20

21

22

23

24

The complexity of separability for semilinear sets and
Parikh automata

Elias Rojas Collins®, Chris Kocher”, Georg Zetzsche

*Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, 02139, MA, USA
b Maz Planck Institute for Software
Systems, Paul-Ehrlich-Str. 26, Kaiserslautern, 67663, RP, Germany

Abstract

In a separability problem, we are given two sets K and L from a class C, and we
want to decide whether there exists a set S from a class S such that K C S and
SN L=0. In this case, we speak of separability of sets in C by sets in S.

We study two types of separability problems. First, we consider separability
of semilinear sets (i.e. subsets of N for some d) by sets definable by quantifier-
free monadic Presburger formulas (or equivalently, the recognizable subsets of
Nd). Here, a formula is monadic if each atom uses at most one variable. Second,
we consider separability of languages of Parikh automata by regular languages.
A Parikh automaton is a machine with access to counters that can only be
incremented, and have to meet a semilinear constraint at the end of the run.
Both of these separability problems are known to be decidable with elementary
complexity.

Our main results are that both problems are coNP-complete. In the case
of semilinear sets, coNP-completeness holds regardless of whether the input
sets are specified by existential Presburger formulas, quantifier-free formulas, or
semilinear representations. Our results imply that recognizable separability of
rational subsets of X* xN? (shown decidable by Choffrut and Grigorieff) is coNP-
complete as well. Another application is that regularity of deterministic Parikh
automata (where the target set is specified using a quantifier-free Presburger
formula) is coNP-complete as well.

Keywords: Vector Addition System, Separability, Regular Language

1. Introduction

Separability In a separability problem, we are given two sets K and L
from a class C, and we want to decide whether there exists a set S from a
class S such that K € S and SN L = @. Here, the sets in S are the ad-
missible separators, and S is said to separate the sets K and L. In the case
where C is a class of non-regular languages and S is the class of regular lan-
guages, then the problem is called regular separability (problem) for C. While

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

the problem turned out to be undecidable for context-free languages in the
1970s [1L [2], the last decade saw a significant amount of attention on regular
separability for subclasses (or variants) of wvector addition systems with states
(VASS). Regular separability was studied for coverability languages of VASS
(and, more generally, well-structured transition systems) [3H5], one-counter au-
tomata and one-dimensional VASS [6], Parikh automata [7], commutative VASS
languages [8], concerning its relationship with the intersection problem [9], Biichi
VASS [10, [IT], and also for settings where one input language is an arbitrary
VASS and the other is from some subclass [12]. Recently, this line of work cul-
minated in the breakthrough result that regular separability for general VASS
languages is decidable and Ackermann-complete [I13]. However, for subclasses
of VASS languages, the complexity landscape is far from understood.

Separating Parikh automata An important example of such a sub-
class is the class of languages accepted by Parikh automata, which are non-
deterministic automata equipped with counters that can only be incremented.
Here, a run is accepting if the final counter values belong to a particular semi-
linear set. Languages of Parikh automata have received significant attention
over many decades [I4H25], including a lot of work in recent years [26H3I]. This
is because they are expressive enough to model non-trivial counting behavior,
but still enjoy low complexity for many algorithmic tasks (e.g. the emptiness
problem is coNP-complete). Example applications are monadic second-order
logic with cardinalities [32] (this paper introduced the specific model of Parikh
automata), solving subword constraints [33], and model-checking FIFO channel
systems [34]. Moreover, these languages have other equivalent characterizations,
such as reversal-bounded counter automata—a classic (and intensely studied)
type of infinite-state systems with nice decidability properties [14, 22]—and
automata with Z-counters, also called Z-VASS [15], 55]ﬂ

Decidability of regular separability was shown by Clemente, Czerwinski, La-
sota, and Paperman [7] in 2017 as one of the first decidability results for regular
separability. Moreover, this result was a key ingredient in Keskin and Meyer’s
algorithm to decide regular separability for general VASS [I3]. However, despite
the strong interest in Parikh automata and in regular separability, the complex-
ity of this problem remained unknown. In [7, Section 7], the authors provide an
elementary complexity upper bound.

Separating semilinear sets: Monadic interpolants One of the steps
in the algorithm from [7] is to decide separability of sets defined in Pres-
burger arithmetic, the first-order theory of (N;+,<,0,1). Separators of logi-
cally defined sets can also be viewed as interpolants. If p(x,y) and ¢ (y, z) are
(first-order or propositional) formulas such that VaVyvz (o(x,y) — ¢¥(y, z))
holds, then a formula x(y) is a Craig interpolant if VaVy (¢(x,y) — x(y)) and

1See [16] for efficient translation among Parikh automata, reversal-bounded counter au-
tomata, and Z-VASS.

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

VyVz (x(y) — ¥(y, z)) both hold. Here, x,y, z are each a vector of variables,
meaning X only mentions variables that occur both in ¢ and . Equivalently,
the set defined by x is a separator of the sets defined by the existential for-
mulas Jz: ¢(x,y) and Iz: —(y, z). In Interpolation-Based Model Checking
(ITP) |36, B7], Craig interpolants are used to safely overapproximate sets of
states: If ¢ describes reachable states and 1) describes the set of safe states,
then x overapproximates ¢ without adding unsafe states. Note that in Pres-
burger logic there are implications that do not have a Craig interpolant (this
is in contrast to propositional logic). So, before constructing an interpolant, a
first step of ITP is to decide whether there even exists such an interpolant.

In the case of Presburger arithmetic, the definable sets are the semilinear
sets. For many infinite-state systems, the step relation (or even the reachability
relation) is semilinear, and thus, separators can play the role of Craig inter-
polants in infinite-state model checking. For the separators, a natural choice is
the class of recognizable sets, which are those defined by monadic Presburger
formulas, meaning each atom refers to at most one variable. Monadic formulas
have recently received attention [38H41I] because of their applications in query
optimization in constraint databases [42], 43] and symbolic automata [38]. Thus,
deciding recognizable separability of semilinear sets can be viewed as synthesiz-
ing monadic Craig interpolants.

Recognizable separability was shown decidable by Choffrut and Grigori-
eff [44] (see [8] for an extension beyond semilinear sets). This was a key in-
gredient for separability of Parikh automata in [7]. Choffrut and Grigorieff’s
algorithm has elementary complexity [7, Section 7], but the exact complexity of
recognizable separability of semilinear sets remained unknown.

Contribution Our first main result is that for given existential Presburger
formulas, recognizable separability (i.e. monadic separability) is coNP-complete.
In particular, recognizable separability is coNP-complete for given semilinear
representations. Moreover, our result implies that recognizable separability is
coNP-complete for rational subsets of monoids X* x N as considered by Choffrut
and Grigorieff [44]. Building on the methods of the first result, our second main
result is that regular separability for Parikh automata is coNP-complete.

Application I: Monadic decomposability Our first main result strength-
ens a recent result on monadic decomposability. A formula in Presburger arith-
metic is monadically decomposable if it has a monadic equivalent. It was shown
recently that (i) deciding whether a given quantifier-free formula is monadically
decomposable (i.e. whether it has a monadic equivalent) is coNP-complete [40]
Theorem 1] (see [39), Corollary 8.1] for an alternative proof; and see [45], Proposi-
tion 3] for improved bounds for the approach in [40]), whereas (ii) for existential
formulas, the problem is coNEXP-complete [41, Corollary 3.6]. Our first main
result strengthens (i): If ¢(x) is a quantifier-free formula, then the sets defined
by ¢(x) and —¢(x) are separable by a monadic formula if and only if ¢(x) is
monadically decomposable. Perhaps surprisingly, our coNP upper bound still

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

holds for existential Presburger formulas, for which monadic decomposability is
known to be coNEXP-completd?]

Application IT: Regularity of Parikh automata Another consequence
of our results is that regularity of deterministic Parikh automata, i.e. deciding
whether a given deterministic Parikh automaton accepts a regular language, is
coNP-complete: Given a deterministic Parikh automaton for a language L C X,
one can construct in polynomial time a Parikh automaton for K = X* \ L.
Then, L is regular if and only if L and K are regularly separable. Here, we
assume that the semilinear target set is given as a quantifier-free Presburger
formula. Decidability of this problem has been shown by Cadilhac, Finkel, and
McKenzie |20, Theorem 25| (even in the more general case of unambiguous
constrained automata).

Key ingredients The existing elementary-complexity algorithm for recog-
nizable separability of semilinear sets works with semilinear representations and
distinguishes two cases: If in one component j, one of the input sets Sy, S C Nd
is bounded by some b > 0, then it considers each x € [0, b] and recursively decides
separability of Si[j — =] and Sa[j — z], where S;[j — z] is just S; restricted
to having x in this bounded component. If, however, all components in both
sets are unbounded, then it checks feasibility of a system of linear Diophantine
equations. This approach leads to repeated intersection of semilinear sets, and
thus exponential time. We provide a characterization (Proposition that
describes inseparability directly as the non-empty intersection of two semilinear
sets 5'1, 5'2 C N associated with S;, Ss. This easily yields an NP procedure for
inseparability, even if the input sets are given as existential Presburger formulas.

This characterization is then the first key ingredient for deciding regular
separability of Parikh automata in coNP. This is because in [7], it is shown
that, after some preprocessing, the languages of Parikh automata A; and A,
are separable if and only if two semilinear sets C7,Cy C N¢ associated with
A; and As are separable by a recognizable set. These semilinear sets consist
of vectors, each of which counts for some run of A;, how many times each
simple cycles occurs in this run. Thus, our first result tells us that it suffices
to decide whether C; and C, are disjoint. Unfortunately, the vectors of C1, Cy
have exponential dimension d, since there are exponentially many simple cycles
in each A;. Thus, applying our first result directly using existential Presburger
arithmetic would only yield a coNEXP upper bound.

To avoid this blowup, the second key idea is to encode the vectors in Cy and
Cy as words, where the cycle occurrences appear as a concatenation in some
order. By constructing Z-VASS W;, W, for the encodings of the vectors in
C'l, C’27 we reduce separability to intersection emptiness of W; and W,. The

2This is not a contradiction to the above reduction from monadic decomposability to recog-
nizable separation, since this reduction would require complementing an existential formula.

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

latter, in turn, easily reduces to non-reachability in a product Z-VASS, which
is in coNP.

2. Preliminaries

By N={0,1,2,...} we denote the set of all non-negative integers. Let d € N
be a number and I C [1,d] be a set of indices. By 7;: N¢ — NI we denote the
projection of vectors in N to vectors in N’ | i.e., 77(v)[i] = v[i] for each v € N¢
and i € I. The support of a vector v € N? is the set of all coordinates in v with
non-zero value, i.e. supp(v) = {i € [1,d] | v[i] # 0}.

Semilinear sets A set S C N¢ is linear if there is a vector u € N¢ and a
finite set P C N? of so-called periods such that S = w+ P* holds. Here, for P =
{u1,...,u,}, the set P*isdefined as P* = {A\ju1+- -+ A up | A1,..., Ap € N}
A subset S C N9 is called semilinear if it is a finite union of linear sets. In case
we specify S by way of a finite union of linear sets, then we call this description a
semilinear representation. The set S C N% is called hyperlinear if there are finite
sets B, P C N such that S = B+ P* holds. It is well known that the semilinear
sets are precisely those definable in Presburger arithmetic [46], the first-order
theory of the structure (N;+, <,0,1, (=m)memn 0}). Here =, is the predicate
where x =,,, y if and only if x — y is divisible by m. By quantifier elimination,
every formula in Presburger arithmetic has a quantifier-free equivalent.

