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Abstract

Formal language theory has recently been successfully employed to unravel the
power of transformer encoders. This setting is primarily applicable in Natural
Languange Processing (NLP), as a token embedding function (where a bounded
number of tokens is admitted) is first applied before feeding the input to the
transformer. On certain kinds of data (e.g. time series), we want our transformers
to be able to handle arbitrary input sequences of numbers (or tuples thereof)
without a priori limiting the values of these numbers. In this paper, we initiate the
study of the expressive power of transformer encoders on sequences of data (i.e.
tuples of numbers). Our results indicate an increase in expressive power of hard
attention transformers over data sequences, in stark contrast to the case of strings.
In particular, we prove that Unique Hard Attention Transformers (UHAT) over
inputs as data sequences no longer lie within the circuit complexity class AC0 (even
without positional encodings), unlike the case of string inputs, but are still within
the complexity class TC0 (even with positional encodings). Over strings, UHAT
without positional encodings capture only regular languages. In contrast, we show
that over data sequences UHAT can capture non-regular properties. Finally, we
show that UHAT capture languages definable in an extension of linear temporal
logic with unary numeric predicates and arithmetics.

1 Introduction

Recent years have witnessed the success of transformers [35] in different applications, including
natural language processing [12], computer vision [14], speech recognition [13], and time series
analysis [38, 39]. In the quest to better understand the ability and limitation of transformers, theoretical
investigations have actively been undertaken in the last few years. Among others, formal language
theory has been successfully applied to reveal deep insights into the expressive power of transformers,
e.g., see the recent survey [33] and [2, 3, 8, 15, 17, 18, 25, 27, 31, 32]. In particular, relevant
questions pertain to the power of various attention mechanisms, bounded/unbounded precision,
positional encoding functions, and interplay between encoders and decoders, among many others.

One common assumption in the formal language theoretic approach to transformers is that the input
sequence ranges over a finite set Σ (called alphabet), which is then to be fed into a transformer after
applying a token embedding function of the form f : Σ → Rd. As a by-product, the number of
tokens is finite. In certain applications (e.g. time series forecasting [23]), we want our transformers to
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be able to handle arbitrary input sequences of numbers (or tuples thereof) without a priori limiting
the values of these numbers. Moreover, numbers could be compared using arithmetic and (in)equality,
which is not the case for elements of alphabets considered in formal language theory. For this reason,
we propose to investigate the expressive power of transformers over data sequences, which takes us to
the setting of formal language theory over the alphabet Σ = Qd, for some d ∈ Z>0, e.g., see [4, 11].
That is, what properties of a sequence of (tuples of) numbers can be recognized by transformers?

Connections to circuit complexity. Existing work has revealed intimate connections between
transformers and circuit complexity. In particular, let us consider the following class of transformer
encoders that has been the main focus of many recent papers: Unique Hard Attention Transformers
(UHAT). Among others, UHAT allows arbitrary positional encoding and an attention mechanism
that picks a vector at a unique minimum position in the sequence that maximizes the attention score.
It is known that the class of formal languages recognized by UHAT is a strict subset of the circuit
complexity class AC0 (cf. [3, 17, 18]), i.e., each UHAT can be simulated by a family of boolean
circuits of constant depth. More concretely, this entails among others that UHAT cannot compute
the parity (even/oddness) of the number of occurrences of any given letter a in the input string (for
strings over an alphabet containing at least two letters).

Our first contribution is that UHAT over data sequences (even without positional encodings) is no
longer contained in AC0, unlike the case of finite number of tokens. Instead, we show that UHAT
can be captured by the circuit complexity class TC0, which extends AC0 circuits with majority gates.

Theorem 1. UHAT with positional encoding over data sequences is in TC0 but not in AC0.

This complexity upper bound allows us to deduce the expressive power of UHAT over data sequences
by using complexity theory. For example, since UHAT accepts only TC0 languages, successfully
constructing a UHAT (e.g. through learning) for

SQRTSUM :=

{
(a1, b1), . . . , (an, bn)

∣∣∣∣∣
n∑
i=1

√
ai ≤

n∑
i=1

√
bi, and each (ai, bi) ∈ Z>0 × Z>0,

}
,

would constitute a major breakthrough in complexity theory (cf. [1, 16]), i.e., showing that
SQRTSUM is in the complexity class TC0 ⊆ P/poly. A byproduct of our proof is that for each
length, the set of accepted sequences is a semialgebraic set. This implies, e.g., that the graph
{(x, ex) | x ∈ R} ⊆ R2 of x 7→ ex (viewed as a set of length-1 sequences) is not accepted by UHAT.

Connection to regular languages over data sequences. Recent results have revealed surprising
connections between regular languages and formal languages recognizable by transformer encoders.
In particular, it was proven (cf. [2]) that languages recognizable by UHAT (even with no positional
encodings) form a strict subset of regular languages, namely those that are “star-free” or, equivalently,
definable in First-Order Logic (FO), or Linear Temporal Logic (LTL). With positional encodings,
similar connections hold, by extending the logics with unary numerical predicates (cf. [2, 3]).

To investigate whether such connections extend to data sequences, we bring forth formal languages
theory over infinite alphabets (cf., [4, 11]), which has been an active research field in the last
decade or so with applications to programming languages and databases (to name a few), e.g., see
[11, 21, 36]. Our second contribution is a language over data sequences recognizable by UHAT
without positional encodings that lies beyond existing formal models over infinite alphabets (in
particular, “regular” ones). This shows the strength of UHAT over data sequences even without
positional encodings, in stark contrast to the case of finite alphabets.

Theorem 2. There is a non-regular language over Σ = Qd that is accepted by masked UHAT with
no positional encoding.

Finally, to better understand languages over data sequences recognizable by UHAT, our third
contribution is to show how UHAT can recognize languages definable by the so-called Locally
Testable LTL ((LT)2L), which extends LTL with unary numerical predicates and local arithmetic
tests for fixed-size windows over the input sequence. For example, using our logic, it can be easily
shown that UHAT can capture linear recurrence sequences considered in the famous Skolem problem
and discrete linear dynamical systems [20, 22, 24], i.e., sequences of the form x, Ax, . . . , Anx such
that n ≥ 0 is minimal with yAnx = 0 where y ∈ Q1×d and A ∈ Qd×d are fixed and x ∈ Qd.

Theorem 3. Every (LT)2L-definable language is accepted by UHAT with positional encoding.
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Technical challenges. Obtaining our results poses several challenges. First, for the TC0 upper bound,
we need to use Boolean (constant depth) circuits to simulate UHATs, in which real constants can
occur (in affine transformations or positional encodings). While in TC0, it is known that majority
gates can be used to perform multiplication of rationals [7], arithmetic with reals requires infinite
precision and cannot be done with Boolean circuits. To this end, we compute rational approximations
of reals accurate enough to preserve the acceptance condition for inputs up to a particular length n.

Here, a naive attempt would be to replace each real occurring in the UHAT in affine transformations
and the positional encoding by some rational approximation. However, this is not possible, meaning
any rational approximation would change the behavior on input sequences of length n = 3, even for
low-dimensional vectors with entries in {0, 1}. Indeed, there is a UHAT involving real numbers α, β
that accepts a simple sequence of {0, 1}-vectors if and only if αβ = 2 and α = β, i.e. α = β =

√
2.

