
The complexity of separability for semilinear sets and1

Parikh automata2

Elias Rojas Collinsa, Chris Köcherb, Georg Zetzscheb
3

aMassachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, 02139, MA, USA

bMax Planck Institute for Software
Systems, Paul-Ehrlich-Str. 26, Kaiserslautern, 67663, RP, Germany

Abstract4

In a separability problem, we are given two sets K and L from a class C, and we5

want to decide whether there exists a set S from a class S such that K ⊆ S and6

S ∩ L = ∅. In this case, we speak of separability of sets in C by sets in S.7

We study two types of separability problems. First, we consider separability8

of semilinear sets (i.e. subsets of Nd for some d) by sets definable by quantifier-9

free monadic Presburger formulas (or equivalently, the recognizable subsets of10

Nd). Here, a formula is monadic if each atom uses at most one variable. Second,11

we consider separability of languages of Parikh automata by regular languages.12

A Parikh automaton is a machine with access to counters that can only be13

incremented, and have to meet a semilinear constraint at the end of the run.14

Both of these separability problems are known to be decidable with elementary15

complexity.16

Our main results are that both problems are coNP-complete. In the case
of semilinear sets, coNP-completeness holds regardless of whether the input
sets are specified by existential Presburger formulas, quantifier-free formulas, or
semilinear representations. Our results imply that recognizable separability of
rational subsets ofΣ∗×Nd (shown decidable by Choffrut and Grigorieff) is coNP-
complete as well. Another application is that regularity of deterministic Parikh
automata (where the target set is specified using a quantifier-free Presburger
formula) is coNP-complete as well.

Keywords: Vector Addition System, Separability, Regular Language17

1. Introduction18

Separability In a separability problem, we are given two sets K and L19

from a class C, and we want to decide whether there exists a set S from a20

class S such that K ⊆ S and S ∩ L = ∅. Here, the sets in S are the ad-21

missible separators, and S is said to separate the sets K and L. In the case22

where C is a class of non-regular languages and S is the class of regular lan-23

guages, then the problem is called regular separability (problem) for C. While24

the problem turned out to be undecidable for context-free languages in the25

1970s [1, 2], the last decade saw a significant amount of attention on regular26

separability for subclasses (or variants) of vector addition systems with states27

(VASS). Regular separability was studied for coverability languages of VASS28

(and, more generally, well-structured transition systems) [3–5], one-counter au-29

tomata and one-dimensional VASS [6], Parikh automata [7], commutative VASS30

languages [8], concerning its relationship with the intersection problem [9], Büchi31

VASS [10, 11], and also for settings where one input language is an arbitrary32

VASS and the other is from some subclass [12]. Recently, this line of work cul-33

minated in the breakthrough result that regular separability for general VASS34

languages is decidable and Ackermann-complete [13]. However, for subclasses35

of VASS languages, the complexity landscape is far from understood.36

Separating Parikh automata An important example of such a sub-37

class is the class of languages accepted by Parikh automata, which are non-38

deterministic automata equipped with counters that can only be incremented.39

Here, a run is accepting if the final counter values belong to a particular semi-40

linear set. Languages of Parikh automata have received significant attention41

over many decades [14–25], including a lot of work in recent years [26–31]. This42

is because they are expressive enough to model non-trivial counting behavior,43

but still enjoy low complexity for many algorithmic tasks (e.g. the emptiness44

problem is coNP-complete). Example applications are monadic second-order45

logic with cardinalities [32] (this paper introduced the specific model of Parikh46

automata), solving subword constraints [33], and model-checking FIFO channel47

systems [34]. Moreover, these languages have other equivalent characterizations,48

such as reversal-bounded counter automata—a classic (and intensely studied)49

type of infinite-state systems with nice decidability properties [14, 22]—and50

automata with Z-counters, also called Z-VASS [15, 35]1.51

Decidability of regular separability was shown by Clemente, Czerwiński, La-52

sota, and Paperman [7] in 2017 as one of the first decidability results for regular53

separability. Moreover, this result was a key ingredient in Keskin and Meyer’s54

algorithm to decide regular separability for general VASS [13]. However, despite55

the strong interest in Parikh automata and in regular separability, the complex-56

ity of this problem remained unknown. In [7, Section 7], the authors provide an57

elementary complexity upper bound.58

Separating semilinear sets: Monadic interpolants One of the steps59

in the algorithm from [7] is to decide separability of sets defined in Pres-60

burger arithmetic, the first-order theory of (N; +,≤, 0, 1). Separators of logi-61

cally defined sets can also be viewed as interpolants. If φ(x,y) and ψ(y, z) are62

(first-order or propositional) formulas such that ∀x∀y∀z (φ(x,y) → ψ(y, z))63

holds, then a formula χ(y) is a Craig interpolant if ∀x∀y (φ(x,y)→ χ(y)) and64

1See [16] for efficient translation among Parikh automata, reversal-bounded counter au-
tomata, and Z-VASS.

2

∀y∀z (χ(y) → ψ(y,z)) both hold. Here, x,y, z are each a vector of variables,65

meaning χ only mentions variables that occur both in φ and ψ. Equivalently,66

the set defined by χ is a separator of the sets defined by the existential for-67

mulas ∃x : φ(x,y) and ∃z : ¬ψ(y, z). In Interpolation-Based Model Checking68

(ITP) [36, 37], Craig interpolants are used to safely overapproximate sets of69

states: If φ describes reachable states and ψ describes the set of safe states,70

then χ overapproximates φ without adding unsafe states. Note that in Pres-71

burger logic there are implications that do not have a Craig interpolant (this72

is in contrast to propositional logic). So, before constructing an interpolant, a73

first step of ITP is to decide whether there even exists such an interpolant.74

In the case of Presburger arithmetic, the definable sets are the semilinear75

sets. For many infinite-state systems, the step relation (or even the reachability76

relation) is semilinear, and thus, separators can play the role of Craig inter-77

polants in infinite-state model checking. For the separators, a natural choice is78

the class of recognizable sets, which are those defined by monadic Presburger79

formulas, meaning each atom refers to at most one variable. Monadic formulas80

have recently received attention [38–41] because of their applications in query81

optimization in constraint databases [42, 43] and symbolic automata [38]. Thus,82

deciding recognizable separability of semilinear sets can be viewed as synthesiz-83

ing monadic Craig interpolants.84

Recognizable separability was shown decidable by Choffrut and Grigori-85

eff [44] (see [8] for an extension beyond semilinear sets). This was a key in-86

gredient for separability of Parikh automata in [7]. Choffrut and Grigorieff’s87

algorithm has elementary complexity [7, Section 7], but the exact complexity of88

recognizable separability of semilinear sets remained unknown.89

Contribution Our first main result is that for given existential Presburger90

formulas, recognizable separability (i.e. monadic separability) is coNP-complete.91

In particular, recognizable separability is coNP-complete for given semilinear92

representations. Moreover, our result implies that recognizable separability is93

coNP-complete for rational subsets of monoids Σ∗×Nd as considered by Choffrut94

and Grigorieff [44]. Building on the methods of the first result, our second main95

result is that regular separability for Parikh automata is coNP-complete.96

Application I: Monadic decomposability Our first main result strength-97

ens a recent result on monadic decomposability. A formula in Presburger arith-98

metic is monadically decomposable if it has a monadic equivalent. It was shown99

recently that (i) deciding whether a given quantifier-free formula is monadically100

decomposable (i.e. whether it has a monadic equivalent) is coNP-complete [40,101

Theorem 1] (see [39, Corollary 8.1] for an alternative proof; and see [45, Proposi-102

tion 3] for improved bounds for the approach in [40]), whereas (ii) for existential103

formulas, the problem is coNEXP-complete [41, Corollary 3.6]. Our first main104

result strengthens (i): If φ(x) is a quantifier-free formula, then the sets defined105

by φ(x) and ¬φ(x) are separable by a monadic formula if and only if φ(x) is106

monadically decomposable. Perhaps surprisingly, our coNP upper bound still107

3

holds for existential Presburger formulas, for which monadic decomposability is108

known to be coNEXP-complete2.109

Application II: Regularity of Parikh automata Another consequence110

of our results is that regularity of deterministic Parikh automata, i.e. deciding111

whether a given deterministic Parikh automaton accepts a regular language, is112

coNP-complete: Given a deterministic Parikh automaton for a language L ⊆ Σ∗,113

one can construct in polynomial time a Parikh automaton for K = Σ∗ \ L.114

Then, L is regular if and only if L and K are regularly separable. Here, we115

assume that the semilinear target set is given as a quantifier-free Presburger116

formula. Decidability of this problem has been shown by Cadilhac, Finkel, and117

McKenzie [20, Theorem 25] (even in the more general case of unambiguous118

constrained automata).119

Key ingredients The existing elementary-complexity algorithm for recog-120

nizable separability of semilinear sets works with semilinear representations and121

distinguishes two cases: If in one component j, one of the input sets S1, S2 ⊆ Nd
122

is bounded by some b ≥ 0, then it considers each x ∈ [0, b] and recursively decides123

separability of S1[j 7→ x] and S2[j 7→ x], where Si[j 7→ x] is just Si restricted124

to having x in this bounded component. If, however, all components in both125

sets are unbounded, then it checks feasibility of a system of linear Diophantine126

equations. This approach leads to repeated intersection of semilinear sets, and127

thus exponential time. We provide a characterization (Proposition 4.5) that128

describes inseparability directly as the non-empty intersection of two semilinear129

sets Ŝ1, Ŝ2 ⊆ Nd associated with S1, S2. This easily yields an NP procedure for130

inseparability, even if the input sets are given as existential Presburger formulas.131

This characterization is then the first key ingredient for deciding regular132

separability of Parikh automata in coNP. This is because in [7], it is shown133

that, after some preprocessing, the languages of Parikh automata A1 and A2134

are separable if and only if two semilinear sets C1, C2 ⊆ Nd associated with135

A1 and A2 are separable by a recognizable set. These semilinear sets consist136

of vectors, each of which counts for some run of Ai, how many times each137

simple cycles occurs in this run. Thus, our first result tells us that it suffices138

to decide whether Ĉ1 and Ĉ2 are disjoint. Unfortunately, the vectors of C1, C2139

have exponential dimension d, since there are exponentially many simple cycles140

in each Ai. Thus, applying our first result directly using existential Presburger141

arithmetic would only yield a coNEXP upper bound.142

To avoid this blowup, the second key idea is to encode the vectors in Ĉ1 and143

Ĉ2 as words, where the cycle occurrences appear as a concatenation in some144

order. By constructing Z-VASS W1,W2 for the encodings of the vectors in145

Ĉ1, Ĉ2, we reduce separability to intersection emptiness of W1 and W2. The146

2This is not a contradiction to the above reduction from monadic decomposability to recog-
nizable separation, since this reduction would require complementing an existential formula.

4

latter, in turn, easily reduces to non-reachability in a product Z-VASS, which147

is in coNP.148

2. Preliminaries149

By N = {0, 1, 2, . . .} we denote the set of all non-negative integers. Let d ∈ N150

be a number and I ⊆ [1, d] be a set of indices. By πI : Nd → NI we denote the151

projection of vectors in Nd to vectors in NI , i.e., πI(v)[i] = v[i] for each v ∈ Nd
152

and i ∈ I. The support of a vector v ∈ Nd is the set of all coordinates in v with153

non-zero value, i.e. supp(v) = {i ∈ [1, d] | v[i] ̸= 0}.154

Semilinear sets A set S ⊆ Nd is linear if there is a vector u ∈ Nd and a155

finite set P ⊆ Nd of so-called periods such that S = u+P ∗ holds. Here, for P =156

{u1, . . . ,un}, the set P ∗ is defined as P ∗ = {λ1u1+· · ·+λnun | λ1, . . . , λn ∈ N}.157

A subset S ⊆ Nd is called semilinear if it is a finite union of linear sets. In case158

we specify S by way of a finite union of linear sets, then we call this description a159

semilinear representation. The set S ⊆ Nd is called hyperlinear if there are finite160

sets B,P ⊆ Nd such that S = B+P ∗ holds. It is well known that the semilinear161

sets are precisely those definable in Presburger arithmetic [46], the first-order162

theory of the structure (N; +,≤, 0, 1, (≡m)m∈N\{0}). Here ≡m is the predicate163

where x ≡m y if and only if x− y is divisible by m. By quantifier elimination,164

every formula in Presburger arithmetic has a quantifier-free equivalent.165

Parikh automata Intuitively, a Parikh automaton has finitely many con-166

trol states and access to d ≥ 0 counters. Upon reading a letter (or the empty167

word), it can add a vector u ∈ Nd to its counters. Moreover, for each state q ∈ Q,168

it specifies a target set Cq ⊆ Nd. An input word is accepted if at the end of the169

run, the accumulated counter values belong to Cq, where q is the state at the end170

of the run. Formally, a Parikh automaton is a tuple A = (Q,Σ, T, q0, (Cq)q∈Q),171

where Q is a finite set of states, T ⊆ Q × (Σ ∪ {ε}) × Nd × Q is its finite set172

of transitions, q0 ∈ Q is the initial state, and Cq ⊆ Nd is the target set in173

state q, for each q ∈ Q. For an input word w ∈ Σ∗, a run on w is a sequence174

(q0, w1,u1, q1) · · · (qn−1, wn,un, qn) of transitions in T with w = w1 · · ·wn. The175

run is accepting if u1 + · · ·+un ∈ Cqn . The language of A is then the set of all176

words w ∈ Σ∗ such that A has an accepting run on w.177

Remark 2.1. For our results on general Parikh automata, we assume that the178

target sets are specified using existential Presburger formulas. However, this179

is not an important aspect: Given a Parikh automaton, one can in polynomial180

time modify the automaton (and the target set) so that the target set is given,181

e.g. by a semilinear representation, or a quantifier-free Presburger formula. This182

is a simple consequence of the fact that one can translate Parikh automata into183

integer VASS in logarithmic space [16, Corollary 1]. However, this conversion184

does not preserve determinism, and for deterministic Parikh automata, it can185

be important how target sets are given (see Corollary 3.7 and the discussion186

5

after it). Therefore, for deterministic Parikh automata, we always specify how187

the targets sets are given.188

Separability A subset L ⊆M of a monoid M is recognizable if there is a189

morphism φ : M → F into some finite monoid F such that φ−1(φ(L)) = L. The190

recognizable subsets of M form a Boolean algebra [47, Chapter III, Prop. 1.1].191

