
The complexity of separability for semilinear sets1

and Parikh automata2

Elias Rojas Collins #3

Massachusetts Institute of Technology, Cambridge, MA, USA4

Chris Köcher #5

Max Planck Institute for Software Systems, Kaiserslautern, Germany6

Georg Zetzsche #7

Max Planck Institute for Software Systems, Kaiserslautern, Germany8

Abstract9

In a separability problem, we are given two sets K and L from a class C, and we want to decide10

whether there exists a set S from a class S such that K ⊆ S and S ∩ L = ∅. In this case, we speak11

of separability of sets in C by sets in S.12

We study two types of separability problems. First, we consider separability of semilinear sets13

(i.e. subsets of Nd for some d) by sets definable by quantifier-free monadic Presburger formulas (or14

equivalently, the recognizable subsets of Nd). Here, a formula is monadic if each atom uses at most15

one variable. Second, we consider separability of languages of Parikh automata by regular languages.16

A Parikh automaton is a machine with access to counters that can only be incremented, and have to17

meet a semilinear constraint at the end of the run. Both of these separability problems are known18

to be decidable with elementary complexity.19

Our main results are that both problems are coNP-complete. In the case of semilinear sets,20

coNP-completeness holds regardless of whether the input sets are specified by existential Presburger21

formulas, quantifier-free formulas, or semilinear representations. Our results imply that recognizable22

separability of rational subsets of Σ∗ × Nd (shown decidable by Choffrut and Grigorieff) is coNP-23

complete as well. Another application is that regularity of deterministic Parikh automata (where24

the target set is specified using a quantifier-free Presburger formula) is coNP-complete as well.25

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of26

computation → Regular languages27

Keywords and phrases Vector Addition System, Separability, Regular Language28

Digital Object Identifier 10.4230/LIPIcs...29

Funding Funded by the European Union (ERC, FINABIS, 101077902). Views and opinions expressed30

are however those of the author(s) only and do not necessarily reflect those of the European Union31

or the European Research Council Executive Agency. Neither the European Union nor the granting32

authority can be held responsible for them.33

© Elias Rojas Colins, Chris Köcher, and Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:erojasc@mit.edu
https://orcid.org/0009-0003-3929-1386
mailto:ckoecher@mpi-sws.org
https://orcid.org/0000-0003-4575-9339
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 The complexity of separability for semilinear sets and Parikh automata

1 Introduction34

Separability In a separability problem, we are given two sets K and L from a class C, and35

we want to decide whether there exists a set S from a class S such that K ⊆ S and S∩L = ∅.36

Here, the sets in S are the admissible separators, and S is said to separate the sets K and37

L. In the case where C is a class of non-regular languages and S is the class of regular38

languages, then the problem is called regular separability (problem) for C. While the problem39

turned out to be undecidable for context-free languages in the 1970s [33, 45], the last decade40

saw a significant amount of attention on regular separability for subclasses (or variants) of41

vector addition systems with states (VASS). Regular separability was studied for coverability42

languages of VASS (and, more generally, well-structured transition systems) [17, 37, 40],43

one-counter automata and one-dimensional VASS [16], Parikh automata [14], commutative44

VASS languages [15], concerning its relationship with the intersection problem [46], Büchi45

VASS [2, 3], and also for settings where one input language is an arbitrary VASS and the46

other is from some subclass [18]. Recently, this line of work culminated in the breakthrough47

result that regular separability for general VASS languages is decidable and Ackermann-48

complete [38]. However, for subclasses of VASS languages, the complexity landscape is far49

from understood.50

Separating Parikh automata An important example of such a subclass is the class of51

languages accepted by Parikh automata, which are non-deterministic automata equipped52

with counters that can only be incremented. Here, a run is accepting if the final counter53

values belong to a particular semilinear set. Languages of Parikh automata have received54

significant attention over many decades [1, 5, 7, 9, 10, 12, 22, 25, 34, 36], including a lot of55

work in recent years [11, 19, 21, 26, 28]. This is because they are expressive enough to56

model non-trivial counting behavior, but still enjoy low complexity for many algorithmic57

tasks (e.g. the emptiness problem is coNP-complete). Example applications are monadic58

second-order logic with cardinalities [39] (this paper introduced the specific model of Parikh59

automata), solving subword constraints [32], and model-checking FIFO channel systems [8].60

Moreover, these languages have other equivalent characterizations, such as reversal-bounded61

counter automata—a classic (and intensely studied) type of infinite-state systems with nice62

decidability properties [5, 34]—and automata with Z-counters, also called Z-VASS [25,29]1.63

Decidability of regular separability was shown by Clemente, Czerwiński, Lasota, and64

Paperman [14] in 2017 as one of the first decidability results for regular separability. Moreover,65

this result was a key ingredient in Keskin and Meyer’s algorithm to decide regular separability66

for general VASS [38]. However, despite the strong interest in Parikh automata and in regular67

separability, the complexity of this problem remained unknown. In [14, Section 7], the68

authors provide an elementary complexity upper bound.69

Separating semilinear sets: Monadic interpolants One of the steps in the algorithm70

from [14] is to decide separability of sets defined in Presburger arithmetic, the first-order71

theory of (N; +,≤, 0, 1). Separators of logically defined sets can also be viewed as interpolants.72

If φ(x,y) and ψ(y, z) are (first-order or propositional) formulas such that ∀x∀y∀z (φ(x,y)→73

ψ(y, z)) holds, then a formula χ(y) is a Craig interpolant if ∀x∀y (φ(x,y) → χ(y)) and74

∀y∀z (χ(y) → ψ(y, z)) both hold. Here, x,y, z are each a vector of variables, meaning χ75

1 See [1] for efficient translation among Parikh automata, reversal-bounded counter automata, and
Z-VASS.

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:3

only mentions variables that occur both in φ and ψ. Equivalently, the set defined by χ is a76

separator of the sets defined by the existential formulas ∃x : φ(x,y) and ∃z : ¬ψ(y, z). In77

Interpolation-Based Model Checking (ITP) [42, 48], Craig interpolants are used to safely78

overapproximate sets of states: If φ describes reachable states and ψ describes the set of safe79

states, then χ overapproximates φ without adding unsafe states. Note that in Presburger80

logic there are implications that do not have a Craig interpolant (this is in contrast to81

propositional logic). So, before constructing an interpolant, a first step of ITP is to decide82

whether there even exists such an interpolant.83

In the case of Presburger arithmetic, the definable sets are the semilinear sets. For many84

infinite-state systems, the step relation (or even the reachability relation) is semilinear, and85

thus, separators can play the role of Craig interpolants in infinite-state model checking. For86

the separators, a natural choice is the class of recognizable sets, which are those defined by87

monadic Presburger formulas, meaning each atom refers to at most one variable. Monadic88

formulas have recently received attention [4, 30, 31, 47] because of their applications in query89

optimization in constraint databases [27, 41] and symbolic automata [47]. Thus, deciding90

recognizable separability of semilinear sets can be viewed as synthesizing monadic Craig91

interpolants.92

Recognizable separability was shown decidable by Choffrut and Grigorieff [13] (see [15]93

for an extension beyond semilinear sets). This was a key ingredient for separability of Parikh94

automata in [14]. Choffrut and Grigorieff’s algorithm has elementary complexity [14, Section95

7], but the exact complexity of recognizable separability of semilinear sets remained unknown.96

Contribution Our first main result is that for given existential Presburger formulas,97

recognizable separability (i.e. monadic separability) is coNP-complete. In particular, re-98

cognizable separability is coNP-complete for given semilinear representations. Moreover,99

our result implies that recognizable separability is coNP-complete for rational subsets of100

monoids Σ∗ × Nd as considered by Choffrut and Grigorieff [13]. Building on the methods of101

the first result, our second main result is that regular separability for Parikh automata is102

coNP-complete.103

Application I: Monadic decomposability Our first main result strengthens a recent result104

on monadic decomposability. A formula in Presburger arithmetic is monadically decomposable105

if it has a monadic equivalent. It was shown recently that (i) deciding whether a given106

quantifier-free formula is monadically decomposable (i.e. whether it has a monadic equivalent)107

is coNP-complete [31, Theorem 1] (see also [4, Corollary 8.1]), whereas (ii) for existential108

formulas, the problem is coNEXP-complete [30, 31, Corollary 3.6]. Our first main result109

strengthens (i): If φ(x) is a quantifier-free formula, then the sets defined by φ(x) and ¬φ(x)110

are separable by a monadic formula if and only if φ(x) is monadically decomposable. Perhaps111

surprisingly, our coNP upper bound still holds for existential Presburger formulas, for which112

monadic decomposability is known to be coNEXP-complete2.113

Application II: Regularity of Parikh automata Another consequence of our results is that114

regularity of deterministic Parikh automata, i.e. deciding whether a given deterministic115

Parikh automaton accepts a regular language, is coNP-complete: Given a deterministic116

Parikh automaton for a language L ⊆ Σ∗, one can construct in polynomial time a Parikh117

2 This is not a contradiction to the above reduction from monadic decomposability to recognizable
separation, since this reduction would require complementing an existential formula.

XX:4 The complexity of separability for semilinear sets and Parikh automata

automaton for K = Σ∗ \L. Then, L is regular if and only if L and K are regularly separable.118

Here, we assume that the semilinear target set is given as a quantifier-free Presburger formula.119

Decidability of this problem has been shown by Cadilhac, Finkel, and McKenzie [10, Theorem120

25] (even in the more general case of unambiguous constrained automata).121

Key ingredients The existing elementary-complexity algorithm for recognizable separability122

of semilinear sets works with semilinear representations and distinguishes two cases: If in123

one component j, one of the input sets S1, S2 ⊆ Nd is bounded by some b ≥ 0, then it124

considers each x ∈ [0, b] and recursively decides separability of S1[j 7→ x] and S2[j 7→ x],125

where Si[j 7→ x] is just Si restricted to having x in this bounded component. If, however,126

all components in both sets are unbounded, then it checks feasibility of a system of linear127

Diophantine equations. This approach leads to repeated intersection of semilinear sets,128

and thus exponential time. We provide a characterization (Proposition 4.5) that describes129

inseparability directly as the non-empty intersection of two semilinear sets Ŝ1, Ŝ2 ⊆ Nd
130

associated with S1, S2. This easily yields an NP procedure for inseparability, even if the131

input sets are given as existential Presburger formulas.132

This characterization is then the first key ingredient for deciding regular separability of133

Parikh automata in coNP. This is because in [14], it is shown that, after some preprocessing,134

the languages of Parikh automata A1 and A2 are separable if and only if two semilinear sets135

C1, C2 ⊆ Nd associated with A1 and A2 are separable by a recognizable set. These semilinear136

sets consist of vectors, each of which counts for some run of Ai, how many times each simple137

cycles occurs in this run. Thus, our first result tells us that it suffices to decide whether138

Ĉ1 and Ĉ2 are disjoint. Unfortunately, the vectors of C1, C2 have exponential dimension d,139

since there are exponentially many simple cycles in each Ai. Thus, applying our first result140

directly using existential Presburger arithmetic would only yield a coNEXP upper bound.141

To avoid this blowup, the second key idea is to encode the vectors in Ĉ1 and Ĉ2 as words,142

where the cycle occurrences appear as a concatenation in some order. By constructing Z-143

VASSW1,W2 for the encodings of the vectors in Ĉ1, Ĉ2, we reduce separability to intersection144

emptiness of W1 and W2. The latter, in turn, easily reduces to non-reachability in a product145

Z-VASS, which is in coNP.146

2 Preliminaries147

By N = {0, 1, 2, . . .} we denote the set of all non-negative integers. Let d ∈ N be a number148

and I ⊆ [1, d] be a set of indices. By πI : Nd → NI we denote the projection of vectors in Nd to149

vectors in NI , i.e., πI(v)[i] = v[i] for each v ∈ Nd and i ∈ I. The support of a vector v ∈ Nd
150

is the set of all coordinates in v with non-zero value, i.e. supp(v) = {i ∈ [1, d] | v[i] ̸= 0}.151

Semilinear sets A set S ⊆ Nd is linear if there is a vector u ∈ Nd and a finite set P ⊆ Nd
152

of so-called periods such that S = u + P ∗ holds. Here, for P = {u1, . . . ,un}, the set P ∗ is153

defined as P ∗ = {λ1u1 + · · ·+ λnun | λ1, . . . , λn ∈ N}. A subset S ⊆ Nd is called semilinear154

if it is a finite union of linear sets. In case we specify S by way of a finite union of linear sets,155

then we call this description a semilinear representation. The set S ⊆ Nd is called hyperlinear156

if there are finite sets B,P ⊆ Nd such that S = B + P ∗ holds. It is well-known that the157

semilinear sets are precisely those definable in Presburger arithmetic [24], the first-order158

theory of the structure (N; +,≤, 0, 1, (≡m)m∈N\{0}). Here ≡m is the predicate where x ≡m y159

if and only if x− y is divisible by m. By quantifier elimination, every formula in Presburger160

arithmetic has a quantifier-free equivalent.161

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:5

Parikh automata Intuitively, a Parikh automaton has finitely many control states and access162

to d ≥ 0 counters. Upon reading a letter (or the empty word), it can add a vector u ∈ Nd to its163

counters. Moreover, for each state q ∈ Q, it specifies a target set Cq ⊆ Nd. An input word is164

accepted if at the end of the run, the accumulated counter values belong to Cq, where q is the165

state at the end of the run. Formally, a Parikh automaton is a tupleA = (Q,Σ, T, q0, (Cq)q∈Q),166

where Q is a finite set of states, T ⊆ Q× (Σ ∪ {ε})× Nd ×Q is its finite set of transitions,167

q0 ∈ Q is the initial state, and Cq ⊆ Nd is the target set in state q, for each q ∈ Q. For168

an input word w ∈ Σ∗, a run on w is a sequence (q0, w1,u1, q1) · · · (qn−1, wn,un, qn) of169

transitions in T with w = w1 · · ·wn. The run is accepting if u1 + · · · + un ∈ Cqn
. The170

language of A is then the set of all words w ∈ Σ∗ such that A has an accepting run on w.171