Thus, α and β cannot be replaced by rationals, even for very short inputs (see Appendix A for details).

Instead, we show that a UHAT can be translated into a small Boolean combination of polynomial
inequalities. This format has the advantage that—as we show using convex geometry—the real
coefficients of those polynomials can be replaced by suitably chosen rational numbers. In turn,
the layer-by-layer construction of these polynomial inequalities requires a carefully chosen data
structure to encode the function computed by a sequence of transformer layers. For example, we
show that the resulting Boolean combinations of polynomial inequalities have a bound on the number
of alternations between conjunctions and disjunctions, which is crucial for constructing TC0-circuits.

Another key challenge occurs in the translation from (LT)2L to UHATs: In the inductive construction,
we need to represent truth values using reals in [0, 1]. To implement negation, we use a UHAT gadget
(with positional encodings) that can normalize these truth values to {0, 1}.

Notation. In the sequel, we assume some background from computational complexity, in particular
circuit complexity (see the book [37]). In particular, we use the circuit complexity class AC0, which
defines a class of problems that are computable by a nonuniform family of constant-depth boolean
circuits, where each gate permits an unbounded fan-in (i.e. arbitrary many inputs). Similarly, the
complexity class TC0 is an extension of AC0, where majority gates are allowed. It is well-known
that AC0 ⊊ TC0. Assuming uniformity, both AC0 and TC0 are contained in the class of problems
solvable in polynomial-time. For nonuniformity, these classes are contained in the complexity class
P/poly, which admits (nonuniform) polynomial-size circuits. It is a long-standing open problem
whether numerical analysis (e.g. square-root-sum) is in P/poly, e.g., see [1].

2 Transformer encoders and their languages

In the following, we adapt the setting of formal language theory (see [3, 18, 33]) to data sequences.
For a vector a = (a1, . . . , ad) we write a[i, j] := (ai, . . . , aj) for all 1 ≤ i ≤ j ≤ d and if i = j, we
simply write a[i]. For a set S we denote the set of (potentially empty) sequences of elements from S
by S∗. We write S+ for the restriction to non-empty sequences. We consider languages L over the
infinite alphabet Σ = Qd, for some integer d > 0. That is, L is a set of sequences of d-tuples over
rational numbers. We will define a UHAT (similarly as in previous papers that study formal language
theoretic perspectives) as a length preserving map (Qd)∗ → (Re)∗.

Standard encoder layer with unique hard attention. A standard encoder layer is defined by
three affine transformations A,B : Rd → Rd and C : R2d → Re. For a sequence v1, . . . ,vn ∈ Rd
with n ≥ 1 we define the attention vector at position i ∈ [1, n] as ai := vj with j ∈ [1, n]
minimal such that the attention score ⟨Avi, Bvj⟩ is maximized. The layer outputs the sequence
C(v1,a1), . . . , C(vn,an).

ReLU encoder layer. A ReLU layer for some k ∈ [1, d] on input v1, . . . ,vn ∈ Rd applies the
ReLU function to the k-th coordinate of each vi, i.e. it outputs the sequence v′

1, . . . ,v
′
n where

v′
i := (vi[1, k − 1],max{0,vi[k]},vi[k + 1, n]). [Equivalently, one could instead allow a feed-

forward network at the end of an encoder layer (see [3, 18, 33]).]

Transformer encoder. A unique hard attention transformer encoder (UHAT) is a repeated application
of standard encoder layers with unique hard attention and ReLU encoder layers. Clearly, using an
alternation of standard layers and ReLU layers, we can assume that the output of a UHAT layer is an
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arbitrary composition of affine transformations and component-wise ReLU application. In particular,
these compositions may use the functions max and min.

Languages accepted by UHATs. The notion of “languages” accepted by a UHAT (i.e. a set of
accepted sequences) can be defined, depending on whether a positional encoding is permitted. If it is
permitted, a language L ⊆ (Qd)+ is accepted by a UHAT T if and only if there exists a positional
encoding function p : N× N → Rs and an acceptance vector t ∈ Re such that on every sequence

(p(1, n+ 1),v1), . . . , (p(n, n+ 1),vn), (p(n+ 1, n+ 1),0) (1)

T outputs a sequence v′
1, . . . ,v

′
n+1 ∈ Re with ⟨t,v′

1⟩ > 0 if and only if (v1, . . . ,vn) ∈ L. Note
that if T1 and T2 are UHATs with positional encoding that realize functions f1 : (Qd)∗ → (Qe)∗
and f2 : (Qe)∗ → (Qr)∗, then there is a UHAT T2 ◦ T1 with positional encoding that realizes the
composition f2 ◦ f1 by using a positional encoding that combines the positional encodings of T1, T2.

In the above definition we appended an additional zero vector to the end of the input. Over finite
alphabets it is often assumed that the input sequence is extended with a special unique end-of-input
marker (e.g. see [18, 33]). When the input is a sequence of (tuples of) numbers, if we allow positional
encoding, then the zero vector at the end of the input can be turned into a unique vector marking
the end of the input (see Section 5). Without positional encoding, however, we have to explicitly
make the zero vector at the end of the input unique. That is, a UHAT without positional encoding is
initialized with the sequence (1,v1), . . . , (1,vn),0 ∈ Qd+1 instead; this ensures, among others, that
the end-of-input marker does not appear in the actual input.

In the definition of a standard encoder layer the attention vector at position i ∈ [1, n] can be any
vector in the sequence v1, . . . ,vn. Using masking, one can restrict the attention vector to vectors of
certain positions. A UHAT with past masking restricts the attention vector ai at position 1 ≤ i < n
to be contained in the subsequence vi+1, . . . ,vn and at position n to an := vn.

3 UHAT and TC0

In this section, we prove Theorem 1. First, we show that all languages of UHAT (even with positional
encoding) belong to the class TC0. Then, we show that there is a UHAT (even without positional
encoding) whose language is TC0-hard under AC0-reductions. We begin with the proof that all
UHAT languages belong to TC0.

The construction of TC0 circuits comprises three steps. In Step I, we show that the set of accepted
length-n sequences can be represented by a Boolean combination of polynomial inequalities. Impor-
tantly, (i) this representation, called “polynomial constraints” is polynomial-sized in n, and (ii) the
number of alternations between conjunction and disjunction is bounded (i.e. independent of n). The
polynomials in this representations can still contain real coefficients. In Step II, we show that if we
restrict the input not only to length-n sequences, but to rational numbers of size ≤ m, then we can
replace all real coefficients of our polynomials by rationals of size polynomial in m and n, without
changing the language (among vectors of size ≤ m). In Step III, we implement a TC0 circuit. Here, it
is important that the number of alternations between conjunctions and disjunctions in our polynomial
constraints is bounded, because the depth of the circuit is proportional to this number of alternations.

Step I: UHAT as polynomials We first consider a formalism to describe a set of sequences over Qd.
We consider such sequences (x1, . . . ,xn) of length n, where xi ∈ Qd for each i. In this case, we
also abbreviate x̄ = (x1, . . . ,xn). A polynomial constraint (PC) is a positive Boolean combination
(i.e., without negation) of constraints of the form p(x̄) > 0 or p(x̄) ≥ 0, where p ∈ R[X1, . . . , Xd·n]
is a polynomial with real coefficients. Here, plugging x̄ ∈ (Qd)n into p is defined by assigning the
d · n rational numbers in x̄ to the d · n variables X1, . . . , Xd·n. The PC α accepts a sequence of
vectors x̄ ∈ (Qd)n, if the Boolean formula evaluates to true when plugging x̄ into the polynomials p
in α. The set of accepted sequences is denoted by JαK. Now let a ∈ N. A PC has a alternations if
the positive Boolean combination has a alternations between disjunctions and conjunctions.