We say that sets K,L ⊆M are (recognizably) separable, denoted K | L, if there192

is a morphism φ : M → F into some finite monoid F such that φ(K)∩φ(L) = ∅.193

Equivalently, we have K | L if and only if there is a recognizable S ⊆ M with194

K ⊆ S and S ∩ L = ∅. Here, S is called a separator of K and L. Clearly, we195

have K | L if and only if L | K: if S is a separator of K and L then M \ S196

separates L and K.197

In the case M = Σ∗ for some alphabet Σ, the recognizable sets in Σ∗ are198

exactly the regular languages (cf. [48, Theorem II.2.1]), and thus we speak of199

regular separability. In the case M = Nd for some d ≥ 0, then the recognizable200

subsets of Nd are precisely the finite unions of cartesian products U1× · · · ×Ud,201

where each Ui ⊆ N is ultimately periodic [47, Theorem 5.1]. Here, a set U ⊆ N202

is ultimately periodic if there are n0, p ∈ N \ {0} such that for all n ≥ n0, we203

have n ∈ U if and only if n+ p ∈ U . This implies that the recognizable subsets204

of Nd are precisely those definable by a monadic Presburger formula, i.e. one205

where every atom only refers to one variable [38]. For these reasons, in the case206

of M = Nd, we also sometimes speak of monadic separability.207

In a recognizable separability problem, we are given two subsets K and L from208

a monoid M as input, and we want to decide whether K and L are recognizably209

separable. Again, in the case ofM = Σ∗, we also call this the regular separability210

problem.211

3. Main results212

Recognizable separability of semilinear sets Our first main result is213

the following.214

Theorem 3.1. Given two semilinear sets defined by existential Presburger for-215

mulas, recognizable separability is coNP-complete.216

The lower bound follows with a simple reduction from the emptiness problem217

for sets defined by existential Presburger formulas: If φ defines a subsetK ⊆ Nd,218

then K | Nd if and only if K is empty. We prove the coNP upper bound in219

Section 5. By the same argument, recognizable separability is coNP-hard for220

input sets given by quantifier-free formulas. Thus:221

Corollary 3.2. Given two semilinear sets defined by quantifier-free Presburger222

formulas, recognizable separability is coNP-complete.223

In particular, this re-proves the coNP upper bound for monadic decompos-224

ability of quantifier-free formulas, as originally shown by Hague, Lin, Rümmer,225

and Wu [40, Theorem 1].226

6

Remark 3.3. Our result also implies that for existential Presburger formulas227

over (Z; +,≤, 0, 1, (≡m)m∈N\{0}) defining K,L ⊆ Zd, it is coNP-complete to de-228

cide whether they are separable by a monadically defined subset of Zd. Indeed,229

consider the injective map ν : Zd → N2d, where ν(x1, . . . , xd) = (σ(x1), |x1|, . . . , σ(xd), |xd|)230

with σ(x) = 0 for x ≥ 0 and σ(x) = 1 for x < 0. Then S ⊆ Zd is monadically231

definable if and only if ν(S) is monadically definable3. Thus, K,L ⊆ Zd are232

monadically separable if and only if ν(K), ν(L) ⊆ N2d are monadically separa-233

ble. Finally, one easily constructs existential formulas for ν(K), ν(L).234

Since for a given semilinear representation of a set S ⊆ Nd, it is easy to235

construct an existential Presburger formula defining S, Theorem 3.1 also implies236

the following.237

Corollary 3.4. Given two semilinear representations, recognizable separability238

is coNP-complete.239

In this case, the coNP lower bound comes from the NP-hard membership240

problem for semilinear sets (even if all numbers are written in unary) [49,241

Lemma 10]: For a semilinear subset S ⊆ Nd and a vector u ∈ Nd, we have242

u /∈ S if and only if S | {u}. Finally, Theorem 3.1 allows us to settle the243

complexity of recognizable separability of rational subsets of Σ∗ × Nd.244

Corollary 3.5. Given d ∈ N and two rational subsets of Σ∗ × Nd, deciding245

recognizable separability is coNP-complete.246

Decidability was first shown by Choffrut and Grigorieff [44, Theorem 1]. The247

coNP upper bound follows because Choffrut and Grigorieff [44, Theorem 10] re-248

duce recognizable separability of subsets of Σ∗×Nd to recognizable separability249

of rational subsets of N2d (and their reduction is clearly in polynomial time).250

Moreover, for a given rational subset of N2d, one can construct in polynomial251

time an equivalent existential Presburger formula [50, Theorem 1]. Thus, the252

upper bound follows from Theorem 3.1. Since semilinear sets in Nd (given by a253

semilinear representation) can be viewed as rational subsets of Nd (and hence254

of Σ∗ × Nd), the coNP lower bound is inherited from Corollary 3.4.255

Regular separability of Parikh automata Our second main result is256

the following:257

Theorem 3.6. Regular separability for Parikh automata is coNP-complete.258

The coNP lower bound comes via the coNP-complete emptiness problem:259

For a given Parikh automaton accepting a language K ⊆ Σ∗, we have K | Σ∗
260

3This is easily shown by translating each atomic formula (over a single variable) into a
monadic formula in each direction. However, note that within Zd, monadic definability is not
the same as recognizability. For example, the sets {0} and Z \ {0} are monadically separable,
but not separable by a recognizable subset of Z, since every non-empty recognizable subset of
Z is infinite [47, Chapter III, Example 1.4].

7

if and only if K = ∅. Thus, the interesting part is the upper bound, which we261

prove in Section 6. This is a significant improvement to the previously known262

elementary (or finitely iterated exponential time) complexity upper bound by263

Clemente, Czerwiński, Lasota, and Paperman [7].264

Theorem 3.6 can also be applied to deciding regularity of deterministic265

Parikh automata.266

Corollary 3.7. For deterministic Parikh automata with target sets given as267

quantifier-free Presburger formulas, deciding regularity is coNP-complete.268

Decidability of regularity was shown by Cadilhac, Finkel, and McKenzie [20,269

Theorem 25] (in the slightly more general setting of unambiguous constrained270

automata). For the coNP upper bound, note that for a language L ⊆ Σ∗ given271

by a deterministic Parikh automaton (with quantifier-free formulas for the tar-272

get sets), one can in polynomial time construct the same type of automaton273

for the complement Σ∗ \ L. Since L is regular if and only if L and Σ∗ \ L are274

separable by a regular language, we can invoke Theorem 3.6. The coNP lower275

bound is inherited from monadic decomposability of quantifier-free formulas.276

Indeed, given a quantifier-free Presburger formula φ(x1, . . . , xn) with free vari-277

ables (x1, . . . , xn), one easily constructs a deterministic Parikh automaton (with278

quantifier-free target sets) for the language Lφ = {ax1
1 · · · axn

n | φ(x1, . . . , xn)}.279

As shown by Ginsburg and Spanier [51, Theorem 1.2], Lφ is regular if and280

only if φ is monadically decomposable. However, monadic decomposability for281

quantifier-free formulas is coNP-complete [40, Theorem 1].282

For the coNP upper bound in Corollary 3.7, we cannot drop the assumption283

that the formula be quantifier-free. This is because if the target sets can be exis-284

tential Presburger formulas, then the regularity problem is coNEXP-hard. This285

follows by the same reduction from monadic decomposability: If we construct286

Lφ as above using an existential formula φ, then again, Lφ is regular if and287

only if φ is monadically decomposable. Moreover, monadic decomposability for288

existential formulas is coNEXP-complete [41, Corollary 3.6].289

4. A characterization of separability in hyperlinear sets290

Before we prove our two main results, Theorems 3.1 and 3.6, we should recall291

the ideas of the existing algorithms [8, 44] for recognizable separability of linear292

sets. We will use these ideas to obtain a new characterization of separability in293

hyperlinear sets.294

Let L1, L2 ⊆ Nd be two linear sets. The algorithms [8, 44] rely on a procedure295

that successively eliminates “bounded components”: If, say, L1 is bounded in296

component j by some b ∈ N, then one can observe that L1 | L2 if, and only if,297

L1[j 7→ x]|L2[j 7→ x] for every x ∈ [0, b]. Here, Li[j 7→ x] is Li restricted to those298

vectors that have x in the j-th component, and then projected to all components299

̸= j. Therefore, the algorithms of [8, 44] recursively check separability of L1[j 7→300

x] and L2[j 7→ x] for each x ∈ [0, b]. This process invokes several expensive301

intersection operations on semilinear sets and thus has high complexity. Instead,302

8

our approach immediately guesses and verifies the set of components that remain303

after the elimination process. The corresponding checks involve the notion of304

twin-unboundedness.305

Twin-unbounded components Our notion applies, slightly more gener-306

ally, to hyperlinear sets. Hence, let R = A+U∗ ⊆ Nd and S = B+V ∗ ⊆ Nd be307

two hyperlinear sets where A,B,U, V ⊆ Nd are finite sets.308

Definition 4.1. A coordinate j ∈ [1, d] is twin-unbounded for R and S if there309

exist p ∈ U∗ and q ∈ V ∗ such that j ∈ supp(p) = supp(q).310

Hence, intuitively, twin-unbounded coordinates are those that can be made311

large/driven up in R in the same way as in S. We will present yet another312

characterization of twin-unbounded coordinates. Let j ∈ [1, d]. We say the j-th313

coordinate of the hyperlinear set S = B + V ∗ is bounded if there is no period314

vector in V with support on j, i.e., j /∈ supp(p) for all p ∈ V . We say that a315

subset J ⊆ [1, d] of coordinates is bounded in S if each j ∈ J is bounded in S.316

Consider the following process: Given two hyperlinear sets R and S. We317

modify R and S by performing each of the following three steps for each coor-318

dinate j ∈ [1, d] until the sets of remaining period vectors in R and S stabilize:319

• If neither R nor S is bounded at j, we leave S and R untouched.320

• If only R is bounded at j, we remove all period vectors from S which have321

support on j.322

• If only S is bounded at j, we remove all period vectors from R which have323

support on j.324

Then, the coordinates that remain unbounded are precisely the twin-unbounded325

ones.326

Example 4.2. Consider R = {(1, 0, 1)}∗ and S = {(1, 1, 0), (0, 0, 1)}∗. Then R327

is bounded by the value 0 at coordinate 2. So R and S are separable if and only328

if R and S restricted to the vectors having the value 0 in the second coordinate.329

So, we only consider this restriction of S—in our algorithm this is reflected by330

the deletion of the period vector (1, 1, 0) of S. After deletion of the period vector331

(1, 1, 0), S is bounded at coordinate 1 by the value 0. So, we remove the period332

vector (1, 0, 1) from R. Finally, the period vector (0, 0, 1) of S gets removed333

since R is now bounded at coordinate 3. Hence, our algorithm terminates in334

this case with no twin-unbounded coordinates. This example shows that even if335

R and S both are unbounded in coordinates 1 and 3, none of these coordinates336

is twin-unbounded.337

If R = {(1, 0, 1), (0, 1, 0)}∗ and S = {(1, 1, 0), (0, 0, 1)}∗, then no coordinate338

is bounded in R and S. Hence, all coordinates are twin-unbounded and no339

period vector gets removed.340

For J ⊆ [1, d], we write UJ = {p ∈ U | supp(p) ⊆ J} and VJ = {q ∈ V |341

supp(q) ⊆ J}.342

9

Separating by modular constraints As observed in [8, 44], if all coor-343

dinates of two linear sets L1, L2 are unbounded, then separability holds if and344

only if the two sets can be separated by modulo constraints. This relies on the345

well known fact that finitely generated abelian groups are subgroup separable,346

i.e. that for every element u ∈ Zd that does not belong to a subgroup A ⊆ Zd,347

there exists a homomorphism φ : Zd → F into a finite group F such that (i) A is348

included in the kernel of φ and (ii) φ(u) ̸= 0. In our characterization (Propo-349

sition 4.5) we will use similar arguments and therefore we will recall subgroup350

separability here.351

Lemma 4.3 (Subgroup separability). If A ⊆ Zd is a subgroup and u ∈ Zd \A,352

then there is an s ∈ N, s > 0, and a morphism φ : Zd → Z/sZ with (i) φ(A) = 0353

and (ii) φ(u) ̸= 0.354

Proof. Consider the quotient group Zd/A. It is finitely generated and abelian355

and thus isomorphic to a group
⊕n

j=1 Z/rjZ for some numbers r1, . . . , rn ∈ N.356

The projection map π : Zd → Zd/A can thus be composed with the isomorphism357

above to yield a morphism ψ : Zd →
⊕n

j=1 Z/rjZ with kerψ = A. Since u /∈ A358

and thus ψ(u) ̸= 0, say the j-th component of ψ(u) is not zero. We distinguish359

two cases:360

(1) If rj > 0, then we can choose φ : Zd → Z/rjZ to be ψ followed by the361

projection to the j-th component.362

(2) If rj = 0, then Z/rjZ = Z and thus the j-th component of ψ(u) is an363

integer k ∈ Z. We pick some s > |k| and let φ : Zd → Z/sZ yield the j-th364

component of ψ, modulo s.365

These choices clearly satisfy φ(A) = 0 and φ(u) ̸= 0.366

Separability vs. intersection emptiness We will now characterize in-367

separability of hyperlinear sets R,S via the intersection of two hyperlinear sets368

