) \mid L(\mathcal{V}'_2).$$

609    We will obtain the determinism of  $\mathcal{V}'_1$  by making each label of a transition in  
 610     $\mathcal{V}_1$  unique. So, set  $\Gamma = T_1$ .  $T'_1$  is obtained from  $T_1$  by replacing each transition

<sup>4</sup>A morphism  $h: \Gamma^* \rightarrow \Sigma^*$  is *alphabetic* if  $|h(a)| \leq 1$  holds for each letter  $a \in \Gamma$ .

611  $t = (p, a, \mathbf{x}, q) \in T_1$  by the new transition  $(p, t, \mathbf{x}, q)$ . Using this translation we  
 612 also obtain a morphism  $h: \Gamma^* \rightarrow \Sigma^*$  with  $h((p, a, \mathbf{x}, q)) = a$  for each transition  
 613  $(p, a, \mathbf{x}, q) \in \Gamma = T_1$ . Then we obtain  $\mathcal{V}'_2$  from  $\mathcal{V}_2$  with  $L(\mathcal{V}'_2) = h^{-1}(L(\mathcal{V}_2))$   
 614 by replacing each label  $a \in \Sigma_\varepsilon$  of a transition in  $T'_2$  with all labels  $t \in T_1$  with  
 615  $h(t) = a$ . Additionally, to each state of  $\mathcal{V}_2$  we add loops labeled with  $t \in T_1$   
 616 satisfying  $h(t) = \varepsilon$ . Formally, this is the following set of transitions:

$$\begin{aligned}
 T'_2 = & \{(p, t, \mathbf{x}, q) \mid t \in T_1, (p, h(t), \mathbf{x}, q) \in T_2\} \\
 & \cup \{(p, t, \mathbf{0}, q) \mid p, q \in Q, t \in T_1, h(t) = \varepsilon\}.
 \end{aligned}$$

617 Note that this is a well known construction for the application of the inverse of  
 618 an alphabetic morphism and, hence, we have  $L(\mathcal{V}'_2) = h^{-1}(L(\mathcal{V}_2))$ .

619 Since each letter from  $\Gamma$  occurs in exactly one transition of  $\mathcal{V}'_1$ , this  $\mathbb{Z}$ -VASS  
 620 is deterministic. Additionally,  $\mathcal{V}'_1$  and  $\mathcal{V}'_2$  can be constructed from  $\mathcal{V}_1$  and  $\mathcal{V}_2$  in  
 621 polynomial time. It is also clear that the morphism  $h$  is alphabetical. We can  
 622 also prove the following properties:

- 623 1.  $L(\mathcal{V}'_1) \subseteq h^{-1}(L(\mathcal{V}_1))$ : Let  $w \in L(\mathcal{V}'_1)$ . Then there is an accepting run  
 624  $t'_1 t'_2 \cdots t'_\ell$  in  $\mathcal{V}'_1$  with  $t'_i = (q_{i-1}, t_i, \mathbf{x}_i, q_i) \in T'_1$  for each  $1 \leq i \leq \ell$ . In  
 625 particular, we have  $w = t_1 t_2 \cdots t_\ell \in T_1^*$ . By definition of  $\mathcal{V}'_1$  we have  
 626  $t_i = (q_{i-1}, a_i, \mathbf{x}_i, q_i) \in T_1$  for an  $a_i \in \Sigma_\varepsilon$ . But this means that  $w =$   
 627  $t_1 t_2 \cdots t_\ell$  is an accepting run in  $\mathcal{V}'_1$  labeled by  $a_1 a_2 \cdots a_\ell$ , i.e.,  $a_1 a_2 \cdots a_\ell \in$   
 628  $L(\mathcal{V}_1)$ . Moreover, we have  $h(w) = h(t_1 t_2 \cdots t_\ell) = a_1 a_2 \cdots a_\ell$  implying  
 629  $w \in h^{-1}(a_1 a_2 \cdots a_\ell) \subseteq h^{-1}(L(\mathcal{V}_1))$ .
- 630 2.  $h(L(\mathcal{V}'_1)) = L(\mathcal{V}_1)$ : A word  $w \in \Sigma^*$  is in  $h(L(\mathcal{V}'_1))$  if, and only if, there  
 631 is a word  $w' \in L(\mathcal{V}'_1) \subseteq \Gamma^*$  with  $w = h(w')$ . This is exactly the case  
 632 if there is an accepting run  $t'_1 t'_2 \cdots t'_\ell$  in  $\mathcal{V}'_1$  that is labeled with  $w'$ , i.e.,  
 633 we have  $t'_i = (q_{i-1}, t_i, \mathbf{x}_i, q_i) \in T'_1$  and  $w' = t_1 t_2 \cdots t_\ell$ . By construction  
 634 this is equivalent to an accepting run  $t_1 t_2 \cdots t_\ell$  in  $\mathcal{V}_1$  that is labeled with  
 635  $h(w') = w$ . But this is exactly the definition of  $w \in L(\mathcal{V}_1)$ .

636 Now, we can apply Claim 6.2 and obtain

$$L(\mathcal{V}_1) \mid L(\mathcal{V}_2) \iff L(\mathcal{V}'_1) \mid L(\mathcal{V}'_2).$$

637 In a final step, we can apply the same polynomial-time procedure to  $\mathcal{V}'_2$  and  
 638  $\mathcal{V}'_1$  to determinize  $\mathcal{V}'_2$ . The result are two  $\mathbb{Z}$ -VASS  $\mathcal{V}''_1$  and  $\mathcal{V}''_2$  with

$$L(\mathcal{V}_1) \mid L(\mathcal{V}_2) \iff L(\mathcal{V}'_1) \mid L(\mathcal{V}'_2) \iff L(\mathcal{V}''_1) \mid L(\mathcal{V}''_2).$$

639 While  $\mathcal{V}''_2$  is deterministic by construction, it is not clear that the same holds  
 640 for  $\mathcal{V}''_1$ . However, due to the fact that  $\mathcal{V}'_1$  and  $\mathcal{V}'_2$  do not have any  $\varepsilon$ -transitions,  
 641 our construction does not introduce any loops in  $\mathcal{V}''_1$  compensating  $\varepsilon$ -transitions  
 642 in  $\mathcal{V}'_2$ . Hence,  $\mathcal{V}''_1$  is also deterministic.  $\square$

#### 6.1.2. Unifying the automata

644 Next, we reduce regular separability for deterministic  $\mathbb{Z}$ -VASS to regular  
 645 separability of two languages accepted by the same deterministic  $\mathbb{Z}$ -VASS, but

646 with different sets of counters. To this end, given two  $d$ -dimensional  $\mathbb{Z}$ -VASS  $\mathcal{V}_1$   
647 and  $\mathcal{V}_2$  we construct one  $2d$ -dimensional  $\mathbb{Z}$ -VASS  $\mathcal{V}$  (using product construction)  
648 and two index sets  $I_1, I_2 \subseteq [1, 2d]$  such that  $L(\mathcal{V}_i) = L(\mathcal{V}, I_i)$ .

649 **Lemma 6.3** ([7, Proposition 1]). *Regular separability for deterministic  $\mathbb{Z}$ -VASS*  
650 *reduces in polynomial time to the following problem:*

651 **Given:** A  $d$ -dimensional deterministic  $\mathbb{Z}$ -VASS  $\mathcal{V}$  with two sets  $I_1, I_2 \subseteq [1, d]$ .

652 **Question:** Are the languages  $L(\mathcal{V}, I_1)$  and  $L(\mathcal{V}, I_2)$  regularly separable?

653 *Proof.* Let  $\mathcal{V}_i = (Q_i, \Sigma, T_i, \iota_i, f_i)$  be two deterministic  $d$ -dimensional  $\mathbb{Z}$ -VASS.  
654 We apply the product construction and obtain a new deterministic  $2d$ -dimensional  
655  $\mathbb{Z}$ -VASS  $\mathcal{V}_1 \times \mathcal{V}_2 = (Q_1 \times Q_2, \Sigma, T, (\iota_1, \iota_2), (f_1, f_2))$  with

$$T = \left\{ ((p_1, p_2), a, (\mathbf{v}_1, \mathbf{v}_2), (q_1, q_2)) \mid \begin{array}{l} (p_i, a, \mathbf{v}_i, q_i) \in T_i \\ \text{for all } i = 1, 2 \end{array} \right\}.$$

656 We show now that  $L(\mathcal{V}_1) \mid L(\mathcal{V}_2)$  holds if, and only if,

$$L(\mathcal{V}_1 \times \mathcal{V}_2, [1, d]) \mid L(\mathcal{V}_1 \times \mathcal{V}_2, [d+1, 2d]).$$

657 Let  $\mathcal{A}_i = (Q_i, \Sigma, \Delta_i, \iota_i, \{f_i\})$  with  $\Delta_i = \{(p, a, q) \mid \exists \mathbf{v} \in \mathbb{Z}^d : (p, a, \mathbf{v}, q) \in T_i\}$  be  
658 the DFA obtained from  $\mathcal{V}_i$  (for  $i = 1, 2$ ) by removing all counter updates from  
659 the transitions. Then we can observe that  $L(\mathcal{V}_1 \times \mathcal{V}_2, [1, d]) = L(\mathcal{V}_1) \cap L(\mathcal{A}_2)$   
660 and  $L(\mathcal{V}_1 \times \mathcal{V}_2, [d+1, 2d]) = L(\mathcal{V}_2) \cap L(\mathcal{A}_1)$  holds.