In the following, a constrained polynomial representation (CPR) can be used to compute from a se-
quence of inputs (x1, . . . ,xn) with x1, . . . ,xn ∈ Rd′ a new sequence of outputs (y1, . . . ,yn)
with y1, . . . ,yn ∈ Rd. Formally, a CPR comprises for each i ∈ {1, . . . , n} a sequence
(φ1, D1), . . . , (φsi , Dsi) of pairs (φj , Dj), where each pair (φj , Dj) is a “conditional assignment”:
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each (φj , Dj) tells us that if the condition φj is satisfied, then we return Dj(x̄). More precisely:
(i) each φj is a polynomial constraint where all polynomials have degree ≤ 2, (ii) for any j ̸= m,
the constraints φj and φm are mutually exclusive, and (iii) each Dj : Rd

′·n → Rd is an affine
transformation. Because of their role as conditional assignments, we also write φj → Dj for such
pairs. For a ∈ N, we say that the CPR is a-alternation-bounded if each of the formulas φj has at
most a alternations. A CPR as above computes a function Rd′·n → Rd·n: Given x̄ = (x1, . . . ,xn)

with x1, . . . ,xn ∈ Rd′ , it computes the sequence (y1, . . . ,yn) if for every i ∈ {1, . . . , n}, we have
yi = Dj(x̄), provided that j is the (in case of existence uniquely determined) index for which φj(x̄)
is satisfied. The size of PCs and CPRs are their bit lengths (see Appendix B for details).
Proposition 4. Fix a UHAT with positional encoding and ℓ layers. For any given sequence length n,
there exists a polynomial-sized PC α with O(ℓ) alternations such that JαK equals the set of accepted
sequences of length n.

Note that Proposition 4 implies that the set of sequences of each length n is a semialgebraic set [26].
The proof is by induction on the number of layers, which requires a slight strengthening:
Lemma 5. Fix a UHAT with positional encoding and ℓ layers. For any given sequence length n,
one can construct in polynomial time an O(ℓ)-alternation-bounded CPR computing the function
Rd·(n+1) → Re·(n+1) computed by the UHAT.

Proof. We prove the statement by induction on the number of layers. First, we consider the positional
encoding p : N × N → Rd as some affine transformations Pi : Rd·(n+1) → Rd mapping the input
sequence x̄ to xi + p(i, n + 1). Then we obtain a CPR with ⊤ → Pi for each 1 ≤ i ≤ n + 1.
Now, suppose the statement is shown for ℓ layers and consider a UHAT with ℓ+ 1 layers. Suppose
that the first ℓ layers of our UHAT compute a function Rd′·(n+1) → Rd·(n+1), and the last layer
computes a function Rd·(n+1) → Re·(n+1). By induction, we have a polynomial size CPR consisting
of conditional assignments φi,k → Di,k for every i ∈ {1, . . . , n+ 1} and 1 ≤ k ≤ si. Here, each
Di,j is an affine transformation Rd′·(n+1) → Rd.

Let us first consider the case that the last layer of our UHAT is a standard encoder layer. For each
(i, I, j, J) ∈ {1, . . . , n+ 1}4, we build the conditional assignment using the formula ψi,I,j,J :

j−1∧
m=1

(
sm∨
M=1

φm,M ∧ pi,I,j,J,m,M (x̄) > 0

)
∧

n+1∧
m=j+1

(
sm∨
M=1

φm,M ∧ pi,I,j,J,m,M (x̄) ≥ 0

)
where pi,I,j,J,m,M (x̄) is the polynomial ⟨ADi,I x̄, BDj,J x̄ − BDm,M x̄⟩. Then, the conditional
assignment is φi,I ∧ φj,J ∧ ψi,I,j,J → C(Di,I x̄, Dj,J x̄). Here, the idea is that (i) φi,I expresses
that the I-th conditional assignment was used to produce the i-th cell in the previous layer, (ii)
φj,J says the J-th conditional assignment was used to produce the j-th vector in the previous layer,
and (iii) ψi,I,j,J says the vector xj yields the maximal attention score for the input xi, meaning
(iii-a) for all positions m < j, xm has a lower score than xj (left parenthesis), and (iii-b) for all
positions m > j, xm has at most the score of xj (right parenthesis). In (iii-a) and (iii-b), we
first find the index M of the conditional assignment used to produce the m-th cell in the previous
layer. Note that then indeed, all the PCs ψi,I,j,I are mutually exclusive. Moreover, the polynomials
⟨ADi,I x̄, BDj,J x̄ − BDm,M x̄⟩ have indeed degree 2 and are of size polynomial in n. Moreover
if the assignments φi,k → Di,k had at most a alternations, then the new assignments have at most
a+ 3 alternations. Finally, the case of ReLU layers is straightforward (see Appendix B).

Finally, the proof of Proposition 4 is straightforward: from the constructed CPR in Lemma 5 we
obtain the polynomial constraint

∨s1
J=1 φ1,J ∧⟨t, D1,J x̄⟩ > 0 with a bounded number of alternations.

Step II: Replace real coefficients by rationals In our proof, the key step is to replace the real
coefficients in the PC by rational coefficients so that the rational PC will define the same set of
rational sequences, up to some given size. Let us make this precise. We denote by Q≤m = {a ∈ Q |
∥a∥2 ≤ m} the set of all rational numbers of size at most m. A polynomial constraint is rational if
all the polynomials occurring in it have rational coefficients.
Proposition 6. For every m ∈ N and every PC α with polynomials having n variables, there exists a
rational PC α′ of polynomial size such that JαK ∩Qn≤m = Jα′K ∩Qn≤m.
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Proving Proposition 6 requires the following technical lemma, for which we introduce some notation.
For two vectors u,v ∈ Rt and m ∈ N, we write u ∼m v if for every w ∈ Qt and every z ∈ Q
with ∥w∥2, ∥z∥2 ≤ m, we have (i) ⟨w,u⟩ ≥ z if and only if ⟨w,v⟩ ≥ z and (ii) ⟨w,u⟩ > z if and
only if ⟨w,v⟩ > z. In other words, we have u ∼m v if and only if u and v satisfy exactly the same
inequalities with rational coefficients of size at most m.

Lemma 7. For every c ∈ Rt and m ∈ N, there is a c′ ∈ Qt with ∥c′∥2 ≤ (mt)O(1) and c ∼m c′.
Remark. For proving Lemma 7, it is not sufficient to pick a rational c′ with ∥c′ − c∥ < ε for some
small enough ε. For example, note that if in some coordinate, c contains a rational number of size
≤ m, then in this coordinate, c′ and c must agree exactly for c ∼m c′ to hold.

Before we prove Lemma 7, let us see how to deduce Proposition 6: in a PC α we understand each
polynomial p(X1, . . . , Xn) as a scalar product ⟨w,u⟩ where w constains only variables and u
consists of all coefficients. Then Lemma 7 yields a vector v ∼2m u containing only rationals with
the same behavior as u. From this we finally obtain polynomials having only rational coefficients,
which also proves Proposition 6. A detailed proof of Proposition 6 can be found in Appendix B.