R̂ and Ŝ associated with R,S. The proof will rely on an equivalence relation of369

vectors. For vectors u,v ∈ Nd and k ∈ N \ {0}, we write u ∼k v if for every370

i ∈ [1, d], we have371

(1) u[i] = v[i] ≤ k or372

(2) u[i],v[i] > k and u[i] ≡ v[i] mod k.373

The following was shown in [8, Prop. 18].374

Lemma 4.4. For any sets X,Y ⊆ Nd, the following are equivalent:375

(1) X and Y are not separable by a recognizable set.376

(2) for each k ∈ N \ {0} there are xk ∈ X and yk ∈ Y with xk ∼k yk.377

Let k, ℓ ∈ N \ {0} be such that k divides ℓ. We can observe that u ∼ℓ v378

implies u ∼k v in this case. Thus, to show recognizable inseparability of two379

sets X,Y ⊆ Nd, it suffices to find xk ∈ X and yk ∈ Y for almost all numbers380

k ∈ N \ {0}. We will use this fact in the proof of the following characterization381

of inseparability.382

10

Proposition 4.5. Let R = A+ U∗ ⊆ Nd and S = B + V ∗ ⊆ Nd be hyperlinear383

sets. Then R and S are not separable by a recognizable set if and only if the384

intersection385

(A+ U∗ − U∗
J) ∩ (B + V ∗ − V ∗

J) (1)

is non-empty, where J ⊆ [1, d] is the set of coordinates that are twin-unbounded386

for R,S.387

Proof. Suppose there is a vector x in the intersection (1). Then we can write388

x = u− ū and x = v − v̄ with u ∈ A+ U∗, v ∈ B + V ∗, ū ∈ U∗
J , and v̄ ∈ V ∗

J .389

Since J is twin-unbounded for R and S, there are—by definition—pj ∈ U∗ and390

qj ∈ V ∗ with j ∈ supp(pj) = supp(qj) for each j ∈ J . Then for p :=
∑

j∈J pj391

and q :=
∑

j∈J qj we infer J ⊆ supp(p) = supp(q). Now for each k ∈ N \ {0},392

consider the vectors393

uk = u− ū+ 2k · p+ k · ū and vk = v − v̄ + 2k · q + k · v̄ .

Then we have uk,vk ∈ Nd for each k ∈ N \ {0}. We claim that uk ∼k vk for all394

k. Indeed, on coordinates j ∈ [1, d] \ supp(p), the vectors uk and vk coincide395

with x. Moreover, on coordinates j ∈ supp(p), both vectors uk and vk are396

larger than k and also congruent to x[j] mod k. Hence, uk ∼k vk. Since clearly397

uk = u+2k ·p+(k−1) · ū ∈ R and vk = v+2k ·q+(k−1) · v̄ ∈ S, Lemma 4.4398

implies that R and S are not separable.399

Conversely, suppose that R and S are not separable. Then by Lemma 4.4400

there are uk ∈ R and vk ∈ S with uk ∼k vk for every k ∈ N \ {0}. We claim401

that the sequences u1,u2, . . . and v1,v2, . . . have subsequences u′
1,u

′
2, . . . and402

v′
1,v

′
2, . . . such that for every k ≥ 1, we have (i) u′

k+1 ∈ u′
k + U∗

J , (ii) v′
k+1 ∈403

v′
k + V ∗

J and (iii) u′
k ∼k v′

k.404

The claim is easy to observe: Note that by picking subsequences, we may405

assume that even uk ∼k! vk for every k ≥ 1. Moreover, the latter property406

is preserved by taking subsequences. Thus, since A,B are finite, by picking407

subsequences again, we may assume that there are r ∈ A and s ∈ B such that408

uk ∈ r + U∗ and vk ∈ s + V ∗ and uk ∼k! vk for k ≥ 1. Then, by Dickson’s409

lemma, we may assume that in addition uk+1 ∈ uk+U
∗ and vk+1 ∈ vk+V

∗ for410

every k ≥ 1 (here, we apply Dickson’s lemma to the |U |-dimensional vectors of411

coefficients at period vectors in U and similarly for V). Now since uk ∼k! vk for412

every k, it follows that the sequences u1,u2, . . . and v1,v2, . . . are unbounded413

on the same set J ⊆ [1, d] of coordinates. Then clearly, J is twin-unbounded414

for R and S. This means, for all but finitely many k, we have uk+1 ∈ uk + U∗
J415

and vk+1 ∈ vk + V ∗
J . Hence, by picking another subsequence, we may assume416

that the latter holds for every k ≥ 1. Then, u1,u2, . . . and v1,v2, . . . satisfy the417

properties (i–iii) above, establishing our claim.418

We now claim that u1 − v1 belongs to the group ⟨UJ ∪ VJ⟩ generated by419

UJ ∪VJ . Towards a contradiction, suppose u1−v1 does not belong to ⟨UJ ∪VJ⟩.420

By Lemma 4.3, there must be an s ∈ N, s > 0, and a morphism φ : Zd → Z/sZ421

11

such that φ(⟨UJ ∪ VJ⟩) = 0 and φ(u1 − v1) ̸= 0. However, the vector422

(us − vs)− (u1 − v1) = (us − u1)︸ ︷︷ ︸
∈⟨UJ ⟩

− (vs − v1)︸ ︷︷ ︸
∈⟨VJ ⟩

belongs to ⟨UJ ∪VJ⟩, but also agrees with u1−v1 under φ (since all components423

of us − vs are divisible by s), contradicting Lemma 4.3. Hence u1 − v1 ∈424

⟨UJ ∪ VJ⟩.425

This means, we can write u1 − v1 = v − v̄ − (u − ū) with u, ū ∈ U∗
J and426

v, v̄ ∈ V ∗
J . But then the vector u1+u−ū = v1+v−v̄ belongs to the intersection427

(1).428

With Proposition 4.5, we have now characterized inseparability of subsets429

of Nd via a particular intersection of two sets in Zd. It will later be more430

convenient to work with intersections of sets in Nd, which motivates the following431

reformulation of Proposition 4.5.432

Theorem 4.6. Let R = A + U∗ ⊆ Nd and S = B + V ∗ ⊆ Nd be hyperlinear433

sets. Then R and S are not separable by a recognizable set if and only if the434

intersection435

(A+ U∗ + V ∗
J) ∩ (B + V ∗ + U∗

J) (2)

is non-empty, where J ⊆ [1, d] is the set of coordinates that are twin-unbounded436

for R,S.437

Proof. Direct consequence of Proposition 4.5, since clearly A+U∗−U∗
J intersects438

B + V ∗ − V ∗
J if and only if A+ U∗ + V ∗

J intersects B + V ∗ + U∗
J .439

5. Separability of semilinear sets is in coNP440

Using the characterization Theorem 4.6, we can now explain our algorithm441

for the coNP upper bound in Theorem 3.1. We describe an NP algorithm that442

establishes inseparability.443

Algorithm Step I: Solution sets to linear Diophantine equations444

Let us first see that we can reduce the problem to the case where both input445

sets are given as projections of solution sets of linear Diophantine equations. We446

may assume that the input formulas are of the form ∃x : κ(x,y), where κ is a447

formula consisting of conjunction and disjunction (i.e. no negation) of atoms of448

the form t ≥ a, where t is a linear combination of variables x = (x1, . . . , xn),y =449

(y1, . . . , ym) and integer coefficients, and a is a constant.450

Let φ be a formula as described above. It is a well known fact that φ can451

be transformed into disjunctive normal form. This means, φ is equivalent to a452

formula φ1∨· · ·∨φk, where each φi (a so-called clause) has the form ∃x : ξ(x,y)453

such that ξ is a conjunction of atoms appearing in φ. In general, the number of454

clauses of φ is exponential.455

12

Now, let φ and ψ be the input formulas of the algorithm and let φ1∨· · ·∨φk456

and ψ1 ∨ · · · ∨ψℓ be their equivalent formulas in disjunctive normal form. Since457

the number of clauses is exponential, we cannot compute all clauses for φ and ψ.458

However, the solution sets of φ and ψ are recognizably inseparable if, and only459

if, for some pair i, j, the solution sets of the formulas φi and ψj are recognizably460

inseparable. This is due to the following fact, which follows standard ideas.461

Lemma 5.1. Let K,K1, . . . ,Kn, L ⊆ M be sets from a monoid M such that462

K = K1 ∪ · · · ∪Kn. Then K | L if, and only if, Ki | L for all 1 ≤ i ≤ n.463

Proof. Assume K | L. Then there is a recognizable set S ⊆ M separating K464

and L. Let 1 ≤ i ≤ n be arbitrary. Since Ki ⊆ K holds, the set S is also a465

separator of Ki and L, i.e., Ki | L for all 1 ≤ i ≤ n.466

Conversely, assume Ki | L for all 1 ≤ i ≤ n. Then there are recognizable467

sets Si ⊆M separating Ki and L. Set S :=
⋃

1≤i≤n Si. Then S is recognizable468

(according to the closure properties of the class of recognizable sets). We also469

have470

K =
⋃

1≤i≤n

Ki ⊆
⋃

1≤i≤n

Si = S

and471

L ∩ S = L ∩

 ⋃
1≤i≤n

Si

 =
⋃

1≤i≤n

(L ∩ Si) =
⋃

1≤i≤n

∅ = ∅ .

In other words, S is a recognizable separator of K and L, i.e., K | L.472

Thus, for deciding the inseparability of the solution sets of φ and ψ in NP473

it is sufficient to guess (in polynomial time) clauses φi and ψj and show that474

inseparability of the solution sets of these two formulas is decidable in NP.475

Therefore, from now on we can assume that the input formulas are (existentially476

quantified) conjunctions of atoms of the form t ≥ a.477

In particular, each of the two input sets is a projection of the solution set478

of a system of linear Diophantine inequalities. By introducing slack variables479

(which will also be projected away), we can turn inequalities into equations.480

Thus, we have as input sets K,L ⊆ Nd with481

K = π({x ∈ Nr | Ax = b}) and L = π({x ∈ Nr | Cx = d}) , (3)

where π : Zr → Zd is the projection to the first d components, and A,C ∈ Zs×r
482

are integer matrices and b,d ∈ Zs are integer vectors. Note that here, assuming483

that the number r of columns and the number s of rows are the same for K and484

L means no loss of generality.485

Algorithm Step II: Recognizable inseparability as satisfiability In486

the second step, we will reduce recognizable inseparability of K and L to satis-487

fiability of an existential Presburger formula. To this end, we use the fact that488

the solution sets to Ax ≥ b (resp. Cx ≥ d) are hyperlinear sets, which allows489

us to apply Theorem 4.6.490

13

Proposition 5.2. K and L are recognizably inseparable if, and only if, there491

are vectors p, q,u,v,x,y ∈ Nr with492

(1) Ap = 0, Cq = 0, and supp(π(p)) = supp(π(q)),493

(2) supp(π(u)), supp(π(v)) ⊆ supp(π(p)), Au = 0, and Cv = 0,494

(3) Ax = b, Cy = d, and π(x+ v) = π(y + u).495

Proof. We apply Theorem 4.6. To this end, we use the standard hyperlinear496

representation for solution sets of systems of linear Diophantine equations. Let497

A0 ⊆ Nr be the set of all (component-wise) minimal solutions to Ax = b, and498

let U ⊆ Nr be the set of all minimal solutions to Ax = 0. Then it is well499

known that K = π(A0 + U∗) = π(A0) + π(U)∗. In the same way, we obtain500

a hyperlinear representation L = π(B0 + V ∗) = π(B0) + π(V)∗. Then, the501

proposition follows from Theorem 4.6.502

Indeed, observe that then π(U)∗ is exactly the set of π(p) ∈ Nd with Ap = 0.503

Likewise, π(V)∗ is exactly the set of π(q) ∈ Nd with Cq = 0. Therefore, if J ⊆504

[1, d] is the set of twin-unbounded components of K,L, and UJ , VJ are defined as505

in Theorem 4.6, then π(UJ)
∗ consists of exactly those π(u) for which (i) there506

are p, q ∈ Nr with Ap = 0 and Cq = 0 with supp(π(u)) ⊆ supp(π(p)) =507

supp(π(q)) ⊆ J , and (ii) Au = 0. The set π(VJ)∗ has an analogous description.508