661 Assume that  $L(\mathcal{V}_1) \mid L(\mathcal{V}_2)$  holds. Then there is a regular separator  $R \subseteq \Sigma^*$   
662 with  $L(\mathcal{V}_1) \subseteq R$  and  $L(\mathcal{V}_2) \cap R = \emptyset$ . Since  $L(\mathcal{V}_1 \times \mathcal{V}_2, [1, d]) = L(\mathcal{V}_1) \cap L(\mathcal{A}_2) \subseteq$   
663  $L(\mathcal{V}_1)$  and, similarly,  $L(\mathcal{V}_1 \times \mathcal{V}_2, [d+1, 2d]) \subseteq L(\mathcal{V}_2)$  holds, the regular language  
664  $R$  is also a separator of  $L(\mathcal{V}_1 \times \mathcal{V}_2, [1, d])$  and  $L(\mathcal{V}_1 \times \mathcal{V}_2, [d+1, 2d])$ .

665 Conversely, let  $R \subseteq \Sigma^*$  be a regular separator of  $L(\mathcal{V}_1 \times \mathcal{V}_2, [1, d])$  and  
666  $L(\mathcal{V}_1 \times \mathcal{V}_2, [d+1, 2d])$ . Set  $R' = (R \cap L(\mathcal{A}_1)) \cup (\Sigma^* \setminus L(\mathcal{A}_2))$ . Clearly the  
667 language  $R'$  is regular. We also have

$$\begin{aligned} L(\mathcal{V}_1) &= (L(\mathcal{V}_1) \cap L(\mathcal{A}_2)) \cup (L(\mathcal{V}_1) \cap \Sigma^* \setminus L(\mathcal{A}_2)) \\ &= (L(\mathcal{V}_1) \cap L(\mathcal{A}_2) \cap L(\mathcal{A}_1)) \cup (L(\mathcal{V}_1) \cap \Sigma^* \setminus L(\mathcal{A}_2)) \quad (\text{by } L(\mathcal{V}_1) \subseteq L(\mathcal{A}_1)) \\ &\subseteq (R \cap L(\mathcal{A}_1)) \cup (L(\mathcal{V}_1) \cap \Sigma^* \setminus L(\mathcal{A}_2)) \quad (R \text{ is a separator}) \\ &\subseteq (R \cap L(\mathcal{A}_1)) \cup (\Sigma^* \setminus L(\mathcal{A}_2)) \\ &= R'. \end{aligned}$$

668 Additionally, by  $L(\mathcal{V}_2) \subseteq L(\mathcal{A}_2)$  we have  $L(\mathcal{V}_2) \cap (\Sigma^* \setminus L(\mathcal{A}_2)) = \emptyset$  and

$$(R \cap L(\mathcal{A}_1)) \cap L(\mathcal{V}_2) = R \cap L(\mathcal{V}_1 \times \mathcal{V}_2, [d+1, 2d]) = \emptyset$$

669 implying  $L(\mathcal{V}_2) \cap R' = \emptyset$ . Hence,  $R'$  is a regular separator of  $L(\mathcal{V}_1)$  and  $L(\mathcal{V}_2)$ .  
670  $\square$

671 Therefore, we now fix a  $\mathbb{Z}$ -VASS  $\mathcal{V} = (Q, \Sigma, T, \iota, f)$ .

672    6.1.3. *Skeletons*

673    Now, we want to further simplify the regular separability problem. Concretely, we want to consider only runs in  $\mathcal{V}$  that are in some sense similar. We consider some base paths—so called *skeletons*—in  $\mathcal{V}$ . Two runs in  $\mathcal{V}$  are similar if they follow the same base path and only differ in the order and repetition of some cycles. We define the function  $\text{skel}: T^* \rightarrow T^*$  such that  $\text{skel}(r) = \rho$  for a path  $r \in T^*$  in  $\mathcal{V}$  such that  $\rho$  is a sub-path of the original path  $r$  in which we keep the same set of visited states while removing all cycles that do not increase the set of visited states. Here,  $\rho$  is called the *skeleton* of  $r$ .

681    Let  $t_1 \cdots t_\ell \in T^*$  be a path in  $\mathcal{V}$ , i.e., we have  $t_i = (q_{i-1}, a_i, \mathbf{x}_i, q_i) \in T$  for each  $1 \leq i \leq \ell$ . The map  $\text{skel}$  is defined inductively as follows:  $\text{skel}(\varepsilon) = \varepsilon$  and  $\text{skel}(t_1) = t_1$ . For  $1 \leq i < \ell$  assume that  $\text{skel}(t_1 \cdots t_i) = s_1 \cdots s_j$  is already constructed and that  $s_1 \cdots s_j$  is a path ending in  $q_i$ . Now we consider the transition  $t_{i+1}$ . If there is no transition  $s_k$  (with  $0 \leq k \leq j$ ) with target state  $q_{i+1}$ , we set  $\text{skel}(t_1 \cdots t_i t_{i+1}) = s_1 \cdots s_j t_{i+1}$ . Note that  $s_1 \cdots s_j t_{i+1}$  is a path ending in the state  $q_{i+1}$ .

688    Otherwise, let  $0 \leq k \leq j$  be maximal such that  $s_k$  ends in  $q_{i+1}$ . Then  $s_{k+1} \cdots s_j t_{i+1}$  is a cycle in  $\mathcal{V}$  (note that  $s_{k+1}$  starts with  $q_{i+1}$  since  $s_1 \cdots s_j$  is a path). If all states occurring in the cycle  $s_{k+1} \cdots s_j t_{i+1}$  also occur in the path  $s_1 \cdots s_k$ , then we set  $\text{skel}(t_1 \cdots t_i t_{i+1}) = s_1 \cdots s_k$ , i.e., we omit the cycle  $s_{k+1} \cdots s_j t_{i+1}$  in the skeleton. Note that the skeleton  $s_1 \cdots s_k$  is a path ending in  $q_{i+1}$ . Otherwise at least one state in the cycle does not occur in the path  $s_1 \cdots s_k$ . In this case, we simply add  $t_{i+1}$  resulting in  $\text{skel}(t_1 \cdots t_i t_{i+1}) = s_1 \cdots s_j t_{i+1}$  where  $s_1 \cdots s_j t_{i+1}$  is also a path ending in  $q_{i+1}$ . Note that any skeleton of  $\mathcal{V}$  has length at most quadratic in the number of transitions  $|T|$  as shown in [7, Lemma 10].

698    Let  $\rho$  be a skeleton. A  $\rho$ -cycle is a cycle that only visits states occurring in  $\rho$ ; a  $\rho$ -run is a run  $r \in T^*$  with skeleton  $\text{skel}(r) = \rho$  (i.e.,  $r$  is obtained from  $\rho$  by inserting  $\rho$ -cycles). We write  $L(\mathcal{V}, I, \rho)$  for the set of all words in  $L(\mathcal{V}, I)$  accepted via  $\rho$ -runs.

702    **Lemma 6.4** ([7, Lemma 11]). *We have  $L(\mathcal{V}, I_1) \mid L(\mathcal{V}, I_2)$  if, and only if,  $L(\mathcal{V}, I_1, \rho) \mid L(\mathcal{V}, I_2, \rho)$  holds for every skeleton  $\rho$ .*

704    Although this was essentially shown in [7, Lemma 11], our setting is strictly speaking slightly different (e.g. we have all short rather than only simple cycles), so we include a detailed proof below.

707    *Proof.* First, note that there are only finitely many skeletons: Clemente et al. proved in [7, page 9] that each skeleton has length at most  $|Q|^2$ . Hence, there are at most  $|T|^{|Q|^2}$  many skeletons in  $\mathcal{V}$ . It is also clear that  $L(\mathcal{V}, I) = \bigcup_{\text{skeleton } \rho \text{ of } \mathcal{V}} L(\mathcal{V}, I, \rho)$  holds.

711    Let  $\rho$  be a skeleton of  $\mathcal{V}$ . There is also a regular language  $K_\rho \subseteq \Sigma^*$  such that  $L(\mathcal{V}, I, \rho) = L(\mathcal{V}, I) \cap K_\rho$  holds: we can obtain a finite automaton accepting  $K_\rho$  from  $\mathcal{V}$  and  $\rho$  by removing the counters and all edges and states that do not belong to the skeleton  $\rho$ .

715    Finally, we use the following well known fact:

716 **Claim 6.5.** *Let  $K_1, \dots, K_n \subseteq \Sigma^*$  be regular languages partitioning  $\Sigma^*$  and*  
717  *$L_1, L_2 \subseteq \Sigma^*$  be two languages. Then we have  $L_1 \mid L_2$  if, and only if,  $L_1 \cap K_i \mid$*   
718  *$L_2 \cap K_i$  holds for each  $1 \leq i \leq n$ .*

719 Now, if the languages  $K_i$  are the regular languages  $K_\rho$  for any skeleton  $\rho$   
720 and  $L_i = L(\mathcal{V}, I_i)$  for  $i = 1, 2$  we obtain that  $L(\mathcal{V}, I_1) \mid L(\mathcal{V}, I_2)$  holds if, and  
721 only if,  $L(\mathcal{V}, I_1, \rho) = L(\mathcal{V}, I_1) \cap K_\rho$  is regular separable from  $L(\mathcal{V}, I_2) \cap K_\rho =$   
722  $L(\mathcal{V}, I_2, \rho)$ .  $\square$

723 Thus, it suffices to show that for a given skeleton  $\rho$ , one can decide regular  
724 inseparability of  $L(\mathcal{V}, I_1, \rho)$  and  $L(\mathcal{V}, I_2, \rho)$  in NP. So, from now on, we fix a  
725 skeleton  $\rho$  and simply write  $L(I_i)$  for  $L(\mathcal{V}, I_i, \rho)$ . Since we only consider runs  
726 that visit states that occur in  $\rho$ , we may also assume that  $\mathcal{V}$  consists only of the  
727 states occurring on  $\rho$ . In particular, we only say *cycle* instead of “ $\rho$ -cycle”.

