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Abstract

In a separability problem, we are given two sets K and L from a class C, and we
want to decide whether there exists a set S from a class S such that K C S and
SN L=0. In this case, we speak of separability of sets in C by sets in S.

We study two types of separability problems. First, we consider separability
of semilinear sets (i.e. subsets of N for some d) by sets definable by quantifier-
free monadic Presburger formulas (or equivalently, the recognizable subsets of
Nd). Here, a formula is monadic if each atom uses at most one variable. Second,
we consider separability of languages of Parikh automata by regular languages.
A Parikh automaton is a machine with access to counters that can only be
incremented, and have to meet a semilinear constraint at the end of the run.
Both of these separability problems are known to be decidable with elementary
complexity.

Our main results are that both problems are coNP-complete. In the case
of semilinear sets, coNP-completeness holds regardless of whether the input
sets are specified by existential Presburger formulas, quantifier-free formulas, or
semilinear representations. Our results imply that recognizable separability of
rational subsets of X* xN? (shown decidable by Choffrut and Grigorieff) is coNP-
complete as well. Another application is that regularity of deterministic Parikh
automata (where the target set is specified using a quantifier-free Presburger
formula) is coNP-complete as well.

Keywords: Vector Addition System, Separability, Regular Language

1. Introduction

Separability In a separability problem, we are given two sets K and L
from a class C, and we want to decide whether there exists a set S from a
class S such that K € S and SN L = @. Here, the sets in S are the ad-
missible separators, and S is said to separate the sets K and L. In the case
where C is a class of non-regular languages and S is the class of regular lan-
guages, then the problem is called regular separability (problem) for C. While
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the problem turned out to be undecidable for context-free languages in the
1970s [1L [2], the last decade saw a significant amount of attention on regular
separability for subclasses (or variants) of wvector addition systems with states
(VASS). Regular separability was studied for coverability languages of VASS
(and, more generally, well-structured transition systems) [3H5], one-counter au-
tomata and one-dimensional VASS [6], Parikh automata [7], commutative VASS
languages [8], concerning its relationship with the intersection problem [9], Biichi
VASS [10, [IT], and also for settings where one input language is an arbitrary
VASS and the other is from some subclass [12]. Recently, this line of work cul-
minated in the breakthrough result that regular separability for general VASS
languages is decidable and Ackermann-complete [I13]. However, for subclasses
of VASS languages, the complexity landscape is far from understood.

Separating Parikh automata An important example of such a sub-
class is the class of languages accepted by Parikh automata, which are non-
deterministic automata equipped with counters that can only be incremented.
Here, a run is accepting if the final counter values belong to a particular semi-
linear set. Languages of Parikh automata have received significant attention
over many decades [I4H25], including a lot of work in recent years [26H3I]. This
is because they are expressive enough to model non-trivial counting behavior,
but still enjoy low complexity for many algorithmic tasks (e.g. the emptiness
problem is coNP-complete). Example applications are monadic second-order
logic with cardinalities [32] (this paper introduced the specific model of Parikh
automata), solving subword constraints [33], and model-checking FIFO channel
systems [34]. Moreover, these languages have other equivalent characterizations,
such as reversal-bounded counter automata—a classic (and intensely studied)
type of infinite-state systems with nice decidability properties [14, 22]—and
automata with Z-counters, also called Z-VASS [15], 55]ﬂ

Decidability of regular separability was shown by Clemente, Czerwinski, La-
sota, and Paperman [7] in 2017 as one of the first decidability results for regular
separability. Moreover, this result was a key ingredient in Keskin and Meyer’s
algorithm to decide regular separability for general VASS [I3]. However, despite
the strong interest in Parikh automata and in regular separability, the complex-
ity of this problem remained unknown. In [7, Section 7], the authors provide an
elementary complexity upper bound.

Separating semilinear sets: Monadic interpolants One of the steps
in the algorithm from [7] is to decide separability of sets defined in Pres-
burger arithmetic, the first-order theory of (N;+,<,0,1). Separators of logi-
cally defined sets can also be viewed as interpolants. If p(x,y) and ¢ (y, z) are
(first-order or propositional) formulas such that VaVyvz (o(x,y) — ¢¥(y, z))
holds, then a formula x(y) is a Craig interpolant if VaVy (¢(x,y) — x(y)) and

1See [16] for efficient translation among Parikh automata, reversal-bounded counter au-
tomata, and Z-VASS.
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VyVz (x(y) — ¥(y, z)) both hold. Here, x,y, z are each a vector of variables,
meaning X only mentions variables that occur both in ¢ and . Equivalently,
the set defined by x is a separator of the sets defined by the existential for-
mulas Jz: ¢(x,y) and Iz: —(y, z). In Interpolation-Based Model Checking
(ITP) |36, B7], Craig interpolants are used to safely overapproximate sets of
states: If ¢ describes reachable states and 1) describes the set of safe states,
then x overapproximates ¢ without adding unsafe states. Note that in Pres-
burger logic there are implications that do not have a Craig interpolant (this
is in contrast to propositional logic). So, before constructing an interpolant, a
first step of ITP is to decide whether there even exists such an interpolant.

In the case of Presburger arithmetic, the definable sets are the semilinear
sets. For many infinite-state systems, the step relation (or even the reachability
relation) is semilinear, and thus, separators can play the role of Craig inter-
polants in infinite-state model checking. For the separators, a natural choice is
the class of recognizable sets, which are those defined by monadic Presburger
formulas, meaning each atom refers to at most one variable. Monadic formulas
have recently received attention [38H41I] because of their applications in query
optimization in constraint databases [42], 43] and symbolic automata [38]. Thus,
deciding recognizable separability of semilinear sets can be viewed as synthesiz-
ing monadic Craig interpolants.

Recognizable separability was shown decidable by Choffrut and Grigori-
eff [44] (see [8] for an extension beyond semilinear sets). This was a key in-
gredient for separability of Parikh automata in [7]. Choffrut and Grigorieff’s
algorithm has elementary complexity [7, Section 7], but the exact complexity of
recognizable separability of semilinear sets remained unknown.

Contribution Our first main result is that for given existential Presburger
formulas, recognizable separability (i.e. monadic separability) is coNP-complete.
In particular, recognizable separability is coNP-complete for given semilinear
representations. Moreover, our result implies that recognizable separability is
coNP-complete for rational subsets of monoids X* x N as considered by Choffrut
and Grigorieff [44]. Building on the methods of the first result, our second main
result is that regular separability for Parikh automata is coNP-complete.

Application I: Monadic decomposability Our first main result strength-
ens a recent result on monadic decomposability. A formula in Presburger arith-
metic is monadically decomposable if it has a monadic equivalent. It was shown
recently that (i) deciding whether a given quantifier-free formula is monadically
decomposable (i.e. whether it has a monadic equivalent) is coNP-complete [40]
Theorem 1] (see [39), Corollary 8.1] for an alternative proof; and see [45], Proposi-
tion 3] for improved bounds for the approach in [40]), whereas (ii) for existential
formulas, the problem is coNEXP-complete [41, Corollary 3.6]. Our first main
result strengthens (i): If ¢(x) is a quantifier-free formula, then the sets defined
by ¢(x) and —¢(x) are separable by a monadic formula if and only if ¢(x) is
monadically decomposable. Perhaps surprisingly, our coNP upper bound still
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holds for existential Presburger formulas, for which monadic decomposability is
known to be coNEXP-completd?]

Application IT: Regularity of Parikh automata Another consequence
of our results is that regularity of deterministic Parikh automata, i.e. deciding
whether a given deterministic Parikh automaton accepts a regular language, is
coNP-complete: Given a deterministic Parikh automaton for a language L C X,
one can construct in polynomial time a Parikh automaton for K = X* \ L.
Then, L is regular if and only if L and K are regularly separable. Here, we
assume that the semilinear target set is given as a quantifier-free Presburger
formula. Decidability of this problem has been shown by Cadilhac, Finkel, and
McKenzie |20, Theorem 25| (even in the more general case of unambiguous
constrained automata).

Key ingredients The existing elementary-complexity algorithm for recog-
nizable separability of semilinear sets works with semilinear representations and
distinguishes two cases: If in one component j, one of the input sets Sy, S C Nd
is bounded by some b > 0, then it considers each x € [0, b] and recursively decides
separability of Si[j — =] and Sa[j — z], where S;[j — z] is just S; restricted
to having x in this bounded component. If, however, all components in both
sets are unbounded, then it checks feasibility of a system of linear Diophantine
equations. This approach leads to repeated intersection of semilinear sets, and
thus exponential time. We provide a characterization (Proposition that
describes inseparability directly as the non-empty intersection of two semilinear
sets 5'1, 5'2 C N associated with S;, Ss. This easily yields an NP procedure for
inseparability, even if the input sets are given as existential Presburger formulas.

This characterization is then the first key ingredient for deciding regular
separability of Parikh automata in coNP. This is because in [7], it is shown
that, after some preprocessing, the languages of Parikh automata A; and A,
are separable if and only if two semilinear sets C7,Cy C N¢ associated with
A; and As are separable by a recognizable set. These semilinear sets consist
of vectors, each of which counts for some run of A;, how many times each
simple cycles occurs in this run. Thus, our first result tells us that it suffices
to decide whether C; and C, are disjoint. Unfortunately, the vectors of C1, Cy
have exponential dimension d, since there are exponentially many simple cycles
in each A;. Thus, applying our first result directly using existential Presburger
arithmetic would only yield a coNEXP upper bound.