▶ Remark 2.1. For our results on general Parikh automata, we assume that the target sets172

are specified using existential Presburger formulas. However, this is not an important aspect:173

Given a Parikh automaton, one can in polynomial time modify the automaton (and the target174

set) so that the target set is given, e.g. by a semilinear representation, or a quantifier-free175

Presburger formula. This is a simple consequence of the fact that one can translate Parikh176

automata into integer VASS in logarithmic space [1, Corollary 1]. However, this conversion177

does not preserve determinism, and for deterministic Parikh automata, it can be important178

how target sets are given (see Corollary 3.7 and the discussion after it). Therefore, for179

deterministic Parikh automata, we always specify how the targets sets are given.180

Separability A subset L ⊆ M of a monoid M is recognizable if there is a morphism181

ϕ : M → F into some finite monoid F such that ϕ−1(ϕ(L)) = L. The recognizable subsets182

of M form a Boolean algebra [6, Chapter III, Prop. 1.1]. We say that sets K,L ⊆ M are183

(recognizably) separable, denoted K | L, if there is a morphism ϕ : M → F into some finite184

monoid F such that ϕ(K) ∩ ϕ(L) = ∅. Equivalently, we have K | L if and only if there is a185

recognizable S ⊆M with K ⊆ S and S ∩ L = ∅. Here, S is called a separator of K and L.186

In the case M = Σ∗ for some alphabet Σ, the recognizable sets in Σ∗ are exactly the187

regular languages (cf. [43, Theorem II.2.1]), and thus we speak of regular separability. In the188

case M = Nd for some d ≥ 0, then the recognizable subsets of Nd are precisely the finite unions189

of cartesian products U1 × · · · × Ud, where each Ui ⊆ N is ultimately periodic [6, Theorem190

5.1]. Here, a set U ⊆ N is ultimately periodic if there are n0, p ∈ N \ {0} such that for all191

n ≥ n0, we have n ∈ U if and only if n+ p ∈ U . This implies that the recognizable subsets of192

Nd are precisely those definable by a monadic Presburger formula, i.e. one where every atom193

only refers to one variable [47]. For these reasons, in the case of M = Nd, we also sometimes194

speak of monadic separability.195

In a recognizable separability problem, we are given two subsets K and L from a monoid196

M as input, and we want to decide whether K and L are recognizably separable. Again, in197

the case of M = Σ∗, we also call this the regular separability problem.198

3 Main results199

Recognizable separability of semilinear sets Our first main result is the following.200

▶ Theorem 3.1. Given two semilinear sets defined by existential Presburger formulas,201

recognizable separability is coNP-complete.202

The lower bound follows with a simple reduction from the emptiness problem for sets defined203

by existential Presburger formulas: If φ defines a subset K ⊆ Nd, then K |Nd if and only if K204

is empty. We prove the coNP upper bound in Section 5. By the same argument, recognizable205

separability is coNP-hard for input sets given by quantifier-free formulas. Thus:206

XX:6 The complexity of separability for semilinear sets and Parikh automata

▶ Corollary 3.2. Given two semilinear sets defined by quantifier-free Presburger formulas,207

recognizable separability is coNP-complete.208

In particular, this re-proves the coNP upper bound for monadic decomposability of quantifier-209

free formulas, as originally shown by Hague, Lin, Rümmer, and Wu [31, Theorem 1].210

▶ Remark 3.3. Our result also implies that for existential Presburger formulas over (Z; +,≤211

, 0, 1, (≡m)m∈N\{0}) defining K,L ⊆ Zd, it is coNP-complete to decide whether they are212

separable by a monadically defined subset of Zd. Indeed, consider the injective map ν : Zd →213

N2d, where ν(x1, . . . , xd) = (σ(x1), |x1|, . . . , σ(xd), |xd|) with σ(x) = 0 for x ≥ 0 and σ(x) = 1214

for x < 0. Then S ⊆ Zd is monadically definable if and only if ν(S) is monadically definable3.215

Thus, K,L ⊆ Zd are monadically separable if and only if ν(K), ν(L) ⊆ N2d are monadically216

separable. Finally, one easily constructs existential formulas for ν(K), ν(L).217

Since for a given semilinear representation of a set S ⊆ Nd, it is easy to construct an218

existential Presburger formula defining S, Theorem 3.1 also implies the following.219

▶ Corollary 3.4. Given two semilinear representations, recognizable separability is coNP-220

complete.221

In this case, the coNP lower bound comes from the NP-hard membership problem for222

semilinear sets (even if all numbers are written in unary) [35, Lemma 10]: For a semilinear223

subset S ⊆ Nd and a vector u ∈ Nd, we have u /∈ S if and only if S |{u}. Finally, Theorem 3.1224

allows us to settle the complexity of recognizable separability of rational subsets of Σ∗×Nd.225

▶ Corollary 3.5. Given d ∈ N and two rational subsets of Σ∗ × Nd, deciding recognizable226

separability is coNP-complete.227

Decidability was first shown by Choffrut and Grigorieff [13, Theorem 1]. The coNP228

upper bound follows because Choffrut and Grigorieff [13, Theorem 10] reduce recognizable229

separability of subsets of Σ∗×Nd to recognizable separability of rational subsets of N2d (and230

their reduction is clearly in polynomial time). Moreover, for a given rational subset of N2d, one231

can construct in polynomial time an equivalent existential Presburger formula [44, Theorem232

1]. Thus, the upper bound follows from Theorem 3.1. Since semilinear sets in Nd (given by a233

semilinear representation) can be viewed as rational subsets of Nd (and hence of Σ∗ × Nd),234

the coNP lower bound is inherited from Corollary 3.4.235

Regular separability of Parikh automata Our second main result is the following:236

▶ Theorem 3.6. Regular separability for Parikh automata is coNP-complete.237

The coNP lower bound comes via the coNP-complete emptiness problem: For a given Parikh238

automaton accepting a language K ⊆ Σ∗, we have K | Σ∗ if and only if K = ∅. Thus,239

the interesting part is the upper bound, which we prove in Section 6. This is a significant240

improvement to the previously known elementary (or finitely iterated exponential time)241

complexity upper bound by Clemente, Czerwiński, Lasota, and Paperman [14].242

Theorem 3.6 can also be applied to deciding regularity of deterministic Parikh automata.243

244

3 This is easily shown by translating each atomic formula (over a single variable) into a monadic formula
in each direction. However, note that within Zd, monadic definability is not the same as recognizability.
For example, the sets {0} and Z \ {0} are monadically separable, but not separable by a recognizable
subset of Z, since every non-empty recognizable subset of Z is infinite [6, Chapter III, Example 1.4].

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:7

▶ Corollary 3.7. For deterministic Parikh automata with target sets given as quantifier-free245

Presburger formulas, deciding regularity is coNP-complete.246

Decidability of regularity was shown by Cadilhac, Finkel, and McKenzie [10, Theorem 25]247

(in the slightly more general setting of unambiguous constrained automata). For the coNP248

upper bound, note that for a language L ⊆ Σ∗ given by a deterministic Parikh automaton249

(with quantifier-free formulas for the target sets), one can in polynomial time construct the250

same type of automaton for the complement Σ∗ \ L. Since L is regular if and only if L and251

Σ∗ \ L are separable by a regular language, we can invoke Theorem 3.6. The coNP lower252

bound is inherited from monadic decomposability of quantifier-free formulas. Indeed, given a253

quantifier-free Presburger formula φ(x1, . . . , xn) with free variables (x1, . . . , xn), one easily254

constructs a deterministic Parikh automaton (with quantifier-free target sets) for the language255

Lφ = {ax1
1 · · · axn

n | φ(x1, . . . , xn)}. As shown by Ginsburg and Spanier [23, Theorem 1.2], Lφ256

is regular if and only if φ is monadically decomposable. However, monadic decomposability257

for quantifier-free formulas is coNP-complete [31, Theorem 1].258

For the coNP upper bound in Corollary 3.7, we cannot drop the assumption that the259

formula be quantifier-free. This is because if the target sets can be existential Presburger260

formulas, then the regularity problem is coNEXP-hard. This follows by the same reduction261

from monadic decomposability: If we construct Lφ as above using an existential formula φ,262

then again, Lφ is regular if and only if φ is monadically decomposable. Moreover, monadic263

decomposability for existential formulas is coNEXP-complete [30, Corollary 3.6].264

4 A characterization of separability in hyperlinear sets265

Before we prove our two main results, Theorems 3.1 and 3.6, we should recall the ideas of266

the existing algorithms [13,15] for recognizable separability of linear sets. We will use these267

ideas to obtain a new characterization of separability in hyperlinear sets.268

Let L1, L2 ⊆ Nd be two linear sets. The algorithms [13, 15] rely on a procedure that269

successively eliminates “bounded components”: If, say, L1 is bounded in component j by270

some b ∈ N, then one can observe that L1 | L2 if, and only if, L1[j 7→ x] | L2[j 7→ x] for every271

x ∈ [0, b]. Here, Li[j 7→ x] is Li restricted to those vectors that have x in the j-th component,272

and then projected to all components ̸= j. Therefore, the algorithms of [13,15] recursively273

check separability of L1[j 7→ x] and L2[j 7→ x] for each x ∈ [0, b]. This process invokes several274

expensive intersection operations on semilinear sets and thus has high complexity. Instead,275

our approach immediately guesses and verifies the set of components that remain after the276

elimination process. The corresponding checks involve the notion of strong unboundedness.277

Strongly unbounded components Our notion applies, slightly more generally, to hyperlinear278

sets. Hence, let R = A + U∗ ⊆ Nd and S = B + V ∗ ⊆ Nd be two hyperlinear sets where279

A,B,U, V ⊆ Nd are finite sets.280

▶ Definition 4.1. A coordinate j ∈ [1, d] is strongly unbounded for R and S if there exist281

p ∈ U∗ and q ∈ V ∗ such that j ∈ supp(p) = supp(q).282

There is yet another characterization of strongly unbounded coordinates. Let j ∈ [1, d].283

We say the j-th coordinate of the hyperlinear set S = B+V ∗ is bounded if there is no period284

vector in V with support on j, i.e., j /∈ supp(p) for all p ∈ V . We say that a subset J ⊆ [1, d]285

of coordinates is bounded in S if each j ∈ J is bounded in S. Consider the following process:286

Given two hyperlinear sets R and S. Until the sets of remaining period vectors in R and S287

stabilize, we perform each of the following three steps for each coordinate j ∈ [1, d]:288

XX:8 The complexity of separability for semilinear sets and Parikh automata

If neither R nor S is bounded at j, we leave S and R untouched.289

If only R is bounded at j, we remove all period vectors from S which have support on j.290

If only S is bounded at j, we remove all period vectors from R which have support on j.291

Then, the coordinates that remain unbounded are precisely the strongly unbounded ones.292

▶ Example 4.2. Consider R = {(1, 0, 1)}∗ and S = {(1, 1, 0), (0, 0, 1)}∗. Then R is bounded293

by the value 0 at coordinate 2. When checking separability of R and S, it suffices to consider294

S restricted to the vectors also having the value 0 in the second coordinate. In our algorithm295

this is reflected by the deletion of the period vector (1, 1, 0) of S. After deletion of the period296

vector (1, 1, 0), S is bounded at coordinate 1 by the value 0. So, we remove the period vector297

(1, 0, 1) from R. Finally, the period vector (0, 0, 1) of S gets removed since R is now bounded298

at coordinate 3. Hence, our algorithm terminates in this case with no strongly unbounded299

coordinates. This example shows that even R and S both are unbounded in coordinates 1300

and 3, none of these coordinates is strongly unbounded.301

If R = {(1, 0, 1), (0, 1, 0)}∗ and S = {(1, 1, 0), (0, 0, 1)}∗, then no coordinate is bounded in302

R and S. Hence, all coordinates are strongly unbounded and no period vector gets removed.303

For J ⊆ [1, d], we write UJ = {p ∈ U | supp(p) ⊆ J} and VJ = {q ∈ V | supp(q) ⊆ J}.304

Separating by modular constraints As observed in [13,15], if all coordinates of two linear305

sets L1, L2 are unbounded, then separability holds if and only if the two sets can be separated306

by modulo constraints. This relies on the well-known fact that finitely generated abelian307

groups are subgroup separable, i.e. that for every element u ∈ Zd that does not belong to a308

subgroup A ⊆ Zd, there exists a homomorphism φ : Zd → F into a finite group F such that309