In the proof of Lemma 7, we use the following fact about solution sizes to systems of inequalities.
Lemma 8. Let A ∈ Qk×n, A′ ∈ Qℓ×n, z ∈ Qk, z′ ∈ Qℓ with ∥A∥2, ∥A′∥2, ∥z∥2, ∥z′∥2 ≤ m. If
the inequalities Ax ≫ z and A′x ≥ z′ have a solution in Rn, then they have a solution r ∈ Qn
with ∥r∥2 ≤ (mn)O(1).

We prove Lemma 8 in the appendix. The proof idea is the following. By standard results about
polyhedra, the set of vectors x satisfying Ax ≥ z and A′x ≥ z′ can be written as the convex hull of
some finite set X = {x1, . . . ,xs}, plus the cone generated by some finite set {y1, . . . ,yt}. Here,
the vectors in X ∪ Y are all rational and of polynomial size. By the Carathéodory Theorem, the
real solution s ∈ Rn to As ≫ z and A′s ≥ z′ belongs to the convex hull of n elements of X , plus
a conic combination of n elements of Y . We then argue that by taking the barycenter of those n
elements of X , plus the sum of the n elements of Y gives a rational vector r ∈ Qn with Ar ≫ z and
A′r ≥ z′. The full proof of Lemma 8 is in Appendix B.4. To prove Lemma 7, given c ∈ Rn, we set
up a system of (exponentially many) inequalities of polynomial size so that the solutions are exactly
the vectors d with d ∼m c. The solution provided by Lemma 8 is the desired c′ (see Appendix B.5).

Step III: Constructing TC0 circuits It is now straightforward to translate a polynomial-sized CPR
with rational coefficients and bounded alternations into a TC0 circuit:
Proposition 9. Every language accepted by a UHAT with positional encoding is recognized by a
family of circuits in TC0.

We now show that the TC0 upper bound is tight: There is a UHAT whose language is TC0-hard under
AC0 reductions. In particular, this language is not in AC0, since AC0 is strictly included in TC0.
Proposition 10. There is a language that is accepted by a UHAT, even without positional encoding
and masking, but is not recognized by any family of circuits in AC0.

Proof. As shown by Buss [6, Corollary 3], the problem of deciding whether ab = c for given binary
encoded integers a, b, c ∈ Z is TC0-complete under AC0-reductions. Since ab = c if and only if
ab > c− 1 and −ab > −(c+ 1), the problem of deciding ab > c is also TC0-complete. We exibit a
UHAT such that the problem of deciding ab > c can be AC0-reduced to membership in the language.

It suffices to define a UHAT T that accepts a language L ⊆ (Q2)+ such that for all r, s ∈ Q we
have that (r, s) ∈ L if and only if r > s. Then we can reduce the test ab > c to checking whether
(a, cb ) ∈ L. Note that formally, cb is represented as a string containing the binary encodings of c
and b separated by a special symbol. The UHAT T is by definition initialized with the sequence
(1, r, s), (0, 0, 0) ∈ Q3 since we only have to consider the accepted language restricted to sequences
of length 1. It can directly check that r − s > 0 using the acceptance vector t := (0, 1,−1).

4 UHAT and regular languages over infinite alphabets

It was shown by Angluin et al. [2] that UHATs with no positional encoding on binary input strings
accept only regular languages, even if masking is allowed. We show that UHATs with masking over
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data sequences can recognize “non-regular” languages over infinite alphabet (Theorem 2). More
precisely, a standard notion of regularity over the alphabet Σ = Qd is that of symbolic automata (see
the CACM article [11]), since it extends and shares all nice closure and algorithmic properties of finite
automata over finite alphabets, while at the same time permitting arithmetics. Intuitively, a transition
rule in a symbolic automaton is of the form p→φ q, where φ represents the (potentially infinite) set
S ⊆ Qd of solutions to an arithmetic constraint φ (e.g. 2x = y represents {(n, 2n) : n ∈ Q}). The
meaning of such a transition rule is: move from state p to state q by reading any a ∈ S.

To prove Theorem 2, we define the language

Double := {(r1, . . . , rn) ∈ Qn | n ≥ 1 and 2ri < ri+1 for all 1 ≤ i < n}

of sequences of rational numbers where each number is more than double the preceding number.

Lemma 11. UHAT with past masking and without positional encoding can recognize Double.

Proof. On input sequence (1, r1), . . . , (1, rn), (0, 0) ∈ Q the UHAT uses with its first layer constant
attention score 0 such that the attention vector is ai = (1, ri+1) for all 1 ≤ i < n and ai = (0, 0)
for i ∈ {n, n + 1} due to past masking. The layer outputs at position i ∈ [1, n] the vector ui :=
(ai[1],ai[2]− 2ri) and at position n+ 1 the vector (0, 0). Note that ui[1] = 1 for all 1 ≤ i < n and
ui[1] = 0 for i ∈ {n, n+ 1}. With a second layer the UHAT uses attention score ⟨Aui, Buj⟩ for all
1 ≤ i < j ≤ n+ 1 or i = j = n+ 1 where Aui := (−1, 0) and Buj := (uj [2], 0). Let ai be the
corresponding attention vector at position i ∈ [1, n+ 1]. Note that ai[1] = 0 for i ∈ [1, n+ 1] if and
only if rj+1 − 2rj > 0 for all i < j < n. The layer then outputs at position i ∈ [1, n+ 1] the value
wi := min{ui[2], 1− ai[1]} and uses acceptance vector (of dimension 1) t := 1. Thus, ⟨t, w1⟩ > 0
if and only if r2 − 2r1 > 0 and ri+1 − 2ri > 0 for all 1 < i < n as desired.

The proof of non-regularity of Double is easy (see Appendix C). One could also easily show that
Double cannot be recognized by other existing models in the literature of formal language theory over
infinite alphabets, e.g., register automata [4, 9, 19, 29, 34] and data automata [5]. For example, for
register automata over (Q;<) (see the book [4]), one could use the result therein that data sequences
accepted by such an automaton are closed under any order-preserving map of the elements in the
sequence (e.g., if 1, 2, 3 is accepted, then so is 10, 11, 20), which is not satisfied by Double.

5 Logical languages accepted by UHAT

In this section we show that an extension of linear temporal logic (LTL) with linear rational arithmetic
(LRA) and unary numerical predicates is expressible in UHAT over data sequences (Theorem 3). A
formula of dimension d > 0 in locally testable LTL ((LT)2L) has the following syntax:

φ ::= ψk(x1, . . . ,xk+1) | Θ | ¬φ | φ ∨ φ | Xφ | φUφ

Here, ψk for k ≥ 0 is an atom in LRA over the d-dimensional vectors of variables xi of the form
⟨a, (x1, . . . ,xk+1)⟩ + b > 0 where a ∈ Qd(k+1) and b ∈ Q. Intuitively, ψk allows one to check
the values in the sequence with k “lookaheads”. Furthermore, Θ is a unary numerical predicate,
i.e. a family of functions θn : {1, . . . , n} → {0, 1} for all n ≥ 1. We define the satisfaction of an
(LT)2L formula φ over a sequence v̄ = (v1, . . . ,vn) of vectors in Qd at position i ∈ [1, n], written
(v̄, i) |= φ, inductively as follows (omitting negation and disjunction):

• (v̄, i) |= ψk(x1, . . . ,xk+1) iff i ≤ n− k and ψk(vi, . . . ,vi+k)

• (v̄, i) |= Θ iff θn(i) = 1

• (v̄, i) |= Xφ iff i < n and (v̄, i+ 1) |= φ

• (v̄, i) |= φUψ iff there are i ≤ j ≤ n with (v̄, j) |= ψ and (v̄, k) |= φ for all i ≤ ℓ < j

We write L(φ) := {v̄ ∈ (Qd)+ | (v̄, 1) |= φ} for the language of φ.

