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1. Introduction14

In this paper, we introduce the model of cooperating multi-pushdown systems215

and study the reachability relation for such systems. To explain the idea of16

a cooperating multi-pushdown system, we first look at well-studied pushdown17

systems. They model the behavior of a sequential recursive program and possess18

a control state as well as a pushdown. The top symbol of the pushdown stores19

the execution context, e.g., parameters and local variables, the state can be used20

to return values from a subroutine to the calling routine. Such a system can,21

depending on the state and the top symbol, do three types of moves: it can call22

a subroutine (i.e., change state and top symbol and add a new symbol on top of23

the pushdown), it can do an internal action (i.e., change state and top symbol),24

and it can return from a subroutine (i.e., delete the top symbol and store the25

necessary information into the state). This leads to the unifying definition of a26

transition that, depending on state and top symbol, changes state and replaces27

the top symbol by a (possibly empty) word.28

A cooperating multi-pushdown system consists of a finite family of pushdown29

systems (indexed by a set P ). Cooperation is realized by the formation of30

temporary coalitions that perform a possibly recursive subroutine in a joint31

manner. Suppose the system is in a configuration where C ⊆ P forms one of32

the coalitions. The execution context of the joint task is distributed between33

the top symbols of the pushdowns from the coalition and can only be changed34

in all these components at once. As above, there are three types of moves35

depending on the top symbols and the states of the systems from the coalition.36

First, a (further) subroutine can be called on a sub-coalition C0 ⊆ C. Even37

more, several subroutines can be called in parallel on disjoint sub-coalitions of38

C. This is modeled as a change of states and top symbols of C and addition39

of some further symbols on the pushdowns from subsets of C. Internal actions40

of the coalition C can change the (common) top symbol as well as the states41

of the systems that form the coalition C. Similarly, a return move deletes42

the common top symbol and changes the states of the systems from C, in43

this moment, the coalition C is dissolved and the systems from C are free to44

be assigned to new coalitions and tasks by the calling routine. Since several,45

mutually disjoint coalitions can exist and operate at any particular moment, the46

cooperating multi-pushdown system is a non-sequential model. Note that the47

concrete coalitions of systems and the assignments to tasks are fixed by a given48

specification which we call distributed alphabet in this paper.49

Since a cooperating multi-pushdown system consists of several pushdown50

systems, a configuration consists of a tuple of local states and a tuple of push-51

down contents; the current division into coalitions is modeled by the top symbols52

of the pushdowns: any component forms a coalition with all components that53

have the same top symbol a on their stack. Since all these occurrences of the54

2A more descriptive name would be “cooperating systems of pushdown systems”, but we
refrain from using this term.
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letter a can only change at once, there is some dependency in the tuple of push-55

down contents of a configuration. It turns out to be convenient and fruitful to56

understand such a “consistent” tuple of pushdown contents as a Mazurkiewicz57

trace. Since the set of all Mazurkiewicz traces forms a monoid, we can define58

recognizable and rational sets of traces and therefore of configurations: Both59

these classes of sets of traces enjoy finite representations (by asynchronous au-60

tomata [1] and NFAs, resp.) that allow to decide membership, any recognizable61

set is rational but not vice versa, any singleton is both, recognizable and ratio-62

nal, and inclusion of a rational set (and therefore in particular of a recognizable63

set) in a recognizable set is efficiently decidable (but not vice versa).64

As an example, we show that transformers, a computational model used for65

recent large language models (LLMs) [24], can be modeled with the help of66

cooperating multi-pushdown systems.67

Then, as our main results, we obtain that backwards reachability (1) effi-68

ciently preserves the recognizability of sets of configurations while (2) it does69

not preserve rationality. We also show that asynchronous multi-pushdown sys-70

tems (a slight generalization of our model) can model 2-pushdown systems and71

therefore have an undecidable reachability relation.72

From our positive result, we infer that the reachability relation as well as73

certain safety and liveness properties are decidable in polynomial time. Fur-74

thermore, the first result implies that EF-model checking is decidable, although75

one only obtains a non-elementary complexity bound.76

Related work. Multiple algorithms for computing the forwards or backwards77

reachable configurations in pushdown systems where rationality and recogniz-78

ability coincide [2] can be found (e.g.) in [3, 4, 5, 6]. Our proof of (1) generalizes79

the one by Bouajjani et al.80

Other forms of multi-pushdown systems have been considered by different81

groups of authors, e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. These alternative82

models may contain a central control or, similarly to our cooperating systems,83

local control states. The models can have a fixed number of processes and84

pushdowns or they are allowed to spawn or terminate other processes. Local85

processes can differ in their communication mechanism, e.g., by rendezvous or86

FIFO-channels. The decidability results concern logical formulas of some form87

or bounded model checking problems.88

Mazurkiewicz traces as a form of storage mechanism have been considered89

by Hutagalung et al. in [18], where multi-buffer systems were studied.90

The results of this paper were announced in the conference contribution [19].91

2. Preliminaries92

For a binary relation R ⊆ S2 and s, t ∈ S we define the sets sR := {t ∈ S | sR t}93

and R t := {s ∈ S | sR t}.94

For n ∈ N, [n] = {1, . . . , n}. Let (Si)i∈[n] be a tuple of sets, I, J ⊆ [n] be95

two disjoint sets, and s = (si)i∈[n] and t be tuples from
∏n

i=1 Si. We write96
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s↾I = (si)i∈I ∈
∏

i∈I Si for the restriction of s to the components in I and97

(s↾I , t↾J) for the joint tuple r ∈
∏

i∈I∪J Si with r↾I = s↾I and r↾J = t↾J .98

For a word w ∈ A∗, we write Alph(w) for the set of letters occurring in w.99

A non-deterministic finite automaton or NFA is a tuple A = (Q,A, I, δ, F )100

where Q is a finite set of states, A is an alphabet, I, F ⊆ Q are sets of initial101

and accepting states, respectively, and δ ⊆ Q×A×Q is a set of transitions; its102

size ∥A∥ is |Q| + |Q|2 · |A|. For Q1, Q2 ⊆ Q and w ∈ A∗, we write Q1
w−→A Q2103

if there is a run from some state p ∈ Q1 to some state q ∈ Q2 labeled with104

w in A; {p} w−→A {q} is abbreviated p
w−→A q. The language accepted by A is105

L(A) := {w ∈ A∗ | I w−→A F}.106

We will model the contents of our multi-pushdown systems with the help107

of Mazurkiewicz traces; for a comprehensive survey of this topic we refer to108

[20]. Traces were first studied in [21] as “heaps of pieces” and later introduced109

into computer science by Mazurkiewicz to model the behavior of a distributed110

system [22]. The fundamental idea is that any letter a ∈ A is assigned a set of111