Thus, if p, q,u,v,x,y ∈ Nr exist as in the proposition, then clearly π(x +509

v) = π(y + u) lies in the intersection (π(A0) + π(U)∗ + π(VJ)
∗) ∩ (π(B0) +510

π(V)∗ + π(UJ)
∗).511

Conversely, an element in the intersection (π(A0)+π(U)∗+π(VJ)
∗)∩(π(B0)+512

π(V)∗ + π(UJ)
∗) can be written as π(x + v) = π(y + u), such that Ax = b,513

Cy = d, and there are p1, q1 ∈ Nr witnessing u ∈ U∗
J and also p2, q2 ∈ Nr

514

witnessing v ∈ V ∗
J . This means, supp(π(u)) ⊆ supp(π(p1)) = supp(π(q1)),515

Ap1 = 0, and Cq1 = 0, but also supp(v) ⊆ supp(π(p2)) = supp(π(q2)), Ap2 =516

0, and Cq2 = 0. But then we can use p := p1 + p2 and q := q1 + q2 to satisfy517

the requirements of the proposition.518

Finally, Proposition 5.2 can be used to complete the proof of our first main519

result:520

Proof of Theorem 3.1. Let φ and ψ be two existential Presburger formulas with-521

out negation and using only atoms of the form t ≥ 0, where t is a linear combi-522

nation of variables and integer coefficients. We give an NP algorithm deciding523

inseparability by a recognizable set.524

Since the solution sets of φ and ψ are inseparable if, and only if, their525

disjunctive normal forms have at least one pair of inseparable clauses, we guess526

such a pair of these clauses φi and ψj (cf. Lemma 5.1). We can transform φi and527

ψj into Diophantine equations Ax = b and Cx = d. Using Proposition 5.2 we528

obtain in polynomial time an existential Presburger formula that is satisfiable if,529

and only if, the solution sets of Ax = b and Cx = d are inseparable if, and only530

if, φi and ψj are inseparable. Finally, the result follows from NP-completeness531

of the existential fragment of Presburger arithmetic.532

14

6. Regular separability of Parikh automata533

We now prove our second main result: the coNP upper bound of regular534

separability of Parikh automata (Theorem 3.6). For this, it will be technically535

simpler to work with Z-VASS, which are equivalent to Parikh automata. In536

[16, Corollary 1], it was shown that the two automata models can be converted537

(while preserving the language) into each other in logarithmic space. Therefore,538

showing the coNP upper bound for Z-VASS implies it for Parikh automata.539

Integer VASS A (d-dimensional) integer vector addition system with states540

(Z-VASS, for short) is a quintuple V = (Q,Σ, T, ι, f) where Q is a finite set of541

states, Σ is an alphabet, T ⊆ Q×Σε × Zd ×Q is a finite set of transitions, and542

ι, f ∈ Q are its source and target state, respectively. Here, Σε = Σ ∪ {ε}. A543

Z-VASS V = (Q,Σ, T, ι, f) is called deterministic if V has no ε-labeled transi-544

tions and for each p ∈ Q and a ∈ Σ there is at most one transition of the form545

(p, a,v, q) ∈ T (where v ∈ Zd and q ∈ Q).546

A configuration of V is a tuple fromQ×Zd. For two configurations (p,u), (q,v)547

and a word w ∈ Σ∗ we write (p,u)
w−→V (q,v) if there are states q0, q1, . . . , qℓ ∈548

Q, vectors v0,v1, . . . ,vℓ ∈ Zd, and letters a1, . . . , aℓ ∈ Σε such that w =549

a1a2 · · · aℓ, (p,u) = (q0,v0), (q,v) = (qℓ,vℓ), and for each 1 ≤ i ≤ ℓ we have550

a transition ti = (qi−1, ai,xi, qi) ∈ T with vi = vi−1 + xi. In this case, the551

sequence t1t2 · · · tℓ is called a (w-labeled) run of V. The accepted language of V552

is L(V) = {w ∈ Σ∗ | (ι,0) w−→V (f,0)}.553

Let I ⊆ [1, d] be a set of indices. Then we can generalize the acceptance554

behavior of the Z-VASS V as follows:555

L(V, I) =
{
w ∈ Σ∗ ∣∣ ∃v ∈ Zd : (ι,0)

w−→V (f,v) and πI(v) = 0
}
.

Note that L(V, [1, d]) = L(V) holds.556

An overview of the proof of Theorem 3.6 The remaining part of this557

section is dedicated to the proof of our second main result, Theorem 3.6. The558

first few steps (Lemmas 6.1, 6.3, 6.4 and 6.7) are essentially the same as in [7],559

for which we briefly give an overview: The authors reduce regular separability560

to recognizable separability of semilinear sets in Nd (for some dimension d).561

Concretely, instead of asking for the regular separability in two given Z-VASS562

we separate quantities of cycles within runs of these Z-VASS. Accordingly, the563

dimension corresponds to the number of (simple) cycles. Unfortunately, this564

number is exponential in the size of the input and therefore we cannot just565

use our first main result (Theorem 3.1) to prove the coNP upper complexity566

bound. Instead we will construct two Z-VASS (of polynomial dimension) ac-567

cepting sequences of cycles such that their language intersection corresponds to568

the intersection (2) from Theorem 4.6 (which is non-empty if, and only if, the569

Z-VASS from the input are regularly inseparable). Intersection for Z-VASS is570

known to be in NP implying also the NP upper complexity bound for the regular571

inseparability problem resp. the coNP upper bound for the separability problem572

of Z-VASS.573

15

6.1. Reduction to separability of semilinear sets574

6.1.1. Determinizing the automata575

As announced, we will first follow the reduction from [7]. In the first step,576

the regular separability problem of nondeterministic Z-VASS can be reduced577

to the same problem in deterministic Z-VASS. This reduction is possible in578

polynomial time which is a bit surprising at first glance since determinization579

typically requires at least an exponential blowup. However, in this reduction580

we determinize the Z-VASS “up to some homomorphic preimage”, i.e., from two581

given Z-VASS V1 and V2 one constructs two deterministic Z-VASS W1 and W2582

with (i) L(Wi) = h−1(L(Vi)) where h : Γ ∗ → Σ∗ is a homomorphism and (ii)583

L(V1)|L(V2) if, and only if, L(W1)|L(W2) holds. Since our setting is technically584

slightly different from [7], we include a proof below.585

Lemma 6.1 ([7, Lemma 7]). Regular separability for Z-VASS reduces in poly-586

nomial time to the regular separability problem for deterministic Z-VASS.587

Before we can prove Lemma 6.1 we first need the following statement.588

Claim 6.2. Let K,L ⊆ Σ∗ be two languages and h : Γ ∗ → Σ∗ be an alphabetic589

morphism4. If K ′ ⊆ h−1(K) with h(K ′) = K, then we have590

K | L ⇐⇒ K ′ | h−1(L) .

Proof. First, assume K |L. Then there is a regular separator R ⊆ Σ∗ of K and591

L, i.e., we have K ⊆ R and L ∩ R = ∅. Set R′ := h−1(R) ⊆ Γ ∗. R′ is regular592

since the class of regular languages is closed under inverse morphisms. We also593

have K ′ ⊆ h−1(K) ⊆ h−1(R) = R′. Additionally, we have h−1(L)∩h−1(R) = ∅594

since the existence of an element w ∈ h−1(L)∩h−1(R) would imply h(w) ∈ L∩R.595

This means, R′ is a regular separator of K ′ and h−1(L), i.e., K ′ | h−1(L).596

Conversely, assume K ′ | h−1(L). Then there exists a regular separator R′ ⊆597

Γ ∗ of K ′ and h−1(L), i.e., we have K ′ ⊆ R′ and h−1(L)∩R′ = ∅. Set R := h(R′)598

which is a regular language since the class of regular languages is also closed599

under morphisms. Then we haveK = h(K ′) ⊆ h(R′) = R. Also L∩R = ∅ holds:600

towards a contradiction suppose there is w ∈ L∩R. From w ∈ R = h(R′) follows601

the existence of a word w′ ∈ R′ with h(w′) = w. We also infer w′ ∈ h−1(L)602

from w ∈ L. Hence, we have w′ ∈ h−1(L) ∩R′ = ∅—a contradiction. All in all,603

we proved that R is a regular separator of K and L, i.e., K | L.604

Proof of Lemma 6.1. The proof of this lemma is similar to [7, Lemma 7]: let605

Vi = (Qi, Σ, Ti, ιi, fi) with i = 1, 2 be two Z-VASS. From V1 and V2 we will606

construct two Z-VASS V ′
i = (Qi, Γ, T

′
i , ιi, fi) such that V ′

1 is deterministic and607

we have608

L(V1) | L(V2) ⇐⇒ L(V ′
1) | L(V ′

2) .

We will obtain the determinism of V ′
1 by making each label of a transition in609

V1 unique. So, set Γ = T1. T ′
1 is obtained from T1 by replacing each transition610

4A morphism h : Γ ∗ → Σ∗ is alphabetic if |h(a)| ≤ 1 holds for each letter a ∈ Γ .

16

t = (p, a,x, q) ∈ T1 by the new transition (p, t,x, q). Using this translation we611

also obtain a morphism h : Γ ∗ → Σ∗ with h((p, a,x, q)) = a for each transition612

(p, a,x, q) ∈ Γ = T1. Then we obtain V ′
2 from V2 with L(V ′

2) = h−1(L(V2))613

by replacing each label a ∈ Σε of a transition in T ′
2 with all labels t ∈ T1 with614

h(t) = a. Additionally, to each state of V2 we add loops labeled with t ∈ T1615

satisfying h(t) = ε. Formally, this is the following set of transitions:616

T ′
2 = {(p, t,x, q) | t ∈ T1, (p, h(t),x, q) ∈ T2}
∪ {(p, t,0, q) | p, q ∈ Q, t ∈ T1, h(t) = ε} .

Note that this is a well known construction for the application of the inverse of617

an alphabetic morphism and, hence, we have L(V ′
2) = h−1(L(V2)).618

Since each letter from Γ occurs in exactly one transition of V ′
1, this Z-VASS619

is deterministic. Additionally, V ′
1 and V ′

2 can be constructed from V1 and V2 in620

polynomial time. It is also clear that the morphism h is alphabetical. We can621

also prove the following properties:622

1. L(V ′
1) ⊆ h−1(L(V1)): Let w ∈ L(V ′

1). Then there is an accepting run623

t′1t
′
2 · · · t′ℓ in V ′

1 with t′i = (qi−1, ti,xi, qi) ∈ T ′
1 for each 1 ≤ i ≤ ℓ. In624

particular, we have w = t1t2 · · · tℓ ∈ T ∗
1 . By definition of V ′

1 we have625

ti = (qi−1, ai,xi, qi) ∈ T1 for an ai ∈ Σε. But this means that w =626

t1t2 · · · tℓ is an accepting run in V ′
1 labeled by a1a2 · · · aℓ, i.e., a1a2 · · · aℓ ∈627

L(V1). Moreover, we have h(w) = h(t1t2 · · · tℓ) = a1a2 · · · aℓ implying628

w ∈ h−1(a1a2 · · · aℓ) ⊆ h−1(L(V1)).629

2. h(L(V ′
1)) = L(V1): A word w ∈ Σ∗ is in h(L(V ′

1)) if, and only if, there630

is a word w′ ∈ L(V ′
1) ⊆ Γ ∗ with w = h(w′). This is exactly the case631

if there is an accepting run t′1t
′
2 · · · t′ℓ in V ′

1 that is labeled with w′, i.e.,632

we have t′i = (qi−1, ti,xi, qi) ∈ T ′
1 and w′ = t1t2 · · · tℓ. By construction633

this is equivalent to an accepting run t1t2 · · · tℓ in V1 that is labeled with634

h(w′) = w. But this is exactly the definition of w ∈ L(V1).635

Now, we can apply Claim 6.2 and obtain636

L(V1) | L(V2) ⇐⇒ L(V ′
1) | L(V ′

2) .

In a final step, we can apply the same polynomial-time procedure to V ′
2 and637

V ′
1 to determinize V ′

2. The result are two Z-VASS V ′′
1 and V ′′

2 with638

L(V1) | L(V2) ⇐⇒ L(V ′
1) | L(V ′

2) ⇐⇒ L(V ′′
1) | L(V ′′

2) .

While V ′′
2 is deterministic by construction, it is not clear that the same holds639

for V ′′
1 . However, due to the fact that V ′

1 and V ′
2 do not have any ε-transitions,640

our construction does not introduce any loops in V ′′
1 compensating ε-transitions641

in V ′
2. Hence, V ′′

1 is also deterministic.642

6.1.2. Unifying the automata643

Next, we reduce regular separability for deterministic Z-VASS to regular644

separability of two languages accepted by the same deterministic Z-VASS, but645

17

with different sets of counters. To this end, given two d-dimensional Z-VASS V1646

and V2 we construct one 2d-dimensional Z-VASS V (using product construction)647

and two index sets I1, I2 ⊆ [1, 2d] such that L(Vi) = L(V, Ii).648

Lemma 6.3 ([7, Proposition 1]). Regular separability for deterministic Z-VASS649

reduces in polynomial time to the following problem:650

Given: A d-dimensional deterministic Z-VASS V with two sets I1, I2 ⊆ [1, d].651

Question: Are the languages L(V, I1) and L(V, I2) regularly separable?652

Proof. Let Vi = (Qi, Σ, Ti, ιi, fi) be two deterministic d-dimensional Z-VASS.653

We apply the product construction and obtain a new deterministic 2d-dimensional654

Z-VASS V1 × V2 = (Q1 ×Q2, Σ, T, (ι1, ι2), (f1, f2)) with655

T =

{
((p1, p2), a, (v1,v2), (q1, q2))

∣∣∣∣ (pi, a,vi, qi) ∈ Ti
for all i = 1, 2

}
.

We show now that L(V1) | L(V2) holds if, and only if,656

L(V1 × V2, [1, d]) | L(V1 × V2, [d+ 1, 2d]) .