Example. Consider sequences of the form x, Ax, A2x, . . . , Anx such that yAnx = 0 and n ≥ 0 is
minimal with this property where y ∈ Q1×d andA ∈ Qd×d are fixed and x ∈ Qd. Theorem 3 implies
that this language is accepted by a UHAT since it is defined by the (LT)2L formula G[(¬Last →
(yx1 ̸= 0 ∧Ax1 = x2)) ∧ (Last → yx1 = 0)], where Last := ¬X⊤.

7



We assume UHATs with positional encoding and a zero vector at the end of the input sequence (see
Section 2). In the following we always assume that the components from the positional encoding
are implicitly given and are not changed by any UHAT. So we write the sequence in Eq. (1) as
v1, . . . ,vn,0. We use the following results from [3] that also hold for UHATs over data sequences.

Lemma 12. Let d > 0 and ℓ ∈ [1, d].

1) For every b ∈ {0, 1} there is a UHAT with positional encoding that on every se-
quence v1, . . . ,vn ∈ Qd with vi[ℓ] ∈ {0, 1} for all i ∈ [1, n] outputs the sequence
v1, . . . ,vn−1, (vn[1, ℓ− 1], b,vn[ℓ+ 1, d]).

2) There is a UHAT layer with positional encoding that on every sequence v1, . . . ,vn ∈ Qd
and for every i ∈ [1, n− 1] picks attention vector ai = vi+1.

3) There is a UHAT layer with positional encoding that on every sequence v1, . . . ,vn ∈ Qd,
for every ℓ ∈ [1, d] with v1[ℓ], . . . ,vn−1[ℓ] ∈ {0, 1} and vn[ℓ] = 0, and for every i ∈ [1, n]
picks attention vector ai = vj with minimal j ∈ [i, n] such that vj [ℓ] = 0.

Here, 2) and 3) directly follow from [3]. For 1) we remark that in [3] only the case b = 0 is
shown. On input v1, . . . ,vn as in 1), the UHAT uses positional encoding function p(i, n) := (i, n)
and a composition of affine transformations and ReLU to output at position i ∈ [1, n] the vector
(vi[1, ℓ− 1], bi,vi[ℓ+1, d]) where bi := min{vi[ℓ], n− i} if b = 0 and bi := max{vi[ℓ], i−n+1}
if b = 1. Using Lemma 12, we show that a UHAT can transform rational values > 0 to 1 and values
≤ 0 to 0. This will be used to evaluate inequalities by outputting 1 for true and 0 for false.

Lemma 13. Let d > 0 and ℓ ∈ [1, d]. There is a UHAT with positional encoding that on every
sequence v1, . . . ,vn+1 ∈ Qd outputs v′

1, . . . ,v
′
n+1 ∈ Qd with v′

i := (vi[1, ℓ − 1], bi,vi[ℓ + 1, d])
for all i ∈ [1, n+ 1] where bi := 1 if vi[ℓ] > 0 and bi := 0 otherwise.

Proof. Using affine transformations, on input v1, . . . ,vn+1 ∈ Qd, the first layer outputs at po-
sition i ∈ [n + 1] the vector wi := (vi[1, ℓ − 1], ri,vi[ℓ + 1, d]) where ri := max{vi[ℓ], 0}.
Thus, ri = 0 if vi[ℓ] ≤ 0 and ri > 0 otherwise. The second layer turns the sequence
w1, . . . ,wn+1 into (0,w1), . . . , (0,wn+1). We then apply 1) of Lemma 12 to obtain the sequence
(0,w1), . . . , (0,wn), (1,wn+1), i.e. the last vector has first component 1, and all other vectors have
first component 0. Let u1, . . . ,un+1 ∈ Qd+1 be the resulting sequence. The final layer uses attention
score ⟨Aui, Buj⟩ for all 1 ≤ i, j ≤ n + 1 where the affine transformations A,B : Qd+1 → Qd+1

yield Aui = (ui[ℓ], 0, . . . , 0) and Buj = (uj [1], 0, . . . , 0). Let ai be the attention vector of position
i ∈ [1, n+ 1]. Since ui[ℓ] ≥ 0, we have ai[1] = 0 if ui[ℓ] = 0 and ai[1] = 1 if ui[ℓ] > 0. The layer
outputs v′

i := (ui[2, ℓ],ai[1],ui[ℓ+ 2, d+ 1]) at position i ∈ [1, n+ 1].

We now prove Theorem 3. We claim that for every (LT)2L formula φ of dimension d and everym ≥ d
there exists a UHAT Tφ,m with positional encoding that on every sequence w1, . . . ,wn,0 ∈ Qm
outputs a sequence w′

1, . . . ,w
′
n,0 ∈ Qm+1 such that for all i ∈ [1, n] we have w′

i[1,m] = wi and
w′
i[m + 1] = 1 if (v̄, i) |= φ and w′

i[m + 1] = 0 otherwise, where v̄ := (w1[1, d], . . . ,wn[1, d]).
Then the theorem follows since for every (LT)2L formula φ of dimension d the UHAT Tφ,d outputs
on every sequence v̄ = (v1, . . . ,vn) of vectors in Qd extended with the vector 0 ∈ Qd a sequence
v′
1, . . . ,v

′
n,0 ∈ Qd+1 such that v′

1[d + 1] > 0 if and only if (v̄, 1) |= φ. Thus, Tφ,d accepts L(φ)
by taking the acceptance vector t := (0, . . . , 0, 1) ∈ Qd+1.

We prove the claim by induction on the structure of (LT)2L formulas. If the formula is a unary
numerical predicate Θ, then we can use the positional encoding p(i, n + 1) := θn(i) for all i ∈
[1, n] and p(n + 1, n + 1) := 0 to output on every sequence w1, . . . ,wn,0 ∈ Qm the sequence
(w1, p(1, n+ 1)), . . . , (wn, p(n, n+ 1)), (0, p(n+ 1, n+ 1)) ∈ Qm+1.