locations or processes loc(a) ⊆ P it operates on (where P is some set):112

Definition 1. A distributed alphabet is a triple D = (A,P, loc) where A and P113

are two alphabets of letters and processes, respectively, and loc : A → 2P \ {∅}114

maps to any letter a ∈ A a nonempty set of processes. In this paper, D will115

always denote a distributed alphabet (A,P, loc).116

For a word w ∈ A∗ we denote the set of processes associated with w by117

loc(w) :=
⋃

a∈Alph(w) loc(a) ⊆ P . In particular, we set loc(ε) := ∅. By πi : A
∗ →118

A∗
i we denote the projection onto Ai := {a ∈ A | i ∈ loc(a)} (the alphabet of119

all letters associated to process i), i.e., the monoid morphism with πi(a) = a for120

a ∈ Ai and πi(b) = ε for b ∈ A \Ai.121

Note that
∏

i∈P A∗
i is a direct product of monoids and therefore a monoid122

itself (with componentwise concatenation). Since πi : A
∗ → A∗

i is a monoid123

morphism for all i ∈ P , also the mapping124

π : A∗ →
∏

i∈P
A∗

i : w 7→ (πi(w))i∈P

is a monoid morphism. For w ∈ A∗, we call π(w) the (Mazurkiewicz) trace125

induced by w. The trace monoid is the submonoid of
∏

i∈P A∗
i with universe126

M(D) = {π(w) | w ∈ A∗}; its elements are traces and its subsets are trace127

languages.128

We call two words v, w ∈ A∗ with loc(v)∩loc(w) = ∅ independent and denote129

this fact by v ∥ w. We can see that v ∥ w implies π(vw) = π(wv).130

Let A = (Q,A, I, δ, F ) be an NFA. The accepted trace language of A is131

T (A) := {π(w) | I w−→A F}. In other words, T (A) is the image of the language132

L(A) under the morphism π. A trace language L ⊆ M(D) is called rational133

if there is an NFA A with T (A) = L, i.e., iff L is the image of some regular134

language in A∗ under the morphism π. A trace language L is recognizable iff its135

preimage under the morphism π, i.e. {w ∈ A∗ | π(w) ∈ L}, is regular. Clearly,136

any recognizable trace language is rational. The converse implication holds only137

in case any two letters are dependent.138
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A finite automaton that reads letters of a distributed alphabet should consist139

of components for all i ∈ P such that any letter a ∈ A acts only on the compo-140

nents from loc(a). This idea leads to the following definition of an asynchronous141

automaton. But first, we fix a particular notation: For a tuple (Qi)i∈P of finite142

sets Qi, we write Q for the direct product
∏

i∈P Qi.143

Definition 2. Let D = (A,P, loc) be a distributed alphabet. An asynchronous144

automaton or AA is an NFA A = (Q, A, I, δ, F ) where Q =
∏

i∈P Qi is the145

product of finite sets Qi of local states — accordingly, the tuples from Q are146

called global states — and where, for every (p, a, q) ∈ δ and r ∈
∏

i∈P\loc(a) Qi,147

we have148

(i) p↾P\loc(a) = q↾P\loc(a) and149

(ii) ((p↾loc(a), r), a, (q↾loc(a), r)) ∈ δ.150

Here, (i) ensures that any a-transition of A only modifies components from151

loc(a) while the other components are left untouched, and (ii) guarantees that152

a-transitions are insensitive to the local states of the components in P \ loc(a).153

The transition relation δ defines, for each letter a ∈ A, a local transition154

relation δa ⊆
∏

i∈loc(a) Qi ×
∏

i∈loc(a) Qi by δa = {(p↾loc(a), q↾loc(a)) | (p, a, q) ∈155

δ}. The above two conditions ensure that the collection of these local transition156

relations δa for a ∈ A completely defines the transition relation δ: (p, a, q) ∈ δ157

if, and only if, (p↾loc(a), q↾loc(a)) ∈ δa and p↾P\loc(a) = q↾P\loc(a). Therefore, in158

the literature, asynchronous automata are often defined with the help of these159

local transition relations.160

Every asynchronous automaton accepts a recognizable trace language. Con-161

versely, Zielonka’s celebrated result [1] states that, even more, every recogniz-162

able trace language L ⊆ M(D) is accepted by some deterministic asynchronous163

automaton.164

Remark 3. Let D = (A,P, loc) be a distributed alphabet. While it is easy165

to check whether a given NFA A is asynchronous, the question, whether A is166

equivalent to an asynchronous automaton (i.e., whether T (A) is recognizable), is167

more manifold. Actually, this question depends on the underlying trace monoid168

M(D) resp. distributed alphabet D. So, the recognizability problem is decidable169

if, and only if, M(D) is a free product of free commutative monoids if, and only170

if, the independence relation {(a, b) ∈ A2 | a ∥ b} is transitive [23].171

3. Introducing Cooperating Multi-Pushdown Systems172

An AA consists of several NFAs that synchronize by joint actions. In a similar173

manner, we will now consider several pushdown systems synchronizing by joint174

actions.175

Recall that a pushdown system (or PDS) consists of a control unit (that can176

be in any of finitely many control states) and a pushdown (that can hold words177

over the pushdown alphabet A). Its transitions read the top letter a from the178
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pushdown, write a word w onto it, and change the control state. In our model,179

we have a pushdown system Pi for every i ∈ P whose pushdown alphabet is Ai.180

These systems synchronize by the letters read and written onto their pushdown.181

Definition 4. Let D = (A,P, loc) be a distributed alphabet. An asynchronous182

multi-pushdown system or aPDS is a tuple P = (Q,∆) where Q =
∏

i∈P Qi183

holds for some finite sets Qi of local states — accordingly, the tuples from Q184

are called global states — and ∆ ⊆ Q×A×A∗ ×Q is a finite set of transitions185

such that, for each transition (p, a, w, q) ∈ ∆ and r ∈
∏

i∈P\loc(aw) Qi, we have186

(i) p↾P\loc(aw) = q↾P\loc(aw) and187

(ii) ((p↾loc(aw), r), a, w, (q↾loc(aw), r)) ∈ ∆.188

Its size ∥P∥ is |Q| + |Q|2 · |A|k where k − 1 is the maximal length of a word189

written by any of the transitions (i.e., ∆ ⊆ Q×A×A<k ×Q).190

The set of configurations ConfP of P equals Q×M(D). We also define the191

one step relation ⊢ ⊆ Conf2P. It is the least relation on ConfP such that for each192

transition (p, a, u, q) ∈ ∆ and each word x ∈ A∗ we have (p, π(ax)) ⊢ (q, π(ux)).193

