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Abstract7

We study regular separators of vector addition systems (VASS, for short) with coverability semantics.8

A regular language R is a regular separator of languages K and L if K ⊆ R and L ∩R = ∅. It was9

shown by Czerwiński, Lasota, Meyer, Muskalla, Kumar, and Saivasan (CONCUR 2018) that it is10

decidable whether, for two given VASS, there exists a regular separator. In fact, they show that a11

regular separator exists if and only if the two VASS languages are disjoint. However, they provide a12

triply exponential upper bound and a doubly exponential lower bound for the size of such separators13

and leave open which bound is tight.14

We show that if two VASS have disjoint languages, then there exists a regular separator with at15

most doubly exponential size. Moreover, we provide tight size bounds for separators in the case of16

fixed dimensions and unary/binary encodings of updates and NFA/DFA separators. In particular,17

we settle the aforementioned question.18

The key ingredient in the upper bound is a structural analysis of separating automata based on19

the concept of basic separators, which was recently introduced by Czerwiński and the second author.20

This allows us to determinize (and thus complement) without the powerset construction and avoid21

one exponential blowup.22
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15:2 Regular Separators for VASS Coverability Languages

1 Introduction31

Safety verification of concurrent systems typically consists of deciding whether two languages32

K,L ⊆ Σ∗ are disjoint: If each of the languages describes the set of event sequences that33

(i) are consistent with the behavior of a some system component and (ii) reach an undesirable34

state, then their intersection is exactly the set of event sequences that are consistent with35

both components and reach the undesirable state.36

If we wish to not only decide, but certify disjointness of languages K,L ⊆ Σ∗, then a37

natural kind of certificate is a regular separator : a regular language R ⊆ Σ∗ such that K ⊆ R38

and L ∩ R = ∅. Regular separators can indeed act as disjointness certificates: Deciding39

whether a given language intersects (resp. is included in) a regular language is usually simple.40

The regular separability problem asks whether for two given languages there exists a41

regular separator. This decision problem has recently attracted a significant amount of42

interest. After the problem was shown to be undecidable for context-free languages in the43

1970s [18, 33], recent work has a strong focus on vector addition systems (VASS), which44

are automata with counters that can be incremented, decremented, but not tested for zero.45

Typically, VASS are considered with two possible semantics: With the reachability semantics,46

where a target configuration has to be reached exactly, and the coverability semantics,47

where the target only has to be covered. Decidability of regular separability remains an48

open problem for reachability semantics. However, decidability has been established for49

coverability languages of VASS [10] and several other subclasses, such as one-dimensional50

VASS [9], integer VASS [6] (where counters can become negative), and commutative VASS51

languages [7]. Moreover, for each of these subclasses, decidability is retained if one of the52

input languages is an arbitrary VASS reachability language [13].53

The decidability result about VASS coverability languages is a consequence of a remarkable54

and surprising result by Czerwiński, Lasota, Meyer, Muskalla, Kumar, and Saivasan [10]:55

Two languages of finitely-branching well-structured transition systems (WSTS) are separable56

by a regular language if and only if they are disjoint. (In fact, very recently, Keskin and57

Meyer [20] have even shown that the finite branching assumption is not required.) Moreover,58

VASS (with coverability semantics) are a standard example of (finitely branching) WSTS.59

Despite this range of work on decidability, very little is known about a fundamental60

aspect of the separators: What is the size of the separator, if they exist? Here, by size, we61

mean the number of states in an NFA or DFA. In fact, the only result we are aware of is a62

partial answer for VASS coverability languages: In [10] a triply exponential upper bound and63

a doubly exponential lower bound is shown for NFA separating VASS coverability languages,64

leaving open whether there always exists a doubly-exponential separator.65

Contribution. We study the size of regular separators in VASS coverability languages. Our66

first main result is that if two VASS coverability languages are disjoint, then there exists67

a doubly exponential-sized separating NFA. We then provide a comprehensive account of68

separator sizes for VASS languages: We study separator sizes in (i) fixed/arbitrary dimension,69

(ii) with unary/binary counter updates and (iii) deterministic/non-deterministic separators.70

In each case, we provide a tight polynomial or singly, doubly, or triply exponential bound.71

Related work. There also exists some work on separability of relations by recognizable72

relations [1, 5] (which, in some precise sense, is also an instance of regular separability).73