(i) A is included in the kernel of φ and (ii) φ(u) ̸= 0. We include a short proof in Section A.310

▶ Lemma 4.3 (Subgroup separability). If A ⊆ Zd is a subgroup and u ∈ Zd \ A, then311

there exists an s ∈ N, s > 0, and a morphism φ : Zd → Z/sZ such that (i) φ(A) = 0 and312

(ii) φ(u) ̸= 0.313

Separability vs. intersection emptiness We will now characterize inseparability of hyperlinear314

sets R,S via the intersection of two hyperlinear sets R̂ and Ŝ associated with R,S. The315

proof will rely on an equivalence relation of vectors. For vectors u,v ∈ Nd and k ∈ N \ {0},316

we write u ∼k v if for every i ∈ [1, d], we have317

(1) u[i] = v[i] ≤ k or318

(2) u[i],v[i] > k and u[i] ≡ v[i] mod k.319

The following was shown in [15, Prop. 18].320

▶ Lemma 4.4. For any sets X,Y ⊆ Nd, the following are equivalent:321

(1) X and Y are not separable by a recognizable set.322

(2) for each k ∈ N \ {0} there are xk ∈ X and yk ∈ Y with xk ∼k yk.323

Let k, ℓ ∈ N \ {0} such that k divides ℓ. We can observe that u ∼ℓ v implies u ∼k v in this324

case. Thus, to show recognizable inseparability of two sets X,Y ⊆ Nd, it suffices to find325

xk ∈ X and yk ∈ Y for almost all numbers k ∈ N \ {0}. We will use this fact in the proof of326

the following characterization of inseparability.327

▶ Proposition 4.5. Let R = A+ U∗ ⊆ Nd and S = B + V ∗ ⊆ Nd be hyperlinear sets. Then328

R and S are not separable by a recognizable set if and only if the intersection329

(A+ U∗ − U∗
J) ∩ (B + V ∗ − V ∗

J) (1)330

is non-empty, where J ⊆ [1, d] is the set of coordinates strongly unbounded for R,S.331

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:9

Proof. Suppose there is a vector x in the intersection (1). Then we can write x = u− ū and332

x = v− v̄ with u ∈ A+U∗, v ∈ B+V ∗, ū ∈ U∗
J , and v̄ ∈ V ∗

J . Since J is strongly unbounded333

for R and S, there are—by definition—pj ∈ U∗ and qj ∈ V ∗ with j ∈ supp(pj) = supp(qj)334

for each j ∈ J . Then for p :=
∑

j∈J pj and q :=
∑

j∈J qj we infer J ⊆ supp(p) = supp(q).335

Now for each k ∈ N \ {0}, consider the vectors336

uk = u− ū + 2k · p + k · ū and vk = v − v̄ + 2k · q + k · v̄ .337

Then we have uk,vk ∈ Nd for each k ∈ N \ {0}. We claim that uk ∼k vk for all but finitely338

many k. Indeed, on coordinates j ∈ [1, d] \ supp(p), the vectors uk and vk coincide with339

x. Moreover, on coordinates j ∈ supp(p), both vectors uk and vk are larger than k (for340

all but finitely many k) and also congruent to x[j] mod k. Hence, uk ∼k vk. Since clearly341

uk = u + k · p + (k− 1) · ū ∈ R and vk = v + k · q + (k− 1) · v̄ ∈ S, Lemma 4.4 implies that342

R and S are not separable by a recognizable set.343

Conversely, suppose that R and S are not separable. Then by Lemma 4.4 there are uk ∈ R344

and vk ∈ S with uk ∼k vk for every k ∈ N \ {0}. We now want to choose subsequences of345

the uk’s and vk’s and after re-indexing still satisfy uk ∼k vk. While this is not possible in346

the general case, we can choose the subsequence of factorials: so, suppose uk ∼k! vk for all347

k ∈ N \ {0} (since k divides k! we still have uk ∼k vk). Note that for k ≥ ℓ ∈ N \ {0} and348

uk ∼k! vk we also have uk ∼ℓ! vk since ℓ! divides k!. With the help of this fact, we are now349

free to choose arbitrary subsequences of the original sequences of uk’s and vk’s.350

First, we can pick subsequences such that there are r ∈ A and s ∈ B such that uk ∈ r+U∗
351

and vk ∈ s+V ∗ for every k. Furthermore, by Dickson’s lemma, we may choose a subsequence352

such that uk+1 ∈ uk + U∗ and vk+1 ∈ vk + V ∗ for each k ∈ N. Now since uk ∼k vk for353

every k, it follows that the sequences u1,u2, . . . and v1,v2, . . . are unbounded on the same354

set J ⊆ [1, d] of coordinates. Then clearly, J is strongly unbounded for R and S. This355

means, by choosing another subsequence, we may also assume that uk+1 ∈ uk + U∗
J and356

vk+1 ∈ vk + V ∗
J for every k ∈ N.357

We now claim that u1−v1 belongs to the group ⟨UJ ∪VJ⟩ generated by UJ ∪VJ . Towards358

a contradiction, suppose u1 − v1 does not belong to ⟨UJ ∪ VJ⟩. By Lemma 4.3, there must359

be an s ∈ N, s > 0, and a morphism φ : Zd → Z/sZ such that φ(⟨UJ ∪ VJ⟩) = 0 and360

φ(u1 − v1) ̸= 0. However, the vector361

(us − vs)− (u1 − v1) = (us − u1)︸ ︷︷ ︸
∈⟨UJ ⟩

− (vs − v1)︸ ︷︷ ︸
∈⟨VJ ⟩

362

belongs to ⟨UJ ∪ VJ⟩, but also agrees with u1 − v1 under φ (since all components of us − vs363

are divisible by s), contradicting Lemma 4.3. Hence u1 − v1 ∈ ⟨UJ ∪ VJ⟩.364

This means, we can write u1 − v1 = v − v̄ − (u− ū) with u, ū ∈ U∗
J and v, v̄ ∈ V ∗

J . But365

then the vector u1 + u− ū = v1 + v − v̄ belongs to the intersection (1). ◀366

With Proposition 4.5, we have now characterized inseparability of subsets of Nd via a367

particular intersection of two sets in Zd. It will later be more convenient to work with368

intersections of sets in Nd, which motivates the following reformulation of Proposition 4.5.369

▶ Theorem 4.6. Let R = A+ U∗ ⊆ Nd and S = B + V ∗ ⊆ Nd be hyperlinear sets. Then R370

and S are not separable by a recognizable set if and only if the intersection371

(A+ U∗ + V ∗
J) ∩ (B + V ∗ + U∗

J) (2)372

is non-empty, where J ⊆ [1, d] is the set of coordinates strongly unbounded for R,S.373

Proof. Direct consequence of Proposition 4.5, since clearly A+U∗−U∗
J intersects B+V ∗−V ∗

J374

if and only if A+ U∗ + V ∗
J intersects B + V ∗ + U∗

J . ◀375

XX:10 The complexity of separability for semilinear sets and Parikh automata

5 Separability of semilinear sets is in coNP376

Using the characterization Theorem 4.6, we can now explain our algorithm for the coNP377

upper bound in Theorem 3.1. We describe an NP algorithm that establishes inseparability.378

Algorithm Step I: Solution sets to linear Diophantine equations Let us first see that379

we can reduce the problem to the case that both input sets are given as projections of380

solution sets of linear Diophantine equations. We may assume that the input formulas are381

of the form ∃x : κ(x,y), where κ is a formula consisting of conjunction and disjunction382

(i.e. no negation) of atoms of the form t ≥ 0, where t is a linear combination of variables383

x = (x1, . . . , xn),y = (y1, . . . , ym) and integer coefficients.384

Let φ be a formula as described above. It is a well-known fact that φ can be transformed385

into disjunctive normal form. This means, φ is equivalent to a formula φ1 ∨ · · · ∨ φk, where386

each φi (a so-called clause) has the form ∃x : ξ(x,y) such that ξ is a conjuction of atoms387

appearing in φ. In general, the number of clauses of φ is exponential.388

Now, let φ and ψ be the input formulas of the algorithm and let φ1 ∨ · · · ∨ φk and389

ψ1 ∨ · · · ∨ ψℓ be their equivalent formulas in disjunctive normal form. Since the number of390

clauses is exponential, we cannot compute all clauses for φ and ψ. However, the solution391

sets of φ and ψ are recognizably inseparable if, and only if, for some pair i, j, the solution392

sets of the formulas φi and ψj are recognizably inseparable. This is due to the following fact,393

which follows standard ideas (see Section B for a proof in this particular setting).394

▶ Lemma 5.1. Let K,K1, . . . ,Kn, L ⊆ M be sets from a monoid M such that K = K1 ∪395

· · · ∪Kn. Then K | L if, and only if, Ki | L for all 1 ≤ i ≤ n.396

Thus, for deciding the inseparability of the solution sets of φ and ψ in NP it is sufficient397

to guess (in polynomial time) clauses φi and ψj and show that inseparability of the solution398

sets of these two formulas is decidable in NP. Therefore, from now on we can assume that399

the input formulas are (existentially quantified) conjunctions of atoms of the form t ≥ 0.400

In particular, each of the two input sets is a projection of the solution set of a system of401

linear Diophantine inequalities. By introducing slack variables (which will also be projected402

away), we can turn inequalities into equations. Thus, we have as input sets K,L ⊆ Nd with403

K = π({x ∈ Nr | Ax = b}) and L = π({x ∈ Nr | Cx = d}) , (3)404

where π : Zr → Zd is the projection to the first d components, and A,C ∈ Zs×r are integer405

matrices, and b,d ∈ Zs are integer vectors. Note that here, assuming that the numbers r of406

columns and the number s of rows is the same for K and L means no loss of generality.407

Algorithm Step II: Recognizable inseparability as satisfiability In the second step, we will408

reduce recognizable separability of K and L to the satisfiability of an existential Presburger409

formula. To this end, we use the fact that the solution sets to Ax ≥ b (resp. Cx ≥ d) are410

hyperlinear sets, which allows us to apply Theorem 4.6.411

▶ Proposition 5.2. K and L are recognizably inseparable if, and only if, there are vectors412

p, q,u,v,x,y ∈ Nr with413

(1) Ap = 0, Cq = 0, supp(π(p)) = supp(π(q)),414

(2) supp(π(u)), supp(π(v)) ⊆ supp(π(p)), Au = 0, and Cv = 0,415

(3) Ax = b, Cy = d, and π(x + v) = π(y + u).416

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:11

Proof. We apply Theorem 4.6. To this end, we use the standard hyperlinear representation417

for solution sets of systems of linear Diophantine equalities. Let A0 ⊆ Nr be the set of all418

minimal solutions to Ax = b, and let U ⊆ Nr be the set of all minimal solutions to Ax = 0.419

Then it is well-known that A0 and U are finite and also K = π(A0 + U∗) = π(A0) + π(U)∗.420

In the same way, we obtain a hyperlinear representation L = π(B0 + V ∗) = π(B0) + π(V)∗.421

Then, we can show the proposition using Theorem 4.6. For a full proof, see Section B. ◀422

Finally, Proposition 5.2 can be used to complete the proof of our first main result:423

Proof of Theorem 3.1. Let φ and ψ be two existential Presburger formulas without negation424

and using only atoms of the form t ≥ 0, where t is a linear combination of variables and425

integer coefficients. We give an NP algorithm deciding inseparability by a recognizable set.426

Since the solution sets of φ and ψ are inseparable if, and only if, their disjunctive normal427

forms have at least one pair of inseparable clauses, we guess such a pair of these clauses φi428

and ψj (cf. Lemma 5.1). We can transform φi and ψj into Diophantine equations Ax = b429

and Cx = d. Using Proposition 5.2 we obtain in polynomial time an existential Presburger430

formula that is satisfiable if, and only if, the solution sets of Ax = b and Cx = d are431

inseparable if, and only if, φi and ψj are inseparable. Finally, the result follows from432

NP-completeness of the existential fragment of Presburger arithmetic. ◀433

6 Regular separability of Parikh automata434

In this section, we prove our second main result: the coNP upper bound of regular separability435

of Parikh automata (Theorem 3.6). For this, it will be technically simpler to work with436

Z-VASS, which are equivalent to Parikh automata. In [1, Corollary 1], it was shown that437

the two automata models can be converted into each other in logarithmic space. Therefore,438

showing the coNP upper bound for Z-VASS implies it for Parikh automata.439

Integer VASS A (d-dimensional) integer vector addition system with states (Z-VASS, for440

short) is a quintuple V = (Q,Σ, T, ι, f) where Q is a finite set of states, Σ is an alphabet,441

T ⊆ Q×Σε×Zd×Q is a finite set of transitions, and ι, f ∈ Q are its source and target state,442

respectively. Here, Σε = Σ ∪ {ε}. A Z-VASS V = (Q,Σ, T, ι, f) is called deterministic if V443

has no ε-labeled transitions and for each p ∈ Q and a ∈ Σ there is at most one transition of444

the form (p, a,v, q) ∈ T (where v ∈ Zd and q ∈ Q).445

A configuration of V is a tuple from Q × Zd. For two configurations (p,u), (q,v) and446

a word w ∈ Σ∗ we write (p,u) w−→V (q,v) if there are states q0, q1, . . . , qℓ ∈ Q, vectors447

v0,v1, . . . ,vℓ ∈ Zd, and letters a1, . . . , aℓ ∈ Σε such that w = a1a2 · · · aℓ, (p,u) = (q0,v0),448