The reflexive and transitive closure of ⊢ is the reachability relation ⊢∗.194

Let C and D be sets of configurations.195

• We write C ⊢∗ D if there are c ∈ C and d ∈ D with c ⊢∗ d. If C = {c} or196

D = {d}, resp., is a singleton, we also write c ⊢∗ D resp. C ⊢∗ d. We use197

analogous notations for the relation ⊢.198

• The set C is rational (recognizable, resp.) if, for all q ∈ Q, the trace199

language Cq := {π(u) | (q, π(u)) ∈ C} is rational (recognizable, resp.).200

Since it is undecidable whether a given rational trace language is recog-201

nizable (cf. Remark 3), the same undecidability transfers to rational sets202

of configurations.203

• preP(C) := {c ∈ ConfP | c ⊢ C} is the set of predecessors of configurations204

from C, and205

pre∗P(C) :=
⋃

k∈N
prekP(C)

is the set of configurations backwards reachable from some configuration206

in C.207

The reachability relation for configurations of asynchronous multi-pushdown208

systems is, in general, undecidable:209

Theorem 5. There exists an aPDS with undecidable reachability relation ⊢∗.210

Proof. We start with a classical 2-pushdown system P with an undecidable211

reachability relation (its set of states is Q and the two pushdowns use disjoint212

alphabets A1 and A2). Let A = A1 ∪ A2 ∪ {⊤} and P = {1, 2}. We consider213

the distributed alphabet D with loc(a) = {i} for a ∈ Ai and loc(⊤) = {1, 2}.214
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We simulate P by an aPDS P′ over D as follows. The first process of P′
215

stores the state of the simulated system P together with a letter from A1 or ε,216

i.e., Q1 = Q(A1 ∪ {ε}), the second process can store a letter from A2 or the217

empty word, i.e., Q2 = A2 ∪ {ε}.218

A transition (p, (a, b), (u, v), q) of P (that replaces a and b by u and v on the219

two pushdowns) is simulated by three transitions of the aPDS: ((pε, .), a, ε, (pa, .))220

reads a from the first pushdown and stores it in the first local state; then221

((., ε), b,⊤, (., b)) reads b from the second pushdown, stores it in the second local222

state, and puts ⊤ onto both pushdowns; finally, ((pa, b),⊤, uv, (qε, ε)) replaces223

⊤ by uv (i.e., π1(uv) = u is written onto the first pushdown and π2(uv) = v224

onto the second). □225

To obtain a model with a decidable reachability relation, we therefore have226

to restrict aPDS.3 To this aim, we require that any transition can only write227

onto pushdowns it reads from.228

Definition 6. Let D = (A,P, loc) be a distributed alphabet. A cooperating229

multi-pushdown system or cPDS is an aPDS P = (Q,∆) with loc(w) ⊆ loc(a)230

for each transition (p, a, w, q) ∈ ∆.231

LetP = (Q,∆) be a cPDS and (p, a, w, q) ∈ ∆ be a transition ofP. Since we232

have loc(w) ⊆ loc(a), the asynchronicity properties in cPDS can be simplified233

to234

(i) p↾P\loc(a) = q↾P\loc(a) and235

(ii) ((p↾loc(a), r), a, w, (q↾loc(a), r)) ∈ ∆ for each r ∈
∏

i∈P\loc(a) Qi.236

This means, such transition does not touch the state of the processes not in237

loc(a) and is, additionally, independent of the actual state of the processes in238

P \ loc(a).239

Similarly to the case of asynchronous automata, we can see the transi-240

tion relation ∆ as a family of local transition relations: for a ∈ A, let ∆a ⊆241 ∏
i∈loc(a) Qi×A∗×

∏
i∈loc(a) Qi be the collection of all tuples (p↾loc(a), u, q↾loc(a))242

with (p, a, u, q) ∈ ∆. Again, these local relations completely determine the243

global relation. In the following we will use these local transition relations to244

emphasize the asynchronicity properties of P.245

Example 7. Suppose D = (A,P, loc) with A = {a, b, c}, P = {1, 2}, loc(a) =246

P , loc(b) = {1}, and loc(c) = {2}. We consider the cPDS P from Fig. 1247

where edges from global state p to global state q labeled a | w visualize global248

transitions (p, a, w, q). The set of global states of P is the product {p1, q1} ×249

{p2, q2}. Additionally, the transitions reading b and c only depend on process250

1 and 2, resp. Since loc(b), loc(c) ⊆ loc(a), any global transition (p, x, w, q)251

satisfies loc(w) ⊆ loc(x), i.e., P is, indeed, a cPDS.252

3The proof of Theorem 5 shows that requiring aw to be connected for any transition
(p, a, w, q) does not yield decidability.
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P :

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

a | ab

c | ε

a | ab, b | ε

a | ε, c | ε

c | ε

b | ε, c | ε

Figure 1: The cPDS P from Example 7.

The following sequence is a run of P from ((p1, p2), π(ac)) to ((q1, q2), π(bb)):253

((p1, p2), π(ac)) ⊢ ((q1, p2), π(abc)) ⊢ ((q1, p2), π(abbc))

⊢ ((q1, q2), π(bbc)) ⊢ ((q1, q2), π(bb)) .

3.1. Application: Transformers254

Cooperating multi-pushdown systems can be used to model so-called transform-255

ers, a basic computation model in the area of machine learning used in recent256

large language models [24].257

Let A be some finite set of activation values and n ∈ N be a natural number.258

There are two types of simple transformers called layers:259

1. A position-wise layer L is a function p : A → A. The position-wise layer260

L takes an input sequence a1a2 · · · an ∈ An and outputs the sequence261

p(a1)p(a2) · · · p(an) ∈ An. These position-wise layers are used to model262

the effect of neural networks.263

2. An attention layer L (cf. Fig. 2) is a tuple (S, s, v) where S is a finite set of264

score values, s : A×A → S an attention score function, and v : A×Sn → A265

a choice and valuation function. The attention layer L takes an input266

sequence a1a2 · · · an ∈ An. It then computes, for each pair i, j ∈ [n],267

an attention score si,j = s(ai, aj) ∈ S combining the input values ai268

and aj using the function s. From ai and the sequence of score values269

si,1si,2 · · · si,n, it then computes a new element a′i = v(ai, si,1si,2 · · · si,n)270

of A. The word a′1a
′
2 · · · a′n is the output of the attention layer.271

For example, in so-called unique hard attention transformers (as defined272

in [25, 26]), A ⊆ Rd is a finite set of real vectors, and S ⊆ R×A is a finite273

set of reals with activation values. Then the function s(ai, aj) = (xj , aj)274

outputs aj and a product xj of two affine functions to the vectors ai and275

aj . The valuation function v(ai, si,1si,2 · · · si,n) first chooses the minimal276

position j ∈ [n] such that xj (where si,j = (xj , aj)) has the maximal277

attention score and then applies an affine function to ai and aj .278
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As another example, let p : A → A describe some position-wise layer. Set279

S = {1}, s(a, a′) = 1 for all a, a′ ∈ A and v(a,w) = p(a) for all a ∈ A280

and w ∈ Sn. Then the attention layer (S, s, v) simulates the position-281

wise layer described by p. Hence, for our purposes, it suffices to consider282

attention layers.283

A transformer is given by a finite sequence L1L2 · · ·Lk of (attention) layers284

Lℓ = (Sℓ, sℓ, vℓ) for 1 ≤ ℓ ≤ k, it computes the concatenation of the functions285

An → An given by these layers.286

v

a1

a1 s1,1 s1,2 s1,3 s1,4 s1,5

a′1

a2

a2 s2,1 s2,2 s2,3 s2,4 s2,5

a′2

a3

a3 s3,1 s3,2 s3,3 s3,4 s3,5

a′3

a4

a4 s4,1 s4,2 s4,3 s4,4 s4,5

a′4

a5

a5 s5,1 s5,2 s5,3 s5,4 s5,5

a′5

Figure 2: Visualization of an attention layer of a transformer.