The equivalence between regular separability and disjointness for WSTS [10,20] and the74

fact that decidability of the two problems usually coincide, raise the question of whether75
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they are inter-reducible in general. However, there are language classes where disjointness is76

decidable and regular separability is undecidable [21,34] and vice-versa [34].77

Decidability of separability by piecewise testable languages is quite well understood. There78

is a language theoretic characterization [12] (which also holds for more general separator79

classes [35]) and a more abstract characterization (that also applies to trees) [15] of when80

separability is decidable.81

There is long line of work on separability of regular languages of finite words by languages82

from smaller subclasses [11,23–31]. Beyond finite words, separability has been studied for83

languages of infinite words (for regular languages [17] and Büchi VASS [2]) and for regular84

languages of finite trees [3] and infinite trees [8].85

2 Preliminaries86

Let d ∈ N+ be a positive number. A vector ~v over Z is an element ~v ∈ Zd. For a vector87

~v = (v1, . . . , vd) ∈ Zd and a number 1 ≤ i ≤ d we write ~v[i] for the i-th component vi of ~v.88

By ~0 ∈ Zd we denote the zero vector satisfying ~0[i] = 0 for each 1 ≤ i ≤ d. For two vectors89

~u,~v ∈ Zd we write ~u+ ~v for the vector ~w ∈ Zd with ~w[i] = ~u[i] + ~v[i] for each 1 ≤ i ≤ d, i.e.,90

+ is the component-wise addition. We write ~u ≤ ~v if, and only if, we have ~u[i] ≤ ~v[i] (for the91

natural ordering in Z) for each 1 ≤ i ≤ d. Note that ≤ is a partial ordering on Zd, but in92

the case of d > 1 no linear ordering.93

Now, let c, d ∈ N+, ~u ∈ Zc, and ~v ∈ Zd. By (~u,~v) we denote the vector ~w ∈ Zc+d with94

~w[i] = ~u[i] for each 1 ≤ i ≤ c and ~w[i + c] = ~v[i] for each 1 ≤ i ≤ d, i.e., (~u,~v) is the95

concatenation of ~u and ~v.96

Vector Addition Systems. Let d ∈ N+. A (d-dimensional) vector addition system with97

states or (d-)VASS is a tuple V = (Q,Σ,∆, s, t) where Q is a finite set of states, Σ is an98

alphabet, ∆ ⊆ Q × Σε × Zd × Q is a finite set of transitions, and s, t ∈ Q are its source99

resp. target states. Here, Σε denotes the set Σ ∪ {ε}. The vector ~x ∈ Zd of a transition100

(p, a, ~x, q) ∈ ∆ is called the counter update of this transition.101

A pseudo-configuration is a tuple from Q× Zd; it is called a configuration if this tuple is102

even contained in Q× Nd. A pseudo-run is a sequence (qi, ~vi)0≤i≤` of pseudo-configurations103

such that for each 1 ≤ i ≤ ` there is a transition (qi−1, ai, ~xi, qi) ∈ ∆ with ~vi = ~vi−1 + ~xi.104

The label of such pseudo-run is a1a2 . . . a` ∈ Σ∗; its length is ` (note that due to ε-labeled105

transitions we have ` ≥ |a1a2 . . . a`|). A pseudo-run is called a run if we have ~vi ∈ Nd for106

each 0 ≤ i ≤ n, i.e., if each intermediate pseudo-configuration is actually a configuration. For107

two configurations (p, ~u), (q,~v) ∈ Q× Nd and w ∈ Σ∗ we write (p, ~u) w−→V (q,~v) if there is a108

run (qi, ~vi)0≤i≤` with label w, (p, ~u) = (q0, ~v0), and (q,~v) = (q`, ~v`). For a natural number109

` ∈ N we write (p, ~u)→`
V (q,~v) if there is a run from (p, ~u) to (q,~v) of length `. We write110

(p, ~u)→V (q,~v) if there exists such an `.111

The (coverability) language of V is L(V) = {w ∈ Σ∗ | ∃~v ∈ Nd : (s,~0) w−→V (t, ~v)} (note112

that ~v ≥ ~0 holds for any ~v ∈ Nd; we say that (t, ~v) covers the so-called target configuration113

(t,~0)). We say L ⊆ Σ∗ is a (coverability) d-VASS-language if there is a d-VASS V with114

L = L(V).115

Now, let Vi = (Qi, Σ,∆i, si, ti) be two d-VASS (i = 1, 2). We want to construct the116

product VASS V1×V2 which simulates V1 and V2 in parallel. To this end, set the 2d-VASS117