#### 728 6.1.4. Counting cycles

729 We now phrase a characterization of regular separability from [7] in our  
730 setting. It says that regular separability of the languages  $L(I_1)$  and  $L(I_2)$  is  
731 equivalent to recognizable separability of vectors that count cycles. Here, we  
732 only count *short* cycles of length at most  $|Q|$ . This is possible since each cycle  
733 can be decomposed into short cycles. In the following, we fix the set  $S \subseteq T^{\leq |Q|}$   
734 of all *short* cycles in  $\mathcal{V}$ .<sup>5</sup>

735 For  $I \subseteq [1, d]$ , we define: if  $t = (p, a, \mathbf{x}, q) \in T$  is a transition then the *effect*  
736  $\Delta_I(t)$  of  $t$  to the components in  $I$  is  $\Delta_I(t) = \pi_I(\mathbf{x})$ , i.e. the projection of the  
737 counter update  $\mathbf{x}$  to  $I$ . If  $r = t_1 t_2 \cdots t_\ell \in T^*$  is a path, then the *effect*  $\Delta_I(r)$   
738 of  $r$  to the components in  $I$  is the sum of the effects of all transitions on this  
739 path, i.e.  $\Delta_I(r) = \sum_{i=1}^\ell \Delta_I(t_i)$ . Now, let  $\mathbf{u} \in \mathbb{N}^S$  be a multiset of short cycles.  
740 Then the *effect* of  $\mathbf{u}$  to the components in  $I$  is  $\Delta_I(\mathbf{u}) = \sum_{c \in S} \mathbf{u}[c] \cdot \Delta_I(c)$ . If  
741  $\mathbf{v} \in \mathbb{N}^T$  is a multiset of transitions, then the *effect* of  $\mathbf{v}$  to the components in  $I$   
742 is  $\Delta_I(\mathbf{v}) = \sum_{t \in T} \mathbf{v}[t] \cdot \Delta_I(t)$ . In case of  $I = [1, d]$  we will also write  $\Delta$  instead  
743 of  $\Delta_I$ . Finally, we define

$$M(I) = \{ \mathbf{u} \in \mathbb{N}^S \mid \Delta_I(\rho) + \Delta_I(\mathbf{u}) = \mathbf{0} \} .$$

744 Hence,  $M(I)$  is the set of multisets of short cycles such that inserting them into  
745  $\rho$  would lead to an accepting run with acceptance condition  $I \subseteq [1, d]$ . Since  
746  $M(I)$  is the solution set of linear Diophantine equations, it is hyperlinear.

747 **Observation 6.6.** *Let  $I \subseteq [1, d]$ . Then  $M(I)$  is hyperlinear, i.e.,  $M(I) =$*   
748  *$B + V^*$  for two finite sets  $B, V \subseteq \mathbb{N}^S$ .*

749 *Proof.* The equation  $\Delta_{I_i}(\rho) + \Delta_{I_i}(\mathbf{u}) = \mathbf{0}$  is a system of linear equations (over  
750  $\mathbb{N}^S$ ) and  $M(I)$  is the set of solutions of this equation system. Since the equations

---

<sup>5</sup>Although Lemmas 6.1, 6.3, 6.4 and 6.7 are essentially the same as in [7], we are working with *short cycles*, whereas [7] uses *simple cycles*. This will be crucial later, because short cycles can be guessed on-the-fly in a finite automaton without storing the whole cycle.

751 are expressible in Presburger arithmetic, we obtain that  $M(I)$  is semilinear [46].  
 752 Hence, we have  $M(I) = \bigcup_{1 \leq i \leq k} \mathbf{u}_i + V_i^*$  (where  $\mathbf{u}_i \in \mathbb{N}^S$  and  $V_i \subseteq \mathbb{N}^S$  are  
 753 finite). We can see that the vectors in  $V_i$  are solutions of the homogeneous  
 754 linear equation system  $\Delta_{I_i}(\mathbf{v}) = \mathbf{0}$  and the vectors  $\mathbf{u}_j$  satisfy the inhomogeneous  
 755 system  $\Delta_{I_i}(\mathbf{u}_j) = -\Delta_{I_i}(\rho)$ . Therefore, we have  $\mathbf{u}_i + \mathbf{v} \in M(I)$  for each  $1 \leq i \leq k$   
 756 and  $\mathbf{v} \in \bigcup_{1 \leq j \leq k} V_j^*$ . According to this we can write the solution set  $M(I)$  also  
 757 as  $B + V^*$  where  $B = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$  and  $V = \bigcup_{1 \leq i \leq k} V_i$ . In other words, the set  
 758  $M(I)$  is even hyperlinear.  $\square$

759 The following equivalence between regular separability of the languages  $L(I_i)$   
 760 and recognizable separability of the (hyperlinear) sets  $M(I_i)$  was shown in [7,  
 761 Lemma 12]. It is straightforward to adapt it to our situation.

762 **Lemma 6.7.** *We have  $L(I_1) \mid L(I_2)$  if, and only if,  $M(I_1) \mid M(I_2)$ .*

763 *Proof.* Before we prove the equivalence, let us introduce a map cycles:  $T^* \rightarrow \mathbb{N}^S$   
 764 such that for each  $\rho$ -run  $r \in T^*$  we have  $\text{cycles}(r) = \mathbf{v} \in \mathbb{N}^S$  if  $r$  contains each  
 765  $\rho$ -cycle  $c \in S$  exactly  $\mathbf{v}[c]$  times.

766 Now, assume that  $L(I_1) \mid L(I_2)$  holds, i.e., there is a regular separator  $R \subseteq \Sigma^*$   
 767 with  $L(I_1) \subseteq R$  and  $R \cap L(I_2) = \emptyset$ . We will use Lemma 4.4 to show that  $M(I_1)$   
 768 and  $M(I_2)$  are separable by a recognizable set. To this end, we will give a  
 769 number  $k \in \mathbb{N} \setminus \{0\}$  such that  $\mathbf{v}_1 \sim_k \mathbf{v}_2$  holds for each  $\mathbf{v}_i \in M(I_i)$  implying the  
 770 separability of  $M(I_1)$  and  $M(I_2)$ .

771 For two words  $w_1, w_2 \in \Sigma^*$  write  $w_1 \equiv_R w_2$  if  $xw_1y \in R \iff xw_2y \in R$   
 772 for all  $x, y \in \Sigma^*$  (i.e.,  $\equiv_R$  is the *syntactic* or *Myhill congruence* of  $R$ ). Since  $R$   
 773 is regular, the index of  $\equiv_R$  is finite and, hence, there is a number  $k \in \mathbb{N} \setminus \{0\}$   
 774 such that

$$w^k \equiv_R w^{2k} \quad \text{for each } w \in \Sigma^*. \quad (4)$$

775 We show now  $\mathbf{v}_1 \sim_k \mathbf{v}_2$  for each  $\mathbf{v}_i \in M(I_i)$ . Towards a contradiction, assume  
 776 there are  $\mathbf{v}_i \in M(I_i)$  (for  $i = 1, 2$ ) with  $\mathbf{v}_1 \sim_k \mathbf{v}_2$ . We construct runs  $r_i \in T^*$   
 777 such that  $\text{skel}(r_i) = \rho$  and  $\text{cycles}(r_i) = \mathbf{v}_i$  hold. For a short  $\rho$ -cycle  $c \in S$   
 778 choose a prefix  $x_c$  of  $\rho$  such that  $\text{skel}(x_c c) = x_c$  (note that for each cycle  $c \in S$   
 779 such an  $x_c$  exists). Let  $c_1, \dots, c_n$  be an enumeration of  $S$  such that  $|x_{c_1}| \leq$   
 780  $|x_{c_2}| \leq \dots \leq |x_{c_n}|$  holds. In the following we will write  $x_i$  instead of  $x_{c_i}$ . Let  
 781  $z_1, \dots, z_{n+1} \in T^*$  such that  $z_1 = x_1$ ,  $x_i z_{i+1} = x_{i+1}$  for each  $1 \leq i < n$ , and  
 782  $x_n z_{n+1} = \rho$ , i.e., we have  $\rho = z_1 z_2 \dots z_{n+1}$ . Set

$$r_i := z_1 c_1^{\mathbf{v}_i[c_1]} z_2 c_2^{\mathbf{v}_i[c_2]} \dots z_n c_n^{\mathbf{v}_i[c_n]} z_{n+1}.$$

783 Clearly we have  $\text{skel}(r_i) = \rho$  and  $\text{cycles}(r_i) = \mathbf{v}_i$  hold for  $i = 1, 2$ . We can also  
 784 show that the labels  $w_1, w_2 \in \Sigma^*$  of the paths  $r_1$  resp.  $r_2$  satisfy  $w_1 \equiv_R w_2$  using  
 785  $\mathbf{v}_1 \sim_k \mathbf{v}_2$  and repeated usage of the equation (4). However,  $\mathbf{v}_i \in M(I_i)$  implies  
 786  $w_i \in L(I_i)$ . Since  $w_1 \in L(I_1) \subseteq R$  we also have  $w_2 \in R$  (by  $w_1 \equiv_R w_2$ ). Hence,  
 787 we have  $w_2 \in R \cap L(I_2) = \emptyset$ —a contradiction.

788 Conversely, assume that  $M(I_1) \mid M(I_2)$  holds. Hence, there is a recognizable  
 789 set  $X \subseteq \mathbb{N}^S$  such that  $M(I_1) \subseteq X$  and  $X \cap M(I_2) = \emptyset$ . Let  $R \subseteq \Sigma^*$  be the  
 790 set of all labels of  $\rho$ -runs  $r \in T^*$  such that  $\text{skel}(r) = \rho$  with  $\text{cycles}(r) \in X$ . We

791 show that  $R$  is a regular separator of  $L(I_1)$  and  $L(I_2)$ . We have  $L(I_1) \subseteq R$ : let  
 792  $w \in L(I_1)$ . Then  $w$  is the label of a  $\rho$ -run  $r \in T^*$  with  $\text{skel}(r) = \rho$ . But then  
 793 we know  $\text{cycles}(r) \in M(I_1) \subseteq X$  implying  $w \in R$ .