We can model such a transformer as a cPDS as follows. The distributed287

alphabet D = (A,P, loc) uses the set of processes P = [n], i.e., every position288

in the input word a1 · · · an corresponds to some process. The letters from A289

correspond to the basic activities of the transformer, the association of processes290

to letters reflects the positions involved in the activity. More precisely, we have291

the following letters.292

• LAYℓ corresponds to the call of layer ℓ (for 1 ≤ ℓ ≤ k) and involves all293

processes, i.e., loc(LAYℓ) = P .294

• S
i,j
ℓ corresponds to the computation of sℓ(ai, aj) (for i, j ∈ [n] and ℓ ∈ [k])295

and involves the processes i and j, i.e., loc(Si,jℓ ) = {i, j}.296

• Viℓ corresponds to the computation of vℓ(ai, si,1si,2 · · · si,n) (for i ∈ [n] and297

ℓ ∈ [k]) and involves the process i, only, i.e., loc(Viℓ) = {i}.298

We now describe a cPDS P = (Q,∆) over the above distributed alphabet299

D that simulates the transformer L1L2 · · ·Lk with Lℓ = (Sℓ, sℓ, vℓ) for ℓ ∈ [k].300

The aim here is to start with the letter ai as state of process i and, at the301

9



end of the computation, to find the i-th letter in the state of process i. For302

notational simplicity, assume S1 = Sℓ for all ℓ ∈ [k] and denote this set with S.303

Furthermore, let S⊥ = S ∪{⊥} for some ⊥ /∈ S. Then elements of S [n]
⊥ describe304

a partial function from [n] to S.305

Local states of process p ∈ P = [n] consist of a letter a from A and a partial306

function w from [n] to S, i.e., Qp = (A,S [n]
⊥ ). Then we have the following307

transitions.308

• In any global state (ap, wp)p∈P , the letter LAYℓ can be replaced by an309

arbitrary permutation of the letters Si,jℓ for i, j ∈ [n] followed by an arbi-310

trary permutation of the letters Viℓ for i ∈ [n] (without changing the global311

state).312

• Let (ap, wp)p∈P be a global state, i, j ∈ [n], and ℓ ∈ [k]. Then the letter313

S
i,j
ℓ can be deleted from the pushdown while changing the global state to314

(ap, w
′
p)p∈P defined as follows:315

w′
i(x) =

{
sℓ(ai, aj) for x = j

wi(x) otherwise

w′
p = wp for p ∈ [n] \ {i} = P \ {i}

• Let (ap, wp)p∈P be a global state, i ∈ [n], and ℓ ∈ [k]. Then the letter316

Viℓ can be deleted from the pushdown while changing the global state to317

(a′p, w
′
p)p∈P where a′i = viℓ(ai, wi), w

′
i(x) = ⊥ for all x ∈ [n], a′p = ap and318

w′
p = wp for all p ∈ [n] \ {i} = P \ {i}.319

Let q = (ap, wp)p∈P and q′ = (a′p, w
′
p)p∈P be any global states. Then we have320

(q, π(LAYℓ)) ⊢∗ (q′, π(ε))

if, and only if, a′1a
′
2 · · · a′n is the output of layer Lℓ on input a1a2 · · · an, and321

w′
p(i) = ⊥ for all p ∈ P and i ∈ [n]. As a consequence,322

(q, π(LAY1 · · · LAYk)) ⊢∗ (q′, π(ε))

if, and only if, a′1a
′
2 · · · a′n is the output of the transformer L = L1 · · ·Lk on323

input a1a2 · · · an, and w′
p(i) = ⊥ for all p ∈ P and i ∈ [n].324

3.2. Recognizable sets of configurations325

We return to the consideration of general cPDS. In order to decide the326

reachability relation, we will compute, from a set of configurations C, the set327

pre∗P(C), i.e., the set of configurations that allow to reach some configuration328

from C or, put alternatively, the set of configurations backwards reachable from329

C. To represent possibly infinite sets of configurations, we use finite represen-330

tations of sets of configurations. If the set of configurations C is rational, then331

(by definition) all the trace languages Cq = {π(w) | (q, π(w)) ∈ C} are rational.332
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Hence we can represent C by a tuple of NFAs Aq accepting the trace language333

Cq (one for each global state q of P).334

Alternatively, C can be recognizable such that, by definition, all the lan-335

guages Cq are recognizable. Then we can represent each of the languages Cq by336

an asynchronous automaton Aq. Since q is a P -tuple, we can assume, without337

loss of generality, that q is the only initial state of the AA Aq (in particular,338

local states of the cPDS are also local states of the AA, but the AA can have339

more local states). Following Bouajjani et al. [3], we can further assume that340

all these AAs differ in their initial state, only. — This idea leads to the concept341

of a P-AA given next.342

Definition 8. Let D = (A,P, loc) be a distributed alphabet and P = (Q,∆)343

be a cPDS. A P-asynchronous automaton or P-AA is an AA A = (S, A, ∅, δ, F )344

such that Qi ⊆ Si for all i ∈ P .345

The P-AA A accepts the following set C(A) of configurations of P:346

{(q, π(w)) ∈ ConfP | q ∈ Q, q
w−→A F}

In other words, the P-AA A accepts a configuration (q, π(w)) if, from the state347

q of A, the AA A can reach some accepting state.348

The above arguments prove the following result.349

Observation 9. Let D = (A,P, loc) be a distributed alphabet and P = (Q,∆)350

be a cPDS. A set of configurations C ⊆ ConfP is recognizable if, and only if,351

there is a P-AA A with C(A) = C.352

In a P-AA A, any local state of the cPDS P is also a local state of the P-AA353

A. In particular, the asynchronous automaton can move from a local state not354

belonging to P into a local state from P. For later use, we now demonstrate355

that this behavior can be suppressed. So let A = (S, A, ∅, δ, F ) be a P-AA for356

some cPDS P = (Q,∆). For any process i ∈ P , let S′
i be a disjoint copy of Si.357

Then Si ∪ S′
i forms the set of local states of process i in the new P-AA Anew.358

For a letter a ∈ A and tuples of (new) local states s, t ∈
∏

i∈loc(a)(Si ∪ S′
i),359

we set (s, t) ∈ δnewa if, and only if, the undashed versions of s and t form a pair360

from δa and all entries of t are dashed, i.e., t ∈
∏

i∈loc(a) S
′
i. As a result, we get361

δnewa ⊆
∏

i∈loc(a)

(Si ∪ S′
i)×

∏
i∈loc(a)

S′
i ⊆

∏
i∈loc(a)

(Si ∪ S′
i)×

∏
i∈loc(a)

(Si ∪ S′
i) \Qi .