To avoid this blowup, the second key idea is to encode the vectors in Cy and
Cy as words, where the cycle occurrences appear as a concatenation in some
order. By constructing Z-VASS W;, W, for the encodings of the vectors in
C'l, C’27 we reduce separability to intersection emptiness of W; and W,. The

2This is not a contradiction to the above reduction from monadic decomposability to recog-
nizable separation, since this reduction would require complementing an existential formula.
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latter, in turn, easily reduces to non-reachability in a product Z-VASS, which
is in coNP.

2. Preliminaries

By N={0,1,2,...} we denote the set of all non-negative integers. Let d € N
be a number and I C [1,d] be a set of indices. By 7;: N¢ — NI we denote the
projection of vectors in N to vectors in N’ | i.e., 77(v)[i] = v[i] for each v € N¢
and i € I. The support of a vector v € N? is the set of all coordinates in v with
non-zero value, i.e. supp(v) = {i € [1,d] | v[i] # 0}.

Semilinear sets A set S C N¢ is linear if there is a vector u € N¢ and a
finite set P C N? of so-called periods such that S = w+ P* holds. Here, for P =
{u1,...,u,}, the set P*isdefined as P* = {A\ju1+- -+ A up | A1,..., Ap € N}
A subset S C N9 is called semilinear if it is a finite union of linear sets. In case
we specify S by way of a finite union of linear sets, then we call this description a
semilinear representation. The set S C N% is called hyperlinear if there are finite
sets B, P C N such that S = B+ P* holds. It is well known that the semilinear
sets are precisely those definable in Presburger arithmetic [46], the first-order
theory of the structure (N;+, <,0,1, (=m)memn 0}). Here =, is the predicate
where x =,,, y if and only if x — y is divisible by m. By quantifier elimination,
every formula in Presburger arithmetic has a quantifier-free equivalent.

Parikh automata Intuitively, a Parikh automaton has finitely many con-
trol states and access to d > 0 counters. Upon reading a letter (or the empty
word), it can add a vector u € N¢ to its counters. Moreover, for each state ¢ € Q,
it specifies a target set Cyq C N?. An input word is accepted if at the end of the
run, the accumulated counter values belong to C,;, where ¢ is the state at the end
of the run. Formally, a Parikh automaton is a tuple A = (Q, X, T, g0, (Cy)qeq):
where Q is a finite set of states, T C Q x (¥ U {e}) x N¢ x Q is its finite set
of transitions, qo € @ is the initial state, and C; C N? is the target set in
state ¢, for each ¢ € Q. For an input word w € X*, a run on w is a sequence
(go,w1,u1,q1) - (Gn—1, Wn, Un, G ) of transitions in T with w = w; - - w,. The
run is accepting if uq +--- +u, € C,,. The language of A is then the set of all
words w € X* such that A has an accepting run on w.

Remark 2.1. For our results on general Parikh automata, we assume that the
target sets are specified using existential Presburger formulas. However, this
is not an important aspect: Given a Parikh automaton, one can in polynomial
time modify the automaton (and the target set) so that the target set is given,
e.g. by a semilinear representation, or a quantifier-free Presburger formula. This
is a simple consequence of the fact that one can translate Parikh automata into
integer VASS in logarithmic space [16, Corollary 1]. However, this conversion
does not preserve determinism, and for deterministic Parikh automata, it can
be important how target sets are given (see Corollary and the discussion
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after it). Therefore, for deterministic Parikh automata, we always specify how
the targets sets are given.

Separability A subset L C M of a monoid M is recognizable if there is a
morphism : M — F into some finite monoid F' such that ¢=*(o(L)) = L. The
recognizable subsets of M form a Boolean algebra [47, Chapter III, Prop. 1.1].
We say that sets K, L C M are (recognizably) separable, denoted K | L, if there
is a morphism ¢: M — F into some finite monoid F such that ¢(K)Ne(L) = 0.
Equivalently, we have K | L if and only if there is a recognizable S C M with
K C Sand SNL = 0. Here, S is called a separator of K and L. Clearly, we
have K | L if and only if L | K: if S is a separator of K and L then M \ S
separates L and K.

In the case M = X* for some alphabet X', the recognizable sets in X* are
exactly the regular languages (cf. [48, Theorem I1.2.1]), and thus we speak of
regular separability. In the case M = N¢ for some d > 0, then the recognizable
subsets of N¢ are precisely the finite unions of cartesian products Uy x - - - x Uy,
where each U; C N is ultimately periodic [47, Theorem 5.1|. Here, a set U C N
is wltimately periodic if there are ng,p € N\ {0} such that for all n > ng, we
have n € U if and only if n + p € U. This implies that the recognizable subsets
of N? are precisely those definable by a monadic Presburger formula, i.e. one
where every atom only refers to one variable [38]. For these reasons, in the case
of M = N?, we also sometimes speak of monadic separability.

In a recognizable separability problem, we are given two subsets K and L from
a monoid M as input, and we want to decide whether K and L are recognizably
separable. Again, in the case of M = X* we also call this the reqular separability
problem.

3. Main results

Recognizable separability of semilinear sets Our first main result is
the following.

Theorem 3.1. Given two semilinear sets defined by existential Presburger for-
mulas, recognizable separability is coNP-complete.

The lower bound follows with a simple reduction from the emptiness problem
for sets defined by existential Presburger formulas: If ¢ defines a subset K C N¢,
then K | N if and only if K is empty. We prove the coNP upper bound in
Section By the same argument, recognizable separability is coNP-hard for
input sets given by quantifier-free formulas. Thus:

Corollary 3.2. Given two semilinear sets defined by quantifier-free Presburger
formulas, recognizable separability is coNP-complete.

In particular, this re-proves the coNP upper bound for monadic decompos-
ability of quantifier-free formulas, as originally shown by Hague, Lin, Riimmer,
and Wu [40, Theorem 1].
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Remark 3.3. Our result also implies that for existential Presburger formulas
over (Z; +,<,0,1, (=m)men foy) defining K, L C Z%, it is coNP-complete to de-
cide whether they are separable by a monadically defined subset of Z¢. Indeed,

consider the injective map v: Z¢ — N2 where v(x1,...,24) = (0(21), |71],- .., 0(za), |zd])

with o(x) = 0 for x > 0 and o(x) = 1 for < 0. Then S C Z¢ is monadically
definable if and only if v(S) is monadically definabl Thus, K,L C Z¢ are
monadically separable if and only if v(K),v(L) C N?? are monadically separa-
ble. Finally, one easily constructs existential formulas for v(K), v(L).

Since for a given semilinear representation of a set S C N, it is easy to
construct an existential Presburger formula defining S, Theorem [3.1]also implies
the following.

Corollary 3.4. Given two semilinear representations, recognizable separability
is coNP-complete.

In this case, the coNP lower bound comes from the NP-hard membership
problem for semilinear sets (even if all numbers are written in unary) [49]
Lemma 10]: For a semilinear subset S C N¢ and a vector u € Nd, we have
u ¢ S if and only if S| {u}. Finally, Theorem allows us to settle the
complexity of recognizable separability of rational subsets of X* x N%.

Corollary 3.5. Given d € N and two rational subsets of X* x N?, deciding
recognizable separability is coNP-complete.

Decidability was first shown by Choffrut and Grigorieff [44, Theorem 1]. The
coNP upper bound follows because Choffrut and Grigorieff [44, Theorem 10] re-
duce recognizable separability of subsets of £* x N? to recognizable separability
of rational subsets of N2? (and their reduction is clearly in polynomial time).
Moreover, for a given rational subset of N?? one can construct in polynomial
time an equivalent existential Presburger formula [50, Theorem 1]. Thus, the
upper bound follows from Theorem Since semilinear sets in N¢ (given by a
semilinear representation) can be viewed as rational subsets of N¢ (and hence
of X* x N9), the coNP lower bound is inherited from Corollary

Regular separability of Parikh automata Our second main result is
the following:

Theorem 3.6. Regular separability for Parikh automata is coNP-complete.

The coNP lower bound comes via the coNP-complete emptiness problem:
For a given Parikh automaton accepting a language K C X*, we have K | X*

3This is easily shown by translating each atomic formula (over a single variable) into a
monadic formula in each direction. However, note that within Z%, monadic definability is not
the same as recognizability. For example, the sets {0} and Z \ {0} are monadically separable,
but not separable by a recognizable subset of Z, since every non-empty recognizable subset of
Z is infinite [47, Chapter III, Example 1.4].



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

if and only if K = (. Thus, the interesting part is the upper bound, which we
prove in Section [6] This is a significant improvement to the previously known
elementary (or finitely iterated exponential time) complexity upper bound by
Clemente, Czerwinski, Lasota, and Paperman [7].

Theorem [3.6] can also be applied to deciding regularity of deterministic
Parikh automata.

Corollary 3.7. For deterministic Parikh automata with target sets given as
quantifier-free Presburger formulas, deciding regularity is coNP-complete.