Let Ai = (Qi, Σ,∆i, ιi, {fi}) with ∆i = {(p, a, q) | ∃v ∈ Zd : (p, a,v, q) ∈ Ti} be657

the DFA obtained from Vi (for i = 1, 2) by removing all counter updates from658

the transitions. Then we can observe that L(V1 × V2, [1, d]) = L(V1) ∩ L(A2)659

and L(V1 × V2, [d+ 1, 2d]) = L(V2) ∩ L(A1) holds.660

Assume that L(V1) |L(V2) holds. Then there is a regular separator R ⊆ Σ∗
661

with L(V1) ⊆ R and L(V2)∩R = ∅. Since L(V1 ×V2, [1, d]) = L(V1)∩L(A2) ⊆662

L(V1) and, similarly, L(V1×V2, [d+1, 2d]) ⊆ L(V2) holds, the regular language663

R is also a separator of L(V1 × V2, [1, d]) and L(V1 × V2, [d+ 1, 2d]).664

Conversely, let R ⊆ Σ∗ be a regular separator of L(V1 × V2, [1, d]) and665

L(V1 × V2, [d + 1, 2d]). Set R′ = (R ∩ L(A1)) ∪ (Σ∗ \ L(A2)). Clearly the666

language R′ is regular. We also have667

L(V1) = (L(V1) ∩ L(A2)) ∪ (L(V1) ∩Σ∗ \ L(A2))

= (L(V1) ∩ L(A2) ∩ L(A1)) ∪ (L(V1) ∩Σ∗ \ L(A2)) (by L(V1) ⊆ L(A1))
⊆ (R ∩ L(A1)) ∪ (L(V1) ∩Σ∗ \ L(A2)) (R is a separator)
⊆ (R ∩ L(A1)) ∪ (Σ∗ \ L(A2))

= R′ .

Additionally, by L(V2) ⊆ L(A2) we have L(V2) ∩ (Σ∗ \ L(A2)) = ∅ and668

(R ∩ L(A1)) ∩ L(V2) = R ∩ L(V1 × V2, [d+ 1, 2d]) = ∅

implying L(V2) ∩R′ = ∅. Hence, R′ is a regular separator of L(V1) and L(V2).669

670

Therefore, we now fix a Z-VASS V = (Q,Σ, T, ι, f).671

18

6.1.3. Skeletons672

Now, we want to further simplify the regular separability problem. Con-673

cretely, we want to consider only runs in V that are in some sense similar. We674

consider some base paths—so called skeletons—in V. Two runs in V are similar675

if they follow the same base path and only differ in the order and repetition of676

some cycles. We define the function skel : T ∗ → T ∗ such that skel(r) = ρ for a677

path r ∈ T ∗ in V such that ρ is a sub-path of the original path r in which we678

keep the same set of visited states while removing all cycles that do not increase679

the set of visited states. Here, ρ is called the skeleton of r.680

Let t1 · · · tℓ ∈ T ∗ be a path in V, i.e., we have ti = (qi−1, ai,xi, qi) ∈ T for681

each 1 ≤ i ≤ ℓ. The map skel is defined inductively as follows: skel(ε) = ε682

and skel(t1) = t1. For 1 ≤ i < ℓ assume that skel(t1 · · · ti) = s1 · · · sj is already683

constructed and that s1 · · · sj is a path ending in qi. Now we consider the684

transition ti+1. If there is no transition sk (with 0 ≤ k ≤ j) with target state685

qi+1, we set skel(t1 · · · titi+1) = s1 · · · sjti+1. Note that s1 · · · sjti+1 is a path686

ending in the state qi+1.687

Otherwise, let 0 ≤ k ≤ j be maximal such that sk ends in qi+1. Then688

sk+1 · · · sjti+1 is a cycle in V (note that sk+1 starts with qi+1 since s1 · · · sj689

is a path). If all states occurring in the cycle sk+1 · · · sjti+1 also occur in the690

path s1 · · · sk, then we set skel(t1 · · · titi+1) = s1 · · · sk, i.e., we omit the cycle691

sk+1 · · · sjti+1 in the skeleton. Note that the skeleton s1 · · · sk is a path ending in692

qi+1. Otherwise at least one state in the cycle does not occur in the path s1 · · · sk.693

In this case, we simply add ti+1 resulting in skel(t1 · · · titi+1) = s1 · · · sjti+1694

where s1 · · · sjti+1 is also a path ending in qi+1. Note that any skeleton of V695

has length at most quadratic in the number of transitions |T | as shown in [7,696

Lemma 10].697

Let ρ be a skeleton. A ρ-cycle is a cycle that only visits states occurring in698

ρ; a ρ-run is a run r ∈ T ∗ with skeleton skel(r) = ρ (i.e., r is obtained from699

ρ by inserting ρ-cycles). We write L(V, I, ρ) for the set of all words in L(V, I)700

accepted via ρ-runs.701

Lemma 6.4 ([7, Lemma 11]). We have L(V, I1) | L(V, I2) if, and only if,702

L(V, I1, ρ) | L(V, I2, ρ) holds for every skeleton ρ.703

Although this was essentially shown in [7, Lemma 11], our setting is strictly704

speaking slightly different (e.g. we have all short rather than only simple cycles),705

so we include a detailed proof below.706

Proof. First, note that there are only finitely many skeletons: Clemente et707

al. proved in [7, page 9] that each skeleton has length at most |Q|2. Hence,708

there are at most |T ||Q|2 many skeletons in V. It is also clear that L(V, I) =709 ⋃
skeleton ρ of V L(V, I, ρ) holds.710

Let ρ be a skeleton of V. There is also a regular language Kρ ⊆ Σ∗ such that711

L(V, I, ρ) = L(V, I)∩Kρ holds: we can obtain a finite automaton accepting Kρ712

from V and ρ by removing the counters and all edges and states that do not713

belong to the skeleton ρ.714

Finally, we use the following well known fact:715

19

Claim 6.5. Let K1, . . . ,Kn ⊆ Σ∗ be regular languages partitioning Σ∗ and716

L1, L2 ⊆ Σ∗ be two languages. Then we have L1 | L2 if, and only if, L1 ∩Ki |717

L2 ∩Ki holds for each 1 ≤ i ≤ n.718

Now, if the languages Ki are the regular languages Kρ for any skeleton ρ719

and Li = L(V, Ii) for i = 1, 2 we obtain that L(V, I1) | L(V, I2) holds if, and720

only if, L(V, I1, ρ) = L(V, I1) ∩ Kρ is regular separable from L(V, I2) ∩ Kρ =721

L(V, I2, ρ).722

Thus, it suffices to show that for a given skeleton ρ, one can decide regular723

inseparability of L(V, I1, ρ) and L(V, I2, ρ) in NP. So, from now on, we fix a724

skeleton ρ and simply write L(Ii) for L(V, Ii, ρ). Since we only consider runs725

that visit states that occur in ρ, we may also assume that V consists only of the726

states occurring on ρ. In particular, we only say cycle instead of “ρ-cycle”.727

6.1.4. Counting cycles728

We now phrase a characterization of regular separability from [7] in our729

setting. It says that regular separability of the languages L(I1) and L(I2) is730

equivalent to recognizable separability of vectors that count cycles. Here, we731

only count short cycles of length at most |Q|. This is possible since each cycle732

can be decomposed into short cycles. In the following, we fix the set S ⊆ T≤|Q|
733

of all short cycles in V.5734

For I ⊆ [1, d], we define: if t = (p, a,x, q) ∈ T is a transition then the effect735

∆I(t) of t to the components in I is ∆I(t) = πI(x), i.e. the projection of the736

counter update x to I. If r = t1t2 · · · tℓ ∈ T ∗ is a path, then the effect ∆I(r)737

of r to the components in I is the sum of the effects of all transitions on this738

path, i.e. ∆I(r) =
∑ℓ

i=1 ∆I(ti). Now, let u ∈ NS be a multiset of short cycles.739

Then the effect of u to the components in I is ∆I(u) =
∑

c∈S u[c] · ∆I(c). If740

v ∈ NT is a multiset of transitions, then the effect of v to the components in I741

is ∆I(v) =
∑

t∈T v[t] ·∆I(t). In case of I = [1, d] we will also write ∆ instead742

of ∆I . Finally, we define743

M(I) =
{
u ∈ NS

∣∣∆I(ρ) + ∆I(u) = 0
}
.

Hence, M(I) is the set of multisets of short cycles such that inserting them into744

ρ would lead to an accepting run with acceptance condition I ⊆ [1, d]. Since745

M(I) is the solution set of linear Diophantine equations, it is hyperlinear.746

Observation 6.6. Let I ⊆ [1, d]. Then M(I) is hyperlinear, i.e., M(I) =747

B + V ∗ for two finite sets B, V ⊆ NS.748

Proof. The equation ∆Ii(ρ) + ∆Ii(u) = 0 is a system of linear equations (over749

NS) and M(I) is the set of solutions of this equation system. Since the equations750

5Although Lemmas 6.1, 6.3, 6.4 and 6.7 are essentially the same as in [7], we are working
with short cycles, whereas [7] uses simple cycles. This will be crucial later, because short
cycles can be guessed on-the-fly in a finite automaton without storing the whole cycle.

20

are expressible in Presburger arithmetic, we obtain that M(I) is semilinear [46].751

Hence, we have M(I) =
⋃

1≤i≤k ui + V ∗
i (where ui ∈ NS and Vi ⊆ NS are752

finite). We can see that the vectors in Vi are solutions of the homogeneous753

linear equation system ∆Ii(v) = 0 and the vectors uj satisfy the inhomogeneous754

system ∆Ii(uj) = −∆Ii(ρ). Therefore, we have ui+v ∈M(I) for each 1 ≤ i ≤ k755

and v ∈
⋃

1≤j≤k V
∗
j . According to this we can write the solution set M(I) also756

as B+V ∗ where B = {u1, . . . ,uk} and V =
⋃

1≤i≤k Vi. In other words, the set757

M(I) is even hyperlinear.758

The following equivalence between regular separability of the languages L(Ii)759

and recognizable separability of the (hyperlinear) sets M(Ii) was shown in [7,760

Lemma 12]. It is straightforward to adapt it to our situation.761

Lemma 6.7. We have L(I1) | L(I2) if, and only if, M(I1) |M(I2).762

Proof. Before we prove the equivalence, let us introduce a map cycles : T ∗ → NS
763

such that for each ρ-run r ∈ T ∗ we have cycles(r) = v ∈ NS if r contains each764

ρ-cycle c ∈ S exactly v[c] times.765

Now, assume that L(I1)|L(I2) holds, i.e., there is a regular separator R ⊆ Σ∗
766

with L(I1) ⊆ R and R∩L(I2) = ∅. We will use Lemma 4.4 to show that M(I1)767

and M(I2) are separable by a recognizable set. To this end, we will give a768

number k ∈ N \ {0} such that v1 ≁k v2 holds for each vi ∈M(Ii) implying the769

separability of M(I1) and M(I2).770

For two words w1, w2 ∈ Σ∗ write w1 ≡R w2 if xw1y ∈ R ⇐⇒ xw2y ∈ R771

for all x, y ∈ Σ∗ (i.e., ≡R is the syntactic or Myhill congruence of R). Since R772

is regular, the index of ≡R is finite and, hence, there is a number k ∈ N \ {0}773

such that774

wk ≡R w2k for each w ∈ Σ∗. (4)

We show now v1 ≁k v2 for each vi ∈ M(Ii). Towards a contradiction, assume775

there are vi ∈ M(Ii) (for i = 1, 2) with v1 ∼k v2. We construct runs ri ∈ T ∗
776

such that skel(ri) = ρ and cycles(ri) = vi hold. For a short ρ-cycle c ∈ S777

choose a prefix xc of ρ such that skel(xcc) = xc (note that for each cycle c ∈ S778

such an xc exists). Let c1, . . . , cn be an enumeration of S such that |xc1 | ≤779

|xc2 | ≤ · · · ≤ |xcn | holds. In the following we will write xi instead of xci . Let780

z1, . . . , zn+1 ∈ T ∗ such that z1 = x1, xizi+1 = xi+1 for each 1 ≤ i < n, and781

xnzn+1 = ρ, i.e., we have ρ = z1z2 · · · zn+1. Set782

ri := z1c
vi[c1]
1 z2c

vi[c2]
2 · · · zncvi[cn]

n zn+1 .