(q,v) = (qℓ,vℓ), and for each 1 ≤ i ≤ ℓ we have a transition ti = (qi−1, ai,xi, qi) ∈ T with449

vi = vi−1 + xi. In this case, the sequence t1t2 · · · tℓ is called a (w-labeled) run of V. The450

accepted language of V is L(V) = {w ∈ Σ∗ | (ι,0) w−→V (f,0)}.451

Let I ⊆ [1, d] be a set of indices. Then we can generalize the acceptance behavior of the452

Z-VASS V as follows:453

L(V, I) =
{
w ∈ Σ∗ ∣∣ ∃v ∈ Zd : (ι,0) w−→V (f,v) and πI(v) = 0

}
.454

Note that L(V, [1, d]) = L(V) holds.455

An overview of the proof of Theorem 3.6 The remaining part of this section is dedicated456

to the proof of our second main result, Theorem 3.6. The first few steps (Lemmas 6.1–6.3457

and 6.5) are essentially the same as in [14], for which we briefly give an overview: The458

authors reduce regular separability to recognizable separability of semilinear sets in Nd (for459

XX:12 The complexity of separability for semilinear sets and Parikh automata

some dimension d). Concretely, instead of asking for the regular separability in two given460

Z-VASS we are counting the cycles within runs of these Z-VASS. Accordingly, the dimension461

d corresponds to the number of (simple) cycles. Unfortunately, this number is exponential in462

the size of the input and therefore we cannot just use our first main result (Theorem 3.1)463

to prove the coNP upper complexity bound. Instead we will construct two Z-VASS of464

(polynomial) dimension accepting sequences of cycles such that their language intersection465

corresponds to the intersection (2) from Theorem 4.6 (which is non-empty if, and only if, the466

Z-VASS from the input are regularly inseparable). Intersection for Z-VASS is known to be467

in NP implying also the NP upper complexity bound for the regular inseparability problem468

resp. the coNP upper bound for the separability problem of Z-VASS.469

Reduction to a single integer VASS As announced, we will first follow the reduction470

from [14]. In the first step, the regular separability problem of nondeterministic Z-VASS471

can be reduced to the same problem in deterministic Z-VASS. This reduction is possible472

in polynomial time which is a bit surprising at first glance since determinization typically473

requires at least an exponential blowup. However, in this reduction we determinize the474

Z-VASS “up to some homomorphic preimage”, i.e., from two given Z-VASS V1 and V2475

one constructs two deterministic Z-VASS W1 and W2 with (i) L(Wi) = h−1(L(Vi)) where476

h : Γ ∗ → Σ∗ is a homomorphism and (ii) L(V1) | L(V2) if, and only if, L(W1) | L(W2) holds.477

Since our setting is technically slightly different, we include a proof in Section C.478

▶ Lemma 6.1 ([14, Lemma 7]). Regular separability for Z-VASS reduces in polynomial time479

to the regular separability problem for deterministic Z-VASS.480

Next, we reduce regular separability for deterministic Z-VASS to regular separability of481

two languages accepted by the same deterministic Z-VASS, but with two different sets of482

counters. To this end, from two given d-dimensional Z-VASS V1 and V2 we construct one483

2d-dimensional Z-VASS V (using product construction) and two sets of indices I1, I2 ⊆ [1, 2d]484

such that L(Vi) = L(V, Ii) holds. We include a detailed proof in our setting in Section C.485

▶ Lemma 6.2 ([14, Proposition 1]). Regular separability for deterministic Z-VASS reduces486

in polynomial time to the following:487

Given: A d-dimensional deterministic Z-VASS V with two subsets I1, I2 ⊆ [1, d].488

Question: Are the languages L(V, I1) and L(V, I2) regularly separable?489

Therefore, we now fix a Z-VASS V = (Q,Σ, T, ι, f).490

Skeletons Now, we want to further simplify the regular separability problem. Concretely,491

we want to consider only runs in V that are in some sense similar. We consider some base492

paths—so called skeletons—in V. Two runs in V are similar if they follow the same base493

path and only differ in the order and repetition of some cycles. We define the function494

skel : T ∗ → T ∗ such that skel(r) = ρ for a path r ∈ T ∗ in V such that ρ is a sub-path of the495

original path r in which we keep the same set of visited states while removing all cycles that496

do not increase the set of visited states. Here, ρ is called the skeleton of r.497

Let t1 · · · tℓ ∈ T ∗ be a path in V , i.e., we have ti = (qi−1, ai,xi, qi) ∈ T for each 1 ≤ i ≤ ℓ.498

The map skel is defined inductively as follows: skel(ε) = ε and skel(t1) = t1. For 1 ≤ i < ℓ499

assume that skel(t1 · · · ti) = s1 · · · sj is already constructed and that s1 · · · sj is a path ending500

in qi. Now we consider the transition ti+1. If there is no transition sk (with 0 ≤ k ≤ j) such501

that this transition ends in the state qi+1, we set skel(t1 · · · titi+1) = s1 · · · sjti+1. Note that502

s1 · · · sjti+1 is a path ending in the state qi+1.503

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:13

Otherwise, let 0 ≤ k ≤ j be maximal such that sk ends in qi+1. Then sk+1 · · · sjti+1 is a504

cycle in V (note that sk+1 starts with qi+1 since s1 · · · sj is a path). If all states occurring in the505

cycle sk+1 · · · sjti+1 also occur in the path s1 · · · sk, then we set skel(t1 · · · titi+1) = s1 · · · sk,506

i.e., we omit the cycle sk+1 · · · sjti+1 in the skeleton. Note that the skeleton s1 · · · sk is a507

path ending in qi+1. Otherwise at least one state in the cycle does not occur in the path508

s1 · · · sk. In this case, we simply add tj+1 resulting in skel(t1 · · · titi+1) = s1 · · · sjti+1 where509

s1 · · · sjti+1 is also a path ending in qi+1. Note that any skeleton of V has length at most510

quadratic in the number of transitions |T | as shown in [14, Lemma 10].511

Let ρ be a skeleton. A ρ-cycle is a cycle that only visits states occurring in ρ; a ρ-run is512

a run r ∈ T ∗ with skeleton skel(r) = ρ (i.e., r is obtained from ρ by inserting ρ-cycles). We513

write L(V, I, ρ) for the set of all words in L(V, I) accepted via ρ-runs.514

▶ Lemma 6.3 ([14, Lemma 11]). We have L(V, I1) | L(V, I2) if, and only if, L(V, I1, ρ) |515

L(V, I2, ρ) holds for every skeleton ρ.516

Although this was essentially shown in [14, Lemma 11], our setting is strictly speaking517

slightly different (e.g. we have all short rather than only simple cycles), so we include a518

detailed proof in Section C. Thus, it suffices to show that for a given skeleton ρ, one can519

decide regular inseparability of L(V, I1, ρ) and L(V, I2, ρ) in NP. So, from now on, we fix520

a skeleton ρ and simply write L(Ii) for L(V, Ii, ρ). Since we only consider runs that visit521

states that occur in ρ, we may also assume that V consists only of the states occurring on ρ.522

In particular, we only say cycle instead of “ρ-cycle”.523

Counting cycles We now phrase a characterization of regular separability from [14] in our524

setting. It says that regular separability of the languages L(I1) and L(I2) is equivalent to525

recognizable separability of vectors that count cycles. Here, we only count short cycles of526

length at most |Q|. This is possible since each cycle can be decomposed into short cycles. In527

the following, we fix the set S ⊆ T≤|Q| of all short cycles in V.4528

For I ⊆ [1, d], we define: if t = (p, a,x, q) ∈ T is a transition then the effect ∆I(t) of529

t to the components in I is ∆I(t) = πI(x), i.e. the projection of the counter update x530

to I. If r = t1t2 · · · tℓ ∈ T ∗ is a path, then the effect ∆I(r) of r to the components in I531

is the sum of the effects of all transitions on this path, i.e. ∆I(r) =
∑ℓ

i=1 ∆I(ti). Now,532

let u ∈ NS be a multiset of short cycles. Then the effect of u to the components in I is533

∆I(u) =
∑

c∈S u[c] ·∆I(c). If v ∈ NT is a multiset of transitions, then the effect of v to534

the components in I is ∆I(v) =
∑

t∈T v[t] ·∆I(t). In case of I = [1, d] we will also write ∆535

instead of ∆I . Finally, we define536

M(I) =
{

u ∈ NS
∣∣ ∆I(ρ) + ∆I(u) = 0

}
.537

Hence, M(I) is the set of multisets of short cycles such that inserting them into ρ would538

lead to an accepting run with acceptance condition I ⊆ [1, d]. Since M(I) is the solution set539

of linear Diophantine equations, it is hyperlinear (see Section C for a proof).540

▶ Observation 6.4. Let I ⊆ [1, d]. Then M(I) is hyperlinear, i.e., M(I) = B + V ∗ for two541

finite sets B, V ⊆ NS.542

4 Although Lemmas 6.1–6.3 and 6.5 are essentially the same as in [14], we are working with short cycles,
whereas [14] uses simple cycles. This will be crucial later, because short cycles can be guessed on-the-fly
in a finite automaton without storing the whole cycle.

XX:14 The complexity of separability for semilinear sets and Parikh automata

The following equivalence between regular separability of the languages L(Ii) and543

recognizable separability of the (hyperlinear) sets M(Ii) was shown in [14, Lemma 12].544

It is straightforward to adapt it to our situation (see Section C).545

▶ Lemma 6.5. We have L(I1) | L(I2) if, and only if, M(I1) |M(I2).546

Reducing inseparability to intersection At this point, our proof deviates from the approach547

of [14]. According to Lemma 6.5, it remains to decide whether M(I1) |M(I2), where M(I1)548

and M(I2) are sets of vectors of dimension |S|, which is exponential. In Theorem 4.6, we549

saw that recognizable separability of vector sets A+ U∗ and B + V ∗ reduces to intersection550

emptiness of A+ U∗ + V ∗
J and B + V ∗ + U∗

J , where J is a subset of the strongly unbounded551

components. However, the exponential dimension of M(I1),M(I2) means a direct translation552

into existential Presburger arithmetic would incur an exponential blowup.553

Instead, our key observation is that one can reduce inseparability to intersection emptiness554

of Z-VASS : The idea is to encode the intersecting vectors u ∈ (A+U∗ +V ∗
J)∩ (B+V ∗ +U∗

J),555

where M(I1) = A+U∗, M(I2) = B + V ∗, as words containing the participating cycles. Thus,556

we guess a subset J of the strongly unbounded components, and then construct in polynomial557

time two Z-VASS W1 and W2 such that558

L(W1) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S, Φ(c1, . . . , cm) ∈ A+ U∗ + V ∗
J }, (4)559

L(W2) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S, Φ(c1, . . . , cm) ∈ B + V ∗ + U∗
J}, (5)560

where for cycles c1, . . . , cm ∈ S, the so-called Parikh vector Φ(c1, . . . , cm) ∈ NS counts how561

many times each short cycle occurs in c1, . . . , cm: If c ∈ S, then Φ(c1, . . . , cm)[c] is the number562

of indices i ∈ [1,m] with ci = c. Note that then clearly, (A+ U∗ + V ∗
J) ∩ (B + V ∗ + U∗

J) ̸= ∅563

if and only if L(W1) ∩ L(W2) ̸= ∅.564

The main challenge in constructing W1 and W2 is to guess a subset J of strongly565

unbounded components, and for the Z-VASS to verify that a given cycle belongs to J ,566

without being able to store an entire cycle in its state. To solve this, we we will characterize567

the strongly unbounded cycles in terms of its set of occurring transitions.568

Characterizing strongly unbounded cycles We define for any T̂ ⊆ T the set569

S[T̂] =
{
c ∈ T̂≤|Q|

∣∣∣ c is a cycle
}
.570

Thus, S[T̂] ⊆ S is the set of all short cycles that consist solely of transitions from T̂ .571

Our characterization uses an adaptation of the notion of “cancelable productions” in572

Z-grammars used in [1]. We define the homomorphism ∂ : NT → ZQ as follows: for each573

transition t = (p, a,x, q) ∈ T we set ∂(et) = eq − ep, where et ∈ NT and ep, eq ∈ NQ are574

unit vectors. Thus, ∂(u)[q] is the number of incoming transitions to q, minus the number of575

outgoing edges from q, weighted by the coefficients in u. A flow is a vector f ∈ NT with576

∂(f) = 0. The following is a standard fact in graph theory. For a proof that even applies to577

context-free grammars (rather than automata), see [20, Theorem 3.1].578

▶ Lemma 6.6. A vector f ∈ NT is a flow if and only if it is a sum of (the Parikh vectors579

of) cycles.580

The following notion will be key in characterizing which cycles are strongly unbounded581

for M(I1) and M(I2). A transition t ∈ T is bi-cancelable if there exist flows f1,f2 ∈ NT
582

such that (i) ∆I1(f1) = 0 and ∆I2(f2) = 0, (ii) t occurs in both f1 and in f2, and583

(iii) supp(f1) = supp(f2). In other words, t is bi-cancelable if it is part of two flows f1 and584

f2 with the same support and with effect zero (wrt. the components I1 resp. I2).585

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:15

Figure 1 The flow τ(eu) + (fi − τ(eu)) where the cycle u is depicted in bold blue and the cycles
of the flow fi − τ(eu) are depicted in red. Note that the new flower shaped cycle is not necessarily
short, but can be easily split into short cycles.