Decidability of regularity was shown by Cadilhac, Finkel, and McKenzie [20]
Theorem 25] (in the slightly more general setting of unambiguous constrained
automata). For the coNP upper bound, note that for a language L C X* given
by a deterministic Parikh automaton (with quantifier-free formulas for the tar-
get sets), one can in polynomial time construct the same type of automaton
for the complement X* \ L. Since L is regular if and only if L and X* \ L are
separable by a regular language, we can invoke Theorem The coNP lower
bound is inherited from monadic decomposability of quantifier-free formulas.

Indeed, given a quantifier-free Presburger formula ¢(x1,...,x,) with free vari-
ables (z1,...,x,), one easily constructs a deterministic Parikh automaton (with
quantifier-free target sets) for the language L, = {a7* ---aZ" | p(z1,...,2,)}.

As shown by Ginsburg and Spanier [51, Theorem 1.2|, L, is regular if and
only if ¢ is monadically decomposable. However, monadic decomposability for
quantifier-free formulas is coNP-complete [40, Theorem 1].

For the coNP upper bound in Corollary we cannot drop the assumption
that the formula be quantifier-free. This is because if the target sets can be exis-
tential Presburger formulas, then the regularity problem is coNEXP-hard. This
follows by the same reduction from monadic decomposability: If we construct
L, as above using an existential formula ¢, then again, L, is regular if and
only if ¢ is monadically decomposable. Moreover, monadic decomposability for
existential formulas is coNEXP-complete [41] Corollary 3.6].

4. A characterization of separability in hyperlinear sets

Before we prove our two main results, Theorems[3.1]and we should recall
the ideas of the existing algorithms [8] [44] for recognizable separability of linear
sets. We will use these ideas to obtain a new characterization of separability in
hyperlinear sets.

Let Ly, Ly C N be two linear sets. The algorithms |8, 44] rely on a procedure
that successively eliminates “bounded components” If, say, L; is bounded in
component j by some b € N, then one can observe that Ly | Ly if, and only if,
Li[j = x]|La]j — z] for every x € [0,b]. Here, L;[j — x] is L; restricted to those
vectors that have x in the j-th component, and then projected to all components
# j. Therefore, the algorithms of [8,[44] recursively check separability of L;[j —
z] and Lo[j — z] for each « € [0,b]. This process invokes several expensive
intersection operations on semilinear sets and thus has high complexity. Instead,
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our approach immediately guesses and verifies the set of components that remain
after the elimination process. The corresponding checks involve the notion of
twin-unboundedness.

Twin-unbounded components Our notion applies, slightly more gener-
ally, to hyperlinear sets. Hence, let R=A+U* C N® and S = B+ V* C N% be
two hyperlinear sets where A, B, U,V C N? are finite sets.

Definition 4.1. A coordinate j € [1,d] is twin-unbounded for R and S if there
exist p € U* and g € V* such that j € supp(p) = supp(q).

Hence, intuitively, twin-unbounded coordinates are those that can be made
large/driven up in R in the same way as in S. We will present yet another
characterization of twin-unbounded coordinates. Let j € [1,d]. We say the j-th
coordinate of the hyperlinear set S = B + V* is bounded if there is no period
vector in V' with support on j, i.e., j ¢ supp(p) for all p € V. We say that a
subset J C [1,d] of coordinates is bounded in S if each j € J is bounded in S.

Consider the following process: Given two hyperlinear sets R and S. We
modify R and S by performing each of the following three steps for each coor-
dinate j € [1,d] until the sets of remaining period vectors in R and S stabilize:

e If neither R nor S is bounded at j, we leave S and R untouched.

e If only R is bounded at j, we remove all period vectors from S which have
support on j.

e If only S is bounded at j, we remove all period vectors from R which have
support on j.

Then, the coordinates that remain unbounded are precisely the twin-unbounded
ones.

Example 4.2. Consider R = {(1,0,1)}* and S = {(1,1,0),(0,0,1)}*. Then R
is bounded by the value 0 at coordinate 2. So R and S are separable if and only
if R and S restricted to the vectors having the value 0 in the second coordinate.
So, we only consider this restriction of S—in our algorithm this is reflected by
the deletion of the period vector (1,1,0) of S. After deletion of the period vector
(1,1,0), S is bounded at coordinate 1 by the value 0. So, we remove the period
vector (1,0,1) from R. Finally, the period vector (0,0,1) of S gets removed
since R is now bounded at coordinate 3. Hence, our algorithm terminates in
this case with no twin-unbounded coordinates. This example shows that even if
R and S both are unbounded in coordinates 1 and 3, none of these coordinates
is twin-unbounded.

If R=1{(1,0,1),(0,1,0)}* and S = {(1,1,0),(0,0,1)}*, then no coordinate
is bounded in R and S. Hence, all coordinates are twin-unbounded and no
period vector gets removed.

For J C [1,d], we write Uy = {p € U | supp(p) C J} and V; = {q € V|
supp(q) € J}.
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Separating by modular constraints As observed in [8] [44], if all coor-
dinates of two linear sets L;, Lo are unbounded, then separability holds if and
only if the two sets can be separated by modulo constraints. This relies on the
well known fact that finitely generated abelian groups are subgroup separable,
i.e. that for every element u € Z¢ that does not belong to a subgroup A C Z¢,
there exists a homomorphism ¢: Z¢ — F into a finite group F such that (i) 4 is
included in the kernel of ¢ and (ii) ¢(u) # 0. In our characterization (Propo-
sition we will use similar arguments and therefore we will recall subgroup
separability here.

Lemma 4.3 (Subgroup separability). If A C Z¢ is a subgroup and u € Z\ A,
then there is an s € N, s > 0, and a morphism ¢: Z¢ — 7./sZ with (i) (A) = 0

and (i) p(u) # 0.

Proof. Consider the quotient group Z%/A. It is finitely generated and abelian
and thus isomorphic to a group @;:1 Z/r;Z for some numbers rq,...,7, € N.
The projection map 7: Z¢ — Z?/A can thus be composed with the isomorphism
above to yield a morphism v: Z¢ — @D)_, Z/r;Z with ker¢p = A. Since u ¢ A
and thus ¥ (u) # 0, say the j-th component of ¥ (u) is not zero. We distinguish
two cases:

(1) If r; > 0, then we can choose p: Z% — Z/r;Z to be 1 followed by the
projection to the j-th component.

(2) If r; = 0, then Z/r;Z = Z and thus the j-th component of ¥(u) is an
integer k € Z. We pick some s > |k| and let ¢: Z¢ — 7/s7 yield the j-th
component of ¥, modulo s.

These choices clearly satisfy ¢(A) = 0 and p(u) # 0. O

Separability vs. intersection emptiness We will now characterize in-
separability of hyperlinear sets R, S via the intersection of two hyperlinear sets
R and § associated with R, S. The proof will rely on an equivalence relation of
vectors. For vectors u,v € N? and k € N\ {0}, we write u ~ v if for every
i € [1,d], we have
(1) ufi] = v[i] <k or
(2) wfi],v[i] > k and u[i] = v[i] mod k.

The following was shown in [8, Prop. 18].
Lemma 4.4. For any sets X, Y C N?, the following are equivalent:

(1) X and Y are not separable by a recognizable set.
(2) for each k € N\ {0} there are x € X and yx, € Y with xy, ~i, yx.

Let k,¢£ € N\ {0} be such that k divides £. We can observe that w ~;y v
implies 4 ~ v in this case. Thus, to show recognizable inseparability of two
sets X, Y C N?, it suffices to find x;, € X and y;, € Y for almost all numbers
k € N\ {0}. We will use this fact in the proof of the following characterization
of inseparability.
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Proposition 4.5. Let R=A+U* CN% and S = B+ V* C N? be hyperlinear
sets. Then R and S are not separable by a recognizable set if and only if the
intersection

(A+U* —UN(B+V* -V} (1)

is non-empty, where J C [1,d] is the set of coordinates that are twin-unbounded
for R, S.

Proof. Suppose there is a vector  in the intersection . Then we can write
r=u—uwandx=v—-vwithuec A+U",veB+V*, ucUj and veVj.
Since J is twin-unbounded for R and S, there are—Dby definition—p; € U* and
g; € V* with j € supp(p;) = supp(q;) for each j € J. Then for p := Zjerj
and q := Zje] g; we infer J C supp(p) = supp(q). Now for each k € N'\ {0},
consider the vectors

up=u—u+2k-p+k-u and vp=v—v+2k-q+k-v.

Then we have uy, v, € N? for each k € N\ {0}. We claim that u, ~ vy, for all
k. Indeed, on coordinates j € [1,d] \ supp(p), the vectors u; and vy coincide
with @. Moreover, on coordinates j € supp(p), both vectors uy and vy are
larger than k and also congruent to «[j] mod k. Hence, uy ~j, vy. Since clearly
up=u+2k-p+(k—1)-u€ Rand vy, =v+2k-q+(k—1) v € S, Lemma 4.4
implies that R and S are not separable.