V1 ×V2 := (Q1 ×Q2, Σ,∆, (s1, s2), (t1, t2)) with the following transitions in ∆:118

((p1, p2), a, (~v1, ~v2), (q1, q2)) ∈ ∆ if (p1, a, ~v1, q1) ∈ ∆1 and (p2, a, ~v2, q2) ∈ ∆2,119

((p1, p2), ε, (~v1,~0), (q1, p2)) ∈ ∆ if (p1, ε, ~v1, q1) ∈ ∆1, and120
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((p1, p2), ε, (~0, ~v2), (p1, q2)) ∈ ∆ if (p2, ε, ~v2, q2) ∈ ∆2.121

Then the following statement is easy to see:122

I Lemma 2.1. Let V1 and V2 be two d-VASS. Then L(V1 ×V2) = L(V1) ∩ L(V2), i.e.,123

the intersection of two d-VASS-languages is a 2d-VASS-language. J124

For a vector ~v ∈ Zd let ‖~v‖ = max{|~v[i]| : 1 ≤ i ≤ d} be the norm of ~v (where |x| is the125

absolute value of x ∈ Z). We also define the norm of the transition relation ∆ as follows:126

‖∆‖ := max{‖~v‖ : (p, a,~v, q) ∈ ∆}. Then the size |V| of the d-VASS V is |Q|+ d · |∆| · ‖∆‖.127

We can define the Rackoff-number Rack(V) of V: Rack(V) := (|Q| · ‖∆‖ + 2)(3d)!+1.128

Then we can show that for each run from a configuration c ∈ Q × Nd covering the target129

configuration (t,~0) there is also such run of length bounded by the Rackoff-number. This is130

the following central statement:131

I Theorem 2.2 ( [4, 32]). Let V = (Q,Σ,∆, s, t) be a d-VASS and c ∈ Q × Nd be a132

configuration such that there is a vector ~v ∈ Nd with c→V (t, ~v). Then there are ` ∈ N and133

~w ∈ Nd with 0 ≤ ` ≤ Rack(V) and c→`
V (t, ~w). J134

The bound above is due to Bozelli and Ganty [4], which is slightly tighter than Rackoff’s135

original bound of 22O(‖∆‖ log ‖∆‖) [32]. It should be noted that very recently, a significantly136

better upper bound has been obtained [22]).137

Regular languages. A non-deterministic finite automaton or NFA is a tuple A = (Q,Σ, δ, I, F )138

where Q is a finite set of states, Σ is an alphabet, δ ⊆ Q × Σ × Q is a set of transitions,139

and I, F ⊆ Q are the sets of initial resp. accepting states. It is called deterministic or DFA140

if |I| = 1 and for each p ∈ Q and a ∈ Σ there is exactly one q ∈ Q with (p, a, q) ∈ δ. The141

size |A| of A is |Q|. For p, q ∈ Q and w ∈ Σ∗ we write p w−→A q if there are a1, . . . , a` ∈ Σ142

and q0, q1, . . . , q` ∈ Q with w = a1a2 . . . a`, p = q0, q = q`, and (qi−1, ai, qi) ∈ δ for each143

1 ≤ i ≤ `. The accepted language of A is L(A) = {w ∈ Σ∗ | ∃ι ∈ I, f ∈ F : ι w−→A f}. A144

language L ⊆ Σ∗ is called regular if there is an NFA A with L = L(A).145

Regular Separability. Let Σ be an alphabet. Two languages K,L ⊆ Σ∗ are called regular146

separable (denoted K | L) if there is a regular language R ⊆ Σ∗ with K ⊆ R and L ∩R = ∅.147

In this case R is called a regular separator of K and L. We say that any NFA accepting R148

separates K and L. Since the class of regular languages is closed under complement, we learn149

that if K | L holds, then also L | K (via the complementary separator).150

The following equivalence is known about the languages of coverability VASS. Note that151

actually Czerwiński et al. [10] have shown this result for the languages of a more general152

notion—so-called well structured transition systems (or WSTS for short, cf. e.g. [14]).153

I Theorem 2.3 ( [10]). Let V and W be two VASS. Then we have L(V) | L(W) if, and only154

if, L(V) ∩ L(W) = ∅. J155

3 Main Results156

In this section, we present the main results of this work. An overview can be found in Table 1.157