Clearly we have skel(ri) = ρ and cycles(ri) = vi hold for i = 1, 2. We can also783

show that the labels w1, w2 ∈ Σ∗ of the paths r1 resp. r2 satisfy w1 ≡R w2 using784

v1 ∼k v2 and repeated usage of the equation (4). However, vi ∈ M(Ii) implies785

wi ∈ L(Ii). Since w1 ∈ L(I1) ⊆ R we also have w2 ∈ R (by w1 ≡R w2). Hence,786

we have w2 ∈ R ∩ L(I2) = ∅—a contradiction.787

Conversely, assume that M(I1) |M(I2) holds. Hence, there is a recognizable788

set X ⊆ NS such that M(I1) ⊆ X and X ∩M(I2) = ∅. Let R ⊆ Σ∗ be the789

set of all labels of ρ-runs r ∈ T ∗ such that skel(r) = ρ with cycles(r) ∈ X. We790

21

show that R is a regular separator of L(I1) and L(I2). We have L(I1) ⊆ R: let791

w ∈ L(I1). Then w is the label of a ρ-run r ∈ T ∗ with skel(r) = ρ. But then792

we know cycles(r) ∈M(I1) ⊆ X implying w ∈ R.793

Now, suppose there is a word w ∈ L(I2) ∩ R. Then w is the label of runs794

r1, r2 ∈ T ∗ with skel(ri) = ρ, cycles(r1) ∈ M(I2) and cycles(r2) ∈ X. Since795

V is deterministic, we know that r1 = r2 implying cycles(r1) = cycles(r2) ∈796

M(I2) ∩X = ∅—a contradiction. Hence, we have L(I2) ∩R = ∅.797

Finally, we have to show that R is regular. To this end, we construct a798

nondeterministic finite automaton that simulates ρ-runs by storing the image of799

the map skel and cycles in its state. While the set of all skeletons is finite, the set800

of vectors appearing in the image of cycles is not necessarily bounded. However,801

since X is recognizable and, hence, semilinear we can evaluate the condition802

cycles(r) ∈ X for a path r ∈ T ∗ using only a finite memory. Concretely we803

guess a linear set u+ P ∗ ⊆ X where u ∈ NS and P ⊆ NS finite (recall that X804

is a finite union of such linear sets). Additionally, let P = {p1, . . . ,pn}. The805

NFA stores in its memory vectors u′,p′
1, . . . ,p

′
n with u′ ≤ u and p′

i ≤ pi for806

all 1 ≤ i ≤ n. Whenever the simulation of skel detects a ρ-cycle, we increase807

one of the vectors u′,p′
1, . . . ,p

′
n. If we reach one of the vectors pi due to this808

detection procedure, we reset this vector to 0. The NFA accepts if its memory809

contains the skeleton ρ and the (bounded) counter values u,0, . . . ,0. Clearly,810

this NFA accepts the language R. Hence, R is a regular separator of L(I1) and811

L(I2).812

6.2. Reducing inseparability to intersection813

At this point, our proof deviates from the approach of [7]. According to814

Lemma 6.7, it remains to decide whetherM(I1)|M(I2), whereM(I1) andM(I2)815

are sets of vectors of dimension |S|, which is exponential. In Theorem 4.6, we816

saw that recognizable separability of vector sets A+U∗ and B + V ∗ reduces to817

intersection emptiness of A + U∗ + V ∗
J and B + V ∗ + U∗

J , where J is a subset818

of the twin-unbounded components. However, the exponential dimension of819

M(I1),M(I2) means a direct translation into existential Presburger arithmetic820

would incur an exponential blowup.821

Instead, our key observation is that one can reduce inseparability to in-822

tersection emptiness of Z-VASS : The idea is to encode the intersecting vectors823

u ∈ (A+U∗+V ∗
J)∩(B+V ∗+U∗

J), where M(I1) = A+U∗, M(I2) = B+V ∗, as824

words containing the participating cycles. Thus, we guess a subset J of the twin-825

unbounded components, and then construct in polynomial time two Z-VASSW1826

and W2 such that827

L(W1) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S, Φ(c1, . . . , cm) ∈ A+ U∗ + V ∗
J },

(5)

L(W2) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S, Φ(c1, . . . , cm) ∈ B + V ∗ + U∗
J},

(6)

where for cycles c1, . . . , cm ∈ S, the so-called Parikh vector Φ(c1, . . . , cm) ∈ NS
828

counts how many times each short cycle occurs in c1, . . . , cm: If c ∈ S, then829

22

Φ(c1, . . . , cm)[c] is the number of indices i ∈ [1,m] with ci = c. Note that then830

clearly, (A+ U∗ + V ∗
J) ∩ (B + V ∗ + U∗

J) ̸= ∅ if and only if L(W1) ∩ L(W2) ̸= ∅.831

The main challenge in constructing W1 and W2 is to guess a subset J of832

twin-unbounded components, and for the Z-VASS to verify that a given cycle833

belongs to J , without being able to store an entire cycle in its state. To solve834

this, we we will characterize the twin-unbounded cycles in terms of its set of835

occurring transitions.836

6.2.1. Characterizing twin-unbounded cycles837

We define for any T̂ ⊆ T the set838

S[T̂] =
{
c ∈ T̂≤|Q|

∣∣∣ c is a cycle
}
.

Thus, S[T̂] ⊆ S is the set of all short cycles that consist solely of transitions839

from T̂ .840

Our characterization uses an adaptation of the notion of “cancelable produc-841

tions” in Z-grammars used in [16]. We define the homomorphism ∂ : NT → ZQ
842

as follows: for each transition t = (p, a,x, q) ∈ T we set ∂(et) = eq − ep, where843

et ∈ NT and ep, eq ∈ NQ are unit vectors. Thus, ∂(u)[q] is the number of844

incoming transitions to q, minus the number of outgoing edges from q, weighted845

by the coefficients in u. A flow is a vector f ∈ NT with ∂(f) = 0. The following846

is a standard fact in graph theory. For a proof that even applies to context-free847

grammars (rather than automata), see [52, Theorem 3.1].848

Lemma 6.8. A vector f ∈ NT is a flow if and only if it is a sum of (the Parikh849

vectors of) cycles.850

The following notion will be key in characterizing which cycles are twin-851

unbounded for M(I1) and M(I2). A transition t ∈ T is bi-cancelable if there852

exist flows f1,f2 ∈ NT such that (i) ∆I1(f1) = 0 and ∆I2(f2) = 0, (ii) t occurs853

in both f1 and in f2, and (iii) supp(f1) = supp(f2). In other words, t is bi-854

cancelable if it is part of two flows f1 and f2 with the same support and with855

effect zero (wrt. the components I1 resp. I2).856

Lemma 6.9. A cycle c ∈ S is twin-unbounded for M(I1) and M(I2) if, and857

only if, every transition in c is bi-cancelable.858

Proof. For the “only if” direction, suppose that c is twin-unbounded for M(I1)859

and M(I2). Then by definition there exist sums of period vectors u1,u2 ∈ NS
860

of M(I1) resp. M(I2) with c ∈ supp(u1) = supp(u2). Define fi = τ(ui) ∈ NT ,861

where τ : NS → NT maps cycles to the number of occurrences of each transition862

in these cycles. Then clearly fi are flows with ∆Ii(fi) = ∆Ii(ui) = 0, c occurs863

in both f1 and in f2, and supp(f1) = supp(f2). Hence, all transitions in c are864

bi-cancelable.865

For the “if” direction, suppose a cycle c ∈ S only contains bi-cancelable866

transitions and write c = t1 · · · tn for t1, . . . , tn ∈ T . For each ti, there are flows867

fi,1 and fi,2 witnessing that ti is bi-cancelable. Notice that f1 := f1,1+· · ·+fn,1868

23

Figure 1: The flow τ(eu) + (fi − τ(eu)) where the cycle u is depicted in bold blue and the
cycles of the flow fi − τ(eu) are depicted in red. Note that the new flower shaped cycle is not
necessarily short, but can be easily split into short cycles.

and f2 = f1,2 + · · ·+ fn,2 are flows as well and they have supp(f1) = supp(f2).869

As flows, both f1 and f2 can be written as a sum of cycles: There are u1,u2 ∈870

NS with τ(u1) = f1 and τ(u2) = f2. Observe that ∆I1(u1) = ∆I2(u2) = 0,871

meaning u1 and u2 are sums of period vectors of M(I1) and M(I2), respectively.872

If we knew that c occurs in both u1 and in u2, and u1,u2 had the same support,873

we could conclude twin-unboundedness of c. Since u1,u2 may not have these874

properties, we will now modify them. Consider the set S′ = S[supp(f1)] =875

S[supp(f2)]; hence S′ is the set of short cycles u ∈ T ∗ such that supp(u) ⊆876

supp(f1) = supp(f2). By the choice of f1 and f2, we know c ∈ S′. For each877

cycle u ∈ S′, the vectors f1 − τ(eu) and f2 − τ(eu) are again flows, because878

τ(eu) is a flow. Now observe879 ∑
u∈S′

τ(eu) + (fi − τ(eu)) = |S′| · fi

for i = 1, 2 (cf. Fig. 1). Hence, the flow |S′| ·fi can be written as a sum of cycles880

in which each cycle from S′ occurs. Moreover, in this sum, every occurring cycle881

belongs to S′. This means, u′
1,u

′
2 have the same support S′, which includes c.882

Moreover, since τ(u′
i) = |S′|·fi, we know that ∆Ii(u

′
i) = 0, meaning u′

i is a sum883

of period vectors of M(Ii), for i = 1, 2. This means, c is indeed twin-unbounded884

for M(I1) and M(I2).885

To construct our Z-VASS W1 and W2, we first guess a set of transitions and886

then verify that all of them are bi-cancelable. For the verification, we translate887

the definition of bi-cancelability into an existential Presburger formula φt which888

is satisfiable if, and only if, t is bi-cancelable.889

Lemma 6.10. Given a transition t ∈ T , we can decide in NP whether it is890

bi-cancelable.891

Proof. We construct an existential Presburger formula φt which is satisfiable if,892

and only if, t is bi-cancelable. Recall that t is bi-cancelable if, and only if, there893

exist two flows f1,f2 ∈ NT such that the properties (i)–(iii) on page 23 hold.894

24

We express in the following these three properties as quantifier-free Presburger895

formulas using the variables xt′ and yt′ for each transition.896

(i) ψ1 =
∧

i∈[1,d]

∑
t′=(p,a,v,q)∈T v[i] · xt′ = 0 ∧

∑
t′=(p,a,v,q)∈T v[i] · yt′ = 0897

(ii) ψ2,t = xt > 0 ∧ yt > 0898

(iii) ψ3 =
∧

t′∈T (xt′ > 0←→ yt′ > 0)899

Additionally, we have to express that f1 and f2 are flows. This is possible with900

the following formula:901

ψ0 =
∧
q∈Q

∑
t′=(p,a,v,q)∈T

xt′ =
∑

t′=(q,a,v,p)∈T

xt′∧
∑

t′=(p,a,v,q)∈T

yt′ =
∑

t′=(q,a,v,p)∈T

yt′ .

Set φt = ∃x,y : ψ0∧ψ1∧ψ2,t∧ψ3 where x = (xt′)t′∈T and y = (yt′)t′∈T are T -902

vectors of variables. Clearly, φt is satisfiable if, and only if, t is bi-cancelable.903

6.2.2. Constructing the Z-VASS904

Lemma 6.11. There are Z-VASS W1 and W2 with L(W1)∩L(W2) = ∅ if and905

only if M(I1) |M(I2) holds. W1 and W2 can be constructed from V, I1, and I2906

in nondeterministically polynomial time.907

Let us now describe how the Z-VASS W1 and W2 are constructed. Con-908

cretely, we build two Z-VASS that satisfy Eqs. (5) and (6). But instead of909

literally guessing the whole set J of twin-unbounded cycles (which could re-910

quire exponentially many bits), we guess a set T̂ ⊆ T of transitions in V and911

then verify in NP that they are all bi-cancelable using Lemma 6.10. This means,912

we will have913

L(W1) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S,Φ(c1, . . . , cm) ∈ A+ U∗ + V ∗
S[T̂]
}

(7)

L(W2) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S,Φ(c1, . . . , cm) ∈ B + V ∗ + U∗
S[T̂]
}

(8)

and from now on, we will also write J = S[T̂]. Note that the result of our914

algorithm is correct, even when the guess for T̂ is not the entire set of bi-915

cancelable transitions: when L(W1) intersects L(W2) for some choice of T̂ , it916

will do so for any larger choice of T̂ .917

Ensuring membership in A + U∗ The idea for constructing W1 (and918

analogously W2) is simple. For each cycle in the input, it guesses whether it919

belongs to A + U∗ or to V ∗
S[T̂]

. Let u0 ∈ NS and u1 ∈ NS be the collection of920

cycles guessed to be in A + U∗ and in V ∗
S[T̂]

, respectively. To make sure that921

u0 ∈ A+U∗, we note that u0 ∈ A+U∗ is equivalent to ∆I1(u0) +∆I1(ρ) = 0,922

where ρ is the skeleton guessed earlier in the algorithm. Thus, we can use |I1|923

counters to sum up the effect of the cycles u0 and add ∆I1(ρ) once in the end.924

Hence, these counters being zero in the end is equivalent to u0 ∈ A+ U∗.925

25

Ensuring membership in V ∗
S[T̂]

To make sure that u1 ∈ V ∗
S[T̂]

, we note926

that this is equivalent to ∆I2(u1) = 0 and supp(u1) ⊆ S[T̂]. Thus, our Z-VASS927

has a separate set of |I2| counters that carry the total effect of all the cycles in928

u1. Moreover, it is easy to check that all cycles in u1 only use transitions in T̂ .929

Note that membership in B + V ∗ and in U∗
S[T̂]

are checked similarly.930

Polynomial time construction Finally, we have to show that the con-931

struction of W1 (and W2) is possible in polynomial time. To this end, let932

V = (Q,Σ, T, ι, f) be the components of V and let ρ be a skeleton from ι933

to f visiting all states in Q. We construct a |I1| + |I2|-dimensional Z-VASS934

W1 = (Q′, Γ, T ′, ι, f) over the input alphabet Γ = T ∪ {#}. The set of states935

Q′ contains (among others) the states {ι, f}. We have a transition from ι to936

f labeled with ε and adding (∆I1(ρ),0) to the counters (note that since the937

skeleton ρ is fixed for our construction, we can simulate it in one step). For938

simulating cycles we then guess whether we simulate one in A + U∗ or one in939

V ∗
S[T̂]

. For both cases we construct a gadget G which is the following automaton:940

• The states of G consist of two states from Q and a bounded counter with941

values in [1, |Q|], i.e., {(p, q, j) | p, q ∈ Q, 1 ≤ j ≤ |Q|} is the set of states942

in G. Here, the state (p, q, j) has the following meaning: the simulation943

of the cycle started in state p, we are currently in state q, and we can944

simulate at most j more steps until finishing the cycle.945

• There are transitions from ι to each state (q, q, |Q|) with label # and946

counter update (0,0).947

• For each 1 < j ≤ |Q| we have a transition from (p, q, j) to (p, q′, j − 1) if948