Parikh automata Intuitively, a Parikh automaton has finitely many con-
trol states and access to d > 0 counters. Upon reading a letter (or the empty
word), it can add a vector u € N¢ to its counters. Moreover, for each state ¢ € Q,
it specifies a target set Cyq C N?. An input word is accepted if at the end of the
run, the accumulated counter values belong to C,;, where ¢ is the state at the end
of the run. Formally, a Parikh automaton is a tuple A = (Q, X, T, g0, (Cy)qeq):
where Q is a finite set of states, T C Q x (¥ U {e}) x N¢ x Q is its finite set
of transitions, qo € @ is the initial state, and C; C N? is the target set in
state ¢, for each ¢ € Q. For an input word w € X*, a run on w is a sequence
(go,w1,u1,q1) - (Gn—1, Wn, Un, G) of transitions in T with w = w; - - w,. The
run is accepting if uq +--- +u, € C,,. The language of A is then the set of all
words w € X* such that A has an accepting run on w.

Remark 2.1. For our results on general Parikh automata, we assume that the
target sets are specified using existential Presburger formulas. However, this
is not an important aspect: Given a Parikh automaton, one can in polynomial
time modify the automaton (and the target set) so that the target set is given,
e.g. by a semilinear representation, or a quantifier-free Presburger formula. This
is a simple consequence of the fact that one can translate Parikh automata into
integer VASS in logarithmic space [16, Corollary 1]. However, this conversion
does not preserve determinism, and for deterministic Parikh automata, it can
be important how target sets are given (see Corollary and the discussion

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

after it). Therefore, for deterministic Parikh automata, we always specify how
the targets sets are given.

Separability A subset L C M of a monoid M is recognizable if there is a
morphism : M — F into some finite monoid F' such that ¢=*(o(L)) = L. The
recognizable subsets of M form a Boolean algebra [47, Chapter III, Prop. 1.1].
We say that sets K, L C M are (recognizably) separable, denoted K | L, if there
is a morphism ¢: M — F into some finite monoid F such that ¢(K)Ne(L) = 0.
Equivalently, we have K | L if and only if there is a recognizable S C M with
K C Sand SNL = 0. Here, S is called a separator of K and L. Clearly, we
have K | L if and only if L | K: if S is a separator of K and L then M \ S
separates L and K.

In the case M = X* for some alphabet X', the recognizable sets in X* are
exactly the regular languages (cf. [48, Theorem I1.2.1]), and thus we speak of
regular separability. In the case M = N¢ for some d > 0, then the recognizable
subsets of N¢ are precisely the finite unions of cartesian products Uy x - - - x Uy,
where each U; C N is ultimately periodic [47, Theorem 5.1|. Here, a set U C N
is wltimately periodic if there are ng,p € N\ {0} such that for all n > ng, we
have n € U if and only if n + p € U. This implies that the recognizable subsets
of N? are precisely those definable by a monadic Presburger formula, i.e. one
where every atom only refers to one variable [38]. For these reasons, in the case
of M = N?, we also sometimes speak of monadic separability.

In a recognizable separability problem, we are given two subsets K and L from
a monoid M as input, and we want to decide whether K and L are recognizably
separable. Again, in the case of M = X* we also call this the reqular separability
problem.

3. Main results

Recognizable separability of semilinear sets Our first main result is
the following.

Theorem 3.1. Given two semilinear sets defined by existential Presburger for-
mulas, recognizable separability is coNP-complete.

The lower bound follows with a simple reduction from the emptiness problem
for sets defined by existential Presburger formulas: If ¢ defines a subset K C N¢,
then K | N if and only if K is empty. We prove the coNP upper bound in
Section By the same argument, recognizable separability is coNP-hard for
input sets given by quantifier-free formulas. Thus:

Corollary 3.2. Given two semilinear sets defined by quantifier-free Presburger
formulas, recognizable separability is coNP-complete.

In particular, this re-proves the coNP upper bound for monadic decompos-
ability of quantifier-free formulas, as originally shown by Hague, Lin, Riimmer,
and Wu [40, Theorem 1].

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Remark 3.3. Our result also implies that for existential Presburger formulas
over (Z; +,<,0,1, (=m)men foy) defining K, L C Z%, it is coNP-complete to de-
cide whether they are separable by a monadically defined subset of Z¢. Indeed,

consider the injective map v: Z¢ — N2 where v(x1,...,24) = (0(21), |71],- .., 0(za), |zd])

with o(x) = 0 for x > 0 and o(x) = 1 for < 0. Then S C Z¢ is monadically
definable if and only if v(S) is monadically definabl Thus, K,L C Z¢ are
monadically separable if and only if v(K),v(L) C N?? are monadically separa-
ble. Finally, one easily constructs existential formulas for v(K), v(L).

Since for a given semilinear representation of a set S C N, it is easy to
construct an existential Presburger formula defining S, Theorem [3.1]also implies
the following.

Corollary 3.4. Given two semilinear representations, recognizable separability
is coNP-complete.

In this case, the coNP lower bound comes from the NP-hard membership
problem for semilinear sets (even if all numbers are written in unary) [49]
Lemma 10]: For a semilinear subset S C N¢ and a vector u € Nd, we have
u ¢ S if and only if S| {u}. Finally, Theorem allows us to settle the
complexity of recognizable separability of rational subsets of X* x N%.

Corollary 3.5. Given d € N and two rational subsets of X* x N?, deciding
recognizable separability is coNP-complete.

Decidability was first shown by Choffrut and Grigorieff [44, Theorem 1]. The
coNP upper bound follows because Choffrut and Grigorieff [44, Theorem 10] re-
duce recognizable separability of subsets of £* x N? to recognizable separability
of rational subsets of N2? (and their reduction is clearly in polynomial time).
Moreover, for a given rational subset of N?? one can construct in polynomial
time an equivalent existential Presburger formula [50, Theorem 1]. Thus, the
upper bound follows from Theorem Since semilinear sets in N¢ (given by a
semilinear representation) can be viewed as rational subsets of N¢ (and hence
of X* x N9), the coNP lower bound is inherited from Corollary

Regular separability of Parikh automata Our second main result is
the following:

Theorem 3.6. Regular separability for Parikh automata is coNP-complete.

The coNP lower bound comes via the coNP-complete emptiness problem:
For a given Parikh automaton accepting a language K C X*, we have K | X*

3This is easily shown by translating each atomic formula (over a single variable) into a
monadic formula in each direction. However, note that within Z%, monadic definability is not
the same as recognizability. For example, the sets {0} and Z \ {0} are monadically separable,
but not separable by a recognizable subset of Z, since every non-empty recognizable subset of
Z is infinite [47, Chapter III, Example 1.4].

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

if and only if K = (. Thus, the interesting part is the upper bound, which we
prove in Section [6] This is a significant improvement to the previously known
elementary (or finitely iterated exponential time) complexity upper bound by
Clemente, Czerwinski, Lasota, and Paperman [7].

Theorem [3.6] can also be applied to deciding regularity of deterministic
Parikh automata.

Corollary 3.7. For deterministic Parikh automata with target sets given as
quantifier-free Presburger formulas, deciding regularity is coNP-complete.

Decidability of regularity was shown by Cadilhac, Finkel, and McKenzie [20]
Theorem 25] (in the slightly more general setting of unambiguous constrained
automata). For the coNP upper bound, note that for a language L C X* given
by a deterministic Parikh automaton (with quantifier-free formulas for the tar-
get sets), one can in polynomial time construct the same type of automaton
for the complement X* \ L. Since L is regular if and only if L and X* \ L are
separable by a regular language, we can invoke Theorem The coNP lower
bound is inherited from monadic decomposability of quantifier-free formulas.

Indeed, given a quantifier-free Presburger formula ¢(x1,...,x,) with free vari-
ables (z1,...,x,), one easily constructs a deterministic Parikh automaton (with
quantifier-free target sets) for the language L, = {a7* ---aZ" | p(z1,...,2,)}.

As shown by Ginsburg and Spanier [51, Theorem 1.2|, L, is regular if and
only if ¢ is monadically decomposable. However, monadic decomposability for
quantifier-free formulas is coNP-complete [40, Theorem 1].

For the coNP upper bound in Corollary we cannot drop the assumption
that the formula be quantifier-free. This is because if the target sets can be exis-
tential Presburger formulas, then the regularity problem is coNEXP-hard. This
follows by the same reduction from monadic decomposability: If we construct
L, as above using an existential formula ¢, then again, L, is regular if and
only if ¢ is monadically decomposable. Moreover, monadic decomposability for
existential formulas is coNEXP-complete [41] Corollary 3.6].

4. A characterization of separability in hyperlinear sets

Before we prove our two main results, Theorems[3.1]and we should recall
the ideas of the existing algorithms [8] [44] for recognizable separability of linear
sets. We will use these ideas to obtain a new characterization of separability in
hyperlinear sets.

Let Ly, Ly C N be two linear sets. The algorithms |8, 44] rely on a procedure
that successively eliminates “bounded components” If, say, L; is bounded in
component j by some b € N, then one can observe that Ly | Ly if, and only if,
Li[j = x]|La]j — z] for every x € [0,b]. Here, L;[j — x] is L; restricted to those
vectors that have x in the j-th component, and then projected to all components
j. Therefore, the algorithms of [8,[44] recursively check separability of L;[j —
z] and Lo[j — z] for each « € [0,b]. This process invokes several expensive
intersection operations on semilinear sets and thus has high complexity. Instead,

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

our approach immediately guesses and verifies the set of components that remain
after the elimination process. The corresponding checks involve the notion of
twin-unboundedness.

Twin-unbounded components Our notion applies, slightly more gener-
ally, to hyperlinear sets. Hence, let R=A+U* C N® and S = B+ V* C N% be
two hyperlinear sets where A, B, U,V C N? are finite sets.

Definition 4.1. A coordinate j € [1,d] is twin-unbounded for R and S if there
exist p € U* and g € V* such that j € supp(p) = supp(q).

Hence, intuitively, twin-unbounded coordinates are those that can be made
large/driven up in R in the same way as in S. We will present yet another
characterization of twin-unbounded coordinates. Let j € [1,d]. We say the j-th
coordinate of the hyperlinear set S = B + V* is bounded if there is no period
vector in V' with support on j, i.e., j ¢ supp(p) for all p € V. We say that a
subset J C [1,d] of coordinates is bounded in S if each j € J is bounded in S.

Consider the following process: Given two hyperlinear sets R and S. We
modify R and S by performing each of the following three steps for each coor-
dinate j € [1,d] until the sets of remaining period vectors in R and S stabilize:

e If neither R nor S is bounded at j, we leave S and R untouched.

e If only R is bounded at j, we remove all period vectors from S which have
support on j.

e If only S is bounded at j, we remove all period vectors from R which have
support on j.

Then, the coordinates that remain unbounded are precisely the twin-unbounded
ones.

Example 4.2. Consider R = {(1,0,1)}* and S = {(1,1,0),(0,0,1)}*. Then R
is bounded by the value 0 at coordinate 2. So R and S are separable if and only
if R and S restricted to the vectors having the value 0 in the second coordinate.
So, we only consider this restriction of S—in our algorithm this is reflected by
the deletion of the period vector (1,1,0) of S. After deletion of the period vector
(1,1,0), S is bounded at coordinate 1 by the value 0. So, we remove the period
vector (1,0,1) from R. Finally, the period vector (0,0,1) of S gets removed
since R is now bounded at coordinate 3. Hence, our algorithm terminates in
this case with no twin-unbounded coordinates. This example shows that even if
R and S both are unbounded in coordinates 1 and 3, none of these coordinates
is twin-unbounded.

If R=1{(1,0,1),(0,1,0)}* and S = {(1,1,0),(0,0,1)}*, then no coordinate
is bounded in R and S. Hence, all coordinates are twin-unbounded and no
period vector gets removed.

For J C [1,d], we write Uy = {p € U | supp(p) C J} and V; = {q € V|
supp(q) € J}.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

Separating by modular constraints As observed in [8] [44], if all coor-
dinates of two linear sets L;, Lo are unbounded, then separability holds if and
only if the two sets can be separated by modulo constraints. This relies on the
well known fact that finitely generated abelian groups are subgroup separable,
i.e. that for every element u € Z¢ that does not belong to a subgroup A C Z¢,
there exists a homomorphism ¢: Z¢ — F into a finite group F such that (i) 4 is
included in the kernel of ¢ and (ii) ¢(u) # 0. In our characterization (Propo-
sition we will use similar arguments and therefore we will recall subgroup
separability here.