794 Now, suppose there is a word  $w \in L(I_2) \cap R$ . Then  $w$  is the label of runs  
 795  $r_1, r_2 \in T^*$  with  $\text{skel}(r_i) = \rho$ ,  $\text{cycles}(r_1) \in M(I_2)$  and  $\text{cycles}(r_2) \in X$ . Since  
 796  $\mathcal{V}$  is deterministic, we know that  $r_1 = r_2$  implying  $\text{cycles}(r_1) = \text{cycles}(r_2) \in$   
 797  $M(I_2) \cap X = \emptyset$ —a contradiction. Hence, we have  $L(I_2) \cap R = \emptyset$ .

798 Finally, we have to show that  $R$  is regular. To this end, we construct a  
 799 nondeterministic finite automaton that simulates  $\rho$ -runs by storing the image of  
 800 the map  $\text{skel}$  and  $\text{cycles}$  in its state. While the set of all skeletons is finite, the set  
 801 of vectors appearing in the image of  $\text{cycles}$  is not necessarily bounded. However,  
 802 since  $X$  is recognizable and, hence, semilinear we can evaluate the condition  
 803  $\text{cycles}(r) \in X$  for a path  $r \in T^*$  using only a finite memory. Concretely we  
 804 guess a linear set  $\mathbf{u} + P^* \subseteq X$  where  $\mathbf{u} \in \mathbb{N}^S$  and  $P \subseteq \mathbb{N}^S$  finite (recall that  $X$   
 805 is a finite union of such linear sets). Additionally, let  $P = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ . The  
 806 NFA stores in its memory vectors  $\mathbf{u}', \mathbf{p}_1', \dots, \mathbf{p}_n'$  with  $\mathbf{u}' \leq \mathbf{u}$  and  $\mathbf{p}_i' \leq \mathbf{p}_i$  for  
 807 all  $1 \leq i \leq n$ . Whenever the simulation of  $\text{skel}$  detects a  $\rho$ -cycle, we increase  
 808 one of the vectors  $\mathbf{u}', \mathbf{p}_1', \dots, \mathbf{p}_n'$ . If we reach one of the vectors  $\mathbf{p}_i$  due to this  
 809 detection procedure, we reset this vector to  $\mathbf{0}$ . The NFA accepts if its memory  
 810 contains the skeleton  $\rho$  and the (bounded) counter values  $\mathbf{u}, \mathbf{0}, \dots, \mathbf{0}$ . Clearly,  
 811 this NFA accepts the language  $R$ . Hence,  $R$  is a regular separator of  $L(I_1)$  and  
 812  $L(I_2)$ .  $\square$

### 813 6.2. Reducing inseparability to intersection

814 At this point, our proof deviates from the approach of [7]. According to  
 815 Lemma 6.7, it remains to decide whether  $M(I_1) \mid M(I_2)$ , where  $M(I_1)$  and  $M(I_2)$   
 816 are sets of vectors of dimension  $|S|$ , which is exponential. In Theorem 4.6, we  
 817 saw that recognizable separability of vector sets  $A + U^*$  and  $B + V^*$  reduces to  
 818 intersection emptiness of  $A + U^* + V_J^*$  and  $B + V^* + U_J^*$ , where  $J$  is a subset  
 819 of the twin-unbounded components. However, the exponential dimension of  
 820  $M(I_1), M(I_2)$  means a direct translation into existential Presburger arithmetic  
 821 would incur an exponential blowup.

822 Instead, our key observation is that one can reduce inseparability to *intersection emptiness of  $\mathbb{Z}$ -VASS*: The idea is to encode the intersecting vectors  
 823  $\mathbf{u} \in (A + U^* + V_J^*) \cap (B + V^* + U_J^*)$ , where  $M(I_1) = A + U^*$ ,  $M(I_2) = B + V^*$ , as  
 824 *words containing the participating cycles*. Thus, we guess a subset  $J$  of the twin-  
 825 unbounded components, and then construct in polynomial time two  $\mathbb{Z}$ -VASS  $\mathcal{W}_1$   
 826 and  $\mathcal{W}_2$  such that

$$L(\mathcal{W}_1) = \{\#c_1 \# c_2 \cdots \# c_m \mid m \in \mathbb{N}, c_1, \dots, c_m \in S, \Phi(c_1, \dots, c_m) \in A + U^* + V_J^*\}, \quad (5)$$

$$L(\mathcal{W}_2) = \{\#c_1 \# c_2 \cdots \# c_m \mid m \in \mathbb{N}, c_1, \dots, c_m \in S, \Phi(c_1, \dots, c_m) \in B + V^* + U_J^*\}, \quad (6)$$

828 where for cycles  $c_1, \dots, c_m \in S$ , the so-called *Parikh vector*  $\Phi(c_1, \dots, c_m) \in \mathbb{N}^S$   
 829 counts how many times each short cycle occurs in  $c_1, \dots, c_m$ : If  $c \in S$ , then

830  $\Phi(c_1, \dots, c_m)[c]$  is the number of indices  $i \in [1, m]$  with  $c_i = c$ . Note that then  
 831 clearly,  $(A + U^* + V_J^*) \cap (B + V^* + U_J^*) \neq \emptyset$  if and only if  $L(\mathcal{W}_1) \cap L(\mathcal{W}_2) \neq \emptyset$ .

832 The main challenge in constructing  $\mathcal{W}_1$  and  $\mathcal{W}_2$  is to guess a subset  $J$  of  
 833 twin-unbounded components, and for the  $\mathbb{Z}$ -VASS to verify that a given cycle  
 834 belongs to  $J$ , without being able to store an entire cycle in its state. To solve  
 835 this, we will characterize the twin-unbounded cycles in terms of its set of  
 836 occurring transitions.

837 *6.2.1. Characterizing twin-unbounded cycles*

838 We define for any  $\hat{T} \subseteq T$  the set

$$S[\hat{T}] = \left\{ c \in \hat{T}^{\leq |Q|} \mid c \text{ is a cycle} \right\}.$$

839 Thus,  $S[\hat{T}] \subseteq S$  is the set of all short cycles that consist solely of transitions  
 840 from  $\hat{T}$ .

841 Our characterization uses an adaptation of the notion of “cancelable produc-  
 842 tions” in  $\mathbb{Z}$ -grammars used in [16]. We define the homomorphism  $\partial: \mathbb{N}^T \rightarrow \mathbb{Z}^Q$   
 843 as follows: for each transition  $t = (p, a, x, q) \in T$  we set  $\partial(e_t) = e_q - e_p$ , where  
 844  $e_t \in \mathbb{N}^T$  and  $e_p, e_q \in \mathbb{N}^Q$  are unit vectors. Thus,  $\partial(\mathbf{u})[q]$  is the number of  
 845 incoming transitions to  $q$ , minus the number of outgoing edges from  $q$ , weighted  
 846 by the coefficients in  $\mathbf{u}$ . A *flow* is a vector  $\mathbf{f} \in \mathbb{N}^T$  with  $\partial(\mathbf{f}) = \mathbf{0}$ . The following  
 847 is a standard fact in graph theory. For a proof that even applies to context-free  
 848 grammars (rather than automata), see [52, Theorem 3.1].

849 **Lemma 6.8.** *A vector  $\mathbf{f} \in \mathbb{N}^T$  is a flow if and only if it is a sum of (the Parikh  
 850 vectors of) cycles.*

851 The following notion will be key in characterizing which cycles are twin-  
 852 unbounded for  $M(I_1)$  and  $M(I_2)$ . A transition  $t \in T$  is *bi-cancelable* if there  
 853 exist flows  $\mathbf{f}_1, \mathbf{f}_2 \in \mathbb{N}^T$  such that (i)  $\Delta_{I_1}(\mathbf{f}_1) = \mathbf{0}$  and  $\Delta_{I_2}(\mathbf{f}_2) = \mathbf{0}$ , (ii)  $t$  occurs  
 854 in both  $\mathbf{f}_1$  and in  $\mathbf{f}_2$ , and (iii)  $\text{supp}(\mathbf{f}_1) = \text{supp}(\mathbf{f}_2)$ . In other words,  $t$  is bi-  
 855 cancelable if it is part of two flows  $\mathbf{f}_1$  and  $\mathbf{f}_2$  with the same support and with  
 856 effect zero (wrt. the components  $I_1$  resp.  $I_2$ ).

857 **Lemma 6.9.** *A cycle  $c \in S$  is twin-unbounded for  $M(I_1)$  and  $M(I_2)$  if, and  
 858 only if, every transition in  $c$  is bi-cancelable.*

859 *Proof.* For the “only if” direction, suppose that  $c$  is twin-unbounded for  $M(I_1)$   
 860 and  $M(I_2)$ . Then by definition there exist sums of period vectors  $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{N}^S$   
 861 of  $M(I_1)$  resp.  $M(I_2)$  with  $c \in \text{supp}(\mathbf{u}_1) = \text{supp}(\mathbf{u}_2)$ . Define  $\mathbf{f}_i = \tau(\mathbf{u}_i) \in \mathbb{N}^T$ ,  
 862 where  $\tau: \mathbb{N}^S \rightarrow \mathbb{N}^T$  maps cycles to the number of occurrences of each transition  
 863 in these cycles. Then clearly  $\mathbf{f}_i$  are flows with  $\Delta_{I_i}(\mathbf{f}_i) = \Delta_{I_i}(\mathbf{u}_i) = \mathbf{0}$ ,  $c$  occurs  
 864 in both  $\mathbf{f}_1$  and in  $\mathbf{f}_2$ , and  $\text{supp}(\mathbf{f}_1) = \text{supp}(\mathbf{f}_2)$ . Hence, all transitions in  $c$  are  
 865 bi-cancelable.