Furthermore, s ∈
∏

i∈P (Si∪S′
i) is accepting in Anew if, and only if, the undashed362

version of s is accepting in A. Since the P-AAs A and Anew accept the same363

sets of configurations, we obtain364

Lemma 10. From a distributed alphabet D = (A,P, loc), a cPDS P = (Q,∆),365

and a P-AA A, we can construct in polynomial time an equivalent P-AA366

(S, A, ∅, δ, F ) such that t ∈
∏

i∈loc(a) Si \ Qi for any local transition (s, t) ∈ δa367

and a ∈ A.368

11



4. Computing the Backwards Reachable Configurations369

In this section we want to compute the backwards reachable configurations in a370

cPDSP. The main result of this section states that the mapping pre∗P effectively371

preserves the recognizability of sets of configurations.372

Theorem 11. Let D = (A,P, loc) be a distributed alphabet, P = (Q,∆) be a373

cPDS, and C ⊆ ConfP be a recognizable set of configurations. Then the set374

pre∗P(C) is recognizable.375

Even more, from D, P, and a P-AA A(0) = (S, A, ∅, δ(0), F ), one can con-376

struct in polynomial time a P-AA A that accepts the set pre∗P(C(A(0))).377

The rest of this section is devoted to the proof of this result.378

Adapting ideas by Bouajjani et al. [3] from NFAs to AA, we construct a P-379

AA A that accepts the set pre∗P(C(A(0))) of configurations backwards reachable380

from C(A(0)). To this aim, we will inductively add new transitions to the P-AA381

A(0) = (S, A, ∅, δ(0), F ), but leave the sets of states, initial states, and accepting382

states unchanged. By Lemma 10, we can assume (and this assumption is crucial383

for the correctness of the construction) that the automaton cannot enter a local384

state from the cPDS P, i.e., we have q ∈
∏

i∈loc(a) Si\Qi for any local transition385

(p, q) ∈ δ
(0)
a and any letter a ∈ A.386

p q q s

p

f
a | u u x

a

P : A(k+1) :

Figure 3: Visualization of the construction of A(k+1).

For a start, and to explain the idea, let (p, π(v)) and (q, π(w)) be config-387

urations such that (p, π(v)) ⊢ (q, π(w)) and (q, π(w)) ∈ C(A(0)). Then the388

configuration (p, π(v)) is backwards reachable from C(A(0)) and we will add, in389

a first step, a transition to the P-AA A(0) making sure that also this configura-390

tion (p, π(v)) is accepted (cf. Fig. 3). Since (p, π(v)) ⊢ (q, π(w)), there is a local391

a-transition (p↾loc(a), u, q↾loc(a)) in P and a word x ∈ A∗ with π(v) = π(ax) and392

π(w) = π(ux). Since the configuration (q, π(w)) = (q, π(ux)) is accepted by the393

P-AA A(0), there is a state s ∈ S such that394

q
u−→A(0) s

x−→A(0) F .

We now add the local a-transition (p↾loc(a), s↾loc(a)) to A
(0), i.e., δ

(1)
a contains,395

in addition to all a-transitions from δ
(0)
a , this local transition. Let A(1) denote396

the result of this addition. Then we get397

p
a−→A(1) s

x−→A(1) F
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implying that the configuration (p, π(v)) = (p, π(ax)) is accepted by the P-NFA398

A(1).399

Since we added a local a-transition we can ensure that the P- NFA A(1) is400

also asynchronous.401

Remark 12. The construction as described above requires P to be cooper-402

ating. Assume that (p, a, u, q) is a transition in P violating the cooperation403

property loc(u) ⊆ loc(a) and that there is a process i ∈ loc(u) \ loc(a) with404

pi ̸= qi. If A(0) satisfies q
u−→A(0) s, then the new transition (p, a, s) would405

depend also on process i. This implies that A(1) is not asynchronous anymore.406

Formally, we construct P-asynchronous automata A(k) = (S, A, ∅, δ(k), F )407

for k ≥ 1 as follows: for k ∈ N and a ∈ A we define the local transition relation408

δ
(k+1)
a to be the set409

δ(k)a ∪
{(

p↾loc(a), s↾loc(a)
) ∣∣∣∣ p ∈ Q, s ∈ S,

∃ q ∈ Q, u ∈ A∗ : (p↾loc(a), u, q↾loc(a)) ∈ ∆a, q
u−→A(k) s

}
.

Since we constructed A(k+1) from A(k) using local transitions it is clear that the410

properties of Definition 2 are satisfied. Hence, A(k+1) is also asynchronous.411

The “limit” of this construction is the P-AA A(∞) = (S, A, ∅, δ(∞), F ) with412

δ(∞) =
⋃

k∈N δ(k).413

Example 13. Recall the cPDS P from Example 7. In Fig. 4 we depict our414

algorithm on input P and the set of configurations C = {((q1, q2), ε)}. A P-AA415

A(0) = (S1 × S2, A, ∅, δ, F ) accepting this set is depicted in the left.416

In A(1), we have (q1, p2)
ab−→A(1) (q1, q2) (depicted in bold and red) and, in417

P, we have the transition ((p1, p2), a, ab, (q1, p2)) ∈ ∆. The definition of δ(2)418

implies that ((p1, p2), a, (q1, q2)) is a new local transition.419

The construction terminates with A(2). This is a P-AA accepting the union420

of the sets of configurations
{
((p1, p2), π(w))

∣∣ w ∈ a{b, c}∗
}
,
{
((q1, p2), π(w))

∣∣421

w ∈ b∗{a, c}{b, c}∗
}
, and

{
((q1, q2), π(w))

∣∣ w ∈ {b, c}∗
}
. But this is exactly the422

set of configurations backwards reachable from C =
{
((q1, q2), ε)

}
.423

Remark 14. The inductive construction of A(k) is not possible if A(0) is not424

asynchronous. To this end, let (q, a, u, p) ∈ δ be a transition of P and b ∈ A425

with a ∥ b. Now, assume that (p, π(ubx)) ∈ ConfP is accepted by a P-NFA426

A(k). Then we have (q, π(abx)) ∈ pre∗P(C(A(k))). Suppose that the only run of427

A(k) accepting π(ubx) is the following one:428

p
b−→A(k) s′

u−→A(k) s
x−→A(k) F .