If the formula is an atom ψk(x1, . . . ,xk+1) of the form ⟨a, (x1, . . . ,xk+1)⟩ + b > 0, the UHAT
Tψk,m adds in its first layer a component that is set to 1 to the top of every vector, outputting on
every sequence w1, . . . ,wn,0 ∈ Qm the sequence (1,w1), . . . , (1,wn), (1,0). Then we apply 1)
of Lemma 12 to turn this sequence into (1,w1), . . . , (1,wn),0. Next, Tψk,m uses k layers to allow
each position to gather the first d + 1 components of its k right neighbors. More precisely, the
ℓ-th layer, for ℓ ∈ [1, k], on sequence u1, . . . ,un+1 uses 2) of Lemma 12 to get for every position
i ∈ [1, n] the attention vector ai = ui+1 and the attention vector an+1 is arbitrary. Note that if
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ℓ = 1, then an = 0. Then it applies an affine transformation to output at position i ∈ [1, n] the
vector (ai[1, d + 1],ui) and using 1) at position n + 1 the vector (0,an+1[2, d + 1],un+1). Let
u1, . . . ,un+1 ∈ Qk(d+1)+m+1 be the output of the k-th of those layers. We add another layer that
using a composition of ReLU and affine functions outputs at every position i ∈ [1, n+ 1] the vector
u′
i := (ui[k(d+ 1) + 2, k(d+ 1) +m+ 1], ri) ∈ Qm+1 where ri := min{ui[1], ⟨a, ûi⟩+ b} and

ûi := (ui[2, d+ 1],ui[d+ 3, 2(d+ 1)], . . . ,ui[kd+ k + 2, (k + 1)(d+ 1)]),

which contains the first d components of the initial input vector and its k right neighbors. That is, for
all i ∈ [1, n] we have that ri = 0 if ⟨a, ûi⟩+ b ≤ 0 or i+ k > n since ui[1] can only be 0 if it was
gathered from the vector at position n+ 1 using attention. Furthermore, ri > 0 if ⟨a, ûi⟩+ b > 0
and i+ k ≤ n. Note that u′

i[1,m] is equal to the input vector wi from the beginning if i ∈ [1, n] and
0 if i = n+ 1. Finally, we apply Lemma 13 followed by 1) to output at position i ∈ [1, n] the vector
w′
i := (u′

i[1,m], r′i) where r′i := 1 if ri > 0 and r′i := 0 otherwise and at position n+ 1 the vector
w′
n+1 := (u′

n+1[1,m], 0) = 0. Thus, for all i ∈ [1, n] we have that w′
i[m+ 1] = 1 if (v̄, i) |= ψk

and w′
i[m+ 1] = 0 otherwise, where v̄ := (w1[1, d], . . . ,wn[1, d]).

Let us now continue with the inductive step where we assume that φ and ψ are (LT)2L formulas
of dimension d such that for all m ≥ d we already showed existence of the UHATs Tφ,m and
Tψ,m+1. For the cases ¬φ, φ ∨ ψ, and Xφ we refer to Appendix D. For φUψ define the UHAT
TφUψ,m that first applies Tψ,m+1 ◦ Tφ,m outputting a sequence u1, . . . ,un,0 ∈ Qm+2. We use
1) to obtain the sequence u1, . . . ,un,un+1 with un+1 := (0, . . . , 0, 1) ∈ Qm+2. Observe that
(v̄, i) |= φUψ for i ∈ [1, n] and v̄ := (u1[1, d], . . . ,un[1, d]) if and only if (i) there exists j ∈ [i, n]
such that uj [m + 2] = 1 and (ii) for the minimal j ∈ [i, n + 1] with uj [m + 1] = 0 it holds that
uj [m+2] = 1. To check (ii), we add a layer that uses 3) of Lemma 12 to get attention vector ai = uj
with j ∈ [i, n+ 1] minimal such that uj [m+ 1] = 0. The layer outputs at position i ∈ [1, n+ 1] the
vector u′

i := (ui,ai[m+ 2]) ∈ Qm+3. To check condition (i), we first add another layer to obtain
at position i ∈ [1, n] the vector u′′

i := (u′
i, 1− u′

i[m+ 2]) ∈ Qm+4 and at position n+ 1 the zero
vector 0 ∈ Qm+4 after applying 1). Then with a final layer we use 3) to get attention vector ai = u′′

j

with j ∈ [i, n+1] minimal such that u′′
j [m+4] = 0. The layer then outputs at position i ∈ [1, n+1]

the vector w′
i := (u′′

i [1,m],min{u′′
i [m+ 3],ai[m+ 2]}) ∈ Qm+1.

6 Concluding remarks

We initiated the study of the expressive power of transformers, when the input is a sequence of (tuples
of) numbers, which is the setting for applications like time series analysis/forecasting. Our results
indicate an increased expressiveness of transformers on such input data, in comparison to the previous
formal language theoretic setting (see survey [33]), i.e., when a token embedding function (with a
bounded number of tokens) is first applied before feeding the input to a transformer. More precisely,
this represents for Unique Hard Attention Transformers (UHAT) a jump from the complexity class
AC0 to TC0 (since AC0 ⊊ TC0), and the jump from regular to non-regular languages (when position
encoding is not allowed). On the positive side, we successfully developed an expressive class of
logical languages recognized by UHAT in terms of a logic called locally testable LTL, which extends
previously identified logic for UHAT for strings over finite alphabets [2, 3].

Limitations. While we follow the standard formalization of transformer encoders in Formal Lan-
guages and Neural Networks (e.g. [3, 17, 18, 33]), limitations of the models are known (see [33] for a
thorough discussion). For example, used real numbers could be of unbounded precision, which allow
one to precisely represent values of sin and cos functions (actually used in practice for positional
encoding). In addition, the positional encoding used by the model could be uncomputable. Three
answers can be given. First, an upper bound complexity on the model with unbounded precision and
arbitrary positional encodings (e.g. in TC0) still applies in the case of bounded precision. Second,
limiting the power of UHAT (e.g. allow only rational numbers, and assuming efficient (i.e. uniform
TC0) computability of the positional encoding p : N× N → Qd), our proof in fact yields uniformity
of our TC0 upper bound. Third, our lower bound for non-regularity of UHAT (cf. Theorem 2) holds
even with only rational numbers and no positional encodings. Finally, to alleviate these issues, we
have always made an explicit distinction between UHAT with and without positional encodings.

Future directions. Our paper opens up a plethora of research avenues on the expressive power of
transformers on data sequences. In particular, one could consider other transformer encoder models
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that have been considered in the formal language theoretic setting to transformers (see the survey
[33]). For example, instead of unique hard attention mechanism, we could consider the expressive
power of transformers on data sequences using average hard attention mechanism. Similar question
could be asked if we use a softmax function instead of a hard attention, which begs the question of
which numerical functions could be computed in different circuit complexity classes like TC0.
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A Example UHAT with real parameters

We present here an example UHAT in which two real numbers α and β occur (each occurs once in a
matrix associated to a particular layer) such that the simple sequence

(1, 0, e1)(1, 0, e2)(1, 0, e3), (2)

where ei ∈ R3 is the i-th unit vector, is accepted if and only if αβ = 2 and α = β. This shows
that even if we restrict the input sequence to a particular number B of bits (e.g. the number of bits
to represent the input sequence Eq. (2)), it is not possible to replace the real constants α and β by
rational numbers without changing the accepted sequences of up to B bits: The sequence Eq. (2) is
only accepted if α = β =

√
2. And if we change α or β in any way, the sequence Eq. (2) will not be

accepted anymore.

1. Input layer:
(1, 0, e1)(1, 0, e2)(1, 0, e3).

2. Usind standard encoding layer, we multiply the first component in each position by α.
Result:

(α, 0, e1)(α, 0, e2)(α, 0, e3).

3. Using attention, we can apply distinct affine transformations to the first three positions. We
choose the following affine transformations. The first position is unchanged. The second
position is mapped to (1, 0, e2), and the third position is mapped to (0, α, e3), using a matrix
that flips the first and second component. Result:

(α, 0, e1)(1, 0, e2)(0, α, e3).