866 For the “if” direction, suppose a cycle  $c \in S$  only contains bi-cancelable  
 867 transitions and write  $c = t_1 \dots t_n$  for  $t_1, \dots, t_n \in T$ . For each  $t_i$ , there are flows  
 868  $\mathbf{f}_{i,1}$  and  $\mathbf{f}_{i,2}$  witnessing that  $t_i$  is bi-cancelable. Notice that  $\mathbf{f}_1 := \mathbf{f}_{1,1} + \dots + \mathbf{f}_{n,1}$

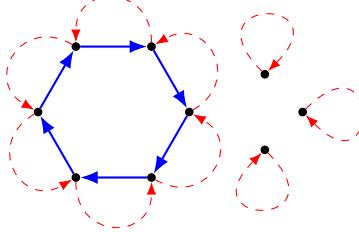


Figure 1: The flow  $\tau(\mathbf{e}_u) + (\mathbf{f}_i - \tau(\mathbf{e}_u))$  where the cycle  $u$  is depicted in bold blue and the cycles of the flow  $\mathbf{f}_i - \tau(\mathbf{e}_u)$  are depicted in red. Note that the new flower shaped cycle is not necessarily short, but can be easily split into short cycles.

and  $\mathbf{f}_2 = \mathbf{f}_{1,2} + \dots + \mathbf{f}_{n,2}$  are flows as well and they have  $\text{supp}(\mathbf{f}_1) = \text{supp}(\mathbf{f}_2)$ . As flows, both  $\mathbf{f}_1$  and  $\mathbf{f}_2$  can be written as a sum of cycles: There are  $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{N}^S$  with  $\tau(\mathbf{u}_1) = \mathbf{f}_1$  and  $\tau(\mathbf{u}_2) = \mathbf{f}_2$ . Observe that  $\Delta_{I_1}(\mathbf{u}_1) = \Delta_{I_2}(\mathbf{u}_2) = \mathbf{0}$ , meaning  $\mathbf{u}_1$  and  $\mathbf{u}_2$  are sums of period vectors of  $M(I_1)$  and  $M(I_2)$ , respectively. If we knew that  $c$  occurs in both  $\mathbf{u}_1$  and in  $\mathbf{u}_2$ , and  $\mathbf{u}_1, \mathbf{u}_2$  had the same support, we could conclude twin-unboundedness of  $c$ . Since  $\mathbf{u}_1, \mathbf{u}_2$  may not have these properties, we will now modify them. Consider the set  $S' = S[\text{supp}(\mathbf{f}_1)] = S[\text{supp}(\mathbf{f}_2)]$ ; hence  $S'$  is the set of short cycles  $u \in T^*$  such that  $\text{supp}(u) \subseteq \text{supp}(\mathbf{f}_1) = \text{supp}(\mathbf{f}_2)$ . By the choice of  $\mathbf{f}_1$  and  $\mathbf{f}_2$ , we know  $c \in S'$ . For each cycle  $u \in S'$ , the vectors  $\mathbf{f}_1 - \tau(\mathbf{e}_u)$  and  $\mathbf{f}_2 - \tau(\mathbf{e}_u)$  are again flows, because  $\tau(\mathbf{e}_u)$  is a flow. Now observe

$$\sum_{u \in S'} \tau(\mathbf{e}_u) + (\mathbf{f}_i - \tau(\mathbf{e}_u)) = |S'| \cdot \mathbf{f}_i$$

for  $i = 1, 2$  (cf. Fig. 1). Hence, the flow  $|S'| \cdot \mathbf{f}_i$  can be written as a sum of cycles in which each cycle from  $S'$  occurs. Moreover, in this sum, every occurring cycle belongs to  $S'$ . This means,  $\mathbf{u}'_1, \mathbf{u}'_2$  have the same support  $S'$ , which includes  $c$ . Moreover, since  $\tau(\mathbf{u}'_i) = |S'| \cdot \mathbf{f}_i$ , we know that  $\Delta_{I_i}(\mathbf{u}'_i) = \mathbf{0}$ , meaning  $\mathbf{u}'_i$  is a sum of period vectors of  $M(I_i)$ , for  $i = 1, 2$ . This means,  $c$  is indeed twin-unbounded for  $M(I_1)$  and  $M(I_2)$ .  $\square$

To construct our  $\mathbb{Z}$ -VASS  $\mathcal{W}_1$  and  $\mathcal{W}_2$ , we first guess a set of transitions and then verify that all of them are bi-cancelable. For the verification, we translate the definition of bi-cancelability into an existential Presburger formula  $\varphi_t$  which is satisfiable if, and only if,  $t$  is bi-cancelable.

**Lemma 6.10.** *Given a transition  $t \in T$ , we can decide in NP whether it is bi-cancelable.*

*Proof.* We construct an existential Presburger formula  $\varphi_t$  which is satisfiable if, and only if,  $t$  is bi-cancelable. Recall that  $t$  is bi-cancelable if, and only if, there exist two flows  $\mathbf{f}_1, \mathbf{f}_2 \in \mathbb{N}^T$  such that the properties (i)–(iii) on page 23 hold.

895 We express in the following these three properties as quantifier-free Presburger  
 896 formulas using the variables  $x_{t'}$  and  $y_{t'}$  for each transition.

897 (i)  $\psi_1 = \bigwedge_{i \in [1, d]} \sum_{t'=(p, a, \mathbf{v}, q) \in T} \mathbf{v}[i] \cdot x_{t'} = 0 \wedge \sum_{t'=(p, a, \mathbf{v}, q) \in T} \mathbf{v}[i] \cdot y_{t'} = 0$   
 898 (ii)  $\psi_{2,t} = x_t > 0 \wedge y_t > 0$   
 899 (iii)  $\psi_3 = \bigwedge_{t' \in T} (x_{t'} > 0 \longleftrightarrow y_{t'} > 0)$

900 Additionally, we have to express that  $\mathbf{f}_1$  and  $\mathbf{f}_2$  are flows. This is possible with  
 901 the following formula:

$$\psi_0 = \bigwedge_{q \in Q} \sum_{t'=(p, a, \mathbf{v}, q) \in T} x_{t'} = \sum_{t'=(q, a, \mathbf{v}, p) \in T} x_{t'} \wedge \sum_{t'=(p, a, \mathbf{v}, q) \in T} y_{t'} = \sum_{t'=(q, a, \mathbf{v}, p) \in T} y_{t'}.$$

902 Set  $\varphi_t = \exists \mathbf{x}, \mathbf{y}: \psi_0 \wedge \psi_1 \wedge \psi_{2,t} \wedge \psi_3$  where  $\mathbf{x} = (x_{t'})_{t' \in T}$  and  $\mathbf{y} = (y_{t'})_{t' \in T}$  are  $T$ -  
 903 vectors of variables. Clearly,  $\varphi_t$  is satisfiable if, and only if,  $t$  is bi-cancelable.  $\square$

904 *6.2.2. Constructing the  $\mathbb{Z}$ -VASS*

905 **Lemma 6.11.** *There are  $\mathbb{Z}$ -VASS  $\mathcal{W}_1$  and  $\mathcal{W}_2$  with  $L(\mathcal{W}_1) \cap L(\mathcal{W}_2) = \emptyset$  if and  
 906 only if  $M(I_1) \mid M(I_2)$  holds.  $\mathcal{W}_1$  and  $\mathcal{W}_2$  can be constructed from  $\mathcal{V}$ ,  $I_1$ , and  $I_2$   
 907 in nondeterministically polynomial time.*

908 Let us now describe how the  $\mathbb{Z}$ -VASS  $\mathcal{W}_1$  and  $\mathcal{W}_2$  are constructed. Concretely, we build two  $\mathbb{Z}$ -VASS that satisfy Eqs. (5) and (6). But instead of  
 909 literally guessing the whole set  $J$  of twin-unbounded cycles (which could re-  
 910 quire exponentially many bits), we guess a set  $\hat{T} \subseteq T$  of transitions in  $\mathcal{V}$  and  
 911 then verify in NP that they are all bi-cancelable using Lemma 6.10. This means,  
 912 we will have

$$L(\mathcal{W}_1) = \{\#c_1 \# c_2 \cdots \# c_m \mid m \in \mathbb{N}, c_1, \dots, c_m \in S, \Phi(c_1, \dots, c_m) \in A + U^* + V_{S[\hat{T}]}^*\} \quad (7)$$

$$L(\mathcal{W}_2) = \{\#c_1 \# c_2 \cdots \# c_m \mid m \in \mathbb{N}, c_1, \dots, c_m \in S, \Phi(c_1, \dots, c_m) \in B + V^* + U_{S[\hat{T}]}^*\} \quad (8)$$

914 and from now on, we will also write  $J = S[\hat{T}]$ . Note that the result of our  
 915 algorithm is correct, even when the guess for  $\hat{T}$  is not the *entire* set of bi-  
 916 cancelable transitions: when  $L(\mathcal{W}_1)$  intersects  $L(\mathcal{W}_2)$  for some choice of  $\hat{T}$ , it  
 917 will do so for any larger choice of  $\hat{T}$ .

918 **Ensuring membership in  $A + U^*$**  The idea for constructing  $\mathcal{W}_1$  (and  
 919 analogously  $\mathcal{W}_2$ ) is simple. For each cycle in the input, it guesses whether it  
 920 belongs to  $A + U^*$  or to  $V_{S[\hat{T}]}^*$ . Let  $\mathbf{u}_0 \in \mathbb{N}^S$  and  $\mathbf{u}_1 \in \mathbb{N}^S$  be the collection of  
 921 cycles guessed to be in  $A + U^*$  and in  $V_{S[\hat{T}]}^*$ , respectively. To make sure that  
 922  $\mathbf{u}_0 \in A + U^*$ , we note that  $\mathbf{u}_0 \in A + U^*$  is equivalent to  $\Delta_{I_1}(\mathbf{u}_0) + \Delta_{I_1}(\rho) = \mathbf{0}$ ,  
 923 where  $\rho$  is the skeleton guessed earlier in the algorithm. Thus, we can use  $|I_1|$   
 924 counters to sum up the effect of the cycles  $\mathbf{u}_0$  and add  $\Delta_{I_1}(\rho)$  once in the end.  
 925 Hence, these counters being zero in the end is equivalent to  $\mathbf{u}_0 \in A + U^*$ .