▶ Lemma 6.7. A cycle c ∈ S is strongly unbounded for M(I1) and M(I2) if, and only if,586

every transition in c is bi-cancelable.587

Proof. For the “only if” direction, suppose that c is strongly unbounded for M(I1) and588

M(I2). Then by definition there exist sums of period vectors u1,u2 ∈ NS of M(I1) resp.589

M(I2) with c ∈ supp(u1) = supp(u2). Define fi = τ(ui) ∈ NT , where τ : NS → NT maps590

cycles to the number of occurrences of each transition in these cycles. Then clearly fi are591

flows with ∆Ii
(fi) = ∆Ii

(ui) = 0, c occurs in both f1 and in f2, and supp(f1) = supp(f2).592

Hence, all transitions in c are bi-cancelable.593

For the “if” direction, suppose a cycle c ∈ S only contains bi-cancelable transitions and594

write c = t1 · · · tn for t1, . . . , tn ∈ T . For each ti, there are flows fi,1 and fi,2 witnessing595

that ti is bi-cancelable. Notice that f1 := f1,1 + · · · + fn,1 and f2 = f1,2 + · · · + fn,2 are596

flows as well and they have supp(f1) = supp(f2). As flows, both f1 and f2 can be written597

as a sum of cycles: There are u1,u2 ∈ NS with τ(u1) = f1 and τ(u2) = f2. Observe that598

∆I1(u1) = ∆I2(u2) = 0, meaning u1 and u2 are sums of period vectors of M(I1) and M(I2),599

respectively. If we knew that c occurs in both u1 and in u2, and u1,u2 had the same support,600

we could conclude strong unboundedness of c. Since u1,u2 may not have these properties,601

we will now modify them. Consider the set S′ = S[supp(f1)] = S[supp(f2)]; hence S′ is the602

set of short cycles u ∈ T ∗ such that supp(u) ⊆ supp(f1) = supp(f2). By the choice of f1603

and f2, we know c ∈ S′. For each cycle u ∈ S′, the vectors f1 − τ(eu) and f2 − τ(eu) are604

again flows, because τ(eu) is a flow. Now observe605 ∑
u∈S′

τ(eu) + (fi − τ(eu)) = |S′| · fi606

for i = 1, 2 (cf. Figure 1). Hence, the flow |S′| · fi can be written as a sum of cycles in which607

each cycle from S′ occurs. Moreover, in this sum, every occurring cycle belongs to S′. This608

means, u′
1,u

′
2 have the same support S′, which includes c. Moreover, since τ(u′

i) = |S′| · fi,609

we know that ∆Ii
(u′

i) = 0, meaning u′
i is a sum of period vectors of M(Ii), for i = 1, 2. This610

means, c is indeed strongly unbounded for M(I1) and M(I2). ◀611

In order to construct our Z-VASS W1 and W2, we first guess a set of transitions and then612

verify that all of them are bi-cancelable. For the verification, we translate the definition of613

bi-cancelability into an existential Presburger formula φt which is satisfiable if, and only if, t614

is bi-cancelable (see Section C).615

▶ Lemma 6.8. Given a transition t ∈ T , we can decide in NP whether it is bi-cancelable.616

XX:16 The complexity of separability for semilinear sets and Parikh automata

Constructing the Z-VASS Let us now describe in more detail how the Z-VASS W1 and617

W2 are constructed. Instead of literally guessing the set J of strongly unbounded cycles618

(which could require exponentially many bits), we guess a set T̂ ⊆ T of transitions in V and619

then verify in NP that they are all bi-cancelable using Lemma 6.8. Then, we build Z-VASS620

that satisfy Equations (4) and (5) for the specific choice J = S[T̂]. This means, we will have621

L(W1) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S,Φ(c1, . . . , cm) ∈ A+ U∗ + V ∗
S[T̂]} (6)622

L(W2) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S,Φ(c1, . . . , cm) ∈ B + V ∗ + U∗
S[T̂]} (7)623

and from now on, we will also write J = S[T̂]. Note that the result of our algorithm is624

correct, even when the guess for T̂ was not the entire set of bi-cancelable transitions: L(W1)625

intersects L(W2) for some choice of T̂ , it will do so for any larger choice of T̂ .626

Ensuring membership in A + U∗ The idea for constructing W1 (and analogously W2) is627

simple. For each cycle in the input, it guesses whether it belongs to A + U∗ or to V ∗
S[T̂].628

Let u0 ∈ NS and u1 ∈ NS be the collection of cycles guessed to be in A+ U∗ and in V ∗
S[T̂],629

respectively. To make sure that u0 ∈ A + U∗, we note that u0 ∈ A + U∗ is equivalent to630

∆I1(u0) + ∆I1(ρ) = 0, where ρ is the skeleton guessed earlier in the algorithm. Thus, we631

can use |I1| counters to sum up the effect of the cycles u0 and add ∆I1(ρ) once in the end.632

Hence, these counters being zero in the end is equivalent to u0 ∈ A+ U∗.633

Ensuring membership in V ∗
S[T̂] To make sure that u1 ∈ V ∗

S[T̂], we note that this is equivalent634

to ∆I2(u1) = 0 and supp(u1) ⊆ S[T̂]. Thus, our Z-VASS has a separate set of |I2| counters635

that carry the total effect of all the cycles in u1. Moreover, it is easy to check that all cycles636

in u1 only use transitions in T̂ .637

Note that membership in B+V ∗ and in U∗
S[T̂] are checked similarly. With this polynomial-638

time construction of W1 and W2, we are ready to prove Theorem 3.6:639

Proof of Theorem 3.6. We give an NP algorithm for regular inseparability of two Z-VASS640

(which can be obtained from Parikh automata in logarithmic space [1, Corollary 1]).641

Let V1 and V2 be two d-dimensional Z-VASS. From V1 and V2 we can compute a single642

2d-dimensional deterministic Z-VASS V and two sets I1, I2 ⊆ [1, 2d] in polynomial time such643

that L(V1) |L(V2) holds if, and only if, L(V, I1) |L(V, I2) (Lemmas 6.1 and 6.2). According to644

Lemma 6.3 we have L(V, I1) |L(V, I2) if, and only if, L(V, I1, ρ) |L(V, I2, ρ) for each skeleton645

ρ in V holds. So, we guess a skeleton ρ and check regular inseparability of L(V, I1, ρ) and646

L(V, I2, ρ) certifying regular inseparability of L(V, I1) and L(V, I2).647

Additionally, we will guess a set T̂ ⊆ T of transitions and verify in NP that all of them are648

bi-cancelable (Lemma 6.8). Then we can construct in polynomial time two Z-VASS W1 and649

W2 such that (6) and (7) hold. If L(W1) ∩ L(W2) ̸= ∅, the algorithm reports “inseparable”.650

For this, it uses a simple product construction to obtain a Z-VASS W for the intersection651

L(W1) ∩ L(W2), and decide in NP whether an accepting configuration can be reached in W .652

This is sound: We have L(W1)∩L(W2) ̸= ∅ if and only if (A+U∗+V ∗
J)∩(B+V ∗+U∗

J) ̸= ∅653

for J = S[T̂]; and by Lemma 6.5, we know that the latter rules out M(I1) |M(I2). For654

completeness, note that if M(I1) |M(I2) does not hold, then there exists a choice for T̂ such655

that L(W1) ∩ L(W2) ̸= ∅: Take the set of all bi-cancelable transitions. ◀656

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:17

References657

1 Pascal Baumann, Flavio D’Alessandro, Moses Ganardi, Oscar Ibarra, Ian McQuillan, Lia658

Schütze, and Georg Zetzsche. Unboundedness problems for machines with reversal-bounded659

counters. In Orna Kupferman and Pawel Sobocinski, editors, Foundations of Software Science660

and Computation Structures, pages 240–264, Cham, 2023. Springer Nature Switzerland.661

2 Pascal Baumann, Eren Keskin, Roland Meyer, and Georg Zetzsche. Separability in Büchi VASS662

and singly non-linear systems of inequalities. In Karl Bringmann, Martin Grohe, Gabriele663

Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages,664

and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs,665

pages 126:1–126:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.666

3 Pascal Baumann, Roland Meyer, and Georg Zetzsche. Regular separability in Büchi VASS. In667

Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors,668

40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023,669

March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 9:1–9:19. Schloss Dagstuhl670

- Leibniz-Zentrum für Informatik, 2023.671

4 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. Ramsey quantifiers672

in linear arithmetics. Proc. ACM Program. Lang., 8(POPL):1–32, 2024.673

5 Marcello M. Bersani and Stéphane Demri. The complexity of reversal-bounded model-checking.674

In Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, Frontiers of Combining Systems,675

8th International Symposium, FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011.676

Proceedings, volume 6989 of Lecture Notes in Computer Science, pages 71–86. Springer, 2011.677

6 Jean Berstel. Transductions and Context-Free Languages. Teubner, 1979.678

7 Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. Weakly-unambiguous679

Parikh automata and their link to holonomic series. In Artur Czumaj, Anuj Dawar, and680

Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and681

Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),682

volume 168 of LIPIcs, pages 114:1–114:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,683

2020.684

8 Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of FIFO-channel685

systems with nonregular sets of configurations. Theor. Comput. Sci., 221(1-2):211–250, 1999.686

9 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Affine Parikh automata. RAIRO Theor.687

Informatics Appl., 46(4):511–545, 2012.688

10 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.689

Int. J. Found. Comput. Sci., 24(7):1099–1116, 2013.690

11 Michaël Cadilhac, Arka Ghosh, Guillermo A. Pérez, and Ritam Raha. Parikh one-counter691

automata. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International692

Symposium on Mathematical Foundations of Computer Science, MFCS 2023, August 28 to693

September 1, 2023, Bordeaux, France, volume 272 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl694

- Leibniz-Zentrum für Informatik, 2023.695

12 Michaël Cadilhac, Andreas Krebs, and Pierre McKenzie. The algebraic theory of Parikh696

automata. Theory Comput. Syst., 62(5):1241–1268, 2018.697

13 Christian Choffrut and Serge Grigorieff. Separability of rational relations in A∗×Nm by698

recognizable relations is decidable. Information Processing Letters, 99(1):27–32, 2006.699

14 Lorenzo Clemente, Wojciech Czerwiński, Slawomir Lasota, and Charles Paperman. Regular700

Separability of Parikh Automata. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,701

and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and702

Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics703

(LIPIcs), pages 117:1–117:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum704

fuer Informatik.705

15 Lorenzo Clemente, Wojciech Czerwiński, Slawomir Lasota, and Charles Paperman. Separability706

of reachability sets of vector addition systems. In Heribert Vollmer and Brigitte Vallée, editors,707

34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017,708

XX:18 The complexity of separability for semilinear sets and Parikh automata

Hannover, Germany, volume 66 of LIPIcs, pages 24:1–24:14. Schloss Dagstuhl - Leibniz-709

Zentrum für Informatik, 2017.710

16 Wojciech Czerwiński and Slawomir Lasota. Regular separability of one counter automata. In711

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,712

Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.713

17 Wojciech Czerwiński, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan Kumar,714

and Prakash Saivasan. Regular separability of well-structured transition systems. In Sven715

Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory,716

CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 35:1–35:18.717

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.718

18 Wojciech Czerwiński and Georg Zetzsche. An approach to regular separability in vector719

addition systems. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in720

Computer Science, LICS ’20, page 341–354, New York, NY, USA, 2020. Association for721

Computing Machinery.722

19 Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann.723

History-deterministic Parikh automata. In Guillermo A. Pérez and Jean-François Raskin,724

editors, 34th International Conference on Concurrency Theory, CONCUR 2023, September725

18-23, 2023, Antwerp, Belgium, volume 279 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl -726

Leibniz-Zentrum für Informatik, 2023.727

20 Javier Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.728

Fundam. Informaticae, 31(1):13–25, 1997.729

21 Emmanuel Filiot, Shibashis Guha, and Nicolas Mazzocchi. Two-way Parikh automata. In730

Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference on731

Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019,732

December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 40:1–40:14. Schloss733

Dagstuhl - Leibniz-Zentrum für Informatik, 2019.734

22 Alain Finkel and Arnaud Sangnier. Reversal-bounded counter machines revisited. In Edward735

Ochmanski and Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer Science736

2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008,737

Proceedings, volume 5162 of Lecture Notes in Computer Science, pages 323–334. Springer,738

2008.739

23 Seymour Ginsburg and Edwin H. Spanier. Bounded regular sets. Proceedings of the American740

Mathematical Society, 17(5):1043–1049, 1966.741

24 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.742

Pacific Journal of Mathematics, 16(2):285–296, February 1966.743

25 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.744

Theoretical Computer Science, 7(3):311–324, 1978.745

26 Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Remarks on Parikh-recognizable omega-746

languages. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference747

on Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy, volume 288 of748

LIPIcs, pages 31:1–31:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.749

27 Stéphane Grumbach, Philippe Rigaux, and Luc Segoufin. Spatio-temporal data handling750

with constraints. In Robert Laurini, Kia Makki, and Niki Pissinou, editors, ACM-GIS751