Then we have to add a new path from q to s labeled with ab. To this end, we429

have to introduce one new state. Hence, the number of states of A(k+1) may430

increase in each iteration.431
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(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

c

c

b

a, c

b, c

c

a c

b

a, c

b, c

Figure 4: The P-AA A(0), A(1), and A(2) (from left to right) from Example 13.

In contrast, runs starting with some independent letters are not a problem432

if A(k) is asynchronous: since b-edges only modify the processes in loc(b), the433

u-labeled run only affects the processes in loc(u) ⊆ loc(a), and since loc(a) ∩434

loc(b) = ∅ holds due to a ∥ b, there would be another run435

p
u−→A(k) s′′

b−→A(k) s
x−→A(k) F

which starts with u.436

Now, we show C(A(∞)) = pre∗P(C(A(0))) with the help of the following three437

lemmas. First, by induction on k ∈ N, one can easily prove prekP(C(A(0))) ⊆438

C(A(k)) (which ensures the inclusion “⊇”).439

Lemma 15. Let k ∈ N. Then prekP(C(A(0))) ⊆ C(A(k)). In particular, we440

have pre∗P(C(A(0))) ⊆ C(A(∞)).441

Proof. We prove the first statement by induction on k ∈ N. The case k =442

0 is obvious by pre0P(C(A(0))) = C(A(0)). Now, let k ≥ 0 and (q, π(w)) ∈443

prek+1
P (C(A(0))). Then there is a configuration (p, π(v)) ∈ prekP(C(A(0))) with444

(q, π(w)) ⊢ (p, π(v)). By definition of ⊢ there is a transition (p, a, u, q) ∈ ∆445

and a word x ∈ A∗ with π(w) = π(ax) and π(v) = π(ux). By the induction446

hypothesis we know (p, π(ux)) = (p, π(v)) ∈ C(A(k)). Hence, there is s ∈ S447

with448

p
u−→A(k) s

x−→A(k) F .

By (p, a, u, q) ∈ ∆ and p
u−→A(k) s, we obtain a transition (q, a, s) ∈ δ(k+1) and,449

hence,450

q
a−→A(k+1) s

x−→A(k) F .

Since δ(k) ⊆ δ(k+1) we finally obtain (q, π(w)) = (q, π(ax)) ∈ C(A(k+1)).451

Towards the second statement, recall that we have δ(0) ⊆ δ(1) ⊆ · · · ⊆ δ(∞).452

From this fact we can infer C(A(0)) ⊆ C(A(1)) ⊆ · · · ⊆ C(A(∞)). Then the first453

statement of this lemma implies the following inclusion:454

pre∗P(C(A(0))) =
⋃
k∈N

prekP(C(A(0))) ⊆
⋃
k∈N

C(A(k)) = C(A(∞)) . □
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Next, we want to show the converse inclusion C(A(∞)) ⊆ pre∗P(C(A(0))).455

However, we could not just prove C(A(k)) ⊆ prekP(C(A(0))) inductively for each456

k ∈ N. The P-AA A(k) can in particular accept more configurations than those457

that are backwards reachable from C(A(0)) in at most k steps: consider Ex-458

ample 13. The configuration c = ((p1, p2), π(ac
5)) is accepted by A(2) depicted459

in Fig. 4. On the other hand, any configuration from C(A(0)) has an empty460

pushdown and any step in the cPDS P decreases the size of the pushdowns by461

at most one. Hence, indeed, c is not backwards reachable from C(A(0)) in two462

steps.463

Therefore, to prove C(A(∞)) ⊆ pre∗P(C(A(0))) we need the following, more464

technical lemma.465

Lemma 16. Let k ∈ N, v ∈ A∗, p ∈ Q, and s ∈ S with p
v−→A(k) s. Then there466

are a global state r ∈ Q and a word w ∈ A∗ with the following properties:467

(a) (p, π(v)) ⊢∗ (r, π(w)) and468

(b) r
w−→A(0) s.469

Proof. The proof of this lemma proceeds by double induction, the first one470

over k and the inductive step for this induction proceeds by induction on the471

length of the word v. To simplify bookkeeping, let Cl(k, n) (for natural numbers472

k and n) be the following claim:473

“For all v ∈ An, p ∈ Q, and s ∈ S with p
v−→A(k) s, there are r ∈ Q and474

w ∈ A∗ satisfying (a) and (b).”475

Then Cl(k) is the claim “Cl(k, n) holds for all n ∈ N”.476

So we prove the lemma by showing Cl(k) for all k ∈ N by induction on k.477

The claim Cl(0, n) is trivial for all n ∈ N since we can set r = p and w = v.478

Hence Cl(0) holds.479

Now let k ∈ N and suppose the claim Cl(k) holds. We prove Cl(k + 1), i.e.,480

validity of Cl(k + 1, n) for all n ∈ N, by induction on n.481

For n = 0, we only have to consider the word v = ε. But then p = s. Hence482

setting r = p and w = v = ε yields (a) and (b).483

Before we proceed inductively, we also prove Cl(k + 1, 1) explicitly. So let484

v = a ∈ A, p ∈ Q, and s ∈ S with p
a−→A(k+1) s.485

p

q

r

sk + 1

k
0

a

u

w

Figure 5: Proof of Lemma 16, validation of Cl(k + 1, 1). The natural number ℓ at the tip of
an arrow indicates a path in the P-AA A(ℓ).
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If even p
a−→A(k) s, claim Cl(k) yields r and w as desired. Otherwise, we486

have (p↾loc(a), s↾loc(a)) ∈ δ
(k+1)
a \ δ(k)a (see Fig. 5). By the definition of this local487

transition relation, there are global states p′, q′ ∈ Q and s′ ∈ S and a word488

u ∈ A∗ such that489

• p↾loc(a) = p′↾loc(a) and s↾loc(a) = s′↾loc(a),490

• (p′↾loc(a), u, q′↾loc(a)) ∈ ∆a, and491

• q′
u−→A(k) s′.492

Set q = (q′↾loc(a), p↾P\loc(a)). Then q is a global state from Q. Since P is a493

cPDS and (p′↾loc(a), u, q′↾loc(a)) ∈ ∆a, we can infer494

(p, π(a)) = ((p′↾loc(a), p↾P\loc(a)), π(a)) ⊢ ((q′↾loc(a), p↾P\loc(a)), π(u)) = (q, π(u)) .

From p
a−→A(k+1) s, the asynchronicity of A(k+1) implies that the global states p495

and s agree on the components from P \ loc(a). Hence we get496

q = (q′↾loc(a), p↾P\loc(a)) = (q′↾loc(a), s↾P\loc(a)) .