Here, by i-exp, we mean that there is an i-fold exponential upper bound. More precisely,158

there exists a separator with at most expi(poly(n)) states for input VASS of size n. Here159

exp0(n) = n and expi+1(n) = 2expi(n) for i ≥ 0. All our bounds are tight in the sense that160

for each i-fold exponential upper bound with i ≥ 1, we present a sequence of VASS pairs of161

size polynomial in n such that the smallest separator requires expi(n) states. Proofs can be162

found in Sections 5 and 6 (upper bounds and lower bounds, resp.).163
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NFAs DFAs
unary binary unary binary

d as input 2-exp. 2-exp. 3-exp. 3-exp.

d fixed d ≥ 2 poly. exp. exp. 2-exp.
d = 1 poly. exp. exp. exp.

Table 1 An overview of the (matching) upper and lower bounds for finite automata separating
two disjoint d-VASS. We distinguish between (i) whether the dimension d ∈ N+ is part of the input,
(ii) whether the separating automaton should be an NFA or a DFA, and (iii) whether counter updates
are encoded in unary or binary. The colors denote the employed lower bound technique.

First upper bound. Our first upper bound result is the following.164

I Theorem 3.1. Let V1 and V2 be d-VASS with at most n ≥ 1 states and updates of norm165

at most m ≥ 1. If L(V1) ∩ L(V2) = ∅, then L(V1) and L(V2) are separated by an NFA with166

at most (n+m)2poly(d) states.167

This provides almost all upper bounds in Table 1. In particular, it closes the gap left by [10]168

by providing a doubly exponential upper bound for NFA separators in the general case.169

Let us explain how we avoid one exponential blow-up compared to [10]. In [10], the authors170

first construct VASS V′1 and V′2 such that (i) V′2 is deterministic, (ii) L(V′1)∩L(V′2) = ∅ and171

(iii) any separator for L(V′1) and L(V′2) can be transformed into a separator for L(V1) and172

L(V2). Then, relying on Rackoff-style bounds for covering runs in VASS, they construct a173

doubly exponential NFA separator for L(V′1) and L(V′2). The latter step yields an inherently174

non-deterministic separator. However, the transformation mentioned in (iii) requires a175

complementation, which results in a triply exponential bound overall.176

Instead, roughly speaking, we first apply an observation from [13] to reduce to an even177

more specific case: We construct V such that for the language Cd of all counter instruction178

sequences that keep the d counters above zero, we have (a) L(V) ∩ Cd = ∅ and (b) any179

separator of L(V) and Cd can be transformed into a separator for L(V1) and L(V2). Then,180

we rely on the fact that a particular family (Bk)k∈N of regular languages is a family of181

basic separators (a concept introduced by Czerwiński and the second author in [13]): Every182

language regularly separable from Cd is included in a finite union of sets Bk. Here, Bk183

contains all sequences of counter instructions such that at least one counter at some point184

falls below zero, but before that, it never exceeds the value k. We prove a version of this185

with complexity bounds: We show that L(V) ∩ Cd = ∅ implies that L(V) is included in186

Bk for some doubly exponential bound k. Here, the key advantage is that we understand187

the structure of the Bk so well that we can just observe that the separator Bk is already188

deterministic. Thus, the complementation step will not result in another exponential blow-up.189

Second upper bound. Theorem 3.1 provides all upper bounds for NFA separators in Table 1.190

It also provides all upper bounds for DFAs where the DFA bound is exponential in the191

corresponding NFA bound (via the powerset construction). The only exception to this is the192

dark gray entry: Here, the tight DFA bound is actually the same as for NFA.193

I Theorem 3.2. Let V1 and V2 be 1-VASS with binary updates. If L(V1)∩L(V2) = ∅, then194

there exists a separating DFA with at most exponentially many states.195

For this, we observe that the states of NFA resulting from Theorem 3.1 for d = 1 can be196

equipped with a partial ordering ≤ such that (i) if p ≤ q, then all words accepted from p are197

FSTTCS 2023



15:6 Regular Separators for VASS Coverability Languages

also accepted from q and (ii) every anti-chain in this ordering has at most polynomial size.198

This permits determinization without a blow-up.199

Lower bounds. The lower bounds for the first row of Table 1 are known from [10]. For the200

others, we use two types of pairs. The first is similar to the language pairs in [10]:201