Lemma 4.3 (Subgroup separability). If A C Z¢ is a subgroup and u € Z\ A,
then there is an s € N, s > 0, and a morphism ¢: Z¢ — 7./sZ with (i) (A) = 0

and (i) p(u) # 0.

Proof. Consider the quotient group Z%/A. It is finitely generated and abelian
and thus isomorphic to a group @;:1 Z/r;Z for some numbers rq,...,7, € N.
The projection map 7: Z¢ — Z?/A can thus be composed with the isomorphism
above to yield a morphism v: Z¢ — @D)_, Z/r;Z with ker¢p = A. Since u ¢ A
and thus ¥ (u) # 0, say the j-th component of ¥ (u) is not zero. We distinguish
two cases:

(1) If r; > 0, then we can choose p: Z% — Z/r;Z to be 1 followed by the
projection to the j-th component.

(2) If r; = 0, then Z/r;Z = Z and thus the j-th component of ¥(u) is an
integer k € Z. We pick some s > |k| and let ¢: Z¢ — 7/s7 yield the j-th
component of ¥, modulo s.

These choices clearly satisfy ¢(A) = 0 and p(u) # 0. O

Separability vs. intersection emptiness We will now characterize in-
separability of hyperlinear sets R, S via the intersection of two hyperlinear sets
R and § associated with R, S. The proof will rely on an equivalence relation of
vectors. For vectors u,v € N? and k € N\ {0}, we write u ~ v if for every
i € [1,d], we have
(1) ufi] = v[i] <k or
(2) wfi],v[i] > k and u[i] = v[i] mod k.

The following was shown in [8, Prop. 18].
Lemma 4.4. For any sets X, Y C N?, the following are equivalent:

(1) X and Y are not separable by a recognizable set.
(2) for each k € N\ {0} there are x € X and yx, € Y with xy, ~i, yx.

Let k,¢£ € N\ {0} be such that k divides £. We can observe that w ~;y v
implies 4 ~ v in this case. Thus, to show recognizable inseparability of two
sets X, Y C N?, it suffices to find x;, € X and y;, € Y for almost all numbers
k € N\ {0}. We will use this fact in the proof of the following characterization
of inseparability.

10

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

Proposition 4.5. Let R=A+U* CN% and S = B+ V* C N? be hyperlinear
sets. Then R and S are not separable by a recognizable set if and only if the
intersection

(A+U* —UN(B+V* -V} (1)

is non-empty, where J C [1,d] is the set of coordinates that are twin-unbounded
for R, S.

Proof. Suppose there is a vector in the intersection . Then we can write
r=u—uwandx=v—-vwithuec A+U",veB+V*, ucUj and veVj.
Since J is twin-unbounded for R and S, there are—Dby definition—p; € U* and
g; € V* with j € supp(p;) = supp(q;) for each j € J. Then for p := Zjerj
and q := Zje] g; we infer J C supp(p) = supp(q). Now for each k € N'\ {0},
consider the vectors

up=u—u+2k-p+k-u and vp=v—v+2k-q+k-v.

Then we have uy, v, € N? for each k € N\ {0}. We claim that u, ~ vy, for all
k. Indeed, on coordinates j € [1,d] \ supp(p), the vectors u; and vy coincide
with @. Moreover, on coordinates j € supp(p), both vectors uy and vy are
larger than k and also congruent to «[j] mod k. Hence, uy ~j, vy. Since clearly
up=u+2k-p+(k—1)-u€ Rand vy, =v+2k-q+(k—1) v € S, Lemma 4.4
implies that R and S are not separable.

Conversely, suppose that R and S are not separable. Then by Lemma [4.4]
there are uy, € R and vy € S with uy ~j vy for every k € N\ {0}. We claim
that the sequences uq,us,... and v1,vs, ... have subsequences u},u), ... and
v}, vy, ... such that for every k > 1, we have (i) u, € uj + U3, (i) v}, €
v}, + V5 and (iii) u) ~yp v},

The claim is easy to observe: Note that by picking subsequences, we may
assume that even wj ~p v for every k > 1. Moreover, the latter property
is preserved by taking subsequences. Thus, since A, B are finite, by picking
subsequences again, we may assume that there are » € A and s € B such that
up € 7+ U and vy € s+ V* and uy, ~p v for k£ > 1. Then, by Dickson’s
lemma, we may assume that in addition ug41 € up+U* and vg41 € v+ V™ for
every k > 1 (here, we apply Dickson’s lemma to the |U|-dimensional vectors of
coefficients at period vectors in U and similarly for V). Now since wy ~p1 vy for
every k, it follows that the sequences w1, us,... and vy, vs,... are unbounded
on the same set J C [1,d] of coordinates. Then clearly, J is twin-unbounded
for R and S. This means, for all but finitely many &, we have uy41 € up + Uj
and vi41 € vy + VJ. Hence, by picking another subsequence, we may assume
that the latter holds for every k > 1. Then, u, us, ... and v1, vo, ... satisfy the
properties (i-iii) above, establishing our claim.

We now claim that u; — v; belongs to the group (Uy U V) generated by
U;UV;. Towards a contradiction, suppose u; —v; does not belong to (U;UVy).
By Lemma 4.3 there must be an s € N, s > 0, and a morphism ¢: Z¢ — Z/sZ

11

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

such that ((U; UV;)) =0 and ¢(u; — v1) # 0. However, the vector

(us —vs) — (U —v1) = (us — u1) — (v — 1)
—_——— ——
e(Uy) e(Vy)

belongs to (U;UVy), but also agrees with u; —wv; under ¢ (since all components
of us — v, are divisible by s), contradicting Lemma Hence uwqy — v1 €
<UJ U V]>

This means, we can write u; —v; = v — 9 — (v — u) with u,@ € U} and
v,v € V. But then the vector u; +u—1u = v; +v— belongs to the intersection

(i} 0

With Proposition we have now characterized inseparability of subsets
of N? via a particular intersection of two sets in Z?¢. It will later be more
convenient to work with intersections of sets in N¢, which motivates the following
reformulation of Proposition

Theorem 4.6. Let R=A+U* CN? gnd S = B+ V* C N¢ pe hyperlinear
sets. Then R and S are not separable by a recognizable set if and only if the
intersection

(A+U"+Vy)N(B+V*+Uj) (2)

is non-empty, where J C [1,d] is the set of coordinates that are twin-unbounded

for R, S.

Proof. Direct consequence of Proposition since clearly A4+-U*—U} intersects
B+ V* -V ifand only if A+ U* + V; intersects B + V* 4+ Uj. O

5. Separability of semilinear sets is in coNP

Using the characterization Theorem [£.6] we can now explain our algorithm
for the coNP upper bound in Theorem [3:I] We describe an NP algorithm that
establishes inseparability.

Algorithm Step I: Solution sets to linear Diophantine equations
Let us first see that we can reduce the problem to the case where both input
sets are given as projections of solution sets of linear Diophantine equations. We
may assume that the input formulas are of the form Jx: k(x,y), where « is a
formula consisting of conjunction and disjunction (i.e. no negation) of atoms of
the form ¢ > a, where ¢ is a linear combination of variables @ = (21,...,2,),y =
(y1,.-.,Ym) and integer coeflicients, and a is a constant.

Let ¢ be a formula as described above. It is a well known fact that ¢ can
be transformed into disjunctive normal form. This means, ¢ is equivalent to a
formula @1 V- - - Vi, where each ¢; (a so-called clause) has the form 3x: {(z, y)
such that £ is a conjunction of atoms appearing in ¢. In general, the number of
clauses of ¢ is exponential.

12

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Now, let ¢ and 9 be the input formulas of the algorithm and let 1 V---V @y
and ¥y V- -+ V1 be their equivalent formulas in disjunctive normal form. Since
the number of clauses is exponential, we cannot compute all clauses for ¢ and .
However, the solution sets of ¢ and i are recognizably inseparable if, and only
if, for some pair 7, j, the solution sets of the formulas ¢; and 1; are recognizably
inseparable. This is due to the following fact, which follows standard ideas.

Lemma 5.1. Let K, Kq,...,K,,L C M be sets from a monoid M such that
K=K,U---UK,. Then K | L if, and only if, K; | L for all 1 <i <n.

Proof. Assume K | L. Then there is a recognizable set S C M separating K
and L. Let 1 < i < n be arbitrary. Since K; C K holds, the set S is also a
separator of K; and L, i.e., K; | L forall 1 <i <n.

Conversely, assume K; | L for all 1 <4 < n. Then there are recognizable
sets S; C M separating K; and L. Set S :=J;.,,, Si- Then S is recognizable
(according to the closure properties of the class of recognizable sets). We also

have
K= |J Kic |J Si=58
1<i<n 1<i<n
and
cnS=rLn| | S|= | @&ns)= D=0.
1<i<n 1<i<n 1<i<n
In other words, S is a recognizable separator of K and L, i.e., K | L. O

Thus, for deciding the inseparability of the solution sets of ¢ and 3 in NP
it is sufficient to guess (in polynomial time) clauses ¢; and 1; and show that
inseparability of the solution sets of these two formulas is decidable in NP.
Therefore, from now on we can assume that the input formulas are (existentially
quantified) conjunctions of atoms of the form ¢ > a.

In particular, each of the two input sets is a projection of the solution set
of a system of linear Diophantine inequalities. By introducing slack variables
(which will also be projected away), we can turn inequalities into equations.
Thus, we have as input sets K, L C N? with

K=n({xeN |Ax=b}) and L=n({zeN' |Czx=d}), (3)

where 7: Z" — Z% is the projection to the first d components, and A, C' € Z5*"
are integer matrices and b, d € Z° are integer vectors. Note that here, assuming
that the number r of columns and the number s of rows are the same for K and
L means no loss of generality.

Algorithm Step II: Recognizable inseparability as satisfiability In
the second step, we will reduce recognizable inseparability of K and L to satis-
fiability of an existential Presburger formula. To this end, we use the fact that
the solution sets to Az > b (resp. Cx > d) are hyperlinear sets, which allows
us to apply Theorem [4.6]

13

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

Proposition 5.2. K and L are recognizably inseparable if, and only if, there
are vectors p,q,uw,v,x,y € N" with

(1) Ap=0, Cq =0, and supp((p)) = supp(7(q)),
(2) supp(r(u)), supp(w(v)) C supp(n(p)), Au =0, and Cv = 0,
(3) Az =b, Cy=d, and m(x +v) = 7(y + u).

Proof. We apply Theorem [£.6] To this end, we use the standard hyperlinear
representation for solution sets of systems of linear Diophantine equations. Let
Ao C N" be the set of all (component-wise) minimal solutions to Az = b, and
let U C N”" be the set of all minimal solutions to Az = 0. Then it is well
known that K = 7(Ag + U*) = 7(A4p) + 7(U)*. In the same way, we obtain
a hyperlinear representation L = w(By + V*) = 7(By) + 7(V)*. Then, the
proposition follows from Theorem

Indeed, observe that then 7(U)* is exactly the set of 7(p) € N with Ap = 0.
Likewise, m(V)* is exactly the set of m(q) € N? with Cq = 0. Therefore, if J C
[1,d] is the set of twin-unbounded components of K, L, and U, V; are defined as
in Theorem then w(Uy)* consists of exactly those m(u) for which (i) there
are p,g € N with Ap = 0 and Cq = 0 with supp(w(u)) C supp(n(p)) =
supp(w(q)) C J, and (ii) Au = 0. The set m(V;)* has an analogous description.