Conversely, suppose that R and S are not separable. Then by Lemma [4.4]
there are uy, € R and vy € S with uy ~j vy for every k € N\ {0}. We claim
that the sequences uq,us,... and v1,vs, ... have subsequences u},u), ... and
v}, vy, ... such that for every k > 1, we have (i) u, € uj + U3, (i) v}, €
v}, + V5 and (iii) u) ~yp v},

The claim is easy to observe: Note that by picking subsequences, we may
assume that even wj ~p v for every k > 1. Moreover, the latter property
is preserved by taking subsequences. Thus, since A, B are finite, by picking
subsequences again, we may assume that there are » € A and s € B such that
up € 7+ U and vy € s+ V* and uy, ~p v for k£ > 1. Then, by Dickson’s
lemma, we may assume that in addition ug41 € up+U* and vg41 € v+ V™ for
every k > 1 (here, we apply Dickson’s lemma to the |U|-dimensional vectors of
coefficients at period vectors in U and similarly for V). Now since wy ~p1 vy for
every k, it follows that the sequences w1, us,... and vy, vs,... are unbounded
on the same set J C [1,d] of coordinates. Then clearly, J is twin-unbounded
for R and S. This means, for all but finitely many &, we have uy41 € up + Uj
and vi41 € vy + VJ. Hence, by picking another subsequence, we may assume
that the latter holds for every k > 1. Then, u, us, ... and v1, vo, ... satisfy the
properties (i-iii) above, establishing our claim.

We now claim that u; — v; belongs to the group (Uy U V) generated by
U;UV;. Towards a contradiction, suppose u; —v; does not belong to (U;UVy).
By Lemma 4.3 there must be an s € N, s > 0, and a morphism ¢: Z¢ — Z/sZ
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such that ((U; UV;)) =0 and ¢(u; — v1) # 0. However, the vector

(us —vs) — (U —v1) = (us — u1) — (v — 1)
—_——— ——
e(Uy) e(Vy)

belongs to (U;UVy), but also agrees with u; —wv; under ¢ (since all components
of us — v, are divisible by s), contradicting Lemma Hence uwqy — v1 €
<UJ U V]>

This means, we can write u; —v; = v — 9 — (v — u) with u,@ € U} and
v,v € V. But then the vector u; +u—1u = v; +v— belongs to the intersection

(i} 0

With Proposition we have now characterized inseparability of subsets
of N? via a particular intersection of two sets in Z?¢. It will later be more
convenient to work with intersections of sets in N¢, which motivates the following
reformulation of Proposition

Theorem 4.6. Let R=A+U* CN? gnd S = B+ V* C N¢ pe hyperlinear
sets. Then R and S are not separable by a recognizable set if and only if the
intersection

(A+U"+Vy)N(B+V*+Uj) (2)

is non-empty, where J C [1,d] is the set of coordinates that are twin-unbounded

for R, S.

Proof. Direct consequence of Proposition since clearly A4+-U*—U} intersects
B+ V* -V ifand only if A+ U* + V; intersects B + V* 4+ Uj. O

5. Separability of semilinear sets is in coNP

Using the characterization Theorem [£.6] we can now explain our algorithm
for the coNP upper bound in Theorem [3:I] We describe an NP algorithm that
establishes inseparability.

Algorithm Step I: Solution sets to linear Diophantine equations
Let us first see that we can reduce the problem to the case where both input
sets are given as projections of solution sets of linear Diophantine equations. We
may assume that the input formulas are of the form Jx: k(x,y), where « is a
formula consisting of conjunction and disjunction (i.e. no negation) of atoms of
the form ¢ > a, where ¢ is a linear combination of variables @ = (21,...,2,),y =
(y1,.-.,Ym) and integer coeflicients, and a is a constant.

Let ¢ be a formula as described above. It is a well known fact that ¢ can
be transformed into disjunctive normal form. This means, ¢ is equivalent to a
formula @1 V- - - Vi, where each ¢; (a so-called clause) has the form 3x: {(z, y)
such that £ is a conjunction of atoms appearing in ¢. In general, the number of
clauses of ¢ is exponential.
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Now, let ¢ and 9 be the input formulas of the algorithm and let 1 V---V @y
and ¥y V- -+ V1 be their equivalent formulas in disjunctive normal form. Since
the number of clauses is exponential, we cannot compute all clauses for ¢ and .
However, the solution sets of ¢ and i are recognizably inseparable if, and only
if, for some pair 7, j, the solution sets of the formulas ¢; and 1; are recognizably
inseparable. This is due to the following fact, which follows standard ideas.

Lemma 5.1. Let K, Kq,...,K,,L C M be sets from a monoid M such that
K=K,U---UK,. Then K | L if, and only if, K; | L for all 1 <i <n.

Proof. Assume K | L. Then there is a recognizable set S C M separating K
and L. Let 1 < i < n be arbitrary. Since K; C K holds, the set S is also a
separator of K; and L, i.e., K; | L forall 1 <i <n.

Conversely, assume K; | L for all 1 <4 < n. Then there are recognizable
sets S; C M separating K; and L. Set S :=J;.,,, Si- Then S is recognizable
(according to the closure properties of the class of recognizable sets). We also

have
K= |J Kic |J Si=58
1<i<n 1<i<n
and
cnS=rLn| | S|= | @&ns)= D=0.
1<i<n 1<i<n 1<i<n
In other words, S is a recognizable separator of K and L, i.e., K | L. O

Thus, for deciding the inseparability of the solution sets of ¢ and 3 in NP
it is sufficient to guess (in polynomial time) clauses ¢; and 1; and show that
inseparability of the solution sets of these two formulas is decidable in NP.
Therefore, from now on we can assume that the input formulas are (existentially
quantified) conjunctions of atoms of the form ¢ > a.

In particular, each of the two input sets is a projection of the solution set
of a system of linear Diophantine inequalities. By introducing slack variables
(which will also be projected away), we can turn inequalities into equations.
Thus, we have as input sets K, L C N? with

K=n({xeN |Ax=b}) and L=n({zeN' |Czx=d}), (3)

where 7: Z" — Z% is the projection to the first d components, and A, C' € Z5*"
are integer matrices and b, d € Z° are integer vectors. Note that here, assuming
that the number r of columns and the number s of rows are the same for K and
L means no loss of generality.

Algorithm Step II: Recognizable inseparability as satisfiability In
the second step, we will reduce recognizable inseparability of K and L to satis-
fiability of an existential Presburger formula. To this end, we use the fact that
the solution sets to Az > b (resp. Cx > d) are hyperlinear sets, which allows
us to apply Theorem [4.6]
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Proposition 5.2. K and L are recognizably inseparable if, and only if, there
are vectors p,q,uw,v,x,y € N" with

(1) Ap=0, Cq =0, and supp((p)) = supp(7(q)),
(2) supp(r(u)), supp(w(v)) C supp(n(p)), Au =0, and Cv = 0,
(3) Az =b, Cy=d, and m(x +v) = 7(y + u).

Proof. We apply Theorem [£.6] To this end, we use the standard hyperlinear
representation for solution sets of systems of linear Diophantine equations. Let
Ao C N" be the set of all (component-wise) minimal solutions to Az = b, and
let U C N”" be the set of all minimal solutions to Az = 0. Then it is well
known that K = 7(Ag + U*) = 7(A4p) + 7(U)*. In the same way, we obtain
a hyperlinear representation L = w(By + V*) = 7(By) + 7(V)*. Then, the
proposition follows from Theorem

Indeed, observe that then 7(U)* is exactly the set of 7(p) € N with Ap = 0.
Likewise, m(V)* is exactly the set of m(q) € N? with Cq = 0. Therefore, if J C
[1,d] is the set of twin-unbounded components of K, L, and U, V; are defined as
in Theorem then w(Uy)* consists of exactly those m(u) for which (i) there
are p,g € N with Ap = 0 and Cq = 0 with supp(w(u)) C supp(n(p)) =
supp(w(q)) C J, and (ii) Au = 0. The set m(V;)* has an analogous description.

Thus, if p,q,u,v,x,y € N" exist as in the proposition, then clearly m(x +
v) = w(y + u) lies in the intersection (w(Ag) + 7(U)* + «(Vy)*) N (w(Bo) +
T(V)* +7(Ujs)*).

Conversely, an element in the intersection (7(Ag)+7(U)*+7(Vy)*)N(7w(Bo)+
7(V)* + w(Uy)*) can be written as w(x + v) = m(y + u), such that Az = b,
Cy = d, and there are p;,q; € N" witnessing w € Uj and also ps,q2 € N”
witnessing v € Vj. This means, supp(m(u)) C supp(m(p1)) = supp(m(qi)),
Ap1 =0, and Cqy = 0, but also supp(v) C supp(m(p2)) = supp(r(qz)), Ap2 =
0, and Cgs = 0. But then we can use p := p; + p2 and q := q; + g2 to satisfy
the requirements of the proposition. O

Finally, Proposition [5.2] can be used to complete the proof of our first main
result:

Proof of Theorem[3.1] Let ¢ and v be two existential Presburger formulas with-
out negation and using only atoms of the form ¢ > 0, where ¢ is a linear combi-
nation of variables and integer coefficients. We give an NP algorithm deciding
inseparability by a recognizable set.