Kf,n = {w ∈ {a, b} | the f(n)-th last letter of w is an a and |w| ≥ f(n)}
Lf,n = {w ∈ {a, b} | the f(n)-th last letter of w is a b or |w| < f(n)}

(1)202

203

where f : N→ N is one of the functions n 7→ n (a separating DFA needs 2n states; the blue204

entries) or n 7→ 2n (a separating DFA needs 22n states, the yellow entry). In [10], these205

are used for n 7→ 22n . The second language pair consists of Ln = {am | m ≥ 2n}, and206

Kn = {am | m < 2n} (an NFA needs 2n states, the light and dark gray entries).207

4 Basic Separators208

As already mentioned in the previous section we want to apply the approach from [13] to show209

our main theorem. To this end, we first have to introduce languages following the courses of210

the counters of our VASS. We introduce two (basic) actions ai and ai for each 1 ≤ i ≤ d to211

indicate that counter i gets increased resp. decreased by one. By Γd := {ai, ai | 1 ≤ i ≤ d}212

we denote the alphabet of basic actions. Then a word w ∈ Γ ∗d encodes the course of213

updates of the d counters on some pseudo-run of a d-VASS. For 1 ≤ i ≤ d we introduce a214

homomorphism φi : Γ ∗d → Z induced by the equations φi(ai) = 1, φi(ai) = −1, and φi(b) = 0215

for b ∈ Γd \ {ai, ai}. In other words, φi(w) is the value of counter i after application of the216

actions specified in w.217

For w ∈ Γ ∗d define dropi(w) := min{φi(v) | v is a prefix of w} ∈ [−|w|, 0], i.e., dropi(w)218

is the lowest value the counter i had while applying the actions in w. In a run counter i219

starts with value 0 and stays non-negative. Therefore, any run w ∈ Γ ∗d of a d-VASS satisfies220

dropi(w) = 0. By Gi := {w ∈ Γ ∗d | dropi(w) = 0} we define the language of all action221

sequences where counter i never falls below zero. Then the language of all runs of a d-VASS222

is Cd :=
⋂d

i=1 Gi. Next, we want to describe the courses w ∈ Γ ∗d of pseudo-runs of a given223

VASS V. To this end, we first have to recall the notion of rational transductions:224

Rational Transductions. Let Σ and Γ be two alphabets. A transducer is a tuple T =225

(Q, δ, I, F ) where Q is a finite set of states, δ ⊆ Q× Γ ∗ ×Σ∗ ×Q is a finite set of transitions,226

and I, F ⊆ Q are the initial resp. accepting states. A pair (v, w) ∈ Γ ∗ ×Σ∗ is accepted by227

T if there are q0, q1, . . . , qn ∈ Q, v1, . . . , vn ∈ Σ∗, and w1, . . . , wn ∈ Γ ∗ with v = v1 . . . vn,228

w = w1 . . . wn, q0 ∈ I, qn ∈ F , and (qi−1, vi, wi, qi) ∈ δ for each 1 ≤ i ≤ n. The accepted229

relation of T is R(T) = {(v, w) ∈ Γ ∗×Σ∗ | (v, w) is accepted by T}. A relation T ⊆ Γ ∗×Σ∗230

is called a rational transduction if there is a transducer T with R(T) = T . For a relation231

T ⊆ Γ ∗ × Σ∗ and a language L ∈ Γ ∗ we write T (L) for the language {w ∈ Σ∗ | ∃v ∈232

L : (v, w) ∈ T}. Additionally, we write T−1 for the relation {(w, v) ∈ Σ∗ × Γ ∗ | (v, w) ∈ T}.233

The following connection between d-VASS and transducers is well-known:234

I Lemma 4.1 (cf. [16,19]). A language L ⊆ Σ∗ is a coverability d-VASS-language if, and235

only if, there is a rational transduction T ⊆ Γ ∗d ×Σ∗ with L = T (Cd).236

Proof idea. We only show the implication “⇒” (for the converse implication cf. e.g. [13]).237

So, let V = (Q,Σ,∆, s, t) be a d-VASS with L(V) = L. We construct the following trans-238

ducer TV = (Q, δ, {s}, {t}): set δ = {(p, code(~v), a, q) | (p, a,~v, q) ∈ ∆}, where code(~v) =239

a
~v[1]
1 a

~v[2]
2 . . . a

~v[d]
d and an

i := ai
|n| holds for n < 0. Then we can see (R(TV))(Cd) = L(V). J240
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Regular separability is, in some sense, compatible with rational transductions:241