Thus, if p,q,u,v,x,y € N" exist as in the proposition, then clearly m(x +
v) = w(y + u) lies in the intersection (w(Ag) + 7(U)* + «(Vy)*) N (w(Bo) +
T(V)* +7(Ujs)*).

Conversely, an element in the intersection (7(Ag)+7(U)*+7(Vy)*)N(7w(Bo)+
7(V)* + w(Uy)*) can be written as w(x + v) = m(y + u), such that Az = b,
Cy = d, and there are p;,q; € N" witnessing w € Uj and also ps,q2 € N”
witnessing v € Vj. This means, supp(m(u)) C supp(m(p1)) = supp(m(qi)),
Ap1 =0, and Cqy = 0, but also supp(v) C supp(m(p2)) = supp(r(qz)), Ap2 =
0, and Cgs = 0. But then we can use p := p; + p2 and q := q; + g2 to satisfy
the requirements of the proposition. O

Finally, Proposition [5.2] can be used to complete the proof of our first main
result:

Proof of Theorem[3.1] Let ¢ and v be two existential Presburger formulas with-
out negation and using only atoms of the form ¢ > 0, where ¢ is a linear combi-
nation of variables and integer coefficients. We give an NP algorithm deciding
inseparability by a recognizable set.

Since the solution sets of ¢ and v are inseparable if, and only if, their
disjunctive normal forms have at least one pair of inseparable clauses, we guess
such a pair of these clauses ¢; and ¢; (cf. Lemma. We can transform ¢; and
t; into Diophantine equations Az = b and Cx = d. Using Proposition @ we
obtain in polynomial time an existential Presburger formula that is satisfiable if,
and only if, the solution sets of Az = b and Cx = d are inseparable if, and only
if, ¢; and v; are inseparable. Finally, the result follows from NP-completeness
of the existential fragment of Presburger arithmetic. O

14

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

6. Regular separability of Parikh automata

We now prove our second main result: the coNP upper bound of regular
separability of Parikh automata (Theorem [3.6). For this, it will be technically
simpler to work with Z-VASS, which are equivalent to Parikh automata. In
[16, Corollary 1], it was shown that the two automata models can be converted
(while preserving the language) into each other in logarithmic space. Therefore,
showing the coNP upper bound for Z-VASS implies it for Parikh automata.

Integer VASS A (d-dimensional) integer vector addition system with states
(Z-VASS, for short) is a quintuple V = (Q, X, T, ¢, f) where @ is a finite set of
states, X is an alphabet, T C Q x Y. x Z% x Q is a finite set of transitions, and
L, f € Q are its source and target state, respectively. Here, Y. = Y U {e}. A
Z-VASS V = (Q, X, T, f) is called deterministic if V has no e-labeled transi-
tions and for each p € Q and a € X there is at most one transition of the form
(p,a,v,q) € T (where v € Z% and ¢q € Q).

A configuration of V is a tuple from QxZ<. For two configurations (p, u), (¢, v)
and a word w € X* we write (p, u) —y (g, v) if there are states qo, q1,...,q €
Q, vectors vg,v1,...,v, € Z% and letters ay,...,a¢p € Y. such that w =
aras - -ag, (p,u) = (go,v0), (¢,v) = (g, v¢), and for each 1 < i < ¢ we have
a transition ¢; = (g;—1,ai,%;,q;) € T with v; = v;_1 + @;. In this case, the
sequence titg - - -ty is called a (w-labeled) run of V. The accepted language of V
is L(V) = {w e X* | (1,0) %y (f,0)}.

Let I C [1,d] be a set of indices. Then we can generalize the acceptance
behavior of the Z-VASS V as follows:

Lv,I)= {w e X* | Jv e 7% (¢,0) 5y (f,v) and 77 (v) = 0}.
Note that L(V,[1,d]) = L(V) holds.

An overview of the proof of Theorem The remaining part of this
section is dedicated to the proof of our second main result, Theorem [3.6l The
first few steps (Lemmas and are essentially the same as in [7],
for which we briefly give an overview: The authors reduce regular separability
to recognizable separability of semilinear sets in N (for some dimension d).
Concretely, instead of asking for the regular separability in two given Z-VASS
we separate quantities of cycles within runs of these Z-VASS. Accordingly, the
dimension corresponds to the number of (simple) cycles. Unfortunately, this
number is exponential in the size of the input and therefore we cannot just
use our first main result (Theorem to prove the coNP upper complexity
bound. Instead we will construct two Z-VASS (of polynomial dimension) ac-
cepting sequences of cycles such that their language intersection corresponds to
the intersection from Theorem (which is non-empty if, and only if, the
Z-VASS from the input are regularly inseparable). Intersection for Z-VASS is
known to be in NP implying also the NP upper complexity bound for the regular
inseparability problem resp. the coNP upper bound for the separability problem
of Z-VASS.

15

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

6.1. Reduction to separability of semilinear sets
6.1.1. Determinizing the automata

As announced, we will first follow the reduction from [7]. In the first step,
the regular separability problem of nondeterministic Z-VASS can be reduced
to the same problem in deterministic Z-VASS. This reduction is possible in
polynomial time which is a bit surprising at first glance since determinization
typically requires at least an exponential blowup. However, in this reduction
we determinize the Z-VASS “up to some homomorphic preimage”; i.e., from two
given Z-VASS V; and Vs, one constructs two deterministic Z-VASS W, and W,
with (i) LOW;) = h=Y(L(V;)) where h: I'* — X* is a homomorphism and (ii)
L(V1)|L(Vs) if, and only if, LOV;)| L(W>) holds. Since our setting is technically
slightly different from [7], we include a proof below.

Lemma 6.1 (|7, Lemma 7|). Regular separability for Z-VASS reduces in poly-
nomial time to the regular separability problem for deterministic Z-VASS.

Before we can prove Lemma [6.1] we first need the following statement.

Claim 6.2. Let K,L C X* be two languages and h: I'* — X* be an alphabetic
morphisn{l} If K' C h™'(K) with h(K') = K, then we have

K|L < K'|h L).

Proof. First, assume K | L. Then there is a regular separator R C X* of K and
L,ie.,wehave K C Rand LN R =0. Set R := h~'(R) C I'*. R’ is regular
since the class of regular languages is closed under inverse morphisms. We also
have K’ C h™!(K) C h™'(R) = R'. Additionally, we have h=*(L)Nh~1(R) =0
since the existence of an element w € h~!(L)Nh~!(R) would imply h(w) € LNR.
This means, R’ is a regular separator of K’ and h=1(L), i.e., K' | h=1(L).
Conversely, assume K’ | h~!(L). Then there exists a regular separator R’ C
I'* of K" and h=1(L), i.e., we have K’ C R’ and h~*(L)NR' = (. Set R := h(R')
which is a regular language since the class of regular languages is also closed
under morphisms. Then we have K = h(K’) C h(R') = R. Also LNR = {) holds:
towards a contradiction suppose there is w € LNR. From w € R = h(R’) follows
the existence of a word w’ € R’ with h(w') = w. We also infer w’ € h=*(L)
from w € L. Hence, we have w’ € h~*(L) N R’ = (—a contradiction. All in all,
we proved that R is a regular separator of K and L, i.e., K | L. O

Proof of Lemmal6.1 The proof of this lemma is similar to [7, Lemma 7|: let
Vi = (Qi, X, Ty L4, fi) with ¢ = 1,2 be two Z-VASS. From V; and V, we will
construct two Z-VASS V! = (Q;, I, T}, v;, f;) such that V] is deterministic and
we have

LWV1) [L(V2) <= L(V1) | L(Vy).

We will obtain the determinism of V] by making each label of a transition in
V; unique. So, set I' = Tj. Ty is obtained from Tj by replacing each transition

4A morphism h: I'* — X* is alphabetic if |h(a)| < 1 holds for each letter a € I".

16

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

t = (p,a,x,q) € T1 by the new transition (p,t,x,q). Using this translation we
also obtain a morphism h: I'* — X* with h((p, a,x,q)) = a for each transition
(p,a,z,q) € I' = Ty. Then we obtain V} from V, with L(V5) = h=1(L(V2))
by replacing each label a € X of a transition in T4 with all labels ¢t € T} with
h(t) = a. Additionally, to each state of V, we add loops labeled with ¢t € T
satisfying h(t) = e. Formally, this is the following set of transitions:

T2/ = {(p7tawaq) | te Tla (p7h(t)a$7q) € TQ}
U{(p.t,0,q) | p,qg € Q,t € Ty, h(t) =¢}.

Note that this is a well known construction for the application of the inverse of
an alphabetic morphism and, hence, we have L(V5) = h=Y(L(Vy)).

Since each letter from I" occurs in exactly one transition of Vi, this Z-VASS
is deterministic. Additionally, Vi and Vj can be constructed from V; and Vs in
polynomial time. It is also clear that the morphism A is alphabetical. We can
also prove the following properties:

1. L(V{) € h™1(L(V1)): Let w € L(V;). Then there is an accepting run
thth -ty in V| with ¢; = (¢i—1,t;,®i,¢;) € T] for each 1 < i < £. In
particular, we have w = tyty---t;, € Ty. By definition of V; we have
t; = (¢i-1,0i,¢i,q) € Ty for an a; € X.. But this means that w =
tity - - - tp is an accepting run in V] labeled by ajas -« - ay, i.e., ajas - -ay €
L(Vy). Moreover, we have h(w) = h(tita---ty) = ajaz---ap implying
w € h™Y(ajaz -+ -ag) Ch 1(LOV)).

2. h(L(Vy)) = L(V1): A word w € X* is in h(L(V})) if, and only if, there
is a word w’ € L(V{) C I'* with w = h(w’). This is exactly the case
if there is an accepting run ¢jt5---t, in V| that is labeled with w’, i.e.,
we have t, = (gi—1,t;, ®;,q;) € T{ and w' = t1t2---t;. By construction
this is equivalent to an accepting run 15 ---t, in V; that is labeled with
h(w') = w. But this is exactly the definition of w € L(Vy).

Now, we can apply Claim [6.2] and obtain
L) | L(Ve) <= L(Vy)| L(V3).

In a final step, we can apply the same polynomial-time procedure to V5 and
Vi to determinize V5. The result are two Z-VASS V" and VY with

LWV1) | L(V2) <= L(V1)|L(V3) <= LOY) | L(V3).

While VY is deterministic by construction, it is not clear that the same holds
for V{'. However, due to the fact that V{ and V) do not have any e-transitions,
our construction does not introduce any loops in V;' compensating e-transitions
in Vj. Hence, V7' is also deterministic. O

6.1.2. Unifying the automata

Next, we reduce regular separability for deterministic Z-VASS to regular
separability of two languages accepted by the same deterministic Z-VASS, but

17

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

with different sets of counters. To this end, given two d-dimensional Z-VASS V,
and V, we construct one 2d-dimensional Z-VASS V (using product construction)
and two index sets Iy, I C [1,2d] such that L(V;) = L(V, I;).

Lemma 6.3 ([7, Proposition 1]). Regular separability for deterministic Z-VASS
reduces in polynomial time to the following problem:

Given: A d-dimensional deterministic Z-VASS V with two sets Iy, I3 C [1,d].
Question: Are the languages L(V,11) and L(V, I3) regularly separable?

Proof. Let V; = (Qq, X, T, i, fi) be two deterministic d-dimensional Z-VASS.
We apply the product construction and obtain a new deterministic 2d-dimensional
Z-VASS Vl X Vg = (Ql X Q27 E,T, (Ll, LQ), (fl, fg)) with

ir @, Vi, ;) € T;
T= {((PMPQ),C% (v1,v2), (q1,92)) (pfor all Z_q:) 1.9 }

We show now that L(V;) | L(V2) holds if, and only if,
LOV1 x Vo, [1,d]) | LOV1 x Vo, [d + 1,2d]) .