Since the local a-transition (p′↾loc(a), u, q′↾loc(a)) ∈ ∆a reads a and writes u and497

since P is cooperating, we have loc(u) ⊆ loc(a). Hence q′
u−→A(k) s′ and the498

asynchronicity of A(k+1) implies499

q = (q′↾loc(a), s↾P\loc(a))
u−→A(k) (s′↾loc(a), s↾P\loc(a)) .

Finally, s↾loc(a) = s′↾loc(a) implies500

(s′↾loc(a), s↾P\loc(a)) = s .

In summary, we have501

q
u−→A(k) s .

From Cl(k), we obtain a global state r ∈ Q and a word w ∈ A∗ such that502

(q, π(u)) ⊢∗ (r, π(w)) and r
w−→A(0) s .

Putting everything together, we obtain503

(a) (p, π(v)) = (p, π(a)) ⊢ (q, π(u)) ⊢∗ (r, π(w)) and504

(b) r
w−→A(0) s505

which completes the proof of Cl(k + 1, 1).506

From now on, assume that Cl(k + 1, n) as well as Cl(k) hold. To verify507

Cl(k+1, n+1) for n ≥ 1, let p ∈ Q, s ∈ S, and v ∈ An+1 such that p
v−→A(k+1) s.508
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Then we can write v = v′a with v′ ∈ An and a ∈ A. Since p
v′a−−→A(k+1) s, there509

is some global state s′ ∈ S with510

p
v′

−→A(k+1) s′
a−→A(k+1) s .

Since |v′| = n, claim Cl(k + 1, n) provides a global state q′ ∈ Q and a word511

w′ ∈ A∗ with512

(p, π(v′)) ⊢∗ (q′, π(w′)) and q′
w′

−→A(0) s′ .

Note that the former implies in particular (p, π(v)) = (p, π(v′a)) ⊢∗ (q′, π(w′a)).513

p

q′

r

s′ s
k + 1 k

0 0

v′ a

w′

w

Figure 6: Proof of Lemma 16, validation of Cl(k + 1, n+ 1) with s′
a−→A(k) s

Suppose that we do not only have s′
a−→A(k+1) s, but even s′

a−→A(k) s (see514

Fig. 6). Then A(k) has a w′a-labeled run from q′ to s. Hence, claim Cl(k)515

implies the existence of r ∈ Q and w ∈ A∗ with516

(q′, π(w′a)) ⊢∗ (r, π(w)) and r
w−→A(0) s .

Note that the latter is (b). But also (a) holds since517

(p, π(v)) ⊢∗ (q′, π(w′a)) ⊢∗ (r, π(w))

which completes the proof in case we even have an a-labeled in run A(k).518

p

q′

r

s′ s

t

k + 1 k + 1

k + 1

0

0

0

v′ a

w′

a

w′′

w′

Figure 7: Proof of Lemma 16, validation of Cl(k + 1, n+ 1) if s′
a−→A(k) s does not hold

It remains to consider the case that no such run exists, i.e., we have s′
a−→A(k+1)519

s, but not s′
a−→A(k) s (see Fig. 7). This is equivalent to saying520

(s′↾loc(a), s↾loc(a)) ∈ δ(k+1)
a \ δ(k)a .
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The definition of the local transition relation δ
(k+1)
a yields in particular s′↾loc(a) ∈521 ∏

i∈loc(a) Qi. Recall that inP-AA A(0) the local states from Qi have no in-edges,522

i.e., for each local a-transition (x, y) ∈ δ
(0)
a we have y ∈

∏
i∈loc(a) Si \ Qi (this523

is the only use of this assumption in this proof). Hence the existence of some524

w′-labeled run in A(0) to s′ implies s′↾i /∈ Qi for all i ∈ loc(w′). Consequently,525

loc(w′) ∩ loc(a) = ∅ implying π(w′a) = π(aw′).526

Consider the global state527

t = (s↾loc(a), q′↾loc(w′), s
′↾P\loc(w′a)) .

• Since A(k+1) is asynchronous, s′
a−→A(k+1) s implies that the global states528

s′ and s differ, at most, in the components of loc(a). Hence529

s = (s↾loc(a), s′↾loc(w′), s
′↾P\loc(w′a)) .

Since A(0) is asynchronous and q′
w′

−→A(0) s′, this ensures t
w′

−→A(0) s.530

• Since A(0) is asynchronous, q′
w′

−→A(0) s′ implies that the global states q′531

and s′ differ, at most, in the components of loc(w′). Hence532

q′ = (s′↾loc(a), q′↾loc(w′), s
′↾P\loc(w′a)) .

Since A(k+1) is asynchronous and s′
a−→A(k+1) s, this ensures q′

a−→A(k+1) t.533

From Cl(k + 1, 1), we obtain a global state r and a word w′′ ∈ A∗ such534

that535

(q′, π(a)) ⊢∗ (r, π(w′′)) and r
w′′

−−→A(0) t .

In summary, we have536

(a) (p, π(v)) ⊢∗ (q′, π(w′a)) = (q′, π(aw′)) and (q′, π(a)) ⊢∗ (r, π(w′′)) imply537

(p, π(v)) ⊢∗ (r, π(w′′w′)).538

(b) r
w′′

−−→A(0) t
w′

−→A(0) s.539

This completes the proof of Cl(k+1, n+1) from Cl(k), Cl(k+1, 1) and Cl(k+540

1, n).541

Therefore, we completed the inductive proof of Cl(k + 1) from Cl(k). But542

this means that Cl(k) holds for all k ∈ N. □543

Lemma 17. Let k ∈ N. Then we have C(A(k)) ⊆ pre∗P(C(A(0))).544

Proof. Now, let (p, π(v)) ∈ C(A(k)). Then we have p
v−→A(k) f for some final545

global state f ∈ F . By Lemma 16 there are a global state r ∈ Q and a word546

w ∈ A∗ with (p, π(v)) ⊢∗ (r, π(w)) and r
w−→A(0) f implying (r, π(w)) ∈ C(A(0)).547

This finally implies (p, π(v)) ∈ pre∗P(C(A(0))). □548
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All in all, from Lemmas 15 and 17 we obtain that A(∞) accepts exactly the549

set of configurations of P that are backwards reachable from C(A(0)):550

Proposition 18. We have C(A(∞)) = pre∗P(C(A(0))). □551

This proves the first claim of Theorem 11, namely that the backwards reach-552

ability relation preserves recognizability. It remains to be shown that A(∞) is553

efficiently constructible. To this aim, note that δ(0) ⊆ δ(1) ⊆ δ(2) ⊆ · · · ⊆554 ∏
i∈P Si × A ×