Since the solution sets of ¢ and v are inseparable if, and only if, their
disjunctive normal forms have at least one pair of inseparable clauses, we guess
such a pair of these clauses ¢; and ¢; (cf. Lemma. We can transform ¢; and
t; into Diophantine equations Az = b and Cx = d. Using Proposition @ we
obtain in polynomial time an existential Presburger formula that is satisfiable if,
and only if, the solution sets of Az = b and Cx = d are inseparable if, and only
if, ¢; and v; are inseparable. Finally, the result follows from NP-completeness
of the existential fragment of Presburger arithmetic. O
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6. Regular separability of Parikh automata

We now prove our second main result: the coNP upper bound of regular
separability of Parikh automata (Theorem [3.6). For this, it will be technically
simpler to work with Z-VASS, which are equivalent to Parikh automata. In
[16, Corollary 1], it was shown that the two automata models can be converted
(while preserving the language) into each other in logarithmic space. Therefore,
showing the coNP upper bound for Z-VASS implies it for Parikh automata.

Integer VASS A (d-dimensional) integer vector addition system with states
(Z-VASS, for short) is a quintuple V = (Q, X, T, ¢, f) where @ is a finite set of
states, X is an alphabet, T C Q x Y. x Z% x Q is a finite set of transitions, and
L, f € Q are its source and target state, respectively. Here, Y. = Y U {e}. A
Z-VASS V = (Q, X, T, f) is called deterministic if V has no e-labeled transi-
tions and for each p € Q and a € X there is at most one transition of the form
(p,a,v,q) € T (where v € Z% and ¢q € Q).

A configuration of V is a tuple from QxZ<. For two configurations (p, u), (¢, v)
and a word w € X* we write (p, u) —y (g, v) if there are states qo, q1,...,q €
Q, vectors vg,v1,...,v, € Z% and letters ay,...,a¢p € Y. such that w =
aras - -ag, (p,u) = (go,v0), (¢,v) = (g, v¢), and for each 1 < i < ¢ we have
a transition ¢; = (g;—1,ai,%;,q;) € T with v; = v;_1 + @;. In this case, the
sequence titg - - -ty is called a (w-labeled) run of V. The accepted language of V
is L(V) = {w e X* | (1,0) %y (f,0)}.

Let I C [1,d] be a set of indices. Then we can generalize the acceptance
behavior of the Z-VASS V as follows:

Lv,I)= {w e X* | Jv e 7% (¢,0) 5y (f,v) and 77 (v) = 0}.
Note that L(V,[1,d]) = L(V) holds.

An overview of the proof of Theorem The remaining part of this
section is dedicated to the proof of our second main result, Theorem [3.6l The
first few steps (Lemmas and are essentially the same as in [7],
for which we briefly give an overview: The authors reduce regular separability
to recognizable separability of semilinear sets in N (for some dimension d).
Concretely, instead of asking for the regular separability in two given Z-VASS
we separate quantities of cycles within runs of these Z-VASS. Accordingly, the
dimension corresponds to the number of (simple) cycles. Unfortunately, this
number is exponential in the size of the input and therefore we cannot just
use our first main result (Theorem to prove the coNP upper complexity
bound. Instead we will construct two Z-VASS (of polynomial dimension) ac-
cepting sequences of cycles such that their language intersection corresponds to
the intersection from Theorem (which is non-empty if, and only if, the
Z-VASS from the input are regularly inseparable). Intersection for Z-VASS is
known to be in NP implying also the NP upper complexity bound for the regular
inseparability problem resp. the coNP upper bound for the separability problem
of Z-VASS.
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6.1. Reduction to separability of semilinear sets
6.1.1. Determinizing the automata

As announced, we will first follow the reduction from [7]. In the first step,
the regular separability problem of nondeterministic Z-VASS can be reduced
to the same problem in deterministic Z-VASS. This reduction is possible in
polynomial time which is a bit surprising at first glance since determinization
typically requires at least an exponential blowup. However, in this reduction
we determinize the Z-VASS “up to some homomorphic preimage”; i.e., from two
given Z-VASS V; and Vs, one constructs two deterministic Z-VASS W, and W,
with (i) LOW;) = h=Y(L(V;)) where h: I'* — X* is a homomorphism and (ii)
L(V1)|L(Vs) if, and only if, LOV; )| L(W>) holds. Since our setting is technically
slightly different from [7], we include a proof below.

Lemma 6.1 (|7, Lemma 7|). Regular separability for Z-VASS reduces in poly-
nomial time to the regular separability problem for deterministic Z-VASS.

Before we can prove Lemma [6.1] we first need the following statement.

Claim 6.2. Let K,L C X* be two languages and h: I'* — X* be an alphabetic
morphisn{l} If K' C h™'(K) with h(K') = K, then we have

K|L < K'|h L).

Proof. First, assume K | L. Then there is a regular separator R C X* of K and
L,ie.,wehave K C Rand LN R =0. Set R := h~'(R) C I'*. R’ is regular
since the class of regular languages is closed under inverse morphisms. We also
have K’ C h™!(K) C h™'(R) = R'. Additionally, we have h=*(L)Nh~1(R) =0
since the existence of an element w € h~!(L)Nh~!(R) would imply h(w) € LNR.
This means, R’ is a regular separator of K’ and h=1(L), i.e., K' | h=1(L).
Conversely, assume K’ | h~!(L). Then there exists a regular separator R’ C
I'* of K" and h=1(L), i.e., we have K’ C R’ and h~*(L)NR' = (. Set R := h(R')
which is a regular language since the class of regular languages is also closed
under morphisms. Then we have K = h(K’) C h(R') = R. Also LNR = {) holds:
towards a contradiction suppose there is w € LNR. From w € R = h(R’) follows
the existence of a word w’ € R’ with h(w') = w. We also infer w’ € h=*(L)
from w € L. Hence, we have w’ € h~*(L) N R’ = (—a contradiction. All in all,
we proved that R is a regular separator of K and L, i.e., K | L. O

Proof of Lemmal6.1 The proof of this lemma is similar to [7, Lemma 7|: let
Vi = (Qi, X, Ty L4, fi) with ¢ = 1,2 be two Z-VASS. From V; and V, we will
construct two Z-VASS V! = (Q;, I, T}, v;, f;) such that V] is deterministic and
we have

LWV1) [ L(V2) <= L(V1) | L(Vy).

We will obtain the determinism of V] by making each label of a transition in
V; unique. So, set I' = Tj. Ty is obtained from Tj by replacing each transition

4A morphism h: I'* — X* is alphabetic if |h(a)| < 1 holds for each letter a € I".
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t = (p,a,x,q) € T1 by the new transition (p,t,x,q). Using this translation we
also obtain a morphism h: I'* — X* with h((p, a,x,q)) = a for each transition
(p,a,z,q) € I' = Ty. Then we obtain V} from V, with L(V5) = h=1(L(V2))
by replacing each label a € X of a transition in T4 with all labels ¢t € T} with
h(t) = a. Additionally, to each state of V, we add loops labeled with ¢t € T
satisfying h(t) = e. Formally, this is the following set of transitions:

T2/ = {(p7tawaq) | te Tla (p7h(t)a$7q) € TQ}
U{(p.t,0,q) | p,qg € Q,t € Ty, h(t) =¢}.

Note that this is a well known construction for the application of the inverse of
an alphabetic morphism and, hence, we have L(V5) = h=Y(L(Vy)).

Since each letter from I" occurs in exactly one transition of Vi, this Z-VASS
is deterministic. Additionally, Vi and Vj can be constructed from V; and Vs in
polynomial time. It is also clear that the morphism A is alphabetical. We can
also prove the following properties:

1. L(V{) € h™1(L(V1)): Let w € L(V;). Then there is an accepting run
thth -ty in V| with ¢; = (¢i—1,t;,®i,¢;) € T] for each 1 < i < £. In
particular, we have w = tyty---t;, € Ty. By definition of V; we have
t; = (¢i-1,0i,¢i,q) € Ty for an a; € X.. But this means that w =
tity - - - tp is an accepting run in V] labeled by ajas -« - ay, i.e., ajas - -ay €
L(Vy). Moreover, we have h(w) = h(tita---ty) = ajaz---ap implying
w € h™Y(ajaz -+ -ag) Ch 1(LOV)).

2. h(L(Vy)) = L(V1): A word w € X* is in h(L(V})) if, and only if, there
is a word w’ € L(V{) C I'* with w = h(w’). This is exactly the case
if there is an accepting run ¢jt5---t, in V| that is labeled with w’, i.e.,
we have t, = (gi—1,t;, ®;,q;) € T{ and w' = t1t2---t;. By construction
this is equivalent to an accepting run 15 ---t, in V; that is labeled with
h(w') = w. But this is exactly the definition of w € L(Vy).

Now, we can apply Claim [6.2] and obtain
L) | L(Ve) <= L(Vy)| L(V3).

In a final step, we can apply the same polynomial-time procedure to V5 and
Vi to determinize V5. The result are two Z-VASS V" and VY with

LWV1) | L(V2) <= L(V1)|L(V3) <= LOY) | L(V3).