Let A; = (Qi, X, A, i, {fi}) with A; = {(p,a,q) | Iv € Z%: (p,a,v,q) € T;} be
the DFA obtained from V; (for ¢ = 1,2) by removing all counter updates from
the transitions. Then we can observe that L(V; x Vs, [1,d]) = L(V;) N L(A3)
and L(Vy x Vs, [d+ 1,2d]) = L(V,) N L(A;) holds.

Assume that L(V;) | L(Vz) holds. Then there is a regular separator R C X*
with L(V1) € R and L(V2) N R = (. Since L(Vy x Va,[1,d]) = L(V;) N L(A2) C
L(V1) and, similarly, L(V; x Vs, [d+ 1,2d]) C L(V2) holds, the regular language
R is also a separator of L(V; x Va,[1,d]) and L(Vy X Vs, [d + 1,2d]).

Conversely, let R C X* be a regular separator of L(V; X Vs, [1,d]) and
L(Vi x Vo, [d + 1,2d]). Set B = (RN L(A;)) U (2% \ L(As)). Clearly the
language R’ is regular. We also have

L(V1) = (L(V1) N L(A2)) U (L(V1) N 27\ L(A2))
= (LOV1) N L(A2) N L(A1)) U (L(V1) N 2%\ L(Az)) (by L(V1) € L(A))
C(RNL(A))U(LOW) N X"\ L(A2)) (R is a separator)
C (RNL(Ay)) U (27 \ L(A2))
=R.

Additionally, by L(V2) C L(A2) we have L(Vs) N (X*\ L(Az)) = 0 and
(RNL(A))NLOVs) = RNL(Vy X Vo, [d+1,2d]) = 0

implying L(V2) N R’ = 0. Hence, R’ is a regular separator of L(V;) and L(Vs).
U

Therefore, we now fix a Z-VASS V = (Q, X, T, ¢, f).

18

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

6.1.3. Skeletons

Now, we want to further simplify the regular separability problem. Con-
cretely, we want to consider only runs in V that are in some sense similar. We
consider some base paths—so called skeletons—in V. Two runs in V are similar
if they follow the same base path and only differ in the order and repetition of
some cycles. We define the function skel: 7% — T* such that skel(r) = p for a
path r € T in V such that p is a sub-path of the original path r in which we
keep the same set of visited states while removing all cycles that do not increase
the set of visited states. Here, p is called the skeleton of r.

Let t1---ty € T* be a path in V, i.e., we have t; = (gq;—1,ai,x;,q;) € T for
each 1 < i < ¢. The map skel is defined inductively as follows: skel(e) = ¢
and skel(t1) = ¢;. For 1 <14 < £ assume that skel(t; ---t;) = s1---s; is already
constructed and that s;---s; is a path ending in ¢;. Now we consider the
transition ¢;y1. If there is no transition s; (with 0 < k < j) with target state
qi+1, W€ set skel(t1 s titi—i-l) = 81 Sth_l. Note that 81 Sjti_;,_l is a path
ending in the state g;41.

Otherwise, let 0 < k < j be maximal such that s ends in ¢;4+;. Then
Sk41- " S5ti41 is a cycle in V (note that sgy1 starts with ¢; 41 since s; - -85
is a path). If all states occurring in the cycle sg41---sjti+1 also occur in the
path sq---sg, then we set skel(ty - - t;t;1) = s1--- Sk, l.e., we omit the cycle
Sk+1 - S;ti+1 in the skeleton. Note that the skeleton s; - - - s, is a path ending in
¢i+1- Otherwise at least one state in the cycle does not occur in the path sq - - - s.
In this case, we simply add t,11 resulting in skel(¢; ---titir1) = s1---S;tit1
where 51 ---5;t;41 is also a path ending in ¢;1. Note that any skeleton of V
has length at most quadratic in the number of transitions |7'| as shown in [7|
Lemma 10].

Let p be a skeleton. A p-cycle is a cycle that only visits states occurring in
p; a p-run is a run r € T™ with skeleton skel(r) = p (i.e., r is obtained from
p by inserting p-cycles). We write L(V, I, p) for the set of all words in L(V,I)
accepted via p-runs.

Lemma 6.4 ([7, Lemma 11]). We have L(V,Iy) | LV, I2) if, and only if,
LWV, 11, p) | L(V, I, p) holds for every skeleton p.

Although this was essentially shown in |7, Lemma 11], our setting is strictly
speaking slightly different (e.g. we have all short rather than only simple cycles),
so we include a detailed proof below.

Proof. First, note that there are only finitely many skeletons: Clemente et
al. proved in [7, page 9] that each skeleton has length at most |Q|?>. Hence,
there are at most |T[/!" many skeletons in V. It is also clear that L(V,I) =
Uskeleton pof V LO}’ I, p) holds.

Let p be a skeleton of V. There is also a regular language K, C X* such that
L(V,1,p)=L(V,I)NK, holds: we can obtain a finite automaton accepting K,
from V and p by removing the counters and all edges and states that do not
belong to the skeleton p.

Finally, we use the following well known fact:

19

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

Claim 6.5. Let Ki,...,K, C X* be reqular languages partitioning X* and
Ly, Ly C X* be two languages. Then we have Ly | Ly if, and only if, Ly N K; |
Lo N K; holds for each 1 < i < n.

Now, if the languages K; are the regular languages K, for any skeleton p
and L; = LV, I;) for i = 1,2 we obtain that L(V,I;) | L(V, I2) holds if, and
only if, L(V,I1,p) = L(V, ;) N K, is regular separable from L(V,I;) N K, =
L(V, 12, p) O

Thus, it suffices to show that for a given skeleton p, one can decide regular
inseparability of L(V,I1,p) and L(V, I, p) in NP. So, from now on, we fix a
skeleton p and simply write L(I;) for L(V,I;, p). Since we only consider runs
that visit states that occur in p, we may also assume that V consists only of the
states occurring on p. In particular, we only say cycle instead of “p-cycle”.

6.1.4. Counting cycles

We now phrase a characterization of regular separability from [7] in our
setting. It says that regular separability of the languages L(Iy) and L(I3) is
equivalent to recognizable separability of vectors that count cycles. Here, we
only count short cycles of length at most |@Q|. This is possible since each cycle
can be decomposed into short cycles. In the following, we fix the set S C T=I<l
of all short cycles in VE|

For I C [1,d], we define: if t = (p,a,x,q) € T is a transition then the effect
Aj(t) of ¢t to the components in I is A;(t) = wr(x), i.e. the projection of the
counter update x to I. If r = t1to---t, € T* is a path, then the effect Af(r)
of r to the components in I is the sum of the effects of all transitions on this
path, i.e. Ay(r) = Zle Az(t;). Now, let u € N® be a multiset of short cycles.
Then the effect of u to the components in I is Ar(u) = Y gulc] - Ar(c). If
v € N7 is a multiset of transitions, then the effect of v to the components in I
is Ar(v) = > e v[t] - Ar(t). In case of I = [1,d] we will also write A instead
of Aj. Finally, we define

M(I) = {u e N|As(p) + Ar(u) =0} .

Hence, M (I) is the set of multisets of short cycles such that inserting them into
p would lead to an accepting run with acceptance condition I C [1,d]. Since
M(I) is the solution set of linear Diophantine equations, it is hyperlinear.

Observation 6.6. Let I C [1,d]. Then M(I) is hyperlinear, i.e., M(I) =
B+ V* for two finite sets B,V C N5,

Proof. The equation Ay, (p) + Ay, (u) = 0 is a system of linear equations (over
N%) and M (1) is the set of solutions of this equation system. Since the equations

5 Although Lemmas and are essentially the same as in [7], we are working
with short cycles, whereas [7] uses simple cycles. This will be crucial later, because short
cycles can be guessed on-the-fly in a finite automaton without storing the whole cycle.

20

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

785

786

787

788

789

790

are expressible in Presburger arithmetic, we obtain that M (I) is semilinear [46].
Hence, we have M(I) = J,<;<, wi + V;* (where u; € N¥ and V; € N¥ are
finite). We can see that the vectors in V; are solutions of the homogeneous
linear equation system Ay, (v) = 0 and the vectors u; satisfy the inhomogeneous
system Ar, (u;) = —Ar, (p). Therefore, we have u;+v € M(I) foreach1 <i <k
and v € (J; <<, V- According to this we can write the solution set M(I) also
as B+ V* where B = {u1,...,u} and V = |J; ., Vi. In other words, the set
M(I) is even hyperlinear. O

The following equivalence between regular separability of the languages L(I;)
and recognizable separability of the (hyperlinear) sets M (I;) was shown in [7]
Lemma 12]. It is straightforward to adapt it to our situation.

Lemma 6.7. We have L(I1) | L(I3) if, and only if, M(Iy) | M (I3).

Proof. Before we prove the equivalence, let us introduce a map cycles: 7% — N*
such that for each p-run r € T* we have cycles(r) = v € N° if r contains each
p-cycle ¢ € S exactly v[c] times.

Now, assume that L(I;)|L(I2) holds, i.e., there is a regular separator R C X*
with L(I;) € R and RN L(I3) = (. We will use Lemma[{.4] to show that M (1)
and M(I3) are separable by a recognizable set. To this end, we will give a
number k£ € N\ {0} such that vy ¢ v2 holds for each v; € M(I;) implying the
separability of M (I1) and M (I3).

For two words wy,ws € L* write w1 =g we if zw1y € R <= zwsy € R
for all z,y € X* (i.e., =g is the syntactic or Myhill congruence of R). Since R
is regular, the index of =p is finite and, hence, there is a number k € N\ {0}
such that

w® =g w?* for each w € £*. (4)

We show now vy » vo for each v; € M(I;). Towards a contradiction, assume
there are v; € M(I;) (for i = 1,2) with vy ~j vo. We construct runs r; € T*
such that skel(r;) = p and cycles(r;) = v; hold. For a short p-cycle ¢ € S
choose a prefix x. of p such that skel(z.c) = x. (note that for each cycle c € S
such an z. exists). Let cq,...,¢, be an enumeration of S such that |z.,| <
|Tey| < +-+ < Jx,,| holds. In the following we will write z; instead of x.,. Let
21y 2ng1 € T* such that z; = x1, z;2;01 = 2441 for each 1 < i < n, and
TpZntl = P, 1.€., we have p = z129 -+ 2 41. Set
T = zlc¥i[cl]2205i[c2] e chzi[c“]znﬂ .

Clearly we have skel(r;) = p and cycles(r;) = v; hold for i = 1,2. We can also
show that the labels wq,wy € X* of the paths rq resp. ro satisfy w; =g ws using
vy ~ v2 and repeated usage of the equation . However, v; € M(I;) implies
w; € L(I;). Since wy € L(I;) € R we also have wy € R (by w1 =g ws). Hence,
we have wy € RN L(I3) = 0—a contradiction.

Conversely, assume that M (I;) | M(I3) holds. Hence, there is a recognizable
set X C N° such that M(I;) € X and X N M(lz) = 0. Let R C X* be the
set of all labels of p-runs r € T* such that skel(r) = p with cycles(r) € X. We

21

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

show that R is a regular separator of L(I1) and L(Iy). We have L(I;) C R: let
w € L(I1). Then w is the label of a p-run r € T* with skel(r) = p. But then
we know cycles(r) € M(I;) C X implying w € R.

Now, suppose there is a word w € L(I3) N R. Then w is the label of runs
r1,r2 € T* with skel(r;) = p, cycles(r1) € M(I2) and cycles(rz) € X. Since
V is deterministic, we know that r1 = ro implying cycles(r1) = cycles(ra) €
M(I3) N X = P—a contradiction. Hence, we have L(I3) N R = 0.