’98, Proceedings of the 6th international symposium on Advances in Geographic Information752

Systems, November 6-7, 1998, Washington, DC, USA, pages 106–111. ACM, 1998.753

28 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh automata754

over infinite words. In Anuj Dawar and Venkatesan Guruswami, editors, 42nd IARCS Annual755

Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS756

2022, December 18-20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs, pages 40:1–757

40:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.758

29 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Joël759

Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International760

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:19

Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture761

Notes in Computer Science, pages 112–124. Springer, 2014.762

30 Christoph Haase, Shankara Narayanan Krishna, Khushraj Madnani, Om Swostik Mishra, and763

Georg Zetzsche. An efficient quantifier elimination procedure for Presburger arithmetic. In764

Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International765

Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn,766

Estonia, volume 297 of LIPIcs, pages 142:1–142:17. Schloss Dagstuhl - Leibniz-Zentrum für767

Informatik, 2024.768

31 Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. Monadic decomposition769

in integer linear arithmetic. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors,770

Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July771

1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes in Computer Science, pages772

122–140. Springer, 2020.773

32 Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and774

expressiveness of first-order logic over the subword ordering. In 32nd Annual ACM/IEEE775

Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017,776

pages 1–12. IEEE Computer Society, 2017.777

33 Harry B. Hunt III. On the Decidability of Grammar Problems. Journal of the ACM, 29(2):429–778

447, 1982.779

34 Oscar H Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal780

of the ACM (JACM), 25(1):116–133, 1978.781

35 Oscar H. Ibarra and Bala Ravikumar. On the Parikh Membership Problem for FAs, PDAs,782

and CMs. In Adrian-Horia Dediu, Carlos Martín-Vide, José-Luis Sierra-Rodríguez, and Bianca783

Truthe, editors, Language and Automata Theory and Applications, pages 14–31, Cham, 2014.784

Springer International Publishing.785

36 Matthias Jantzen and Alexy Kurganskyy. Refining the hierarchy of blind multicounter786

languages and twist-closed trios. Inf. Comput., 185(2):159–181, 2003.787

37 Eren Keskin and Roland Meyer. Separability and non-determinizability of WSTS. In788

Guillermo A. Pérez and Jean-François Raskin, editors, 34th International Conference on789

Concurrency Theory, CONCUR 2023, September 18-23, 2023, Antwerp, Belgium, volume 279790

of LIPIcs, pages 8:1–8:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.791

38 Eren Keskin and Roland Meyer. On the separability problem of VASS reachability languages.792

In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the 39th793

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia,794

July 8-11, 2024, pages 49:1–49:14. ACM, 2024.795

39 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Jos C. M.796

Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata,797

Languages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The798

Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes in Computer799

Science, pages 681–696. Springer, 2003.800

40 Chris Köcher and Georg Zetzsche. Regular separators for VASS coverability languages.801

In Patricia Bouyer and Srikanth Srinivasan, editors, 43rd IARCS Annual Conference on802

Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2023,803

December 18-20, 2023, IIIT Hyderabad, Telangana, India, volume 284 of LIPIcs, pages804

15:1–15:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.805

41 Gabriel Kuper, Leonid Libkin, and Jan Paredaens. Constraint databases. Springer Science &806

Business Media, 2013.807

42 Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren A. Hunt808

Jr. and Fabio Somenzi, editors, Computer Aided Verification, 15th International Conference,809

CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture Notes in810

Computer Science, pages 1–13. Springer, 2003.811

XX:20 The complexity of separability for semilinear sets and Parikh automata

43 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, Cambridge,812

2009.813

44 Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting in trees for814

free. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,815

Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,816

July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science, pages817

1136–1149. Springer, 2004.818

45 Thomas G. Szymanski and John H. Williams. Noncanonical extensions of bottom-up parsing819

techniques. SIAM Journal on Computing, 5(2), 1976.820

46 Ramanathan S. Thinniyam and Georg Zetzsche. Regular separability and intersection emptiness821

are independent problems. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS822

Annual Conference on Foundations of Software Technology and Theoretical Computer Science,823

FSTTCS 2019, December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 51:1–51:15.824

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.825

47 Margus Veanes, Nikolaj S. Bjørner, Lev Nachmanson, and Sergey Bereg. Monadic826

decomposition. J. ACM, 64(2):14:1–14:28, 2017.827

48 Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and their828

applications in model checking. Proc. IEEE, 103(11):2021–2035, 2015.829

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:21

A Omitted proofs of Section 4830

▶ Lemma 4.3 (Subgroup separability). If A ⊆ Zd is a subgroup and u ∈ Zd \ A, then831

there exists an s ∈ N, s > 0, and a morphism φ : Zd → Z/sZ such that (i) φ(A) = 0 and832

(ii) φ(u) ̸= 0.833

Proof. Consider the quotient group Zd/A. It is finitely generated and abelian and thus834

isomorphic to a group
⊕n

j=1 Z/rjZ for some numbers r1, . . . , rn ∈ N. The projection map835

π : Zd → Zd/A can thus be composed with the isomorphism above to yield a morphism836

ψ : Zd →
⊕n

j=1 Z/rjZ with kerψ = A. Since u /∈ A and thus ψ(u) ̸= 0, say the j-th837

component of ψ(u) is not zero. We distinguish two cases:838

(1) If rj > 0, then we can choose φ : Zd → Z/rjZ to be ψ followed by the projection to the839

j-th component.840

(2) If rj = 0, then Z/rjZ = Z and thus the j-th component of ψ(u) is an integer k ∈ Z. We841

pick some s > |k| and let φ : Zd → Z/sZ yield the j-th component of ψ, modulo s.842

These choices clearly satisfy φ(A) = 0 and φ(u) ̸= 0. ◀843

B Omitted proofs of Section 5844

▶ Lemma 5.1. Let K,K1, . . . ,Kn, L ⊆ M be sets from a monoid M such that K = K1 ∪845

· · · ∪Kn. Then K | L if, and only if, Ki | L for all 1 ≤ i ≤ n.846

Proof. Assume K | L. Then there is a recognizable sets S ⊆ M separating K and L. Let847

1 ≤ i ≤ n be arbitrary. Since Ki ⊆ K holds, the set S is also a separator of Ki and L, i.e.,848

Ki | L for all 1 ≤ i ≤ n.849

Conversely, assume Ki | L for all 1 ≤ i ≤ n. Then there are recognizable sets Si ⊆ M850

separating Ki and L. Set S :=
⋃

1≤i≤n Si. Then S is recognizable (according to the closure851

properties of the class of recognizable sets). We also have852

K =
⋃

1≤i≤n

Ki ⊆
⋃

1≤i≤n

Si = S853

and854

L ∩ S = L ∩

 ⋃
1≤i≤n

Si

 =
⋃

1≤i≤n

(L ∩ Si) =
⋃

1≤i≤n

∅ = ∅ .855

In other words, we S is a recognizable separator of K and L, i.e., K | L. ◀856

▶ Proposition 5.2. K and L are recognizably inseparable if, and only if, there are vectors857

p, q,u,v,x,y ∈ Nr with858

(1) Ap = 0, Cq = 0, supp(π(p)) = supp(π(q)),859

(2) supp(π(u)), supp(π(v)) ⊆ supp(π(p)), Au = 0, and Cv = 0,860

(3) Ax = b, Cy = d, and π(x + v) = π(y + u).861

Proof. We apply Theorem 4.6. To this end, we use the standard hyperlinear representation862

for solution sets of systems of linear Diophantine equalities. Let A0 ⊆ Nr be the set of all863

(component-wise) minimal solutions to Ax = b, and let U ⊆ Nr be the set of all minimal864

solutions to Ax = 0. Then it is well-known that K = π(A0 + U∗) = π(A0) + π(U)∗. In the865

same way, we obtain a hyperlinear representation L = π(B0 + V ∗) = π(B0) + π(V)∗. Then,866

the proposition follows from Theorem 4.6.867

XX:22 The complexity of separability for semilinear sets and Parikh automata

Indeed, observe that then π(U)∗ is exactly the set of π(p) ∈ Nd with Ap = 0. Likewise,868

π(V)∗ is exactly the set of π(q) ∈ Nd with Cq = 0. Therefore, if J ⊆ [1, d] is the set of869

strongly unbounded components of K,L, and UJ , VJ are defined as in Theorem 4.6, then870

π(UJ)∗ consists of exactly those π(u) for which (i) there are p, q ∈ Nr with Ap = 0 and871

Cq = 0 with supp(π(u)) ⊆ supp(π(p)) = supp(π(q)) ⊆ J , and (ii) Au = 0. The set π(VJ)∗
872

has an analogous description.873

Thus, if p, q,u,v,x,y ∈ Nr exist as in the proposition, then clearly π(x + v) = π(y + u)874

lies in the intersection (π(A0) + π(U)∗ + π(VJ)∗) ∩ (π(B0) + π(V)∗ + π(UJ)∗).875

Conversely, an element in the intersection (π(A0) + π(U)∗ + π(VJ)∗) ∩ (π(B0) + π(V)∗ +876

π(UJ)∗) can be written as π(x + v) = π(y + u), such that Ax = b, Cy = d, and there877

are p1, q1 ∈ Nr witnessing u ∈ U∗
J and also p2, q2 ∈ Nr witnessing v ∈ V ∗

J . This means,878

supp(π(u)) ⊆ supp(π(p1)) = supp(π(q1)) and Ap1 = 0 and Cq1 = 0, but also supp(v) ⊆879

supp(π(p2)) = supp(π(q2)) and Ap2 = 0 and Cq2 = 0. But then we can use p := p1 + p2880

and q := q1 + q2 to satisfy the requirements of the proposition. ◀881

C Omitted proofs of Section 6882

▶ Lemma C.1. Let K,L ⊆ Σ∗ be two languages and h : Γ ∗ → Σ∗ be an alphabetic morphism5.883

If K ′ ⊆ h−1(K) with h(K ′) = K, then we have884

K | L ⇐⇒ K ′ | h−1(L) .885

Proof. First, assume K | L. Then there is a regular separator R ⊆ Σ∗ of K and L, i.e.,886

we have K ⊆ R and L ∩ R = ∅. Set R′ := h−1(R) ⊆ Γ ∗. R′ is regular since the class887

of regular languages is closed under inverse morphisms. We also have K ′ ⊆ h−1(K) ⊆888

h−1(R) = R′. Additionally, we have h−1(L) ∩ h−1(R) = ∅ since the existence of an element889

w ∈ h−1(L) ∩ h−1(R) would imply h(w) ∈ L ∩R. This means, R′ is a regular separator of890

K ′ and h−1(L), i.e., K ′ | h−1(L).891

Conversely, assume K ′ | h−1(L). Then there exists a regular separator R′ ⊆ Γ ∗ of K ′
892

and h−1(L), i.e., we have K ′ ⊆ R′ and h−1(L) ∩R′ = ∅. Set R := h(R′) which is a regular893

language since the class of regular languages is also closed under morphisms. Then we have894

K = h(K ′) ⊆ h(R′) = R′. Also L ∩R = ∅ holds: towards a contradiction suppose there is895

w ∈ L∩R. From w ∈ R = h(R′) follows the existence of a word w′ ∈ R′ with h(w′) = w. We896

also infer w′ ∈ h−1(L) from w ∈ L. Hence, we have w′ ∈ h−1(L) ∩R′ = ∅—a contradiction.897

All in all, we proved that R is a regular separator of K and L, i.e., K | L. ◀898

▶ Lemma 6.1 ([14, Lemma 7]). Regular separability for Z-VASS reduces in polynomial time899

to the regular separability problem for deterministic Z-VASS.900

Proof. The proof of this lemma is similar to [14, Lemma 7]: let Vi = (Qi, Σ, Ti, ιi, fi) with901

i = 1, 2 be two Z-VASS. From V1 and V2 we will construct two Z-VASS V ′
i = (Qi, Γ, T

′
i , ιi, fi)902

such that V ′
1 is deterministic and we have903

L(V1) | L(V2) ⇐⇒ L(V ′
1) | L(V ′

2) .904

We will obtain the determinism of V ′
1 by making each label of a transition in V1 unique. So,905

set Γ = T1. T ′
1 is obtained from T1 by replacing each transition t = (p, a,x, q) ∈ T1 by the906

new transition (p, t,x, q). Using this translation we also obtain a morphism h : Γ ∗ → Σ∗
907

5 A morphism h : Γ ∗ → Σ∗ is alphabetic if |h(a)| ≤ 1 holds for each letter a ∈ Γ .

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:23

with h((p, a,x, q)) = a for each transition (p, a,x, q) ∈ Γ = T1. Then we obtain V ′
2 from V2908

with L(V ′
2) = h−1(L(V2)) by replacing each label a ∈ Σε of a transition in T ′

2 with all labels909

t ∈ T1 with h(t) = a. Additionally, we add loops labeled with t ∈ T1 such that h(t) = ε to910

any state of L(V2). Formally, this is the following set of transitions:911

T ′
2 = {(p, t,x, q) | t ∈ T1, (p, h(t),x, q) ∈ T2}912

∪ {(p, t,0, q) | p, q ∈ Q, t ∈ T1, h(t) = ε} .913

Note that this is a well-known construction for the application of the inverse of an alphabetic914

morphism and, hence, we have L(V ′
2) = h−1(L(V2)).915

Since each letter from Γ occurs in exactly one transition of V ′
1, this Z-VASS is deterministic.916