∏
i∈P Si, i.e., the sequence of transition relations is increas-555

ing. Since ℓ :=
∣∣∏

i∈P Si × A ×
∏

i∈P Si

∣∣ is finite, we have δ(ℓ) = δ(ℓ+1), i.e.,556

δ(∞) = δ(ℓ). Similar to the construction from [3] our construction takes time557

O(|P|2 · |A(0)|2 · |A|) and results in a P-AA having the same set of states as A(0)
558

(however, the number of transitions increases).559

5. Backwards Reachability Does Not Preserve Rationality560

Suppose we have a pushdown system (i.e., consider the case |P | = 1). Then561

a set of configurations is rational if, and only if, it is recognizable. Hence, the562

backwards reachability relation pre∗P also preserves rationality.563

Now, recall that there are rational trace languages that are not recognizable564

(e.g., the language of all traces π((ab)n) with n ∈ N whenever a ∥ b). Then565

Theorem 11 does not imply that rationality is preserved under the backwards566

reachability relation. To the contrary, we will now prove that this preservation567

property does not hold. So, we will show now that in some special cases the set568

of backwards reachable configurations from a rational trace language is not even569

decidable (however, in any case pre∗P(C) will be semi-decidable if C is rational).570

Proposition 19. There are a distributed alphabet D, a cPDS P, and a rational571

set of configurations C such that pre∗P(C) is not decidable.572

Proof. Consider a Turing-machine M with an undecidable word problem. Let573

Q be the set of states and Σ be the tape alphabet of M. We construct the574

distributed alphabet D = (A,P, loc) as follows:575

• A = {$} ∪ (Q ∪ Σ ∪ {#}) ∪ (Q′ ∪ Σ′ ∪ {#′}) where Q′ = {q′ | q ∈ Q} and576

Σ′ = {a′ | a ∈ Σ} are disjoint copies of Q and Σ, respectively, and #,#′, $577

are new symbols,578

• P = {1, 2}, and579

• A1 = Q∪Σ∪{#, $} and A2 = Q′∪Σ′∪{#′, $} (note that A1∩A2 = {$}).580

In the following, for a word w = a1 · · · an ∈ (Q ∪ Σ ∪ {#})∗, we write w′ =581

a′1 · · · a′n for the copy of w.582

Now, we want to construct a cPDS P = (Q,∆) writing sequences of configu-583

rations of M into its stacks. Here, we use the letters # and #′ as separators be-584

tween two consecutive configurations and $ for synchronization between the two585

processes. The states of P are the following: Q1 = {q0, q′0, q1, q′1, q2, q′2, q′′2} and586
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Q2 = {⊤}. For a better readability we write q for the tuple (q,⊤) with q ∈ Q1.587

Note that in the following P will store the configuration sequences backwards588

due to the usage of the distributed stack. To this end, for w = a1a2 · · · aℓ ∈ A∗
589

we write wR for the word aℓ · · · a2a1.590

The cPDS P computes as follows: first it guesses an initial configuration591

ιw of M and writes (ι′w′#′)
R

onto its second stack. This can be done with592

the following transitions: (q0, $, $ι
′, q′0), (q

′
0, $, $a

′, q′0), (q
′
0, $, $#

′, q1) ∈ ∆ where593

ι ∈ Q is the initial state of M and a ∈ Σ is any letter from the tape alphabet.594

Next, P simulates iteratively single computational steps of M. Let c and d595

be two configurations of M with c ⊢M d. Then P writes (c#d′#′)
R

onto its596

stacks. We do this with help of the following transitions:597

• for each transition ofM of the form (p, a, q, b,N) we have (q1, $, $apb
′q′, q′1) ∈598

∆,599

• for each transition of M of the form (p, a, q, b, L) and each c ∈ Σ we have600

(q1, $, $apcb
′c′q′, q′1) ∈ ∆,601

• for each transition of M of the form (p, a, q, b, R) and each c ∈ Σ we have602

(q1, $, $capc
′q′b′, q′1) ∈ ∆,603

• for each a ∈ Σ we have (q1, $, $aa
′, q1), (q′1, $, $aa

′, q′1) ∈ ∆, and604

• (q′1, $, $##′, q1), (q′1, $, $##′, q2) ∈ ∆.605

Finally, P guesses an accepting configuration fw of M and pushes (fw#)
R

606

onto its stacks. To this end, we have the transitions (q2, $, $#f, q′2) ∈ ∆ for each607

accepting state f of M, (q′2, $, $a, q
′
2) ∈ ∆ for each a ∈ Σ, and (q′2, $,#, q′′2 ) ∈ ∆.608

Now, let C = {q′′2} × {aa′ | a ∈ Q ∪ Σ ∪ {#}}∗. This set of configurations609

clearly is rational. Then for any w ∈ Σ∗ we can see (q′0, (ι
′w′#′$)

R
) ∈ pre∗P(C)610

holds if, and only if, there is a sequence of configurations c0, c1, . . . , ck of M with611

(q′0, (ι
′w′#′$)

R
) ⊢∗

P (q′′2 , (c0c
′
0##′c1c

′
1##′ · · · ckc′k##′)

R
) ∈ C and c0 = ιw.612

But then, by construction of P, we learn c0 is initial, ci−1 ⊢M ci for each613

1 ≤ i ≤ k, and ck is accepting, i.e., c0 ⊢M c1 ⊢M · · · ⊢M ck is an accepting run614

of M. In other words, we have (q′0, (ι
′w′#′$)

R
) ∈ pre∗P(C) if, and only if, w615

is accepted by M. Since the latter problem is undecidable by assumption, the616

membership problem of pre∗P(C) also is undecidable. □617

6. Summary, Consequences, and Open Questions618

We proved that the backwards reachability relation of cooperating multi-pushdown619

systems efficiently preserves the recognizability of a set of configurations. In620

addition, we demonstrated that the backwards reachability relation does not621

preserve rationality (i.e., there is a cPDS and a rational set C of configurations622

such that pre∗(C) is not rational anymore).623

From the positive result, it follows that the reachability relation is decidable.624

It implies that it is decidable whether all predecessors of a recognizable set C1625
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of configurations are contained in some recognizable set of configurations C2.626

In particular, we can decide the control state reachability problem and the EF-627

model checking problem — although our result allows to bound the running628

time only non-elementary. However, our result can be understood as the first629

step towards the verification of cooperating multi-pushdown systems.630

As next and obvious open question regarding the verification of cPDS, one631

would have to consider the recurrent reachability, i.e., the question whether,632

starting from some configuration, there is an infinite run that visits some global633

state infinitely often. This could then form the basis for algorithms deciding634

properties that are given by formulas from linear time temporal logics.635

Since we can see cPDS as a natural extension of pushdown systems from word636

semantics to trace semantics, another open problem is to find some generalized637

context-free grammars accepting the class of languages of cPDS. Additionally,638

one could compare this new model with other known models for multi-pushdown639

systems.640
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