926 **Ensuring membership in  $V_{S[\hat{T}]}^*$**  To make sure that  $\mathbf{u}_1 \in V_{S[\hat{T}]}^*$ , we note  
 927 that this is equivalent to  $\Delta_{I_2}(\mathbf{u}_1) = \mathbf{0}$  and  $\text{supp}(\mathbf{u}_1) \subseteq S[\hat{T}]$ . Thus, our  $\mathbb{Z}$ -VASS  
 928 has a separate set of  $|I_2|$  counters that carry the total effect of all the cycles in  
 929  $\mathbf{u}_1$ . Moreover, it is easy to check that all cycles in  $\mathbf{u}_1$  only use transitions in  $\hat{T}$ .  
 930 Note that membership in  $B + V^*$  and in  $U_{S[\hat{T}]}^*$  are checked similarly.

931 **Polynomial time construction** Finally, we have to show that the con-  
 932 struction of  $\mathcal{W}_1$  (and  $\mathcal{W}_2$ ) is possible in polynomial time. To this end, let  
 933  $\mathcal{V} = (Q, \Sigma, T, \iota, f)$  be the components of  $\mathcal{V}$  and let  $\rho$  be a skeleton from  $\iota$   
 934 to  $f$  visiting all states in  $Q$ . We construct a  $|I_1| + |I_2|$ -dimensional  $\mathbb{Z}$ -VASS  
 935  $\mathcal{W}_1 = (Q', \Gamma, T', \iota, f)$  over the input alphabet  $\Gamma = T \cup \{\#\}$ . The set of states  
 936  $Q'$  contains (among others) the states  $\{\iota, f\}$ . We have a transition from  $\iota$  to  
 937  $f$  labeled with  $\varepsilon$  and adding  $(\Delta_{I_1}(\rho), \mathbf{0})$  to the counters (note that since the  
 938 skeleton  $\rho$  is fixed for our construction, we can simulate it in one step). For  
 939 simulating cycles we then guess whether we simulate one in  $A + U^*$  or one in  
 940  $V_{S[\hat{T}]}^*$ . For both cases we construct a gadget  $\mathcal{G}$  which is the following automaton:

- 941 The states of  $\mathcal{G}$  consist of two states from  $Q$  and a bounded counter with  
 942 values in  $[1, |Q|]$ , i.e.,  $\{(p, q, j) \mid p, q \in Q, 1 \leq j \leq |Q|\}$  is the set of states  
 943 in  $\mathcal{G}$ . Here, the state  $(p, q, j)$  has the following meaning: the simulation  
 944 of the cycle started in state  $p$ , we are currently in state  $q$ , and we can  
 945 simulate at most  $j$  more steps until finishing the cycle.
- 946 There are transitions from  $\iota$  to each state  $(q, q, |Q|)$  with label  $\#$  and  
 947 counter update  $(\mathbf{0}, \mathbf{0})$ .
- 948 For each  $1 < j \leq |Q|$  we have a transition from  $(p, q, j)$  to  $(p, q', j - 1)$  if  
 949  $\mathcal{V}$  has a transition  $t = (q, a, \mathbf{x}, q') \in T$ . The label of the new transition is  $t$   
 950 and the counter update depends on the decision made at the beginning of  
 951 the simulation: if we are simulating a cycle in  $A + U^*$ , the counter update  
 952 is  $(\pi_{I_1}(\mathbf{x}), \mathbf{0})$ . Otherwise it is  $(\mathbf{0}, \pi_{I_2}(\mathbf{x}))$ . In the latter case we also have  
 953 to ensure that  $t \in \hat{T}$  holds.
- 954 We also have transitions from  $(p, q, j)$  back to  $\iota$  if  $\mathcal{V}$  has a transition  
 955  $t = (q, a, \mathbf{x}, p) \in T$ . The label and the counter update are defined as  
 956 above.

957 In other words, the gadget  $\mathcal{G}$  is actually the computation graph that is truncated  
 958 to runs of length  $\leq |Q|$ . Note that each of the two gadgets has at most  $|Q|^3$   
 959 many nodes implying that  $\mathcal{W}$  has polynomial size (in  $|Q|$ ).

960 With this polynomial-time construction of  $\mathcal{W}_1$  and  $\mathcal{W}_2$ , we are ready to prove  
 961 Theorem 3.6:

962 *Proof of Theorem 3.6.* We give an NP algorithm for regular inseparability of two  
 963  $\mathbb{Z}$ -VASS (which can be obtained from Parikh automata in logarithmic space [16,  
 964 Corollary 1]).

965 Let  $\mathcal{V}_1$  and  $\mathcal{V}_2$  be two  $d$ -dimensional  $\mathbb{Z}$ -VASS. From  $\mathcal{V}_1$  and  $\mathcal{V}_2$  we can com-  
966 pute a single  $2d$ -dimensional deterministic  $\mathbb{Z}$ -VASS  $\mathcal{V}$  and two sets  $I_1, I_2 \subseteq [1, 2d]$   
967 in polynomial time such that  $L(\mathcal{V}_1) \mid L(\mathcal{V}_2)$  holds if, and only if,  $L(\mathcal{V}, I_1) \mid L(\mathcal{V}, I_2)$   
968 (Lemmas 6.1 and 6.3). According to Lemma 6.4 we have  $L(\mathcal{V}, I_1) \mid L(\mathcal{V}, I_2)$  if,  
969 and only if,  $L(\mathcal{V}, I_1, \rho) \mid L(\mathcal{V}, I_2, \rho)$  for each skeleton  $\rho$  in  $\mathcal{V}$  holds. So, we guess  
970 a skeleton  $\rho$  and check regular inseparability of  $L(\mathcal{V}, I_1, \rho)$  and  $L(\mathcal{V}, I_2, \rho)$  certi-  
971 fying regular inseparability of  $L(\mathcal{V}, I_1)$  and  $L(\mathcal{V}, I_2)$ .

972 Additionally, we will guess a set  $\hat{T} \subseteq T$  of transitions and verify in NP that all  
973 of them are bi-cancelable (Lemma 6.10). Then we can construct in polynomial  
974 time two  $\mathbb{Z}$ -VASS  $\mathcal{W}_1$  and  $\mathcal{W}_2$  such that (7) and (8) hold (Lemma 6.11). If  
975  $L(\mathcal{W}_1) \cap L(\mathcal{W}_2) \neq \emptyset$ , the algorithm reports “inseparable”. For this, it uses a  
976 simple product construction to obtain a  $\mathbb{Z}$ -VASS  $\mathcal{W}$  for the intersection  $L(\mathcal{W}_1) \cap$   
977  $L(\mathcal{W}_2)$ , and decide in NP whether an accepting configuration can be reached in  
978  $\mathcal{W}$ .

979 This is sound: We have  $L(\mathcal{W}_1) \cap L(\mathcal{W}_2) \neq \emptyset$  if and only if  $(A + U^* + V_J^*) \cap$   
980  $(B + V^* + U_J^*) \neq \emptyset$  for  $J = S[\hat{T}]$ ; and by Lemma 6.7, we know that the latter  
981 rules out  $M(I_1) \mid M(I_2)$ . For completeness, note that if  $M(I_1) \mid M(I_2)$  does not  
982 hold, then there exists a choice for  $\hat{T}$  such that  $L(\mathcal{W}_1) \cap L(\mathcal{W}_2) \neq \emptyset$ : Take the  
983 set of all bi-cancelable transitions.  $\square$

984 **References**

985 [1] T. G. Szymanski, J. H. Williams, Noncanonical extensions of bottom-up  
986 parsing techniques, SIAM Journal on Computing 5 (2) (1976). [doi:10.1137/0205019](https://doi.org/10.1137/0205019).

987 [2] H. B. Hunt III, On the Decidability of Grammar Problems, Journal of the  
988 ACM 29 (2) (1982) 429–447. [doi:10.1145/322307.322317](https://doi.org/10.1145/322307.322317).

989 [3] W. Czerwiński, S. Lasota, R. Meyer, S. Muskalla, K. N. Kumar,  
990 P. Saivasan, Regular separability of well-structured transition systems, in:  
991 S. Schewe, L. Zhang (Eds.), 29th International Conference on Concurrency  
992 Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, Vol. 118  
993 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp.  
994 35:1–35:18. [doi:10.4230/LIPICS.CONCUR.2018.35](https://doi.org/10.4230/LIPICS.CONCUR.2018.35).

995 [4] E. Keskin, R. Meyer, Separability and non-determinizability of WSTS, in:  
996 G. A. Pérez, J. Raskin (Eds.), 34th International Conference on Concur-  
997 rency Theory, CONCUR 2023, September 18-23, 2023, Antwerp, Belgium,  
998 Vol. 279 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,  
999 2023, pp. 8:1–8:17. [doi:10.4230/LIPICS.CONCUR.2023.8](https://doi.org/10.4230/LIPICS.CONCUR.2023.8).

1000 [5] C. Köcher, G. Zetzsche, Regular separators for VASS coverability lan-  
1001 guages, in: P. Bouyer, S. Srinivasan (Eds.), 43rd IARCS Annual Conference  
1002 on Foundations of Software Technology and Theoretical Computer Science,  
1003 FSTTCS 2023, December 18-20, 2023, IIIT Hyderabad, Telangana, India,

1005 Vol. 284 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,  
1006 2023, pp. 15:1–15:19. doi:10.4230/LIPICS.FSTTCS.2023.15.

1007 [6] W. Czerwiński, S. Lasota, Regular separability of one counter automata,  
1008 in: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,  
1009 LICS 2017, Reykjavik, Iceland, June 20–23, 2017, IEEE Computer Society,  
1010 2017, pp. 1–12. doi:10.1109/LICS.2017.8005079.