Additionally, V ′
1 and V ′

2 can be constructed from V1 and V2 in polynomial time. It is also917

clear that the morphism h is alphabetical. We can also prove the following properties:918

1. L(V ′
1) ⊆ h−1(L(V1)): Let w ∈ L(V ′

1). Then there is an accepting run t′1t′2 · · · t′ℓ in V ′
1 with919

ti = (qi−1, ti,xi, qi) ∈ T ′
1 for each 1 ≤ i ≤ ℓ. In particular, we have w = t1t2 · · · tℓ ∈ T ∗

1 .920

By definition of V ′
1 we have ti = (qi−1, ai,xi, qi) ∈ T1 for an ai ∈ Σε. But this means that921

w = t1t2 · · · tℓ is an accepting run in V ′
1 labeled by a1a2 · · · aℓ, i.e., a1a2 · · · aℓ ∈ L(V1).922

Moreover, we have h(w) = h(t1t2 · · · tℓ) = a1a2 · · · aℓ implying w ∈ h−1(a1a2 · · · aℓ) ⊆923

h−1(L(V1)).924

2. h(L(V ′
1)) = L(V1): A word w ∈ Σ∗ is in h(L(V ′

1)) if, and only if, there is a word925

w′ ∈ L(V ′
1) ⊆ Γ ∗ with w = h(w′). This is exactly the case if there is an accepting926

run t′1t
′
2 · · · t′ℓ in V ′

1 that is labeled with w′, i.e., we have t′i = (qi−1, ti,xi, qi) ∈ T ′
1 and927

w′ = t1t2 · · · tℓ. By construction this is equivalent to an accepting run t1t2 · · · tℓ in V1928

that is labeled with h(w′) = w. But this is exactly the definition of w ∈ L(V1).929

Now, we can apply Lemma C.1 and obtain930

L(V1) | L(V2) ⇐⇒ L(V ′
1) | L(V ′

2) .931

In a final step, we can apply the same polynomial-time procedure to V ′
2 and V ′

1 to932

determinize V ′
2. The result are two Z-VASS V ′′

1 and V ′′
2 with933

L(V1) | L(V2) ⇐⇒ L(V ′
1) | L(V ′

2) ⇐⇒ L(V ′′
1) | L(V ′′

2) .934

While V ′′
2 is deterministic by construction, it is not clear that the same holds for V ′′

1 . However,935

due to the fact that V ′
1 and V ′

2 do not have any ε-transitions, the resulting morphism936

h′ : T ′∗
2 → T ∗

1 is strictly alphabetical. Hence, V ′′
1 is also deterministic. ◀937

▶ Lemma 6.2 ([14, Proposition 1]). Regular separability for deterministic Z-VASS reduces938

in polynomial time to the following:939

Given: A d-dimensional deterministic Z-VASS V with two subsets I1, I2 ⊆ [1, d].940

Question: Are the languages L(V, I1) and L(V, I2) regularly separable?941

Proof. Let Vi = (Qi, Σ, Ti, ιi, fi) be two deterministic d-dimensional Z-VASS. We apply the942

product construction and obtain a new deterministic 2d-dimensional Z-VASS V1 × V2 =943

(Q1 ×Q2, Σ, T, (ι1, ι2), (f1, f2)) with944

T =
{

((p1, p2), a, (v1,v2), (q1, q2))
∣∣∣∣ (pi, a,vi, qi) ∈ Ti

for all i = 1, 2

}
.945

We show now that L(V1)|L(V2) holds if, and only if, L(V1×V2, [1, d])|L(V1×V2, [d+1, 2d]).946

Let Ai = (Qi, Σ,∆i, ιi, {fi}) with ∆i = {(p, a, q) | ∃v ∈ Zd : (p, a,v, q) ∈ Ti} be the DFA947

XX:24 The complexity of separability for semilinear sets and Parikh automata

obtained from Vi (for i = 1, 2) by removing all counter updates from the transitions. Then we948

can observe that L(V1×V2, [1, d]) = L(V1)∩L(A2) and L(V1×V2, [d+1, 2d]) = L(V2)∩L(A1)949

holds.950

Assume that L(V1) | L(V2) holds. Then there is a regular separator R ⊆ Σ∗ with951

L(V1) ⊆ R and L(V2) ∩ R = ∅. Since L(V1 × V2, [1, d]) = L(V1) ∩ L(A2) ⊆ L(V1) and,952

similarly, L(V1 × V2, [d+ 1, 2d]) ⊆ L(V2) holds, the regular language R is also a separator of953

L(V1 × V2, [1, d]) and L(V1 × V2, [d+ 1, 2d]).954

Conversely, let R ⊆ Σ∗ be a regular separator of L(V1×V2, [1, d]) and L(V1×V2, [d+1, 2d]).955

Set R′ = (R ∩ L(A1)) ∪ (Σ∗ \ L(A2)). Clearly the language R′ is regular. We also have956

L(V1) = (L(V1) ∩ L(A2)) ∪ (L(V1) ∩Σ∗ \ L(A2))957

= (L(V1) ∩ L(A2) ∩ L(A1)) ∪ (L(V1) ∩Σ∗ \ L(A2))958

⊆ (R ∩ L(A1)) ∪ (L(V1) ∩Σ∗ \ L(A2))959

⊆ (R ∩ L(A1)) ∪ (Σ∗ \ L(A2))960

= R′ .961

Here, the second line holds since L(V1) ⊆ L(A1) and the third one holds since R is a962

separator.963

Additionally, by L(V2) ⊆ L(A2) we have L(V2) ∩ (Σ∗ \ L(A2)) = ∅ and964

(R ∩ L(A1)) ∩ L(V2) = R ∩ L(V1 × V2, [d+ 1, 2d]) = ∅965

implying L(V2) ∩R′ = ∅. Hence, R′ is a regular separator of L(V1) and L(V2). ◀966

▶ Lemma 6.3 ([14, Lemma 11]). We have L(V, I1) | L(V, I2) if, and only if, L(V, I1, ρ) |967

L(V, I2, ρ) holds for every skeleton ρ.968

Proof. First, note that there are only finitely many skeletons: Clemente et al. proved969

in [14, page 9] that each skeleton has length at most |Q|2. Hence, there are at most |T ||Q|2
970

many skeletons in V. It is also clear that L(V, I) =
⋃

skeleton ρ of V L(V, I, ρ) holds.971

Let ρ be a skeleton of V . There is also a regular language Kρ ⊆ Σ∗ such that L(V, I, ρ) =972

L(V, I)∩Kρ holds: we can obtain a finite automaton accepting Kρ from V and ρ by removing973

all counters and all edges and states that do not belong the skeleton ρ.974

Finally, we use the following well-known fact:975

▷ Claim C.2. Let K1, . . . ,Kn ⊆ Σ∗ be regular languages partitioning Σ∗ and L1, L2 ⊆ Σ∗
976

be two languages. Then we have L1 | L2 if, and only if, L1 ∩Ki | L2 ∩Ki holds for each977

1 ≤ i ≤ n.978

Now, if the languages Ki are the regular languages Kρ for any skeleton ρ and Li = L(V, Ii)979

for i = 1, 2 we obtain that L(V, I1) |L(V, I2) holds if, and only if, L(V, I1, ρ) = L(V, I1)∩Kρ980

is regular separable from L(V, I2) ∩Kρ = L(V, I2, ρ). ◀981

▶ Lemma 6.5. We have L(I1) | L(I2) if, and only if, M(I1) |M(I2).982

Proof. Before we prove the equivalence, let us introduce a map cycles : T ∗ → NS such that983

for each ρ-run r ∈ T ∗ we have cycles(r) = v ∈ NS if r contains each ρ-cycle c ∈ S exactly984

v[c] times.985

Now, assume that L(I1) | L(I2) holds, i.e., there is a regular separator R ⊆ Σ∗ with986

L(I1) ⊆ R and R ∩ L(I2) = ∅. We will use Lemma 4.4 to show that M(I1) and M(I2) are987

separable by a recognizable set. To this end, we will give a number k ∈ N \ {0} such that988

v1 ≁k v2 holds for each vi ∈M(Ii) implying the separability of M(I1) and M(I2).989

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:25

For two words w1, w2 ∈ Σ∗ write w1 ≡R w2 if xw1y ∈ R ⇐⇒ xw2y ∈ R for all x, y ∈ Σ∗
990

(i.e., ≡R is the syntactic or Myhill congruence of R). Since R is regular, there is a number991

k ∈ N \ {0} such that992

wk ≡R w2k for each w ∈ Σ∗. (8)993

We show now v1 ≁k v2 for each vi ∈ M(Ii). Towards a contradiction, assume there are994

vi ∈M(Ii) (for i = 1, 2) with v1 ∼k v2. We construct runs ri ∈ T ∗ such that skel(ri) = ρ and995

cycles(ri) = vi hold. For a short ρ-cycle c ∈ S choose a prefix xc of ρ such that skel(xcc) = xc996

(note that for each cycle c ∈ S such an xc exists). Let c1, . . . , cn be an enumeration of S997

such that |xc1 | ≤ |xc2 | ≤ · · · ≤ |xcn
| holds. In the following we will write xi instead of xci

.998

Let z1, . . . , zn+1 ∈ T ∗ such that z1 = x1, xizi+1 = xi+1 for each 1 ≤ i < n, and xnzn+1 = ρ,999

i.e., we have ρ = z1z2 · · · zn+1. Set1000

ri := z1c
vi[c1]
1 z2c

vi[c2]
2 · · · znc

vi[cn]
n zn+1 .1001

Clearly we have skel(ri) = ρ and cycles(ri) = vi hold for i = 1, 2. We can also show that the1002

labels w1, w2 ∈ Σ∗ of the paths r1 resp. r2 satisfy w1 ≡R w2 using v1 ∼k v2 and repeated1003

usage of the equation (8). However, vi ∈ M(Ii) implies wi ∈ L(Ii). Since w1 ∈ L(I1) ⊆ R1004

we also have w2 ∈ R (by w1 ≡R w2). Hence, we have w2 ∈ R ∩ L(I2) = ∅—a contradiction.1005

Conversely, assume that M(I1) |M(I2) holds. Hence, there is a recognizable set X ⊆ NS
1006

such that M(I1) ⊆ X and X ∩M(I2) = ∅. Let R ⊆ Σ∗ be the set of all labels of ρ-runs1007

r ∈ T ∗ such that skel(r) = ρ with cycles(r) ∈ X. We show that R is a regular separator of1008

L(I1) and L(I2). We have L(I1) ⊆ R: let w ∈ L(I1). Then w is the label of a ρ-run r ∈ T ∗
1009

with skel(r) = ρ. But then we know cycles(r) ∈M(I1) ⊆ X implying w ∈ R.1010

Now, suppose there is a word w ∈ L(I2)∩R. Then w is the label of runs r1, r2 ∈ T ∗ with1011

skel(ri) = ρ, cycles(r1) ∈M(I2) and cycles(r2) ∈ X. Since V is deterministic, we know that1012

r1 = r2 implying cycles(r1) = cycles(r2) ∈M(I2) ∩X = ∅—a contradiction. Hence, we have1013

L(I2) ∩R = ∅.1014

Finally, we have to show that R is regular. To this end, we construct a nondeterministic1015

finite automaton that simulates ρ-runs by storing the image of the map skel in its state.1016

While the set of all skeletons is finite, the set of vectors appearing in the image of skel is not1017

necessarily bounded. However, since X is recognizable and, hence, semilinear we can evaluate1018

the condition cycles(r) ∈ X for a path r ∈ T ∗ using only a finite memory. Concretely we1019

guess a linear set u + P ∗ ⊆ X where u ∈ NS and P ⊆ NS finite (recall that X is a finite1020

union of such linear sets). Additionally, let P = {p1, . . .pn}. The NFA stores in its memory1021

vectors u′,p′
1, . . . ,p

′
n with u′ ≤ u and p′

i ≤ pi for all 1 ≤ i ≤ n. Whenever the simulation of1022

skel detects a ρ-cycle, we increase one of the vectors u′,p′
1, . . . ,p

′
n. If we reach the vector pi1023

due to this increasing, we reset this vector to 0. The NFA accepts if its memory contains1024

the skeleton ρ and the (bounded) counter values u,0, . . . ,0. Clearly, this NFA accepts the1025

language R. Hence, R is a regular separator of L(I1) and L(I2). ◀1026

▶ Observation 6.4. Let I ⊆ [1, d]. Then M(I) is hyperlinear, i.e., M(I) = B + V ∗ for two1027

finite sets B, V ⊆ NS.1028

Proof. The equation ∆Ii
(ρ)+∆Ii

(u) = 0 is a system of linear equations (over NS) andM(I) is1029

the set of solutions of this equational system. Since the equations are expressible in Presburger1030

arithmetic, we obtain that M(I) is semilinear [24]. Hence, we have M(I) =
⋃

1≤i≤k ui + V ∗
i1031

(where ui ∈ NS and Vi ⊆ NS are finite). We can see that the vectors in Vi are solutions1032

of the homogeneous linear equation system ∆Ii(v) = 0 and the vectors uj satisfy the1033

inhomogeneous system ∆Ii
(uj) = −∆Ii

(ρ). Therefore, we have ui + v ∈ M(I) for each1034

XX:26 The complexity of separability for semilinear sets and Parikh automata

1 ≤ i ≤ k and v ∈
⋃

1≤j≤k V
∗

j . According to this we can write the solution set M(I) also as1035

B + V ∗ where B = {u1, . . . ,uk} and V =
⋃

1≤i≤k Vi. In other words, the set M(I) is even1036

hyperlinear. ◀1037

▶ Lemma 6.8. Given a transition t ∈ T , we can decide in NP whether it is bi-cancelable.1038