Finally, we have to show that R is regular. To this end, we construct a
nondeterministic finite automaton that simulates p-runs by storing the image of
the map skel and cycles in its state. While the set of all skeletons is finite, the set
of vectors appearing in the image of cycles is not necessarily bounded. However,
since X is recognizable and, hence, semilinear we can evaluate the condition
cycles(r) € X for a path € T* using only a finite memory. Concretely we
guess a linear set w + P* C X where u € N¥ and P C N¥ finite (recall that X
is a finite union of such linear sets). Additionally, let P = {p1,...,p,}. The
NFA stores in its memory vectors w', pl,...,p), with ' < w and p; < p; for
all 1 < i < n. Whenever the simulation of skel detects a p-cycle, we increase
one of the vectors w/,p,...,pl,. If we reach one of the vectors p; due to this
detection procedure, we reset this vector to 0. The NFA accepts if its memory
contains the skeleton p and the (bounded) counter values u,0,...,0. Clearly,
this NFA accepts the language R. Hence, R is a regular separator of L(I;) and
L(Iy). O

6.2. Reducing inseparability to intersection

At this point, our proof deviates from the approach of [7]. According to
Lemmal6.7] it remains to decide whether M (I1)| M (1), where M (I;) and M (1)
are sets of vectors of dimension |S|, which is exponential. In Theorem [4.6) we
saw that recognizable separability of vector sets A+ U* and B + V* reduces to
intersection emptiness of A+ U* + V; and B + V* + U}, where J is a subset
of the twin-unbounded components. However, the exponential dimension of
M(I), M(I2) means a direct translation into existential Presburger arithmetic
would incur an exponential blowup.

Instead, our key observation is that one can reduce inseparability to in-
tersection emptiness of Z-VASS: The idea is to encode the intersecting vectors
u€ (A+U*+VH)N(B+V*+U3), where M(I,) = A+U*, M(I;) = B+V*, as
words containing the participating cycles. Thus, we guess a subset J of the twin-
unbounded components, and then construct in polynomial time two Z-VASS W,
and W, such that

L(Wl):{#cl#CQ"'#CM|mEN7 Cl,...,CmES, (I)(Cl,,Cm)EA+U*+V;},

()

LWs) = {#c1#ca - #em |[mEN, ¢1,...,¢m €8, ®(c1,...,cm) € B+V*+ UG},

(6)

where for cycles ¢y, ..., ¢, € S, the so-called Parikh vector ®(cy,...,cpn) € N¥
counts how many times each short cycle occurs in ¢1,...,¢p: If ¢ € S, then

22

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

®(cy,...,0m)[c] is the number of indices ¢ € [1,m] with ¢; = ¢. Note that then
clearly, (A+U* +V7)N (B + V* +Uj) # 0 if and only if L(W1) N L(W2) # 0.

The main challenge in constructing W; and W, is to guess a subset J of
twin-unbounded components, and for the Z-VASS to verify that a given cycle
belongs to J, without being able to store an entire cycle in its state. To solve
this, we we will characterize the twin-unbounded cycles in terms of its set of
occurring transitions.

6.2.1. Characterizing twin-unbounded cycles
We define for any 7' C T the set

si] = {ce =1

cisa cycle} .

Thus, S [T] C S is the set of all short cycles that consist solely of transitions
from 7.

Our characterization uses an adaptation of the notion of “cancelable produc-
tions” in Z-grammars used in [I6]. We define the homomorphism 9: N7 — 7%
as follows: for each transition ¢ = (p,a,x,q) € T we set 0(e;) = e, — ep, where
e; € NT and ey, e, € N¥ are unit vectors. Thus, d(u)[g] is the number of
incoming transitions to ¢, minus the number of outgoing edges from ¢, weighted
by the coefficients in u. A flow is a vector f € N” with 9(f) = 0. The following
is a standard fact in graph theory. For a proof that even applies to context-free
grammars (rather than automata), see [52, Theorem 3.1].

Lemma 6.8. A vector f € NT is a flow if and only if it is a sum of (the Parikh
vectors of) cycles.

The following notion will be key in characterizing which cycles are twin-
unbounded for M (I;) and M(I3). A transition ¢ € T is bi-cancelable if there
exist flows f1, f2 € NT such that (i) Az, (f1) =0 and Ap, (f2) = 0, (ii) t occurs
in both f; and in fo, and (iii) supp(f1) = supp(f2). In other words, ¢ is bi-
cancelable if it is part of two flows fi; and fo with the same support and with
effect zero (wrt. the components I; resp. I5).

Lemma 6.9. A cycle ¢ € S is twin-unbounded for M(Iy) and M(I2) if, and
only if, every transition in c is bi-cancelable.

Proof. For the “only if” direction, suppose that ¢ is twin-unbounded for M (I;)
and M (I3). Then by definition there exist sums of period vectors wi, us € NS
of M(I) resp. M(I3) with ¢ € supp(u;) = supp(uz). Define f; = 7(u;) € NT,
where 7: N® — N7 maps cycles to the number of occurrences of each transition
in these cycles. Then clearly f; are flows with Ay, (f;) = Ar, (u;) = 0, ¢ occurs
in both f; and in f5, and supp(f1) = supp(f2). Hence, all transitions in ¢ are
bi-cancelable.

For the “if” direction, suppose a cycle ¢ € S only contains bi-cancelable
transitions and write ¢ =ty - - -t,, for t1,...,t, € T. For each t;, there are flows
fi,1 and f; 2 witnessing that ¢, is bi-cancelable. Notice that f; := fi 1+ -+ fn1

23

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

Figure 1: The flow 7(ey) + (fi — 7(ew)) where the cycle u is depicted in bold blue and the
cycles of the flow f; —7(ey) are depicted in red. Note that the new flower shaped cycle is not
necessarily short, but can be easily split into short cycles.

and fo = fi2+ -+ fn 2 are flows as well and they have supp(f1) = supp(f2).
As flows, both fi and f; can be written as a sum of cycles: There are uy, us €
N% with 7(u1) = f1 and 7(us) = fo. Observe that Az, (u;) = Az, (us) = 0,
meaning u; and uy are sums of period vectors of M (1) and M (I3), respectively.
If we knew that c occurs in both w; and in us, and w1, us had the same support,
we could conclude twin-unboundedness of c¢. Since ui,us may not have these
properties, we will now modify them. Consider the set S’ = S[supp(f1)] =
S[supp(f2)]; hence S’ is the set of short cycles u € T™ such that supp(u) C
supp(f1) = supp(f2). By the choice of f; and fa, we know ¢ € S’. For each
cycle u € S’ the vectors f1 — 7(e,) and fo — 7(e,) are again flows, because
7(ey) is a flow. Now observe

3" rlew) + (i —(en) = 15| - fi

u€es’

for i = 1,2 (cf. Fig.[I)). Hence, the flow |S|- f; can be written as a sum of cycles
in which each cycle from S’ occurs. Moreover, in this sum, every occurring cycle
belongs to S’. This means, u},u) have the same support S’, which includes c.
Moreover, since 7(u}) = |S’|- f;, we know that Ay, (u}) = 0, meaning u} is a sum
of period vectors of M (I;), for i = 1,2. This means, c is indeed twin-unbounded
for M(I) and M(I). O

To construct our Z-VASS W; and W,, we first guess a set of transitions and
then verify that all of them are bi-cancelable. For the verification, we translate
the definition of bi-cancelability into an existential Presburger formula ¢, which
is satisfiable if, and only if, ¢ is bi-cancelable.

Lemma 6.10. Given a transition t € T, we can decide in NP whether it is
bi-cancelable.

Proof. We construct an existential Presburger formula ¢, which is satisfiable if,
and only if, ¢ is bi-cancelable. Recall that ¢ is bi-cancelable if, and only if, there
exist two flows fi, fo € NT such that the properties (i)—(iii) on page [23| hold.

24

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

We express in the following these three properties as quantifier-free Presburger
formulas using the variables x and 3y for each transition.

(1) Y1 = /\iG[l,d] Zt’:(p,a,v,q)GT ’U[Z] cxy =0A Zt’:(p,a,v,q)GT ’U[Z] Yy =0
(11) ¢2,t:xt>0/\yt>0
(111) 'LZJ3 = /\t’ET(‘rt’ >0+— Yy > 0)

Additionally, we have to express that fi and fy are flows. This is possible with
the following formula:

Yo = /\ Z Ty = Z Ty A Z Yy = Z Yoo -

q€Q t'=(p,a,v,q)€T t'=(q,a,v,p)ET t'=(p,a,v,q9)€T t'=(q,a,v,p)€T

Set ¢, = Jx, y: Yo A1 Ao Abs where & = (zy)per and y = (yp)y er are T-
vectors of variables. Clearly, (; is satisfiable if, and only if, ¢ is bi-cancelable. [

6.2.2. Constructing the Z-VASS

Lemma 6.11. There are Z-VASS Wy and Wy with LOW;) N L(Ws) = 0 if and
only if M(I1) | M(I3) holds. Wy and Wy can be constructed from V, Iy, and Iy
i nondeterministically polynomial time.

Let us now describe how the Z-VASS W; and W, are constructed. Con-
cretely, we build two Z-VASS that satisfy Eqs. and (6). But instead of
literally guessing the whole set J of twin-unbounded cycles (which could re-
quire exponentially many bits), we guess a set T C T of transitions in V and
then verify in NP that they are all bi-cancelable using Lemma[6.10} This means,
we will have

LWh) = {#aftea- - #em |meNcr,em € 5,8(cr, - oyem) € A+ U™ + Vg
(7)

LWs) = {#c1#tca- - #em |meN ey, ... em € 5,P(c1,...,¢m) EB+VT +U;m}
(8)

and from now on, we will also write J = S[T]. Note that the result of our
algorithm is correct, even when the guess for T is not the entire set of bi-
cancelable transitions: when L(W) intersects L(W) for some choice of T it
will do so for any larger choice of 7.

Ensuring membership in A 4+ U* The idea for constructing W; (and
analogously W) is simple. For each cycle in the input, it guesses whether it
belongs to A + U* or to V;[T]' Let up € N¥ and u; € N be the collection of

cycles guessed to be in A 4+ U* and in VS*[T]’
ug € A+ U™, we note that ug € A+ U™ is equivalent to Ar, (uo) + Ap, (p) =0,
where p is the skeleton guessed earlier in the algorithm. Thus, we can use ||
counters to sum up the effect of the cycles ug and add Ay, (p) once in the end.

Hence, these counters being zero in the end is equivalent to ug € A + U*.

respectively. To make sure that

25

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

044

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

*

St ! (7

that this is equivalent to Ap, (u;) = 0 and supp(wuy) C S[T]. Thus, our Z-VASS

has a separate set of |Iz| counters that carry the total effect of all the cycles in

w1. Moreover, it is easy to check that all cycles in w1 only use transitions in T.
Note that membership in B + V* and in U;[T] are checked similarly.

Ensuring membership in To make sure that u; € VS* , we note

Polynomial time construction Finally, we have to show that the con-
struction of Wi (and W) is possible in polynomial time. To this end, let
V = (Q,X,T,t,f) be the components of V and let p be a skeleton from ¢
to f visiting all states in Q. We construct a |I;| + |I2|-dimensional Z-VASS
Wy = (Q',I,T',, f) over the input alphabet I' = T'U {#}. The set of states
@' contains (among others) the states {¢, f}. We have a transition from ¢ to
f labeled with e and adding (Ap, (p),0) to the counters (note that since the
skeleton p is fixed for our construction, we can simulate it in one step). For
simulating cycles we then guess whether we simulate one in A + U* or one in

;m- For both cases we construct a gadget G which is the following automaton:

e The states of G consist of two states from) and a bounded counter with

values in [1,]Q]], i.e., {(p,¢,7) | p,qg € @,1 < j < |Q|} is the set of states

in G. Here, the state (p,q,j) has the following meaning: the simulation

of the cycle started in state p, we are currently in state ¢, and we can
simulate at most j more steps until finishing the cycle.

e There are transitions from ¢ to each state (¢, q,|Q|) with label # and
counter update (0,0).

e For each 1 < j < |Q| we have a transition from (p,q,j) to (p,¢',j — 1) if
V has a transition t = (q,a,x,q’) € T. The label of the new transition is ¢
and the counter update depends on the decision made at the beginning of
the simulation: if we are simulating a cycle in A+ U*, the counter update
is (7, (2),0). Otherwise it is (0,7, (x)). In the latter case we also have
to ensure that ¢ € 7' holds.

e We also have transitions from (p,q,j) back to ¢ if V has a transition
t = (qg,a,x,p) € T. The label and the counter update are defined as
above.