While VY is deterministic by construction, it is not clear that the same holds
for V{'. However, due to the fact that V{ and V) do not have any e-transitions,
our construction does not introduce any loops in V;' compensating e-transitions
in Vj. Hence, V7' is also deterministic. O

6.1.2. Unifying the automata

Next, we reduce regular separability for deterministic Z-VASS to regular
separability of two languages accepted by the same deterministic Z-VASS, but

17



646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

with different sets of counters. To this end, given two d-dimensional Z-VASS V,
and V, we construct one 2d-dimensional Z-VASS V (using product construction)
and two index sets Iy, I C [1,2d] such that L(V;) = L(V, I;).

Lemma 6.3 ([7, Proposition 1]). Regular separability for deterministic Z-VASS
reduces in polynomial time to the following problem:

Given: A d-dimensional deterministic Z-VASS V with two sets Iy, I3 C [1,d].
Question: Are the languages L(V,11) and L(V, I3) regularly separable?

Proof. Let V; = (Qq, X, T, i, fi) be two deterministic d-dimensional Z-VASS.
We apply the product construction and obtain a new deterministic 2d-dimensional
Z-VASS Vl X Vg = (Ql X Q27 E,T, (Ll, LQ), (fl, fg)) with

ir @, Vi, ;) € T;
T= {((PMPQ),C% (v1,v2), (q1,92)) (pfor all Z_q:) 1.9 }

We show now that L(V;) | L(V2) holds if, and only if,
LOV1 x Vo, [1,d]) | LOV1 x Vo, [d + 1,2d]) .

Let A; = (Qi, X, A, i, {fi}) with A; = {(p,a,q) | Iv € Z%: (p,a,v,q) € T;} be
the DFA obtained from V; (for ¢ = 1,2) by removing all counter updates from
the transitions. Then we can observe that L(V; x Vs, [1,d]) = L(V;) N L(A3)
and L(Vy x Vs, [d+ 1,2d]) = L(V,) N L(A;) holds.

Assume that L(V;) | L(Vz) holds. Then there is a regular separator R C X*
with L(V1) € R and L(V2) N R = (. Since L(Vy x Va,[1,d]) = L(V;) N L(A2) C
L(V1) and, similarly, L(V; x Vs, [d+ 1,2d]) C L(V2) holds, the regular language
R is also a separator of L(V; x Va,[1,d]) and L(Vy X Vs, [d + 1,2d]).

Conversely, let R C X* be a regular separator of L(V; X Vs, [1,d]) and
L(Vi x Vo, [d + 1,2d]). Set B = (RN L(A;)) U (2% \ L(As)). Clearly the
language R’ is regular. We also have

L(V1) = (L(V1) N L(A2)) U (L(V1) N 27\ L(A2))
= (LOV1) N L(A2) N L(A1)) U (L(V1) N 2%\ L(Az))  (by L(V1) € L(A))
C(RNL(A))U(LOW) N X"\ L(A2)) (R is a separator)
C (RNL(Ay)) U (27 \ L(A2))
=R.

Additionally, by L(V2) C L(A2) we have L(Vs) N (X*\ L(Az)) = 0 and
(RNL(A))NLOVs) = RNL(Vy X Vo, [d+1,2d]) = 0

implying L(V2) N R’ = 0. Hence, R’ is a regular separator of L(V;) and L(Vs).
U

Therefore, we now fix a Z-VASS V = (Q, X, T, ¢, f).
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6.1.3. Skeletons

Now, we want to further simplify the regular separability problem. Con-
cretely, we want to consider only runs in V that are in some sense similar. We
consider some base paths—so called skeletons—in V. Two runs in V are similar
if they follow the same base path and only differ in the order and repetition of
some cycles. We define the function skel: 7% — T* such that skel(r) = p for a
path r € T in V such that p is a sub-path of the original path r in which we
keep the same set of visited states while removing all cycles that do not increase
the set of visited states. Here, p is called the skeleton of r.

Let t1---ty € T* be a path in V, i.e., we have t; = (gq;—1,ai,x;,q;) € T for
each 1 < i < ¢. The map skel is defined inductively as follows: skel(e) = ¢
and skel(t1) = ¢;. For 1 <14 < £ assume that skel(t; ---t;) = s1---s; is already
constructed and that s;---s; is a path ending in ¢;. Now we consider the
transition ¢;y1. If there is no transition s; (with 0 < k < j) with target state
qi+1, W€ set skel(t1 s titi—i-l) = 81 Sth_l. Note that 81 Sjti_;,_l is a path
ending in the state g;41.

Otherwise, let 0 < k < j be maximal such that s ends in ¢;4+;. Then
Sk41- " S5ti41 is a cycle in V (note that sgy1 starts with ¢; 41 since s; - -85
is a path). If all states occurring in the cycle sg41---sjti+1 also occur in the
path sq---sg, then we set skel(ty - - t;t;1) = s1--- Sk, l.e., we omit the cycle
Sk+1 - S;ti+1 in the skeleton. Note that the skeleton s; - - - s, is a path ending in
¢i+1- Otherwise at least one state in the cycle does not occur in the path sq - - - s.
In this case, we simply add t,11 resulting in skel(¢; ---titir1) = s1---S;tit1
where 51 ---5;t;41 is also a path ending in ¢;1. Note that any skeleton of V
has length at most quadratic in the number of transitions |7'| as shown in [7|
Lemma 10].

Let p be a skeleton. A p-cycle is a cycle that only visits states occurring in
p; a p-run is a run r € T™ with skeleton skel(r) = p (i.e., r is obtained from
p by inserting p-cycles). We write L(V, I, p) for the set of all words in L(V,I)
accepted via p-runs.

Lemma 6.4 ([7, Lemma 11]). We have L(V,Iy) | LV, I2) if, and only if,
LWV, 11, p) | L(V, I, p) holds for every skeleton p.

Although this was essentially shown in |7, Lemma 11], our setting is strictly
speaking slightly different (e.g. we have all short rather than only simple cycles),
so we include a detailed proof below.

Proof. First, note that there are only finitely many skeletons: Clemente et
al. proved in [7, page 9] that each skeleton has length at most |Q|?>. Hence,
there are at most |T[/!" many skeletons in V. It is also clear that L(V,I) =
Uskeleton pof V LO}’ I, p) holds.

Let p be a skeleton of V. There is also a regular language K, C X* such that
L(V,1,p)=L(V,I)NK, holds: we can obtain a finite automaton accepting K,
from V and p by removing the counters and all edges and states that do not
belong to the skeleton p.

Finally, we use the following well known fact:
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Claim 6.5. Let Ki,...,K, C X* be reqular languages partitioning X* and
Ly, Ly C X* be two languages. Then we have Ly | Ly if, and only if, Ly N K; |
Lo N K; holds for each 1 < i < n.

Now, if the languages K; are the regular languages K, for any skeleton p
and L; = LV, I;) for i = 1,2 we obtain that L(V,I;) | L(V, I2) holds if, and
only if, L(V,I1,p) = L(V, ;) N K, is regular separable from L(V,I;) N K, =
L(V, 12, p) O

Thus, it suffices to show that for a given skeleton p, one can decide regular
inseparability of L(V,I1,p) and L(V, I, p) in NP. So, from now on, we fix a
skeleton p and simply write L(I;) for L(V,I;, p). Since we only consider runs
that visit states that occur in p, we may also assume that V consists only of the
states occurring on p. In particular, we only say cycle instead of “p-cycle”.

6.1.4. Counting cycles

We now phrase a characterization of regular separability from [7] in our
setting. It says that regular separability of the languages L(Iy) and L(I3) is
equivalent to recognizable separability of vectors that count cycles. Here, we
only count short cycles of length at most |@Q|. This is possible since each cycle
can be decomposed into short cycles. In the following, we fix the set S C T=I<l
of all short cycles in VE|

For I C [1,d], we define: if t = (p,a,x,q) € T is a transition then the effect
Aj(t) of ¢t to the components in I is A;(t) = wr(x), i.e. the projection of the
counter update x to I. If r = t1to---t, € T* is a path, then the effect Af(r)
of r to the components in I is the sum of the effects of all transitions on this
path, i.e. Ay(r) = Zle Az(t;). Now, let u € N® be a multiset of short cycles.
Then the effect of u to the components in I is Ar(u) = Y gulc] - Ar(c). If
v € N7 is a multiset of transitions, then the effect of v to the components in I
is Ar(v) = > e v[t] - Ar(t). In case of I = [1,d] we will also write A instead
of Aj. Finally, we define

M(I) = {u e N|As(p) + Ar(u) =0} .

Hence, M (I) is the set of multisets of short cycles such that inserting them into
p would lead to an accepting run with acceptance condition I C [1,d]. Since
M(I) is the solution set of linear Diophantine equations, it is hyperlinear.