1011 [7] L. Clemente, W. Czerwiński, S. Lasota, C. Paperman, Regular Separability  
1012 of Parikh Automata, in: I. Chatzigiannakis, P. Indyk, F. Kuhn, A. Muscholl  
1013 (Eds.), 44th International Colloquium on Automata, Languages, and Pro-  
1014 gramming (ICALP 2017), Vol. 80 of Leibniz International Proceedings in  
1015 Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik,  
1016 Dagstuhl, Germany, 2017, pp. 117:1–117:13. doi:10.4230/LIPIcs.ICALP.  
1017 2017.117.  
1018 URL <http://drops.dagstuhl.de/opus/volltexte/2017/7497>

1019 [8] L. Clemente, W. Czerwiński, S. Lasota, C. Paperman, Separability of  
1020 reachability sets of vector addition systems, in: H. Vollmer, B. Vallée  
1021 (Eds.), 34th Symposium on Theoretical Aspects of Computer Science,  
1022 STACS 2017, March 8–11, 2017, Hannover, Germany, Vol. 66 of LIPIcs,  
1023 Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 24:1–24:14.  
1024 doi:10.4230/LIPICS.STACS.2017.24.

1025 [9] R. S. Thinniyam, G. Zetzsche, Regular separability and intersection empti-  
1026 ness are independent problems, in: A. Chattopadhyay, P. Gastin (Eds.),  
1027 39th IARCS Annual Conference on Foundations of Software Technology  
1028 and Theoretical Computer Science, FSTTCS 2019, December 11–13, 2019,  
1029 Bombay, India, Vol. 150 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für  
1030 Informatik, 2019, pp. 51:1–51:15. doi:10.4230/LIPICS.FSTTCS.2019.51.

1031 [10] P. Baumann, E. Keskin, R. Meyer, G. Zetzsche, Separability in Büchi  
1032 VASS and singly non-linear systems of inequalities, in: K. Bringmann,  
1033 M. Grohe, G. Puppis, O. Svensson (Eds.), 51st International Colloquium  
1034 on Automata, Languages, and Programming, ICALP 2024, July 8–12, 2024,  
1035 Tallinn, Estonia, Vol. 297 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für  
1036 Informatik, 2024, pp. 126:1–126:19. doi:10.4230/LIPICS.ICALP.2024.  
1037 126.

1038 [11] P. Baumann, R. Meyer, G. Zetzsche, Regular separability in Büchi VASS,  
1039 in: P. Berenbrink, P. Bouyer, A. Dawar, M. M. Kanté (Eds.), 40th  
1040 International Symposium on Theoretical Aspects of Computer Science,  
1041 STACS 2023, March 7–9, 2023, Hamburg, Germany, Vol. 254 of LIPIcs,  
1042 Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 9:1–9:19.  
1043 doi:10.4230/LIPICS.STACS.2023.9.

1044 [12] W. Czerwiński, G. Zetzsche, An approach to regular separability in vec-  
1045 tor addition systems, in: Proceedings of the 35th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS '20, Association for Computing Machinery, New York, NY, USA, 2020, p. 341–354. doi:10.1145/3373718.3394776.  
 URL <https://doi.org/10.1145/3373718.3394776>

[13] E. Keskin, R. Meyer, On the separability problem of VASS reachability languages, in: P. Sobociński, U. D. Lago, J. Esparza (Eds.), Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia, July 8–11, 2024, ACM, 2024, pp. 49:1–49:14. doi:10.1145/3661814.3662116.

[14] O. H. Ibarra, Reversal-bounded multicounter machines and their decision problems, *Journal of the ACM (JACM)* 25 (1) (1978) 116–133. doi:10.1145/322047.322058.

[15] S. A. Greibach, Remarks on blind and partially blind one-way multicounter machines, *Theoretical Computer Science* 7 (3) (1978) 311–324. doi:10.1016/0304-3975(78)90020-8.

[16] P. Baumann, F. D'Alessandro, M. Ganardi, O. Ibarra, I. McQuillan, L. Schütze, G. Zetzsche, Unboundedness problems for machines with reversal-bounded counters, in: O. Kupferman, P. Sobociński (Eds.), *Foundations of Software Science and Computation Structures*, Springer Nature Switzerland, Cham, 2023, pp. 240–264. doi:10.1007/978-3-031-30829-1\_12.

[17] M. Jantzen, A. Kurganskyy, Refining the hierarchy of blind multicounter languages and twist-closed trios, *Inf. Comput.* 185 (2) (2003) 159–181. doi:10.1016/S0890-5401(03)00087-7.

[18] M. Cadilhac, A. Finkel, P. McKenzie, Affine Parikh automata, *RAIRO Theor. Informatics Appl.* 46 (4) (2012) 511–545. doi:10.1051/ITA/2012013.

[19] A. Bostan, A. Carayol, F. Koechlin, C. Nicaud, Weakly-unambiguous Parikh automata and their link to holonomic series, in: A. Czumaj, A. Dawar, E. Merelli (Eds.), *47th International Colloquium on Automata, Languages, and Programming, ICALP 2020*, July 8–11, 2020, Saarbrücken, Germany (Virtual Conference), Vol. 168 of *LIPICS*, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 114:1–114:16. doi:10.4230/LIPICS.ICALP.2020.114.

[20] M. Cadilhac, A. Finkel, P. McKenzie, Unambiguous constrained automata, *Int. J. Found. Comput. Sci.* 24 (7) (2013) 1099–1116. doi:10.1142/S0129054113400339.

[21] A. Finkel, A. Sangnier, Reversal-bounded counter machines revisited, in: E. Ochmanski, J. Tyszkiewicz (Eds.), *Mathematical Foundations of Computer Science 2008*, 33rd International Symposium, MFCS 2008,

1086        Torun, Poland, August 25-29, 2008, Proceedings, Vol. 5162 of Lecture  
 1087        Notes in Computer Science, Springer, 2008, pp. 323–334. [doi:10.1007/978-3-540-85238-4\\_26](https://doi.org/10.1007/978-3-540-85238-4_26).

1089        [22] M. M. Bersani, S. Demri, The complexity of reversal-bounded model-  
 1090        checking, in: C. Tinelli, V. Sofronie-Stokkermans (Eds.), Frontiers of  
 1091        Combining Systems, 8th International Symposium, FroCoS 2011, Saar-  
 1092        brücken, Germany, October 5-7, 2011. Proceedings, Vol. 6989 of Lecture  
 1093        Notes in Computer Science, Springer, 2011, pp. 71–86. [doi:10.1007/978-3-642-24364-6\\_6](https://doi.org/10.1007/978-3-642-24364-6_6).

1095        [23] G. Zetsche, Silent transitions in automata with storage, in: F. V.  
 1096        Fomin, R. Freivalds, M. Z. Kwiatkowska, D. Peleg (Eds.), Automata,  
 1097        Languages, and Programming - 40th International Colloquium, ICALP  
 1098        2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, Vol. 7966 of  
 1099        Lecture Notes in Computer Science, Springer, 2013, pp. 434–445. [doi:10.1007/978-3-642-39212-2\\_39](https://doi.org/10.1007/978-3-642-39212-2_39).

1101        [24] M. Cadilhac, A. Krebs, P. McKenzie, The algebraic theory of Parikh au-  
 1102        tomata, *Theory Comput. Syst.* 62 (5) (2018) 1241–1268. [doi:10.1007/S00224-017-9817-2](https://doi.org/10.1007/S00224-017-9817-2).

1104        [25] G. Zetsche, The complexity of downward closure comparisons, in: I.  
 1105        Chatzigiannakis, M. Mitzenmacher, Y. Rabani, D. Sangiorgi (Eds.),  
 1106        43rd International Colloquium on Automata, Languages, and Program-  
 1107        ming, ICALP 2016, July 11-15, 2016, Rome, Italy, Vol. 55 of LIPICS,  
 1108        Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 123:1–123:14.  
 1109        [doi:10.4230/LIPICS.ICALP.2016.123](https://doi.org/10.4230/LIPICS.ICALP.2016.123).

1110        [26] E. Erlich, S. Guha, I. Jecker, K. Lehtinen, M. Zimmermann, History-  
 1111        deterministic Parikh automata, in: G. A. Pérez, J. Raskin (Eds.), 34th  
 1112        International Conference on Concurrency Theory, CONCUR 2023, Septem-  
 1113        ber 18-23, 2023, Antwerp, Belgium, Vol. 279 of LIPICS, Schloss Dagstuhl  
 1114        - Leibniz-Zentrum für Informatik, 2023, pp. 31:1–31:16. [doi:10.4230/LIPICS.CONCUR.2023.31](https://doi.org/10.4230/LIPICS.CONCUR.2023.31).

1116        [27] S. Guha, I. Jecker, K. Lehtinen, M. Zimmermann, Parikh automata over  
 1117        infinite words, in: A. Dawar, V. Guruswami (Eds.), 42nd IARCS Annual  
 1118        Conference on Foundations of Software Technology and Theoretical Com-  
 1119        puter Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai,  
 1120        India, Vol. 250 of LIPICS, Schloss Dagstuhl - Leibniz-Zentrum für Infor-  
 1121        matik, 2022, pp. 40:1–40:20. [doi:10.4230/LIPICS.FSTTCS.2022.40](https://doi.org/10.4230/LIPICS.FSTTCS.2022.40).

1122        [28] E. Filiot, S. Guha, N. Mazzocchi, Two-way Parikh automata, in: A. Chat-  
 1123        topadhyay, P. Gastin (Eds.), 39th IARCS Annual Conference on Founda-  
 1124        tions of Software Technology and Theoretical Computer Science, FSTTCS  
 1125        2019, December 11-13, 2019, Bombay, India, Vol. 150 of LIPICS, Schloss  
 1126        Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 40:1–40:14. [doi:  
 1127        10.4230/LIPICS.FSTTCS.2019.40](https://doi.org/10.4230/LIPICS.FSTTCS.2019.40).