Proof. We construct an existential Presburger formula φt which is satisfiable if, and only if, t1039

is bi-cancelable. Recall that t is bi-cancelable if, and only if, there exist two flows f1,f2 ∈ NT
1040

such that the properties (i)–(iii) on page 14 hold. We express in the following these three1041

properties as quantifier-free Presburger formulas using the variables xt′ and yt′ for each1042

transition.1043

(i) ψ1 =
∧

i∈[1,d]
∑

t′=(p,a,v,q)∈T v[i] · xt′ = 0 ∧
∑

t′=(p,a,v,q)∈T v[i] · yt′ = 01044

(ii) ψ2,t = xt > 0 ∧ yt > 01045

(iii) ψ3 =
∧

t′∈T xt′ > 0←→ yt′ > 01046

Additionally, we have to express that f1 and f2 are flows. This is possible with the following1047

formula:1048

ψ0 =
∧

q∈Q

∑
t′=(p,a,v,q)∈T

xt′ =
∑

t′=(q,a,v,p)∈T

xt′ ∧
∑

t′=(p,a,v,q)∈T

yt′ =
∑

t′=(q,a,v,p)∈T

yt′ .1049

Set φt = ∃(xt′ , yt′)t′∈T : ψ0 ∧ ψ1 ∧ ψ2,t ∧ ψ3. Clearly, φt is satisfiable if, and only if, t is1050

bi-cancelable. ◀1051

D Construction of the Z-VASS in Section 61052

We only show the construction ofW1. As described above,W1 accepts a sequence #c1#c2# . . .#cm1053

if m ∈ N, c1, c2, . . . , cm ∈ S, and Φ(c1, . . . , cm) ∈ A+U∗ + V ∗
J (where J = S[T̂]). This is the1054

case, iff there are vectors u0 ∈ A+ U∗ and u1 ∈ V ∗
J with Φ(c1, . . . , cm) = u0 + u1. Recall1055

that u0 ∈ A+ U∗ is equivalent to ∆I1(u0) + ∆I2(ρ) = 0 and that u1 ∈ V ∗
J is equivalent to1056

∆I2(u1) = 0 and supp(u1) ∈ S[T̂] (i.e., all transitions in cycles of u1 are in T̂).1057

Now, W1 is a |I1| + |I2|-dimensional Z-VASS that will first read a sequence of (short)1058

cycles. For each of these cycles W1 guesses whether to count it in u0 or u1. Accordingly, it1059

adds the effect of each cycle either to the first |I1| or the last |I2| counters. In the second case,1060

it also checks the membership of each transition in T̂ . After reading all the cycles, it finally1061

simulates the skeleton ρ (without reading anything from the input). Since Z-VASS accept1062

with value 0 in each counter, we will finally obtain ∆I1(u0) + ∆I2(ρ) = 0, ∆I2(u1) = 0, and1063

supp(u1) ∈ S[T̂].1064

Recall that V = (Q,Σ, T, ι, f) is a d-dimensional Z-VASS, T̂ ⊆ T is a set of bi-cancelable1065

transitions, and ρ is a skeleton from ι to f visiting all states in Q. We construct a |I1|+ |I2|-1066

dimensional Z-VASS W = (Q′, Γ, T ′, ι, f) over the input alphabet Γ = T ∪{#} where # /∈ T1067

is a new symbol. The set of states Q′ contains (among others) the states {ι, f}. We have a1068

transition from ι to f labeled with ε and adding (∆I1(ρ),0) to the counters (note that since1069

the skeleton ρ is fixed for our construction, we can simulate it in one step). Additionally, we1070

attach to the state ι the following two (disjoint) gadgets Gb with b ∈ {0, 1} simulating short1071

cycles. Here, the index b indicates whether we add the effect of this cycle to the effect of u01072

or u1. Concretely, Gb is the following automaton:1073

the states of Gb consist of two states from Q and a bounded counter with values in [1, |Q|],1074

i.e., {(p, q, j) | p, q ∈ Q, 1 ≤ j ≤ |Q|} is the set of states in Gb1075

There are transitions from ι to each state (q, q, |Q|) with label # and counter update1076

(0,0). Here, the first state recognizes in which state the simulation of the cycle began,1077

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:27

the second one indicates the current state of the simulation, and the counter indicates1078

maximum number of subsequent simulation steps.1079

For each 1 < j ≤ |Q| we have a transition from (p, q, j) to (p, q′, j−1) if V has a transition1080

t = (q, a,x, q′) ∈ T . The label of the new transition is t and the counter update is1081

(πI1(y0), πI2(y1)) where yb = x and y1−b = 0. If b = 1, we want to simulate strongly1082

unbounded cycles, only. Hence, we also require t ∈ T̂ .1083

We also have transitions from (p, q, j) to ι if V has a transition t = (q, a,x, p) ∈ T . The1084

label and the counter update are defined as above.1085

In other words, the gadget Gb is actually the computation graph that is truncated to runs1086

of length ≤ |Q|. Note that each gadget has at most |Q|3 many nodes implying that W has1087

polynomial size (in |Q|).1088

The |I2| + |I1|-dimensional Z-VASS W2 is constructed analogously—we only have to1089

replace counter updates πI1(x) by πI2(x) and vice versa. Now, we have to show that L(W1)1090

and L(W2) accept the desired languages:1091

▶ Lemma D.1. The following equations hold:1092

L(W1) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S,Φ(c1, . . . , cm) ∈ A+ U∗ + V ∗
S[T̂]}1093

L(W2) = {#c1#c2 · · ·#cm | m ∈ N, c1, . . . , cm ∈ S,Φ(c1, . . . , cm) ∈ B + V ∗ + U∗
S[T̂]}1094

Proof. We only show the first equation.1095

Let w ∈ L(W1) and let r ∈ T ′∗ be a w-labeled accepting run of W1. Clearly, there are1096

m ∈ N and words c1, . . . , cm ∈ T ∗ with w = #c1#c2 · · ·#cm. By construction, each #ci1097

is read in r by one of the gadgets G0 or G1. These gadgets simulate runs of length ≤ |Q|1098

starting in some state p ∈ Q that are going back to this state. But these are exactly short1099

cycles, i.e., ci ∈ S.1100

Next, for each 1 ≤ i ≤ m choose bi ∈ {0, 1} such that in r the factor #cj is read1101

via the gadget Gbi
. Let u0,u1 ∈ NS be the following two vectors: for each c ∈ S and1102

b ∈ {0, 1} set ub[c] to the number of 1 ≤ i ≤ m such that c = ci and b = bi. Clearly,1103

u0 + u1 = Φ(c1, . . . , cm) is exactly the Parikh image of the cycles in w. We prove next that1104

u0 ∈ A+ U∗ and u1 ∈ V ∗
S[T̂] hold.1105

To prove u0 ∈ A+ U∗ it suffices to show ∆I1(u0) + ∆I1(ρ) = 0. We have1106

∆I1(u0) + ∆I1(ρ) =
∑
c∈S

u0[c] ·∆I1(c) + ∆I1(ρ)1107

=
∑

1≤i≤m,bi=0
∆I1(ci) + ∆I1(ρ) (by definition of u0)1108

= ∆I1(r) (by definition of W1)1109

= 0 (since r is accepting)1110

We first prove ∆I2(u1) = 0:1111

∆I2(u1) =
∑
c∈S

u1[c] ·∆I2(c)1112

=
∑

1≤i≤m,bi=1
∆I2(ci) (by definition of u1)1113

= ∆I2(r) (by definition of W1)1114

= 0 (since r is accepting)1115

XX:28 The complexity of separability for semilinear sets and Parikh automata

Towards the property supp(u1) ⊆ S[T̂]∗ observe that cycles ci (with 1 ≤ i ≤ m) are1116

only counted to u1 if bi = 1 which is the case if the gadget G1 reads this cycle. But G11117

checks that each transition is in T̂ implying that only cycles ci ∈ T̂ ∗ are counted to u1,1118

i.e. supp(u1) ⊆ S[T̂]∗. Finally, from ∆I2(u1) = 0 and supp(u1) ⊆ S[T̂]∗ we infer that1119

u1 ∈ V ∗
S[T̂] holds.1120

Hence, w satisfies all the properties of the right-hand side of the equation.1121

Towards the converse inclusion, let m ∈ N, c1, . . . , cm ∈ S, Φ(c1, . . . , cm) ∈ A+U∗ +V ∗
S[T̂].1122

We will show #c1#c2 · · ·#cm ∈ L(W1). From Φ(c1, . . . , cm) ∈ A+U∗ + V ∗
S[T̂] we obtain the1123

existence of two vectors u0 ∈ A + U∗ and u1 ∈ V ∗
S[T̂] with Φ(c1, . . . , cm) = u0 + u1. We1124

construct a run from ι to f in W1 reading #c1#c2 · · ·#cm as follows: for 1 ≤ i ≤ m choose1125

a value bi ∈ {0, 1} such that ub[c] = |{1 ≤ i ≤ m | ci = c, bi = b}| holds for all b ∈ {0, 1}. Let1126

ri ∈ T ′∗ be the (unique) run of Gbi with label #ci. Then r = r1r2 · · · rmt ∈ T ′∗ (where t is1127

the transition from ι to f) is a run from ι to f in W1 with label #c1#c2 · · ·#cm. To show1128

acceptance, we also need that ∆(r) = (0,0) holds.1129

We first show ∆I1(r) = 0:1130

∆I1(r) =
m∑

i=1
∆I1(ri) + ∆I1(t)1131

=
m∑

i=1
∆I1(ri) + ∆I1(ρ) (by definition of t)1132

=
∑

1≤i≤m,bi=0
∆I1(ci) + ∆I1(ρ) (since ∆I1(ci) = 0 if bi = 1)1133

=
∑
c∈S

u0[c] ·∆I1(c) + ∆I1(ρ) (since u0[c] = |{1 ≤ i ≤ m | ci = c, bi = 0}|)1134

= ∆I1(u0) + ∆I1(ρ)1135

= 0 (since u0 ∈ A+ U∗)1136

Now we show ∆I2(r) = 0:1137

∆I2(r) =
m∑

i=1
∆I2(ri) + ∆I2(t)1138

=
m∑

i=1
∆I2(ri) (by definition of t)1139

=
∑

1≤i≤m,bi=1
∆I2(ci) (since ∆I2(ci) = 0 if bi = 0)1140

=
∑
c∈S

u1[c] ·∆I2(c) (since u1[c] = |{1 ≤ i ≤ m | ci = c, bi = 1}|)1141

= ∆I2(u1)1142

= 0 (since u1 ∈ V ∗
S[T̂])1143

Hence, the run r is accepting in W1 implying #c1#c2 · · ·#cm ∈ L(W1). ◀1144

▶ Lemma D.2. We have L(W1) ∩ L(W2) = ∅ if, and only if, (A+ U∗ + V ∗
S[T̂]) ∩ (B + V ∗ +1145

U∗
S[T̂]) = ∅.1146

Proof. Assume L(W1) ∩ L(W2) = ∅. Then there is a word w ∈ L(W1) ∩ L(W2). By1147

Lemma D.1 there are m ∈ N and c1, . . . , cm ∈ S with1148

E. Rojas Collins, C. Köcher, and G. Zetzsche XX:29

(i) w = #c1#c2 · · ·#cm,1149

(ii) Φ(c1, · · · , cm) ∈ A+ U∗ + V ∗
S[T̂], and1150

(iii) Φ(c1, · · · , cm) ∈ B + V ∗ + U∗
S[T̂].1151

Hence, we have Φ(c1, · · · , cm) ∈ (A+ U∗ + V ∗
S[T̂]) ∩ (B + V ∗ + U∗

S[T̂]) ̸= ∅.1152

Conversely, assume (A + U∗ + V ∗
S[T̂]) ∩ (B + V ∗ + U∗

S[T̂]) ̸= ∅. Then there is a vector1153

u ∈ (A + U∗ + V ∗
S[T̂]) ∩ (B + V ∗ + U∗

S[T̂]). Let m ∈ N and c1, . . . , cm ∈ S such that1154

u = Φ(c1, . . . , cm). But then Lemma D.1 yields #c1#c2 · · ·#cm ∈ L(W1) ∩ L(W2) ̸= ∅. ◀1155

	1 Introduction
	2 Preliminaries
	3 Main results
	4 A characterization of separability in hyperlinear sets
	5 Separability of semilinear sets is in coNP
	6 Regular separability of Parikh automata
	A Omitted proofs of Section 4
	B Omitted proofs of Section 5
	C Omitted proofs of Section 6
	D Construction of the Z-VASS in Section 6