Observation 6.6. Let I C [1,d]. Then M(I) is hyperlinear, i.e., M(I) =
B+ V* for two finite sets B,V C N5,

Proof. The equation Ay, (p) + Ay, (u) = 0 is a system of linear equations (over
N%) and M (1) is the set of solutions of this equation system. Since the equations

5 Although Lemmas and are essentially the same as in [7], we are working
with short cycles, whereas [7] uses simple cycles. This will be crucial later, because short
cycles can be guessed on-the-fly in a finite automaton without storing the whole cycle.
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are expressible in Presburger arithmetic, we obtain that M (I) is semilinear [46].
Hence, we have M(I) = J,<;<, wi + V;* (where u; € N¥ and V; € N¥ are
finite). We can see that the vectors in V; are solutions of the homogeneous
linear equation system Ay, (v) = 0 and the vectors u; satisfy the inhomogeneous
system Ar, (u;) = —Ar, (p). Therefore, we have u;+v € M(I) foreach1 <i <k
and v € (J; <<, V- According to this we can write the solution set M(I) also
as B+ V* where B = {u1,...,u} and V = |J; ., Vi. In other words, the set
M(I) is even hyperlinear. O

The following equivalence between regular separability of the languages L(I;)
and recognizable separability of the (hyperlinear) sets M (I;) was shown in [7]
Lemma 12]. It is straightforward to adapt it to our situation.

Lemma 6.7. We have L(I1) | L(I3) if, and only if, M(Iy) | M (I3).

Proof. Before we prove the equivalence, let us introduce a map cycles: 7% — N*
such that for each p-run r € T* we have cycles(r) = v € N° if r contains each
p-cycle ¢ € S exactly v[c] times.

Now, assume that L(I;)|L(I2) holds, i.e., there is a regular separator R C X*
with L(I;) € R and RN L(I3) = (. We will use Lemma[{.4] to show that M (1)
and M(I3) are separable by a recognizable set. To this end, we will give a
number k£ € N\ {0} such that vy ¢ v2 holds for each v; € M(I;) implying the
separability of M (I1) and M (I3).

For two words wy,ws € L* write w1 =g we if zw1y € R <= zwsy € R
for all z,y € X* (i.e., =g is the syntactic or Myhill congruence of R). Since R
is regular, the index of =p is finite and, hence, there is a number k € N\ {0}
such that

w® =g w?*  for each w € £*. (4)

We show now vy » vo for each v; € M(I;). Towards a contradiction, assume
there are v; € M(I;) (for i = 1,2) with vy ~j vo. We construct runs r; € T*
such that skel(r;) = p and cycles(r;) = v; hold. For a short p-cycle ¢ € S
choose a prefix x. of p such that skel(z.c) = x. (note that for each cycle c € S
such an z. exists). Let cq,...,¢, be an enumeration of S such that |z.,| <
|Tey| < +-+ < Jx,,| holds. In the following we will write z; instead of x.,. Let
21y 2ng1 € T* such that z; = x1, z;2;01 = 2441 for each 1 < i < n, and
TpZntl = P, 1.€., we have p = z129 -+ 2 41. Set
T = zlc¥i[cl]2205i[c2] e chzi[c“]znﬂ .

Clearly we have skel(r;) = p and cycles(r;) = v; hold for i = 1,2. We can also
show that the labels wq,wy € X* of the paths rq resp. ro satisfy w; =g ws using
vy ~ v2 and repeated usage of the equation . However, v; € M(I;) implies
w; € L(I;). Since wy € L(I;) € R we also have wy € R (by w1 =g ws). Hence,
we have wy € RN L(I3) = 0—a contradiction.

Conversely, assume that M (I;) | M(I3) holds. Hence, there is a recognizable
set X C N° such that M(I;) € X and X N M(lz) = 0. Let R C X* be the
set of all labels of p-runs r € T* such that skel(r) = p with cycles(r) € X. We
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show that R is a regular separator of L(I1) and L(Iy). We have L(I;) C R: let
w € L(I1). Then w is the label of a p-run r € T* with skel(r) = p. But then
we know cycles(r) € M(I;) C X implying w € R.

Now, suppose there is a word w € L(I3) N R. Then w is the label of runs
r1,r2 € T* with skel(r;) = p, cycles(r1) € M(I2) and cycles(rz) € X. Since
V is deterministic, we know that r1 = ro implying cycles(r1) = cycles(ra) €
M(I3) N X = P—a contradiction. Hence, we have L(I3) N R = 0.

Finally, we have to show that R is regular. To this end, we construct a
nondeterministic finite automaton that simulates p-runs by storing the image of
the map skel and cycles in its state. While the set of all skeletons is finite, the set
of vectors appearing in the image of cycles is not necessarily bounded. However,
since X is recognizable and, hence, semilinear we can evaluate the condition
cycles(r) € X for a path € T* using only a finite memory. Concretely we
guess a linear set w + P* C X where u € N¥ and P C N¥ finite (recall that X
is a finite union of such linear sets). Additionally, let P = {p1,...,p,}. The
NFA stores in its memory vectors w', pl,...,p), with ' < w and p; < p; for
all 1 < i < n. Whenever the simulation of skel detects a p-cycle, we increase
one of the vectors w/,p,...,pl,. If we reach one of the vectors p; due to this
detection procedure, we reset this vector to 0. The NFA accepts if its memory
contains the skeleton p and the (bounded) counter values u,0,...,0. Clearly,
this NFA accepts the language R. Hence, R is a regular separator of L(I;) and
L(Iy). O

6.2. Reducing inseparability to intersection

At this point, our proof deviates from the approach of [7]. According to
Lemmal6.7] it remains to decide whether M (I1)| M (1), where M (I;) and M (1)
are sets of vectors of dimension |S|, which is exponential. In Theorem [4.6) we
saw that recognizable separability of vector sets A+ U* and B + V* reduces to
intersection emptiness of A+ U* + V; and B + V* + U}, where J is a subset
of the twin-unbounded components. However, the exponential dimension of
M(I), M(I2) means a direct translation into existential Presburger arithmetic
would incur an exponential blowup.

Instead, our key observation is that one can reduce inseparability to in-
tersection emptiness of Z-VASS: The idea is to encode the intersecting vectors
u€ (A+U*+VH)N(B+V*+U3), where M(I,) = A+U*, M(I;) = B+V*, as
words containing the participating cycles. Thus, we guess a subset J of the twin-
unbounded components, and then construct in polynomial time two Z-VASS W,
and W, such that

L(Wl):{#cl#CQ"'#CM|mEN7 Cl,...,CmES, (I)(Cl,,Cm)EA+U*+V;},

()

LWs) = {#c1#ca - #em |[mEN, ¢1,...,¢m €8, ®(c1,...,cm) € B+V*+ UG},

(6)

where for cycles ¢y, ..., ¢, € S, the so-called Parikh vector ®(cy,...,cpn) € N¥
counts how many times each short cycle occurs in ¢1,...,¢p: If ¢ € S, then
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®(cy,...,0m)[c] is the number of indices ¢ € [1,m] with ¢; = ¢. Note that then
clearly, (A+U* +V7)N (B + V* +Uj) # 0 if and only if L(W1) N L(W2) # 0.

The main challenge in constructing W; and W, is to guess a subset J of
twin-unbounded components, and for the Z-VASS to verify that a given cycle
belongs to J, without being able to store an entire cycle in its state. To solve
this, we we will characterize the twin-unbounded cycles in terms of its set of
occurring transitions.

6.2.1. Characterizing twin-unbounded cycles
We define for any 7' C T the set

si] = {ce =1

cisa cycle} .

Thus, S [T] C S is the set of all short cycles that consist solely of transitions
from 7.

Our characterization uses an adaptation of the notion of “cancelable produc-
tions” in Z-grammars used in [I6]. We define the homomorphism 9: N7 — 7%
as follows: for each transition ¢ = (p,a,x,q) € T we set 0(e;) = e, — ep, where
e; € NT and ey, e, € N¥ are unit vectors. Thus, d(u)[g] is the number of
incoming transitions to ¢, minus the number of outgoing edges from ¢, weighted
by the coefficients in u. A flow is a vector f € N” with 9(f) = 0. The following
is a standard fact in graph theory. For a proof that even applies to context-free
grammars (rather than automata), see [52, Theorem 3.1].

Lemma 6.8. A vector f € NT is a flow if and only if it is a sum of (the Parikh
vectors of ) cycles.

The following notion will be key in characterizing which cycles are twin-
unbounded for M (I;) and M(I3). A transition ¢ € T is bi-cancelable if there
exist flows f1, f2 € NT such that (i) Az, (f1) =0 and Ap, (f2) = 0, (ii) t occurs
in both f; and in fo, and (iii) supp(f1) = supp(f2). In other words, ¢ is bi-
cancelable if it is part of two flows fi; and fo with the same support and with
effect zero (wrt. the components I; resp. I5).

Lemma 6.9. A cycle ¢ € S is twin-unbounded for M(Iy) and M(I2) if, and
only if, every transition in c is bi-cancelable.

Proof. For the “only if” direction, suppose that ¢ is twin-unbounded for M (I;)
and M (I3). Then by definition there exist sums of period vectors wi, us € NS
of M(I) resp. M(I3) with ¢ € supp(u;) = supp(uz). Define f; = 7(u;) € NT,
where 7: N® — N7 maps cycles to the number of occurrences of each transition
in these cycles. Then clearly f; are flows with Ay, (f;) = Ar, (u;) = 0, ¢ occurs
in both f; and in f5, and supp(f1) = supp(f2). Hence, all transitions in ¢ are
bi-cancelable.