1128 [29] M. Grobler, L. Sabellek, S. Siebertz, Remarks on Parikh-recognizable  
 1129 omega-languages, in: A. Murano, A. Silva (Eds.), 32nd EACSL Annual  
 1130 Conference on Computer Science Logic, CSL 2024, February 19-23, 2024,  
 1131 Naples, Italy, Vol. 288 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für  
 1132 Informatik, 2024, pp. 31:1–31:21. doi:10.4230/LIPICS.CSL.2024.31.

1133 [30] M. Cadilhac, A. Ghosh, G. A. Pérez, R. Raha, Parikh one-counter au-  
 1134 tomata, in: J. Leroux, S. Lombardy, D. Peleg (Eds.), 48th International  
 1135 Symposium on Mathematical Foundations of Computer Science, MFCS  
 1136 2023, August 28 to September 1, 2023, Bordeaux, France, Vol. 272 of  
 1137 LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 30:1–  
 1138 30:15. doi:10.4230/LIPICS.MFCS.2023.30.

1139 [31] Y. Shakiba, H. Sinclair-Banks, G. Zetzsche, A complexity dichotomy for  
 1140 semilinear target sets in automata with one counter, to appear in Proc. of  
 1141 LICS 2025 (2025). arXiv:2505.13749, doi:10.48550/ARXIV.2505.13749.

1142 [32] F. Klaedtke, H. Rueß, Monadic second-order logics with cardinalities,  
 1143 in: J. C. M. Baeten, J. K. Lenstra, J. Parrow, G. J. Woeginger (Eds.),  
 1144 Automata, Languages and Programming, 30th International Colloquium,  
 1145 ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Pro-  
 1146 ceedings, Vol. 2719 of Lecture Notes in Computer Science, Springer, 2003,  
 1147 pp. 681–696. doi:10.1007/3-540-45061-0\_54.

1148 [33] S. Halfon, P. Schnoebelen, G. Zetzsche, Decidability, complexity, and ex-  
 1149 pressiveness of first-order logic over the subword ordering, in: 32nd Annual  
 1150 ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-  
 1151 javik, Iceland, June 20-23, 2017, IEEE Computer Society, 2017, pp. 1–12.  
 1152 doi:10.1109/LICS.2017.8005141.

1153 [34] A. Bouajjani, P. Habermehl, Symbolic reachability analysis of FIFO-  
 1154 channel systems with nonregular sets of configurations, Theor. Comput.  
 1155 Sci. 221 (1-2) (1999) 211–250. doi:10.1016/S0304-3975(99)00033-X.

1156 [35] C. Haase, S. Halfon, Integer vector addition systems with states, in:  
 1157 J. Ouaknine, I. Potapov, J. Worrell (Eds.), Reachability Problems - 8th  
 1158 International Workshop, RP 2014, Oxford, UK, September 22-24, 2014.  
 1159 Proceedings, Vol. 8762 of Lecture Notes in Computer Science, Springer,  
 1160 2014, pp. 112–124. doi:10.1007/978-3-319-11439-2\_9.

1161 [36] K. L. McMillan, Interpolation and SAT-based model checking, in: W. A. H.  
 1162 Jr., F. Somenzi (Eds.), Computer Aided Verification, 15th International  
 1163 Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,  
 1164 Vol. 2725 of Lecture Notes in Computer Science, Springer, 2003, pp. 1–13.  
 1165 doi:10.1007/978-3-540-45069-6\_1.

1166 [37] Y. Vizel, G. Weissenbacher, S. Malik, Boolean satisfiability solvers and  
 1167 their applications in model checking, Proc. IEEE 103 (11) (2015) 2021–  
 1168 2035. doi:10.1109/JPROC.2015.2455034.

1169 [38] M. Veanes, N. S. Bjørner, L. Nachmanson, S. Bereg, Monadic decomposi-  
 1170     tion, *J. ACM* 64 (2) (2017) 14:1–14:28. [doi:10.1145/3040488](https://doi.org/10.1145/3040488).

1171 [39] P. Bergsträßer, M. Ganardi, A. W. Lin, G. Zetzsche, Ramsey quantifiers  
 1172     in linear arithmetics, *Proc. ACM Program. Lang.* 8 (POPL) (2024) 1–32.  
 1173     [doi:10.1145/3632843](https://doi.org/10.1145/3632843).

1174 [40] M. Hague, A. W. Lin, P. Rümmer, Z. Wu, Monadic decomposition in inte-  
 1175     ger linear arithmetic, in: N. Peltier, V. Sofronie-Stokkermans (Eds.), Au-  
 1176     tomated Reasoning - 10th International Joint Conference, IJCAR 2020,  
 1177     Paris, France, July 1-4, 2020, Proceedings, Part I, Vol. 12166 of Lec-  
 1178     ture Notes in Computer Science, Springer, 2020, pp. 122–140. [doi:  
 1179     10.1007/978-3-030-51074-9\\_8](https://doi.org/10.1007/978-3-030-51074-9_8).

1180 [41] C. Haase, S. N. Krishna, K. Madnani, O. S. Mishra, G. Zetzsche, An  
 1181     efficient quantifier elimination procedure for Presburger arithmetic, in:  
 1182     K. Bringmann, M. Grohe, G. Puppis, O. Svensson (Eds.), 51st Interna-  
 1183     tional Colloquium on Automata, Languages, and Programming, ICALP  
 1184     2024, July 8-12, 2024, Tallinn, Estonia, Vol. 297 of LIPIcs, Schloss Dagstuhl  
 1185     - Leibniz-Zentrum für Informatik, 2024, pp. 142:1–142:17. [doi:  
 1186     10.4230/LIPICS.ICALP.2024.142](https://doi.org/10.4230/LIPICS.ICALP.2024.142).

1187 [42] S. Grumbach, P. Rigaux, L. Segoufin, Spatio-temporal data handling with  
 1188     constraints, in: R. Laurini, K. Makki, N. Pissinou (Eds.), ACM-GIS '98,  
 1189     Proceedings of the 6th international symposium on Advances in Geographic  
 1190     Information Systems, November 6-7, 1998, Washington, DC, USA, ACM,  
 1191     1998, pp. 106–111. [doi:10.1145/288692.288712](https://doi.org/10.1145/288692.288712).

1192 [43] G. Kuper, L. Libkin, J. Paredaens, Constraint databases, Springer Science  
 1193     & Business Media, 2013. [doi:10.1007/978-3-662-04031-7](https://doi.org/10.1007/978-3-662-04031-7).

1194 [44] C. Choffrut, S. Grigorieff, Separability of rational relations in  $A^* \times \mathbb{N}^m$  by  
 1195     recognizable relations is decidable, *Information Processing Letters* 99 (1)  
 1196     (2006) 27–32. [doi:10.1016/j.ipl.2005.09.018](https://doi.org/10.1016/j.ipl.2005.09.018).

1197 [45] D. Chistikov, C. Haase, A. Mansutti, Quantifier elimination for counting  
 1198     extensions of presburger arithmetic, in: P. Bouyer, L. Schröder (Eds.),  
 1199     Foundations of Software Science and Computation Structures - 25th Inter-  
 1200     national Conference, FOSSACS 2022, Held as Part of the European  
 1201     Joint Conferences on Theory and Practice of Software, ETAPS 2022,  
 1202     Munich, Germany, April 2-7, 2022, Proceedings, Vol. 13242 of Lecture  
 1203     Notes in Computer Science, Springer, 2022, pp. 225–243. [doi:  
 1204     10.1007/978-3-030-99253-8\\_12](https://doi.org/10.1007/978-3-030-99253-8_12)  
 1205     URL [https://doi.org/10.1007/978-3-030-99253-8\\_12](https://doi.org/10.1007/978-3-030-99253-8_12)

1206 [46] S. Ginsburg, E. H. Spanier, Semigroups, Presburger formulas, and lan-  
 1207     guages, *Pacific Journal of Mathematics* 16 (2) (1966) 285–296.

1208 [47] J. Berstel, *Transductions and Context-Free Languages*, Teubner, 1979.  
 1209 [doi:10.1007/978-3-663-09367-1](https://doi.org/10.1007/978-3-663-09367-1).

1210 [48] J. Sakarovitch, *Elements of Automata Theory*, Cambridge University Press,  
 1211 Cambridge, 2009. [doi:10.1017/CBO9781139195218](https://doi.org/10.1017/CBO9781139195218).

1212 [49] O. H. Ibarra, B. Ravikumar, On the Parikh Membership Problem for  
 1213 FAs, PDAs, and CMs, in: A.-H. Dediu, C. Martín-Vide, J.-L. Sierra-  
 1214 Rodríguez, B. Truthe (Eds.), *Language and Automata Theory and Ap-  
 1215 plications*, Springer International Publishing, Cham, 2014, pp. 14–31.  
 1216 [doi:10.1007/978-3-319-04921-2\\_2](https://doi.org/10.1007/978-3-319-04921-2_2).

1217 [50] H. Seidl, T. Schwentick, A. Muscholl, P. Habermehl, Counting in trees  
 1218 for free, in: J. Díaz, J. Karhumäki, A. Lepistö, D. Sannella (Eds.), *Au-  
 1219 tomata, Languages and Programming: 31st International Colloquium,  
 1220 ICALP 2004*, Turku, Finland, July 12–16, 2004. Proceedings, Vol. 3142  
 1221 of *Lecture Notes in Computer Science*, Springer, 2004, pp. 1136–1149.  
 1222 [doi:10.1007/978-3-540-27836-8\\_94](https://doi.org/10.1007/978-3-540-27836-8_94).

1223 [51] S. Ginsburg, E. H. Spanier, Bounded regular sets, *Proceedings of the  
 1224 American Mathematical Society* 17 (5) (1966) 1043–1049. [doi:10.1090/S0002-9939-1966-0201310-3](https://doi.org/10.1090/S0002-9939-1966-0201310-3).

1225 [52] J. Esparza, Petri nets, commutative context-free grammars, and basic par-  
 1226 allel processes, *Fundam. Informaticae* 31 (1) (1997) 13–25. [doi:10.3233/FI-1997-3112](https://doi.org/10.3233/FI-1997-3112).