4. Using a standard encoding layer, we multiply the first component in each position with β.
Result:

(αβ, 0, e1)(β, 0, e2)(0, α, e3).

5. Finally, by using our result on (LT)2L, we can build further layers so that we accept if and
only if (i) the first component of the first position equals 2 and (ii) the first component of
the second position equals the second component of the third position. Thus, we accept our
original input if and only if αβ = 2 and α = β.

B Omitted definitions and proofs in Section 3

B.1 Descriptional size

Let x ∈ R be some real number. The (descriptional) size of x is size(x) = 1 + ⌈log2(|p| + 1)⌉ +
⌈log2(|q| + 1)⌉ if x = p

q is a rational number (where p and q are relatively prime integers) and
size(x) = 1 if x is an irrational number. Note that in the latter case we use the number 1 as some
placeholder, since we do not have to represent irrational numbers in any algorithm. However, for
analysis of the sizes in our constructions we still need some value.

Let v ∈ Rd be a vector. The size of v is size(v) = n+
∑d
i=1 size(vi) where v = (v1, . . . , vd)

T .

Let M ∈ Rm×n be a matrix. The size of M is size(M) = mn +
∑

1≤i≤m,1≤j≤n size(aij) where
M = (aij)1≤i≤m,1≤j≤n.

Let A : Rd → Re be an affine transformation, i.e., we have A(x) = Bx + c with B ∈ Rd×e and
c ∈ Re. Then the size of A is size(A) = size(B) + size(c) + 1.

Now, let p ∈ R[X1, . . . , Xn] be a polynomial. Then we have p(X1, . . . , Xn) =∑
0≤r1,...,rn≤k cr1,...,rnX

r1
1 · · ·Xrn

n for some numbers k ∈ N and cr1,...,rn ∈ R. The size of p
is

size(p) =
∑

0≤r1,...,rn≤k

size(cr1,...,rn) + size(r1) + · · ·+ size(rn) + n .

Let α be a polynomial constraint. We define the size of α inductively on the structure of the formula
as follows:
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• if α = (p(X1, . . . , Xn) ∼ 0) with ∼ ∈ {>,≥} is an atom. Then size(α) = size(p) + 1.

• if α =
∧

1≤i≤k βi or α =
∨

1≤i≤k βi is a formula with PCs β1, . . . , βk, then size(α) =

k +
∑

1≤i≤k size(()βi).

Let R = (ϕ1, D1), . . . , (ϕk, Dk) be a CPR. Then the size of this CPR is size(R) = k +∑k
i=1 size(ϕi) + size(Dk).

B.2 ReLU case in Lemma 5

Let us now consider a ReLU layer. Assume that we compute the ReLU-value for the j-th component,
i.e., we compute max{0, xi,j} for each i ∈ {1, . . . , n + 1} where xi,j is the j-th component of
xi. From each conditional assignment φi,k → Di,k with i ∈ {1, . . . , n + 1} and 1 ≤ k ≤ si we
construct two new conditional assignments:

1. ⟨e(i−1)·n+j , Di,kx̄⟩ ≥ 0 → Di,k where eh is the h-th unit vector.

2. ⟨−e(i−1)·n+j , Di,kx̄⟩ > 0 →MDi,k where M = (mgh)1≤g,h≤d′·(n+1) is the matrix with
mgh = 1 if g = h ̸= (i − 1) · n + j and mgh = 0 otherwise (i.e., M is the unit matrix
except for the (i− 1) · j-th entry).

Now, if the j-th component of xi is non-negative, only the first conditional assignment is satisfied
and the value of this component is left untouched. Otherwise, the j-th component is negative. But
then the second conditional assignment is satisfied and the value of this component is set to 0 (while
the others stay unchanged). So, we obtain again some polynomial sized CPR with the same number
of alternations as before.

B.3 Omitted proofs

Proof of Proposition 4. Let t ∈ Re be the acceptance criterion of the UHAT and f : Rd·(n+1) →
Re·(n+1) be the computed function for inputs of length n. By Lemma 5, we can construct in
polynomial time an O(ℓ)-alternation-bounded CPR computing f . So, let φi,k → Di,k be the
conditional assignments in this CPR (for 1 ≤ i ≤ n+ 1 and 1 ≤ k ≤ si). Then we obtain a PC from
this CPR as follows:

s1∨
J=1

φ1,J ∧ ⟨t, D1,J x̄⟩ > 0 .

Note that this PC has still polynomial size, accepts an input sequence (x1, . . . ,xn,0) if, and only if,
the UHAT accepts (x1, . . . ,xn), and — if the CPR is a-alternation-bounded — then it has at most
a+ 2 alternations of disjunctions and conjunctions.

Proof of Proposition 6. Consider a constraint p(X1, . . . , Xn) > 0 (or ≥ 0 resp.) in α. Then
p ∈ R[X1, . . . , Xn] is a polynomial of degree at most 2, i.e., there are real numbers ci,j,r,s ∈ R such
that

p(X1, . . . , Xn) =
∑

0≤r+s≤2

∑
1≤i≤j≤n

ci,j,r,sX
r
iX

s
j .

Now, construct two vectors u and w with a component for each tuple (i, j, r, s): ui,j,r,s = ci,j,r,s
and w = i, j, r, s = Xr

iX
s
j . Then it is clear that p(X1, . . . , Xn) = ⟨u,w(X1, . . . , Xn)⟩ holds.

Application of Lemma 7 yields a vector v ∈ Qt with ∥v∥2 ≤ (2mt)O(1) and u ∼2m v. Note that
we need to consider rational numbers up to size 2m due to the fact that substitution of the variables
in w by rational numbers x ∈ Qn≤m yields a rational vector w(x) ∈ Qt≤2m. Let p′(X1, . . . , Xn) be
the polynomial obtained from p be replacing the coefficients ci,j,r,s ∈ R by vi,j,r,s ∈ Q. Then for
each x ∈ Qn≤m we have p(x) = ⟨u,w(x)⟩ > 0 (resp. ≥ 0) if, and only if, p′(x) = ⟨v,w(x)⟩ > 0
(resp. ≥ 0).

Replacing each real polynomial p in α by the constructed rational polynomial p′ results in a rational
PC α′ with JαK ∩Qn≤m = JαK ∩Qn≤m.
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B.4 Proof of Lemma 8

The rest of this subsection is devoted to proving Lemma 7, for which we rely on results from convex
geometry, which requires some terminology. For a set S ⊆ Rn, we define the convex hull of S as

conv.hull S = {λ1s1 + · · ·+ λmsm | m > 0, s1, . . . , sm ∈ S,

λ1, . . . , λm ∈ [0, 1], λ1 + · · ·+ λm = 1}

and the cone generated by S as

cone S = {λ1s1 + · · · + λmsm | m > 0, s1, . . . , sm ∈ S, λ1, . . . , λm ≥ 0}.

We will also rely on Carathéodory’s theorem, which says that a points in cones and convex sets can
be obtained from at most n points. See, for example, [28, Theorems 7.1i and 7.1j].

Theorem 14 (Carathéodory’s Theorem). Let S ⊆ Rn. For every x ∈ conv.hull S, there are
x1, . . . ,xn ∈ S with x ∈ conv.hull {x1, . . . ,xn}. Moreover, for every y ∈ cone S, there are
y1, . . . ,yn ∈ S with y ∈ cone {y1, . . . ,yn}.