In other words, the gadget G is actually the computation graph that is truncated
to runs of length < |Q|. Note that each of the two gadgets has at most |Q|3
many nodes implying that W has polynomial size (in |Q)).

With this polynomial-time construction of W; and Ws, we are ready to prove
Theorem

Proof of Theorem[3.6, We give an NP algorithm for regular inseparability of two
Z-VASS (which can be obtained from Parikh automata in logarithmic space [16]
Corollary 1]).

26

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

Let V1 and Vs, be two d-dimensional Z-VASS. From V; and Vs we can com-
pute a single 2d-dimensional deterministic Z-VASS V and two sets I, I> C [1,2d)
in polynomial time such that L(V;)|L(V2) holds if, and only if, L(V, I) | L(V, I2)
(Lemmas and [6.3). According to Lemma [6.4] we have L(V, I1) | L(V, I) if,
and only if, L(V, I1, p) | L(V, Iz, p) for each skeleton p in V holds. So, we guess
a skeleton p and check regular inseparability of L(V, I1, p) and L(V, I3, p) certi-
fying regular inseparability of L(V,I1) and L(V, I5).

Additionally, we will guess a set 7' C T of transitions and verify in NP that all
of them are bi-cancelable (Lemma . Then we can construct in polynomial
time two Z-VASS W; and W, such that and hold (Lemma . If
LOWy) N L(Ws) # 0, the algorithm reports “inseparable”. For this, it uses a
simple product construction to obtain a Z-VASS W for the intersection L(W;)N
L(Ws), and decide in NP whether an accepting configuration can be reached in
W.

This is sound: We have LW,) N L(Ws) # 0 if and only if (A+U* + V)N
(B+V*+Uj) #0 for J = S[T]; and by Lemma we know that the latter
rules out M (I1)| M(I3). For completeness, note that if M (I;) | M (I2) does not
hold, then there exists a choice for 7" such that L(W;) N L(Ws) # 0: Take the
set of all bi-cancelable transitions. O

References

[1] T. G. Szymanski, J. H. Williams, Noncanonical extensions of bottom-up
parsing techniques, SIAM Journal on Computing 5 (2) (1976). doi:10.
1137/0205019.

[2] H. B. Hunt III, On the Decidability of Grammar Problems, Journal of the
ACM 29 (2) (1982) 429-447. [doi:10.1145/322307.322317.

[3] W. Czerwinski, S. Lasota, R. Meyer, S. Muskalla, K. N. Kumar,
P. Saivasan, Regular separability of well-structured transition systems, in:
S. Schewe, L. Zhang (Eds.), 29th International Conference on Concurrency
Theory, CONCUR, 2018, September 4-7, 2018, Beijing, China, Vol. 118
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018, pp.
35:1-35:18. |doi:10.4230/LIPICS.CONCUR.2018. 35.

[4] E. Keskin, R. Meyer, Separability and non-determinizability of WSTS, in:
G. A. Pérez, J. Raskin (Eds.), 34th International Conference on Concur-
rency Theory, CONCUR 2023, September 18-23, 2023, Antwerp, Belgium,
Vol. 279 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2023, pp. 8:1-8:17. |doi:10.4230/LIPICS.CONCUR.2023.8.

[5] C. Kocher, G. Zetzsche, Regular separators for VASS coverability lan-
guages, in: P. Bouyer, S. Srinivasan (Eds.), 43rd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2023, December 18-20, 2023, IIIT Hyderabad, Telangana, India,

27

https://doi.org/10.1137/0205019
https://doi.org/10.1137/0205019
https://doi.org/10.1137/0205019
https://doi.org/10.1145/322307.322317
https://doi.org/10.4230/LIPICS.CONCUR.2018.35
https://doi.org/10.4230/LIPICS.CONCUR.2023.8

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

[6]

7]

18]

19]

[10]

[11]

[12]

Vol. 284 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2023, pp. 15:1-15:19. |doi:10.4230/LIPICS.FSTTCS.2023. 15,

W. Czerwinski, S. Lasota, Regular separability of one counter automata,
in: 32nd Annual ACM/TEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, IEEE Computer Society,
2017, pp. 1-12. doi:10.1109/LICS.2017.8005079

L. Clemente, W. Czerwinski, S. Lasota, C. Paperman, Regular Separability
of Parikh Automata, in: I. Chatzigiannakis, P. Indyk, F. Kuhn, A. Muscholl
(Eds.), 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2017), Vol. 80 of Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 2017, pp. 117:1-117:13. |doi:10.4230/LIPIcs.ICALP.
2017.117.

URL http://drops.dagstuhl.de/opus/volltexte/2017/7497

L. Clemente, W. Czerwinski, S. Lasota, C. Paperman, Separability of
reachability sets of vector addition systems, in: H. Vollmer, B. Vallée
(Eds.), 34th Symposium on Theoretical Aspects of Computer Science,
STACS 2017, March 8-11, 2017, Hannover, Germany, Vol. 66 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017, pp. 24:1-24:14.
doi:10.4230/LIPICS.STACS.2017.24.

R. S. Thinniyam, G. Zetzsche, Regular separability and intersection empti-
ness are independent problems, in: A. Chattopadhyay, P. Gastin (Eds.),
39th TARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2019, December 11-13, 2019,
Bombay, India, Vol. 150 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2019, pp. 51:1-51:15. [doi:10.4230/LIPICS.FSTTCS.2019.51.

P. Baumann, E. Keskin, R. Meyer, G. Zetzsche, Separability in Biichi
VASS and singly non-linear systems of inequalities, in: K. Bringmann,
M. Grohe, G. Puppis, O. Svensson (Eds.), 51st International Colloquium
on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024,
Tallinn, Estonia, Vol. 297 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2024, pp. 126:1-126:19. |doi:10.4230/LIPICS.ICALP.2024.
126.

P. Baumann, R. Meyer, G. Zetzsche, Regular separability in Biichi VASS,
in: P. Berenbrink, P. Bouyer, A. Dawar, M. M. Kanté (Eds.), 40th
International Symposium on Theoretical Aspects of Computer Science,
STACS 2023, March 7-9, 2023, Hamburg, Germany, Vol. 254 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023, pp. 9:1-9:19.
do0i:10.4230/LIPICS.STACS.2023.9.

W. Czerwinski, G. Zetzsche, An approach to regular separability in vec-
tor addition systems, in: Proceedings of the 35th Annual ACM/IEEE

28

https://doi.org/10.4230/LIPICS.FSTTCS.2023.15
https://doi.org/10.1109/LICS.2017.8005079
http://drops.dagstuhl.de/opus/volltexte/2017/7497
http://drops.dagstuhl.de/opus/volltexte/2017/7497
http://drops.dagstuhl.de/opus/volltexte/2017/7497
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
http://drops.dagstuhl.de/opus/volltexte/2017/7497
https://doi.org/10.4230/LIPICS.STACS.2017.24
https://doi.org/10.4230/LIPICS.FSTTCS.2019.51
https://doi.org/10.4230/LIPICS.ICALP.2024.126
https://doi.org/10.4230/LIPICS.ICALP.2024.126
https://doi.org/10.4230/LIPICS.ICALP.2024.126
https://doi.org/10.4230/LIPICS.STACS.2023.9
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Symposium on Logic in Computer Science, LICS ’20, Association for
Computing Machinery, New York, NY, USA, 2020, p. 341-354. |doi:
10.1145/3373718.3394776.

URL https://doi.org/10.1145/3373718.3394776

E. Keskin, R. Meyer, On the separability problem of VASS reachability
languages, in: P. Sobocinski, U. D. Lago, J. Esparza (Eds.), Proceedings of
the 39th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2024, Tallinn, Estonia, July 8-11, 2024, ACM, 2024, pp. 49:1-49:14.
doi:10.1145/3661814.3662116.

O. H. Ibarra, Reversal-bounded multicounter machines and their decision
problems, Journal of the ACM (JACM) 25 (1) (1978) 116-133. |doi:10.
1145/322047 .322058.

S. A. Greibach, Remarks on blind and partially blind one-way multicounter
machines, Theoretical Computer Science 7 (3) (1978) 311-324. |doi:10.
1016/0304-3975(78)90020-8

P. Baumann, F. D’Alessandro, M. Ganardi, O. Ibarra, I. McQuil-
lan, L. Schiitze, G. Zetzsche, Unboundedness problems for machines
with reversal-bounded counters, in: O. Kupferman, P. Sobocinski
(Eds.), Foundations of Software Science and Computation Structures,
Springer Nature Switzerland, Cham, 2023, pp. 240—264. |doi:10.1007/
978-3-031-30829-1_12.

M. Jantzen, A. Kurganskyy, Refining the hierarchy of blind multicounter
languages and twist-closed trios, Inf. Comput. 185 (2) (2003) 159-181. |doi:
10.1016/50890-5401(03)00087-7.

M. Cadilhac, A. Finkel, P. McKenzie, Affine Parikh automata, RAIRO
Theor. Informatics Appl. 46 (4) (2012) 511-545. |doi:10.1051/ITA/
2012013l

A. Bostan, A. Carayol, F. Koechlin, C. Nicaud, Weakly-unambiguous
Parikh automata and their link to holonomic series, in: A. Czumaj,
A. Dawar, E. Merelli (Eds.), 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbriicken,
Germany (Virtual Conference), Vol. 168 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2020, pp. 114:1-114:16. |doi:10.4230/
LIPICS.ICALP.2020.114.

M. Cadilhac, A. Finkel, P. McKenzie, Unambiguous constrained automata,
Int. J. Found. Comput. Sci. 24 (7) (2013) 1099-1116. |doi:10.1142/
S50129054113400339.

A. Finkel, A. Sangnier, Reversal-bounded counter machines revisited,
in: E. Ochmanski, J. Tyszkiewicz (Eds.), Mathematical Foundations
of Computer Science 2008, 33rd International Symposium, MFCS 2008,

29

https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3661814.3662116
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1007/978-3-031-30829-1_12
https://doi.org/10.1007/978-3-031-30829-1_12
https://doi.org/10.1007/978-3-031-30829-1_12
https://doi.org/10.1016/S0890-5401(03)00087-7
https://doi.org/10.1016/S0890-5401(03)00087-7
https://doi.org/10.1016/S0890-5401(03)00087-7
https://doi.org/10.1051/ITA/2012013
https://doi.org/10.1051/ITA/2012013
https://doi.org/10.1051/ITA/2012013
https://doi.org/10.4230/LIPICS.ICALP.2020.114
https://doi.org/10.4230/LIPICS.ICALP.2020.114
https://doi.org/10.4230/LIPICS.ICALP.2020.114
https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1142/S0129054113400339

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

[22]

23]

[24]

[25]

[26]

[27]

[28]

Torun, Poland, August 25-29, 2008, Proceedings, Vol. 5162 of Lecture
Notes in Computer Science, Springer, 2008, pp. 323-334. doi:10.1007/
978-3-540-85238-4_26.

M. M. Bersani, S. Demri, The complexity of reversal-bounded model-
checking, in: C. Tinelli, V. Sofronie-Stokkermans (Eds.), Frontiers of
Combining Systems, 8th International Symposium, FroCoS 2011, Saar-
briicken, Germany, October 5-7, 2011. Proceedings, Vol. 6989 of Lecture
Notes in Computer Science, Springer, 2011, pp. 71-86. |doi:10.1007/
978-3-642-24364-6_6.