V has a transition t = (q, a,x, q′) ∈ T . The label of the new transition is t949

and the counter update depends on the decision made at the beginning of950

the simulation: if we are simulating a cycle in A+U∗, the counter update951

is (πI1(x),0). Otherwise it is (0, πI2(x)). In the latter case we also have952

to ensure that t ∈ T̂ holds.953

• We also have transitions from (p, q, j) back to ι if V has a transition954

t = (q, a,x, p) ∈ T . The label and the counter update are defined as955

above.956

In other words, the gadget G is actually the computation graph that is truncated957

to runs of length ≤ |Q|. Note that each of the two gadgets has at most |Q|3958

many nodes implying that W has polynomial size (in |Q|).959

With this polynomial-time construction ofW1 andW2, we are ready to prove960

Theorem 3.6:961

Proof of Theorem 3.6. We give an NP algorithm for regular inseparability of two962

Z-VASS (which can be obtained from Parikh automata in logarithmic space [16,963

Corollary 1]).964

26

Let V1 and V2 be two d-dimensional Z-VASS. From V1 and V2 we can com-965

pute a single 2d-dimensional deterministic Z-VASS V and two sets I1, I2 ⊆ [1, 2d]966

in polynomial time such that L(V1)|L(V2) holds if, and only if, L(V, I1)|L(V, I2)967

(Lemmas 6.1 and 6.3). According to Lemma 6.4 we have L(V, I1) | L(V, I2) if,968

and only if, L(V, I1, ρ) | L(V, I2, ρ) for each skeleton ρ in V holds. So, we guess969

a skeleton ρ and check regular inseparability of L(V, I1, ρ) and L(V, I2, ρ) certi-970

fying regular inseparability of L(V, I1) and L(V, I2).971

Additionally, we will guess a set T̂ ⊆ T of transitions and verify in NP that all972

of them are bi-cancelable (Lemma 6.10). Then we can construct in polynomial973

time two Z-VASS W1 and W2 such that (7) and (8) hold (Lemma 6.11). If974

L(W1) ∩ L(W2) ̸= ∅, the algorithm reports “inseparable”. For this, it uses a975

simple product construction to obtain a Z-VASSW for the intersection L(W1)∩976

L(W2), and decide in NP whether an accepting configuration can be reached in977

W.978

This is sound: We have L(W1) ∩ L(W2) ̸= ∅ if and only if (A+ U∗ + V ∗
J) ∩979

(B + V ∗ + U∗
J) ̸= ∅ for J = S[T̂]; and by Lemma 6.7, we know that the latter980

rules out M(I1) |M(I2). For completeness, note that if M(I1) |M(I2) does not981

hold, then there exists a choice for T̂ such that L(W1) ∩ L(W2) ̸= ∅: Take the982

set of all bi-cancelable transitions.983

References984

[1] T. G. Szymanski, J. H. Williams, Noncanonical extensions of bottom-up985

parsing techniques, SIAM Journal on Computing 5 (2) (1976). doi:10.986

1137/0205019.987

[2] H. B. Hunt III, On the Decidability of Grammar Problems, Journal of the988

ACM 29 (2) (1982) 429–447. doi:10.1145/322307.322317.989

[3] W. Czerwiński, S. Lasota, R. Meyer, S. Muskalla, K. N. Kumar,990

P. Saivasan, Regular separability of well-structured transition systems, in:991

S. Schewe, L. Zhang (Eds.), 29th International Conference on Concurrency992

Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, Vol. 118993

of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp.994

35:1–35:18. doi:10.4230/LIPICS.CONCUR.2018.35.995

[4] E. Keskin, R. Meyer, Separability and non-determinizability of WSTS, in:996

G. A. Pérez, J. Raskin (Eds.), 34th International Conference on Concur-997

rency Theory, CONCUR 2023, September 18-23, 2023, Antwerp, Belgium,998

Vol. 279 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,999

2023, pp. 8:1–8:17. doi:10.4230/LIPICS.CONCUR.2023.8.1000

[5] C. Köcher, G. Zetzsche, Regular separators for VASS coverability lan-1001

guages, in: P. Bouyer, S. Srinivasan (Eds.), 43rd IARCS Annual Conference1002

on Foundations of Software Technology and Theoretical Computer Science,1003

FSTTCS 2023, December 18-20, 2023, IIIT Hyderabad, Telangana, India,1004

27

https://doi.org/10.1137/0205019
https://doi.org/10.1137/0205019
https://doi.org/10.1137/0205019
https://doi.org/10.1145/322307.322317
https://doi.org/10.4230/LIPICS.CONCUR.2018.35
https://doi.org/10.4230/LIPICS.CONCUR.2023.8

Vol. 284 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,1005

2023, pp. 15:1–15:19. doi:10.4230/LIPICS.FSTTCS.2023.15.1006

[6] W. Czerwiński, S. Lasota, Regular separability of one counter automata,1007

in: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,1008

LICS 2017, Reykjavik, Iceland, June 20-23, 2017, IEEE Computer Society,1009

2017, pp. 1–12. doi:10.1109/LICS.2017.8005079.1010

[7] L. Clemente, W. Czerwiński, S. Lasota, C. Paperman, Regular Separability1011

of Parikh Automata, in: I. Chatzigiannakis, P. Indyk, F. Kuhn, A. Muscholl1012

(Eds.), 44th International Colloquium on Automata, Languages, and Pro-1013

gramming (ICALP 2017), Vol. 80 of Leibniz International Proceedings in1014

Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik,1015

Dagstuhl, Germany, 2017, pp. 117:1–117:13. doi:10.4230/LIPIcs.ICALP.1016

2017.117.1017

URL http://drops.dagstuhl.de/opus/volltexte/2017/74971018

[8] L. Clemente, W. Czerwiński, S. Lasota, C. Paperman, Separability of1019

reachability sets of vector addition systems, in: H. Vollmer, B. Vallée1020

(Eds.), 34th Symposium on Theoretical Aspects of Computer Science,1021

STACS 2017, March 8-11, 2017, Hannover, Germany, Vol. 66 of LIPIcs,1022

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 24:1–24:14.1023

doi:10.4230/LIPICS.STACS.2017.24.1024

[9] R. S. Thinniyam, G. Zetzsche, Regular separability and intersection empti-1025

ness are independent problems, in: A. Chattopadhyay, P. Gastin (Eds.),1026

39th IARCS Annual Conference on Foundations of Software Technology1027

and Theoretical Computer Science, FSTTCS 2019, December 11-13, 2019,1028

Bombay, India, Vol. 150 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für1029

Informatik, 2019, pp. 51:1–51:15. doi:10.4230/LIPICS.FSTTCS.2019.51.1030

[10] P. Baumann, E. Keskin, R. Meyer, G. Zetzsche, Separability in Büchi1031

VASS and singly non-linear systems of inequalities, in: K. Bringmann,1032

M. Grohe, G. Puppis, O. Svensson (Eds.), 51st International Colloquium1033

on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024,1034

Tallinn, Estonia, Vol. 297 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für1035

Informatik, 2024, pp. 126:1–126:19. doi:10.4230/LIPICS.ICALP.2024.1036

126.1037

[11] P. Baumann, R. Meyer, G. Zetzsche, Regular separability in Büchi VASS,1038

in: P. Berenbrink, P. Bouyer, A. Dawar, M. M. Kanté (Eds.), 40th1039

International Symposium on Theoretical Aspects of Computer Science,1040

STACS 2023, March 7-9, 2023, Hamburg, Germany, Vol. 254 of LIPIcs,1041

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 9:1–9:19.1042

doi:10.4230/LIPICS.STACS.2023.9.1043

[12] W. Czerwiński, G. Zetzsche, An approach to regular separability in vec-1044

tor addition systems, in: Proceedings of the 35th Annual ACM/IEEE1045

28

https://doi.org/10.4230/LIPICS.FSTTCS.2023.15
https://doi.org/10.1109/LICS.2017.8005079
http://drops.dagstuhl.de/opus/volltexte/2017/7497
http://drops.dagstuhl.de/opus/volltexte/2017/7497
http://drops.dagstuhl.de/opus/volltexte/2017/7497
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
http://drops.dagstuhl.de/opus/volltexte/2017/7497
https://doi.org/10.4230/LIPICS.STACS.2017.24
https://doi.org/10.4230/LIPICS.FSTTCS.2019.51
https://doi.org/10.4230/LIPICS.ICALP.2024.126
https://doi.org/10.4230/LIPICS.ICALP.2024.126
https://doi.org/10.4230/LIPICS.ICALP.2024.126
https://doi.org/10.4230/LIPICS.STACS.2023.9
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776

Symposium on Logic in Computer Science, LICS ’20, Association for1046

Computing Machinery, New York, NY, USA, 2020, p. 341–354. doi:1047

10.1145/3373718.3394776.1048

URL https://doi.org/10.1145/3373718.33947761049

[13] E. Keskin, R. Meyer, On the separability problem of VASS reachability1050

languages, in: P. Sobocinski, U. D. Lago, J. Esparza (Eds.), Proceedings of1051

the 39th Annual ACM/IEEE Symposium on Logic in Computer Science,1052

LICS 2024, Tallinn, Estonia, July 8-11, 2024, ACM, 2024, pp. 49:1–49:14.1053

doi:10.1145/3661814.3662116.1054

[14] O. H. Ibarra, Reversal-bounded multicounter machines and their decision1055

problems, Journal of the ACM (JACM) 25 (1) (1978) 116–133. doi:10.1056

1145/322047.322058.1057

[15] S. A. Greibach, Remarks on blind and partially blind one-way multicounter1058

machines, Theoretical Computer Science 7 (3) (1978) 311–324. doi:10.1059

1016/0304-3975(78)90020-8.1060

[16] P. Baumann, F. D’Alessandro, M. Ganardi, O. Ibarra, I. McQuil-1061

lan, L. Schütze, G. Zetzsche, Unboundedness problems for machines1062

with reversal-bounded counters, in: O. Kupferman, P. Sobocinski1063

(Eds.), Foundations of Software Science and Computation Structures,1064

Springer Nature Switzerland, Cham, 2023, pp. 240–264. doi:10.1007/1065

978-3-031-30829-1_12.1066

[17] M. Jantzen, A. Kurganskyy, Refining the hierarchy of blind multicounter1067

languages and twist-closed trios, Inf. Comput. 185 (2) (2003) 159–181. doi:1068

10.1016/S0890-5401(03)00087-7.1069

[18] M. Cadilhac, A. Finkel, P. McKenzie, Affine Parikh automata, RAIRO1070

Theor. Informatics Appl. 46 (4) (2012) 511–545. doi:10.1051/ITA/1071

2012013.1072

[19] A. Bostan, A. Carayol, F. Koechlin, C. Nicaud, Weakly-unambiguous1073

Parikh automata and their link to holonomic series, in: A. Czumaj,1074

A. Dawar, E. Merelli (Eds.), 47th International Colloquium on Automata,1075

Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,1076

Germany (Virtual Conference), Vol. 168 of LIPIcs, Schloss Dagstuhl -1077

Leibniz-Zentrum für Informatik, 2020, pp. 114:1–114:16. doi:10.4230/1078

LIPICS.ICALP.2020.114.1079

[20] M. Cadilhac, A. Finkel, P. McKenzie, Unambiguous constrained automata,1080

Int. J. Found. Comput. Sci. 24 (7) (2013) 1099–1116. doi:10.1142/1081

S0129054113400339.1082

[21] A. Finkel, A. Sangnier, Reversal-bounded counter machines revisited,1083

in: E. Ochmanski, J. Tyszkiewicz (Eds.), Mathematical Foundations1084

of Computer Science 2008, 33rd International Symposium, MFCS 2008,1085

29

https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1145/3661814.3662116
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1007/978-3-031-30829-1_12
https://doi.org/10.1007/978-3-031-30829-1_12
https://doi.org/10.1007/978-3-031-30829-1_12
https://doi.org/10.1016/S0890-5401(03)00087-7
https://doi.org/10.1016/S0890-5401(03)00087-7
https://doi.org/10.1016/S0890-5401(03)00087-7
https://doi.org/10.1051/ITA/2012013
https://doi.org/10.1051/ITA/2012013
https://doi.org/10.1051/ITA/2012013
https://doi.org/10.4230/LIPICS.ICALP.2020.114
https://doi.org/10.4230/LIPICS.ICALP.2020.114
https://doi.org/10.4230/LIPICS.ICALP.2020.114
https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1142/S0129054113400339