For the “if” direction, suppose a cycle ¢ € S only contains bi-cancelable
transitions and write ¢ =ty - - -t,, for t1,...,t, € T. For each t;, there are flows
fi,1 and f; 2 witnessing that ¢, is bi-cancelable. Notice that f; := fi 1+ -+ fn1
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Figure 1: The flow 7(ey) + (fi — 7(ew)) where the cycle u is depicted in bold blue and the
cycles of the flow f; —7(ey) are depicted in red. Note that the new flower shaped cycle is not
necessarily short, but can be easily split into short cycles.

and fo = fi2+ -+ fn 2 are flows as well and they have supp(f1) = supp(f2).
As flows, both fi and f; can be written as a sum of cycles: There are uy, us €
N% with 7(u1) = f1 and 7(us) = fo. Observe that Az, (u;) = Az, (us) = 0,
meaning u; and uy are sums of period vectors of M (1) and M (I3), respectively.
If we knew that c occurs in both w; and in us, and w1, us had the same support,
we could conclude twin-unboundedness of c¢. Since ui,us may not have these
properties, we will now modify them. Consider the set S’ = S[supp(f1)] =
S[supp(f2)]; hence S’ is the set of short cycles u € T™ such that supp(u) C
supp(f1) = supp(f2). By the choice of f; and fa, we know ¢ € S’. For each
cycle u € S’ the vectors f1 — 7(e,) and fo — 7(e,) are again flows, because
7(ey) is a flow. Now observe

3" rlew) + (i —(en) = 15| - fi

u€es’

for i = 1,2 (cf. Fig.[I)). Hence, the flow |S|- f; can be written as a sum of cycles
in which each cycle from S’ occurs. Moreover, in this sum, every occurring cycle
belongs to S’. This means, u},u) have the same support S’, which includes c.
Moreover, since 7(u}) = |S’|- f;, we know that Ay, (u}) = 0, meaning u} is a sum
of period vectors of M (I;), for i = 1,2. This means, c is indeed twin-unbounded
for M(I) and M(I). O

To construct our Z-VASS W; and W,, we first guess a set of transitions and
then verify that all of them are bi-cancelable. For the verification, we translate
the definition of bi-cancelability into an existential Presburger formula ¢, which
is satisfiable if, and only if, ¢ is bi-cancelable.

Lemma 6.10. Given a transition t € T, we can decide in NP whether it is
bi-cancelable.

Proof. We construct an existential Presburger formula ¢, which is satisfiable if,
and only if, ¢ is bi-cancelable. Recall that ¢ is bi-cancelable if, and only if, there
exist two flows fi, fo € NT such that the properties (i)—(iii) on page [23| hold.
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We express in the following these three properties as quantifier-free Presburger
formulas using the variables x and 3y for each transition.

(1) Y1 = /\iG[l,d] Zt’:(p,a,v,q)GT ’U[Z] cxy =0A Zt’:(p,a,v,q)GT ’U[Z] Yy =0
(11) ¢2,t:xt>0/\yt>0
(111) 'LZJ3 = /\t’ET(‘rt’ >0+— Yy > 0)

Additionally, we have to express that fi and fy are flows. This is possible with
the following formula:

Yo = /\ Z Ty = Z Ty A Z Yy = Z Yoo -

q€Q t'=(p,a,v,q)€T t'=(q,a,v,p)ET t'=(p,a,v,q9)€T t'=(q,a,v,p)€T

Set ¢, = Jx, y: Yo A1 Ao Abs where & = (zy )per and y = (yp )y er are T-
vectors of variables. Clearly, (; is satisfiable if, and only if, ¢ is bi-cancelable. [

6.2.2. Constructing the Z-VASS

Lemma 6.11. There are Z-VASS Wy and Wy with LOW;) N L(Ws) = 0 if and
only if M(I1) | M(I3) holds. Wy and Wy can be constructed from V, Iy, and Iy
i nondeterministically polynomial time.

Let us now describe how the Z-VASS W; and W, are constructed. Con-
cretely, we build two Z-VASS that satisfy Eqs. and (6). But instead of
literally guessing the whole set J of twin-unbounded cycles (which could re-
quire exponentially many bits), we guess a set T C T of transitions in V and
then verify in NP that they are all bi-cancelable using Lemma[6.10} This means,
we will have

LWh) = {#aftea- - #em |meNcr,em € 5,8(cr, - oyem) € A+ U™ + Vg
(7)

LWs) = {#c1#tca- - #em |meN ey, ... em € 5,P(c1,...,¢m) EB+VT +U;m}
(8)

and from now on, we will also write J = S[T]. Note that the result of our
algorithm is correct, even when the guess for T is not the entire set of bi-
cancelable transitions: when L(W) intersects L(W) for some choice of T it
will do so for any larger choice of 7.

Ensuring membership in A 4+ U* The idea for constructing W; (and
analogously W) is simple. For each cycle in the input, it guesses whether it
belongs to A + U* or to V;[T]' Let up € N¥ and u; € N be the collection of

cycles guessed to be in A 4+ U* and in VS*[T]’
ug € A+ U™, we note that ug € A+ U™ is equivalent to Ar, (uo) + Ap, (p) =0,
where p is the skeleton guessed earlier in the algorithm. Thus, we can use ||
counters to sum up the effect of the cycles ug and add Ay, (p) once in the end.

Hence, these counters being zero in the end is equivalent to ug € A + U*.

respectively. To make sure that
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St ! (7

that this is equivalent to Ap, (u;) = 0 and supp(wuy) C S[T]. Thus, our Z-VASS

has a separate set of |Iz| counters that carry the total effect of all the cycles in

w1. Moreover, it is easy to check that all cycles in w1 only use transitions in T.
Note that membership in B + V* and in U;[T] are checked similarly.

Ensuring membership in To make sure that u; € VS* , we note

Polynomial time construction Finally, we have to show that the con-
struction of Wi (and W) is possible in polynomial time. To this end, let
V = (Q,X,T,t,f) be the components of V and let p be a skeleton from ¢
to f visiting all states in Q. We construct a |I;| + |I2|-dimensional Z-VASS
Wy = (Q',I,T',, f) over the input alphabet I' = T'U {#}. The set of states
@' contains (among others) the states {¢, f}. We have a transition from ¢ to
f labeled with e and adding (Ap, (p),0) to the counters (note that since the
skeleton p is fixed for our construction, we can simulate it in one step). For
simulating cycles we then guess whether we simulate one in A + U* or one in

;m- For both cases we construct a gadget G which is the following automaton:

e The states of G consist of two states from ) and a bounded counter with

values in [1,]Q]], i.e., {(p,¢,7) | p,qg € @,1 < j < |Q|} is the set of states

in G. Here, the state (p,q,j) has the following meaning: the simulation

of the cycle started in state p, we are currently in state ¢, and we can
simulate at most j more steps until finishing the cycle.

e There are transitions from ¢ to each state (¢, q,|Q|) with label # and
counter update (0,0).

e For each 1 < j < |Q| we have a transition from (p,q,j) to (p,¢',j — 1) if
V has a transition t = (q,a,x,q’) € T. The label of the new transition is ¢
and the counter update depends on the decision made at the beginning of
the simulation: if we are simulating a cycle in A+ U*, the counter update
is (7, (2),0). Otherwise it is (0,7, (x)). In the latter case we also have
to ensure that ¢ € 7' holds.

e We also have transitions from (p,q,j) back to ¢ if V has a transition
t = (qg,a,x,p) € T. The label and the counter update are defined as
above.

In other words, the gadget G is actually the computation graph that is truncated
to runs of length < |Q|. Note that each of the two gadgets has at most |Q|3
many nodes implying that W has polynomial size (in |Q)).

With this polynomial-time construction of W; and Ws, we are ready to prove
Theorem

Proof of Theorem[3.6, We give an NP algorithm for regular inseparability of two
Z-VASS (which can be obtained from Parikh automata in logarithmic space [16]
Corollary 1]).
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Let V1 and Vs, be two d-dimensional Z-VASS. From V; and Vs we can com-
pute a single 2d-dimensional deterministic Z-VASS V and two sets I, I> C [1,2d)
in polynomial time such that L(V;)|L(V2) holds if, and only if, L(V, I) | L(V, I2)
(Lemmas and [6.3). According to Lemma [6.4] we have L(V, I1) | L(V, I) if,
and only if, L(V, I1, p) | L(V, Iz, p) for each skeleton p in V holds. So, we guess
a skeleton p and check regular inseparability of L(V, I1, p) and L(V, I3, p) certi-
fying regular inseparability of L(V,I1) and L(V, I5).

Additionally, we will guess a set 7' C T of transitions and verify in NP that all
of them are bi-cancelable (Lemma . Then we can construct in polynomial
time two Z-VASS W; and W, such that and hold (Lemma . If
LOWy) N L(Ws) # 0, the algorithm reports “inseparable”. For this, it uses a
simple product construction to obtain a Z-VASS W for the intersection L(W;)N
L(Ws), and decide in NP whether an accepting configuration can be reached in
W.

This is sound: We have LW, ) N L(Ws) # 0 if and only if (A+U* + V)N
(B+V*+Uj) #0 for J = S[T]; and by Lemma we know that the latter
rules out M (I1)| M(I3). For completeness, note that if M (I;) | M (I2) does not
hold, then there exists a choice for 7" such that L(W;) N L(Ws) # 0: Take the
set of all bi-cancelable transitions. O
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