G. Zetzsche, Silent transitions in automata with storage, in: F. V.
Fomin, R. Freivalds, M. Z. Kwiatkowska, D. Peleg (Eds.), Automata,
Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, Vol. 7966 of
Lecture Notes in Computer Science, Springer, 2013, pp. 434-445. doi:
10.1007/978-3-642-39212-2_39.

M. Cadilhac, A. Krebs, P. McKenzie, The algebraic theory of Parikh au-
tomata, Theory Comput. Syst. 62 (5) (2018) 1241-1268. |doi:10.1007/
S500224-017-9817-2.

G. Zetzsche, The complexity of downward closure comparisons, in:
I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, D. Sangiorgi (Eds.),
43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016, July 11-15, 2016, Rome, Italy, Vol. 55 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016, pp. 123:1-123:14.
doi:10.4230/LIPICS.ICALP.2016.123.

E. Erlich, S. Guha, I. Jecker, K. Lehtinen, M. Zimmermann, History-
deterministic Parikh automata, in: G. A. Pérez, J. Raskin (Eds.), 34th
International Conference on Concurrency Theory, CONCUR 2023, Septem-
ber 18-23, 2023, Antwerp, Belgium, Vol. 279 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2023, pp. 31:1-31:16. |doi:10.4230/
LIPICS.CONCUR.2023.31.

S. Guha, I. Jecker, K. Lehtinen, M. Zimmermann, Parikh automata over
infinite words, in: A. Dawar, V. Guruswami (Eds.), 42nd TARCS Annual
Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2022, December 18-20, 2022, II'T Madras, Chennai,
India, Vol. 250 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, 2022, pp. 40:1-40:20. [doi: 10.4230/LIPICS.FSTTCS.2022. 40.

E. Filiot, S. Guha, N. Mazzocchi, Two-way Parikh automata, in: A. Chat-
topadhyay, P. Gastin (Eds.), 39th TARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS
2019, December 11-13, 2019, Bombay, India, Vol. 150 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019, pp. 40:1-40:14. doi:
10.4230/LIPICS.FSTTCS.2019.40.

30

https://doi.org/10.1007/978-3-540-85238-4_26
https://doi.org/10.1007/978-3-540-85238-4_26
https://doi.org/10.1007/978-3-540-85238-4_26
https://doi.org/10.1007/978-3-642-24364-6_6
https://doi.org/10.1007/978-3-642-24364-6_6
https://doi.org/10.1007/978-3-642-24364-6_6
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/S00224-017-9817-2
https://doi.org/10.1007/S00224-017-9817-2
https://doi.org/10.1007/S00224-017-9817-2
https://doi.org/10.4230/LIPICS.ICALP.2016.123
https://doi.org/10.4230/LIPICS.CONCUR.2023.31
https://doi.org/10.4230/LIPICS.CONCUR.2023.31
https://doi.org/10.4230/LIPICS.CONCUR.2023.31
https://doi.org/10.4230/LIPICS.FSTTCS.2022.40
https://doi.org/10.4230/LIPICS.FSTTCS.2019.40
https://doi.org/10.4230/LIPICS.FSTTCS.2019.40
https://doi.org/10.4230/LIPICS.FSTTCS.2019.40

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Grobler, L. Sabellek, S. Siebertz, Remarks on Parikh-recognizable
omega-languages, in: A. Murano, A. Silva (Eds.), 32nd EACSL Annual
Conference on Computer Science Logic, CSL 2024, February 19-23, 2024,
Naples, Italy, Vol. 288 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2024, pp. 31:1-31:21. |doi:10.4230/LIPICS.CSL.2024.31!|

M. Cadilhac, A. Ghosh, G. A. Pérez, R. Raha, Parikh one-counter au-
tomata, in: J. Leroux, S. Lombardy, D. Peleg (Eds.), 48th International
Symposium on Mathematical Foundations of Computer Science, MFCS
2023, August 28 to September 1, 2023, Bordeaux, France, Vol. 272 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023, pp. 30:1—
30:15. [doi:10.4230/LIPICS.MFCS.2023.30.

Y. Shakiba, H. Sinclair-Banks, G. Zetzsche, A complexity dichotomy for
semilinear target sets in automata with one counter, to appear in Proc. of
LICS 2025 (2025). arXiv:2505.13749, doi:10.48550/ARXIV.2505.13749.

F. Klaedtke, H. Ruef, Monadic second-order logics with cardinalities,
in: J. C. M. Baeten, J. K. Lenstra, J. Parrow, G. J. Woeginger (Eds.),
Automata, Languages and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Pro-
ceedings, Vol. 2719 of Lecture Notes in Computer Science, Springer, 2003,
pp. 681-696. doi:10.1007/3-540-45061-0_54.

S. Halfon, P. Schnoebelen, G. Zetzsche, Decidability, complexity, and ex-
pressiveness of first-order logic over the subword ordering, in: 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-
javik, Iceland, June 20-23, 2017, IEEE Computer Society, 2017, pp. 1-12.
doi:10.1109/LICS.2017.8005141.

A. Bouajjani, P. Habermehl, Symbolic reachability analysis of FIFO-
channel systems with nonregular sets of configurations, Theor. Comput.
Sci. 221 (1-2) (1999) 211-250. |doi:10.1016/50304-3975(99)00033-X.

C. Haase, S. Halfon, Integer vector addition systems with states, in:
J. Ouaknine, I. Potapov, J. Worrell (Eds.), Reachability Problems - 8th
International Workshop, RP 2014, Oxford, UK, September 22-24, 2014.
Proceedings, Vol. 8762 of Lecture Notes in Computer Science, Springer,
2014, pp. 112-124. doi:10.1007/978-3-319-11439-2_9.

K. L. McMillan, Interpolation and SAT-based model checking, in: W. A. H.
Jr., F. Somenzi (Eds.), Computer Aided Verification, 15th International
Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,
Vol. 2725 of Lecture Notes in Computer Science, Springer, 2003, pp. 1-13.
doi:10.1007/978-3-540-45069-6_1.

Y. Vizel, G. Weissenbacher, S. Malik, Boolean satisfiability solvers and
their applications in model checking, Proc. IEEE 103 (11) (2015) 2021
2035. doi:10.1109/JPROC.2015.2455034!

31

https://doi.org/10.4230/LIPICS.CSL.2024.31
https://doi.org/10.4230/LIPICS.MFCS.2023.30
http://arxiv.org/abs/2505.13749
https://doi.org/10.48550/ARXIV.2505.13749
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.1016/S0304-3975(99)00033-X
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1109/JPROC.2015.2455034

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Veanes, N. S. Bjgrner, L. Nachmanson, S. Bereg, Monadic decomposi-
tion, J. ACM 64 (2) (2017) 14:1-14:28. |doi:10.1145/3040488.

P. Bergstrafter, M. Ganardi, A. W. Lin, G. Zetzsche, Ramsey quantifiers
in linear arithmetics, Proc. ACM Program. Lang. 8 (POPL) (2024) 1-32.
doi:10.1145/3632843.

M. Hague, A. W. Lin, P. Riimmer, Z. Wu, Monadic decomposition in inte-
ger linear arithmetic, in: N. Peltier, V. Sofronie-Stokkermans (Eds.), Au-
tomated Reasoning - 10th International Joint Conference, IJCAR 2020,
Paris, France, July 1-4, 2020, Proceedings, Part I, Vol. 12166 of Lec-
ture Notes in Computer Science, Springer, 2020, pp. 122-140. doi:
10.1007/978-3-030-51074-9_8.

C. Haase, S. N. Krishna, K. Madnani, O. S. Mishra, G. Zetzsche, An
efficient quantifier elimination procedure for Presburger arithmetic, in:
K. Bringmann, M. Grohe, G. Puppis, O. Svensson (Eds.), 51st Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP
2024, July 8-12, 2024, Tallinn, Estonia, Vol. 297 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2024, pp. 142:1-142:17. |doi:10.4230/
LIPICS.ICALP.2024.142.

S. Grumbach, P. Rigaux, L. Segoufin, Spatio-temporal data handling with
constraints, in: R. Laurini, K. Makki, N. Pissinou (Eds.), ACM-GIS 98,
Proceedings of the 6th international symposium on Advances in Geographic
Information Systems, November 6-7, 1998, Washington, DC, USA, ACM,
1998, pp. 106-111. [doi:10.1145/288692.288712

G. Kuper, L. Libkin, J. Paredaens, Constraint databases, Springer Science
& Business Media, 2013. |[doi:10.1007/978-3-662-04031-7.

C. Choffrut, S. Grigorieff, Separability of rational relations in A*xN"™ by
recognizable relations is decidable, Information Processing Letters 99 (1)
(2006) 27-32. doi:10.1016/j.ipl.2005.09.018.

D. Chistikov, C. Haase, A. Mansutti, Quantifier elimination for counting
extensions of presburger arithmetic, in: P. Bouyer, L. Schroder (Eds.),
Foundations of Software Science and Computation Structures - 25th In-
ternational Conference, FOSSACS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Vol. 13242 of Lecture
Notes in Computer Science, Springer, 2022, pp. 225-243. |doi:10.1007/
978-3-030-99253-8_12.

URL https://doi.org/10.1007/978-3-030-99253-8_12

S. Ginsburg, E. H. Spanier, Semigroups, Presburger formulas, and lan-
guages, Pacific Journal of Mathematics 16 (2) (1966) 285-296.

32

https://doi.org/10.1145/3040488
https://doi.org/10.1145/3632843
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.4230/LIPICS.ICALP.2024.142
https://doi.org/10.4230/LIPICS.ICALP.2024.142
https://doi.org/10.4230/LIPICS.ICALP.2024.142
https://doi.org/10.1145/288692.288712
https://doi.org/10.1007/978-3-662-04031-7
https://doi.org/10.1016/j.ipl.2005.09.018
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

[47]

(48]

[49]

[50]

[51]

[52]

J. Berstel, Transductions and Context-Free Languages, Teubner, 1979.
doi:10.1007/978-3-663-09367-1.

J. Sakarovitch, Elements of Automata Theory, Cambridge University Press,
Cambridge, 2009. |doi:10.1017/CB09781139195218.

O. H. Ibarra, B. Ravikumar, On the Parikh Membership Problem for
FAs, PDAs, and CMs, in: A.-H. Dediu, C. Martin-Vide, J.-L. Sierra-
Rodriguez, B. Truthe (Eds.), Language and Automata Theory and Ap-
plications, Springer International Publishing, Cham, 2014, pp. 14-31.
d0i:10.1007/978-3-319-04921-2_2.

H. Seidl, T. Schwentick, A. Muscholl, P. Habermehl, Counting in trees
for free, in: J. Diaz, J. Karhumiki, A. Lepisto, D. Sannella (Eds.), Au-
tomata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, Vol. 3142
of Lecture Notes in Computer Science, Springer, 2004, pp. 1136-1149.
doi:10.1007/978-3-540-27836-8_94.

S. Ginsburg, E. H. Spanier, Bounded regular sets, Proceedings of the
American Mathematical Society 17 (5) (1966) 1043-1049. |doi:10.1090/
S0002-9939-1966-0201310-3

J. Esparza, Petri nets, commutative context-free grammars, and basic par-
allel processes, Fundam. Informaticae 31 (1) (1997) 13-25. doi:10.3233/
FI-1997-3112.

33

https://doi.org/10.1007/978-3-663-09367-1
https://doi.org/10.1017/CBO9781139195218
https://doi.org/10.1007/978-3-319-04921-2_2
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.3233/FI-1997-3112
https://doi.org/10.3233/FI-1997-3112
https://doi.org/10.3233/FI-1997-3112

	Introduction
	Preliminaries
	Main results
	A characterization of separability in hyperlinear sets
	Separability of semilinear sets is in coNP
	Regular separability of Parikh automata
	Reduction to separability of semilinear sets
	Determinizing the automata
	Unifying the automata
	Skeletons
	Counting cycles

	Reducing inseparability to intersection
	Characterizing twin-unbounded cycles
	Constructing the Z-VASS