Torun, Poland, August 25-29, 2008, Proceedings, Vol. 5162 of Lecture1086

Notes in Computer Science, Springer, 2008, pp. 323–334. doi:10.1007/1087

978-3-540-85238-4_26.1088

[22] M. M. Bersani, S. Demri, The complexity of reversal-bounded model-1089

checking, in: C. Tinelli, V. Sofronie-Stokkermans (Eds.), Frontiers of1090

Combining Systems, 8th International Symposium, FroCoS 2011, Saar-1091

brücken, Germany, October 5-7, 2011. Proceedings, Vol. 6989 of Lecture1092

Notes in Computer Science, Springer, 2011, pp. 71–86. doi:10.1007/1093

978-3-642-24364-6_6.1094

[23] G. Zetzsche, Silent transitions in automata with storage, in: F. V.1095

Fomin, R. Freivalds, M. Z. Kwiatkowska, D. Peleg (Eds.), Automata,1096

Languages, and Programming - 40th International Colloquium, ICALP1097

2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, Vol. 7966 of1098

Lecture Notes in Computer Science, Springer, 2013, pp. 434–445. doi:1099

10.1007/978-3-642-39212-2_39.1100

[24] M. Cadilhac, A. Krebs, P. McKenzie, The algebraic theory of Parikh au-1101

tomata, Theory Comput. Syst. 62 (5) (2018) 1241–1268. doi:10.1007/1102

S00224-017-9817-2.1103

[25] G. Zetzsche, The complexity of downward closure comparisons, in:1104

I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, D. Sangiorgi (Eds.),1105

43rd International Colloquium on Automata, Languages, and Program-1106

ming, ICALP 2016, July 11-15, 2016, Rome, Italy, Vol. 55 of LIPIcs,1107

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 123:1–123:14.1108

doi:10.4230/LIPICS.ICALP.2016.123.1109

[26] E. Erlich, S. Guha, I. Jecker, K. Lehtinen, M. Zimmermann, History-1110

deterministic Parikh automata, in: G. A. Pérez, J. Raskin (Eds.), 34th1111

International Conference on Concurrency Theory, CONCUR 2023, Septem-1112

ber 18-23, 2023, Antwerp, Belgium, Vol. 279 of LIPIcs, Schloss Dagstuhl1113

- Leibniz-Zentrum für Informatik, 2023, pp. 31:1–31:16. doi:10.4230/1114

LIPICS.CONCUR.2023.31.1115

[27] S. Guha, I. Jecker, K. Lehtinen, M. Zimmermann, Parikh automata over1116

infinite words, in: A. Dawar, V. Guruswami (Eds.), 42nd IARCS Annual1117

Conference on Foundations of Software Technology and Theoretical Com-1118

puter Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai,1119

India, Vol. 250 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Infor-1120

matik, 2022, pp. 40:1–40:20. doi:10.4230/LIPICS.FSTTCS.2022.40.1121

[28] E. Filiot, S. Guha, N. Mazzocchi, Two-way Parikh automata, in: A. Chat-1122

topadhyay, P. Gastin (Eds.), 39th IARCS Annual Conference on Founda-1123

tions of Software Technology and Theoretical Computer Science, FSTTCS1124

2019, December 11-13, 2019, Bombay, India, Vol. 150 of LIPIcs, Schloss1125

Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 40:1–40:14. doi:1126

10.4230/LIPICS.FSTTCS.2019.40.1127

30

https://doi.org/10.1007/978-3-540-85238-4_26
https://doi.org/10.1007/978-3-540-85238-4_26
https://doi.org/10.1007/978-3-540-85238-4_26
https://doi.org/10.1007/978-3-642-24364-6_6
https://doi.org/10.1007/978-3-642-24364-6_6
https://doi.org/10.1007/978-3-642-24364-6_6
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/S00224-017-9817-2
https://doi.org/10.1007/S00224-017-9817-2
https://doi.org/10.1007/S00224-017-9817-2
https://doi.org/10.4230/LIPICS.ICALP.2016.123
https://doi.org/10.4230/LIPICS.CONCUR.2023.31
https://doi.org/10.4230/LIPICS.CONCUR.2023.31
https://doi.org/10.4230/LIPICS.CONCUR.2023.31
https://doi.org/10.4230/LIPICS.FSTTCS.2022.40
https://doi.org/10.4230/LIPICS.FSTTCS.2019.40
https://doi.org/10.4230/LIPICS.FSTTCS.2019.40
https://doi.org/10.4230/LIPICS.FSTTCS.2019.40

[29] M. Grobler, L. Sabellek, S. Siebertz, Remarks on Parikh-recognizable1128

omega-languages, in: A. Murano, A. Silva (Eds.), 32nd EACSL Annual1129

Conference on Computer Science Logic, CSL 2024, February 19-23, 2024,1130

Naples, Italy, Vol. 288 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für1131

Informatik, 2024, pp. 31:1–31:21. doi:10.4230/LIPICS.CSL.2024.31.1132

[30] M. Cadilhac, A. Ghosh, G. A. Pérez, R. Raha, Parikh one-counter au-1133

tomata, in: J. Leroux, S. Lombardy, D. Peleg (Eds.), 48th International1134

Symposium on Mathematical Foundations of Computer Science, MFCS1135

2023, August 28 to September 1, 2023, Bordeaux, France, Vol. 272 of1136

LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 30:1–1137

30:15. doi:10.4230/LIPICS.MFCS.2023.30.1138

[31] Y. Shakiba, H. Sinclair-Banks, G. Zetzsche, A complexity dichotomy for1139

semilinear target sets in automata with one counter, to appear in Proc. of1140

LICS 2025 (2025). arXiv:2505.13749, doi:10.48550/ARXIV.2505.13749.1141

[32] F. Klaedtke, H. Rueß, Monadic second-order logics with cardinalities,1142

in: J. C. M. Baeten, J. K. Lenstra, J. Parrow, G. J. Woeginger (Eds.),1143

Automata, Languages and Programming, 30th International Colloquium,1144

ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Pro-1145

ceedings, Vol. 2719 of Lecture Notes in Computer Science, Springer, 2003,1146

pp. 681–696. doi:10.1007/3-540-45061-0_54.1147

[33] S. Halfon, P. Schnoebelen, G. Zetzsche, Decidability, complexity, and ex-1148

pressiveness of first-order logic over the subword ordering, in: 32nd Annual1149

ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-1150

javik, Iceland, June 20-23, 2017, IEEE Computer Society, 2017, pp. 1–12.1151

doi:10.1109/LICS.2017.8005141.1152

[34] A. Bouajjani, P. Habermehl, Symbolic reachability analysis of FIFO-1153

channel systems with nonregular sets of configurations, Theor. Comput.1154

Sci. 221 (1-2) (1999) 211–250. doi:10.1016/S0304-3975(99)00033-X.1155

[35] C. Haase, S. Halfon, Integer vector addition systems with states, in:1156

J. Ouaknine, I. Potapov, J. Worrell (Eds.), Reachability Problems - 8th1157

International Workshop, RP 2014, Oxford, UK, September 22-24, 2014.1158

Proceedings, Vol. 8762 of Lecture Notes in Computer Science, Springer,1159

2014, pp. 112–124. doi:10.1007/978-3-319-11439-2_9.1160

[36] K. L. McMillan, Interpolation and SAT-based model checking, in: W. A. H.1161

Jr., F. Somenzi (Eds.), Computer Aided Verification, 15th International1162

Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,1163

Vol. 2725 of Lecture Notes in Computer Science, Springer, 2003, pp. 1–13.1164

doi:10.1007/978-3-540-45069-6_1.1165

[37] Y. Vizel, G. Weissenbacher, S. Malik, Boolean satisfiability solvers and1166

their applications in model checking, Proc. IEEE 103 (11) (2015) 2021–1167

2035. doi:10.1109/JPROC.2015.2455034.1168

31

https://doi.org/10.4230/LIPICS.CSL.2024.31
https://doi.org/10.4230/LIPICS.MFCS.2023.30
http://arxiv.org/abs/2505.13749
https://doi.org/10.48550/ARXIV.2505.13749
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.1016/S0304-3975(99)00033-X
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1109/JPROC.2015.2455034

[38] M. Veanes, N. S. Bjørner, L. Nachmanson, S. Bereg, Monadic decomposi-1169

tion, J. ACM 64 (2) (2017) 14:1–14:28. doi:10.1145/3040488.1170

[39] P. Bergsträßer, M. Ganardi, A. W. Lin, G. Zetzsche, Ramsey quantifiers1171

in linear arithmetics, Proc. ACM Program. Lang. 8 (POPL) (2024) 1–32.1172

doi:10.1145/3632843.1173

[40] M. Hague, A. W. Lin, P. Rümmer, Z. Wu, Monadic decomposition in inte-1174

ger linear arithmetic, in: N. Peltier, V. Sofronie-Stokkermans (Eds.), Au-1175

tomated Reasoning - 10th International Joint Conference, IJCAR 2020,1176

Paris, France, July 1-4, 2020, Proceedings, Part I, Vol. 12166 of Lec-1177

ture Notes in Computer Science, Springer, 2020, pp. 122–140. doi:1178

10.1007/978-3-030-51074-9_8.1179

[41] C. Haase, S. N. Krishna, K. Madnani, O. S. Mishra, G. Zetzsche, An1180

efficient quantifier elimination procedure for Presburger arithmetic, in:1181

K. Bringmann, M. Grohe, G. Puppis, O. Svensson (Eds.), 51st Interna-1182

tional Colloquium on Automata, Languages, and Programming, ICALP1183

2024, July 8-12, 2024, Tallinn, Estonia, Vol. 297 of LIPIcs, Schloss Dagstuhl1184

- Leibniz-Zentrum für Informatik, 2024, pp. 142:1–142:17. doi:10.4230/1185

LIPICS.ICALP.2024.142.1186

[42] S. Grumbach, P. Rigaux, L. Segoufin, Spatio-temporal data handling with1187

constraints, in: R. Laurini, K. Makki, N. Pissinou (Eds.), ACM-GIS ’98,1188

Proceedings of the 6th international symposium on Advances in Geographic1189

Information Systems, November 6-7, 1998, Washington, DC, USA, ACM,1190

1998, pp. 106–111. doi:10.1145/288692.288712.1191

[43] G. Kuper, L. Libkin, J. Paredaens, Constraint databases, Springer Science1192

& Business Media, 2013. doi:10.1007/978-3-662-04031-7.1193

[44] C. Choffrut, S. Grigorieff, Separability of rational relations in A∗×Nm by1194

recognizable relations is decidable, Information Processing Letters 99 (1)1195

(2006) 27–32. doi:10.1016/j.ipl.2005.09.018.1196

[45] D. Chistikov, C. Haase, A. Mansutti, Quantifier elimination for counting1197

extensions of presburger arithmetic, in: P. Bouyer, L. Schröder (Eds.),1198

Foundations of Software Science and Computation Structures - 25th In-1199

ternational Conference, FOSSACS 2022, Held as Part of the European1200

Joint Conferences on Theory and Practice of Software, ETAPS 2022,1201

Munich, Germany, April 2-7, 2022, Proceedings, Vol. 13242 of Lecture1202

Notes in Computer Science, Springer, 2022, pp. 225–243. doi:10.1007/1203

978-3-030-99253-8_12.1204

URL https://doi.org/10.1007/978-3-030-99253-8_121205

[46] S. Ginsburg, E. H. Spanier, Semigroups, Presburger formulas, and lan-1206

guages, Pacific Journal of Mathematics 16 (2) (1966) 285–296.1207

32

https://doi.org/10.1145/3040488
https://doi.org/10.1145/3632843
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.4230/LIPICS.ICALP.2024.142
https://doi.org/10.4230/LIPICS.ICALP.2024.142
https://doi.org/10.4230/LIPICS.ICALP.2024.142
https://doi.org/10.1145/288692.288712
https://doi.org/10.1007/978-3-662-04031-7
https://doi.org/10.1016/j.ipl.2005.09.018
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12
https://doi.org/10.1007/978-3-030-99253-8_12

[47] J. Berstel, Transductions and Context-Free Languages, Teubner, 1979.1208

doi:10.1007/978-3-663-09367-1.1209

[48] J. Sakarovitch, Elements of Automata Theory, Cambridge University Press,1210

Cambridge, 2009. doi:10.1017/CBO9781139195218.1211

[49] O. H. Ibarra, B. Ravikumar, On the Parikh Membership Problem for1212

FAs, PDAs, and CMs, in: A.-H. Dediu, C. Martín-Vide, J.-L. Sierra-1213

Rodríguez, B. Truthe (Eds.), Language and Automata Theory and Ap-1214

plications, Springer International Publishing, Cham, 2014, pp. 14–31.1215

doi:10.1007/978-3-319-04921-2_2.1216

[50] H. Seidl, T. Schwentick, A. Muscholl, P. Habermehl, Counting in trees1217

for free, in: J. Díaz, J. Karhumäki, A. Lepistö, D. Sannella (Eds.), Au-1218

tomata, Languages and Programming: 31st International Colloquium,1219

ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, Vol. 31421220

of Lecture Notes in Computer Science, Springer, 2004, pp. 1136–1149.1221

doi:10.1007/978-3-540-27836-8_94.1222

[51] S. Ginsburg, E. H. Spanier, Bounded regular sets, Proceedings of the1223

American Mathematical Society 17 (5) (1966) 1043–1049. doi:10.1090/1224

S0002-9939-1966-0201310-3.1225

[52] J. Esparza, Petri nets, commutative context-free grammars, and basic par-1226

allel processes, Fundam. Informaticae 31 (1) (1997) 13–25. doi:10.3233/1227

FI-1997-3112.1228

33

https://doi.org/10.1007/978-3-663-09367-1
https://doi.org/10.1017/CBO9781139195218
https://doi.org/10.1007/978-3-319-04921-2_2
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.3233/FI-1997-3112
https://doi.org/10.3233/FI-1997-3112
https://doi.org/10.3233/FI-1997-3112

	Introduction
	Preliminaries
	Main results
	A characterization of separability in hyperlinear sets
	Separability of semilinear sets is in coNP
	Regular separability of Parikh automata
	Reduction to separability of semilinear sets
	Determinizing the automata
	Unifying the automata
	Skeletons
	Counting cycles

	Reducing inseparability to intersection
	Characterizing twin-unbounded cycles
	Constructing the Z-VASS