A polyhedron is a set of the form {x ∈ Rn | Ax ≥ b}, where A ∈ Rm×n and b ∈ Rm for some
m ∈ N. If the matrix A and the vector b are rational, then the polyhedron is called a rational
polyhedron. It is a standard result about polyhedra that if A and b are rational of size at most m, then
the polyhedron P = {x ∈ Rn | Ax ≥ b} can be written as

P = conv.hull {x1, . . . ,xs}+ cone {y1, . . . ,yt},

with rational vectors x1, . . . ,xs,y1, . . . ,yt, where each vector has size polynomial in mn. See, for
example, [28, Theorem 10.2].

Proof. We define the matrix B ∈ Q(k+ℓ)×n and the vector b ∈ Qk+ℓ as

B =

[
A
A′

]
b =

[
z
z′

]
.

and consider the polyhedron P = {x ∈ Rn | Bx ≥ b}. As mentioned above, we can write

P = conv.hull {x1, . . . ,xs}+ cone {y1, . . . ,yt},

where x1, . . . ,xs,y1, . . . ,yt are rational vectors of size polynomial in mn. By our assumption,
there exists an s ∈ Rn with As ≫ z and A′s ≥ z′. By Carathéodory’s Theorem, wlog, s belongs to
the smaller polyhedron

Q = conv.hull {x1, . . . ,xn}+ cone {y1, . . . ,yn}.

Now note that we have Au ≥ z and A′u ≥ z′ for every u ∈ U := {x1, . . . ,xn,y1, . . . ,yn}. We
claim that the vector

r = 1
n (x1 + · · ·+ xn) + y1 + · · ·+ yn

satisfies Ar ≫ z and A′r ≥ z′. Indeed, it clearly belongs to Q ⊆ P and thus satisfies A′r ≥ z′.
Moreover, for every row a⊤x > z of Ax ≫ z, there must be a u ∈ U with a⊤u > z—otherwise,
we would would have a⊤u = z for every u ∈ U and thus a⊤s = z. In particular, we have
Ar ≫ z. Finally, the vector r has size at most ∥x1∥2 + · · ·+ ∥xn∥2 + ∥y1∥2 + · · ·+ ∥yn∥2, which
is polynomial in mn, since each xi and each yi has size polynomial in mn.

B.5 Proof of Lemma 7

Proof of Lemma 7. Collect the set of all inequalities ⟨w,u⟩ > z or ⟨w,u⟩ ≥ z with w ∈ Qt≤m and
z ∈ Q≤m that are satisfied for u. This results in two large matrices A ∈ Qk×t≤m and A′ ∈ Qℓ×t≤m and
vectors z ∈ Qk≤m and z′ ∈ Qℓ≤m such that we have u ∼m v if and only if Av ≫ z and A′v ≥ z′.
Thus, we can construct c′ using Lemma 8. Observe that the bound from Lemma 8 does not depend
on the (exponentially large) k and ℓ.
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Proof of Proposition 9. Let T be some UHAT with positional encoding and n,m ∈ N be two natural
numbers. In the following, we consider input sequences of T having the length n and size m. By
Propositions 4 and 6 there is polynomial sized, O(ℓ)-alternation-bounded, and rational PC α (where
ℓ is the number of layers in T ) such that the set of sequences of size m accepted by the UHAT T
equals JαK ∩Qn·d≤m.

We finally show that the PC α can be realized as a circuit of constant depth and polynomial size. So,
consider a constraint of the form p(x̄) ∼ 0 where ∼ ∈ {≥, >}, p is a polynomial of degree at most
2 and x̄ represents the input sequence. Since addition and multiplication of rational numbers are
realizable in TC0 [7], it is clear that the computation of the value p(x̄) is also realizable. Additionally,
checking whether this value is ≥ 0 (or > 0, resp.) is a simple check of the bit representing the signum
(and checking that the numerator has at least one non-zero bit).

Finally, we have to connect all the atoms of the form p(x̄) ∼ 0 to the Boolean formula α. Since α
alternates only a bounded number of times between disjunctions and conjunctions, we can realize the
complete formula α in a circuit of constant depth and with polynomial size. Since α is equivalent (up
to the input size m), the UHAT T is realizable in TC0.

C Proof of non-regularity in Section 4

Recall that
Double := {(r1, . . . , rn) ∈ Qn | n ≥ 1 and 2ri < ri+1 for all 1 ≤ i < n}.

We next define the notion of symbolic automata [10, 11, 36]. A symbolic automaton is a tuple
(Q, δ, q0, F ), where Q is a finite set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states,
and δ is a set of transition rules of the form (p, S, q), where S ⊆ Q. For a ∈ Q, we write p →a q
(read “there is a transition from p to q reading a) if there is a transition rule (p, S, q) such that a ∈ S.
Slightly abusing notation, for a set S ⊆ Q, we also write p→S q to mean that (p, S, q) is a transition
rule in δ. The notion of a run, and an accepting run can then be defined in exactly the same way as
for finite automata (e.g. see [30]); namely, it is a sequence of transitions from q0 →a1 · · · →an qn,
where qn, reading the sequence w = a1 · · · an of d-tuples over Q.

To prove that there is no symbolic automaton recognizing Double, let us assume to the contrary that
such an automaton A exists, say, with n states. Consider a sufficiently long w = a1 · · · am ∈ Double
(i.e. of length at least n), and an accepting run of A:

q0 →S1 · · · →Sm qm
where each ai ∈ Si and qm ∈ F . This means, in particular, that bi < bi+1/2 for each bi ∈ Si and
bi+1 ∈ Si+1. Since m+ 1 > n, by pigeonhole principle, it must be the case that qr = rs for some
r < s. Observe now that

a1 < a2/2 < a3/4 < · · · < am/2
m−1.

This means that
as/2

r−1 = ar/2
r−1 < as/2

s−1

and thus 2s < 2r with r < s, which is a contradiction.

D Omitted cases in proof of Theorem 3

For ¬φ the UHAT T¬φ,m first applies Tφ,m and on the obtained sequence u1, . . . ,un,0 ∈ Qm+1

uses a further layer followed by 1) to output w′
i := (ui[1,m], 1− ui[m+ 1]) at position i ∈ [1, n]

and 0 ∈ Qm+1 at position n+ 1.

For φ ∨ ψ we define the UHAT Tφ∨ψ,m that first applies Tψ,m+1 ◦ Tφ,m followed by a layer that on
sequence u1, . . . ,un+1 ∈ Qm+2 outputs w′

1, . . . ,w
′
n+1 ∈ Qm+1 with

w′
i := (ui[1,m],max{ui[m+ 1],ui[m+ 2]})

for all i ∈ [1, n+ 1]. Note that if un+1 = 0, then also w′
n+1 = 0.

For Xφ the UHAT TXφ,m first applies Tφ,m to output a sequence u1, . . . ,un+1 ∈ Qm+1 with
un+1 = 0. With an additional layer that uses 2) to get attention vector ai = ui+1 for all i ∈ [1, n] it
then outputs at position i ∈ [1, n] the vector w′

i := (ui[1,m],ai[m+ 1]) and at position n+ 1 the
vector w′

n+1 := (un+1[1,m], 0) after applying 1).
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