I Lemma 4.2 ( [13]). Let K ⊆ Σ∗, L ⊆ Γ ∗ be two languages and T ⊆ Γ ∗×Σ∗ be a rational242

transduction. Then K | T (L) if, and only if, T−1(K) | L.243

We include the (very simple) proof of this lemma, as it hints at our proof of Theorem 5.1:244

Proof. For the “only if”, suppose K | T (L) with a regular separator R ⊆ Σ∗. It is easy to245

check that then, T−1(R) ⊆ Γ ∗ is a regular separator of T−1(K) and L. Thus T−1(K) | L246

holds. Conversely, assume T−1(K) | L via the regular separator R ⊆ Γ ∗. Then we also247

know L | T−1(K) via Γ ∗ \ R. The proof of the “only if” direction yields T (L) | K via248

T (Γ ∗ \R) ⊆ Σ∗. Finally, we obtain K | T (L) via Σ∗ \ T (Γ ∗ \R). J249

Basic separators. From Theorem 2.3 and Lemma 4.2 we learn that two d-VASS-languages250

L,K ⊆ Σ∗ are regular separable if, and only if, T−1(K) | Cd holds, where T is a rational251

transduction with L = T (Cd). Czerwiński and the second author of this work have introduced252

in [13] the notion of basic separators of any language from the language Cd. These are families253

of regular languages disjoint from Cd such that each regular language, which is disjoint from254

Cd, is included in a finite union of basic separators. For coverability d-VASS suitable basic255

separators are the languages Bk ⊆ Γ ∗d which contain all action sequences having one counter256

1 ≤ i ≤ d falling below zero, but before that, counter i never exceeds the value of k. To this257

end, we first define the value µi(w) := max{φi(v) | v is a prefix of w with dropi(v) = 0} of258

a word w ∈ Γ ∗d . This is the greatest value of counter i before it falls below zero for the first259

time (or it is the maximal value of counter i if it always stays non-negative). Then Bk (for260

k ∈ N) is defined as follows:261

Bk := {w ∈ Γ ∗d | ∃1 ≤ i ≤ d : w /∈ Gi and µi(w) ≤ k} .262

As shown in [13], the following equivalence holds for coverability d-VASS:263

I Corollary 4.3. Let V and W be two d-VASS and T ⊆ Γ ∗d ×Σ∗ be a rational transduction264

with L(W) = T (Cd). Then the following properties are equivalent:265

1. L(V) ∩ L(W) = ∅266

2. L(V) | L(W)267

3. T−1(L(V)) | Cd268

4. there is k ∈ N such that Bk is a regular separator of T−1(L(V)) and Cd. J269

In the proof of our main result Theorem 5.1, we will show that there is a “small” k ∈ N such270

that Bk separates T−1(L(V)) and Cd.271

5 Upper Bounds272

We now prove Theorems 3.1 and 3.2. For Theorem 3.1, we prove a more concrete bound:273

I Theorem 5.1. Let Vi = (Qi, Σ,∆i, si, ti) (for i = 1, 2) be two d-VASS with L(V1) ∩274

L(V2) = ∅. Then there is an NFA of size at most O(|Q1| · ‖∆1‖d · Rack(V1 ×V2)d) separ-275

ating L(V1) and L(V2).276

This clearly implies Theorem 3.1. To show this, let Vi = (Qi, Σ,∆i, si, ti) (for i = 1, 2)277

be two disjoint d-VASS and let V1 ×V2 = (Q1 ×Q2, Σ,∆, (s1, s2), (t1, t2)) be the product278

VASS as constructed in Lemma 2.1. Note that L(V1 ×V2) = ∅ holds due to the disjointness279

of V1 and V2. Additionally, let TV1 be the transducer constructed in the proof of Lemma 4.1280
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satisfying the property (R(TV1))(Cd) = L(V1). According to Corollary 4.3 the assumption281

L(V1) ∩ L(V2) = ∅ implies (R(TV1))−1(L(V2)) | Cd. Our aim is to find a “small” number282

k̂ ∈ N such that Bk̂ is a regular separator of K(V1,V2) := (R(TV1))−1(L(V2)) and Cd.283

Let w ∈ K(V1,V2) ⊆ Γ ∗d be some word. Then there is another word w′ ∈ Σ∗284

with (w,w′) ∈ R(TV1) and w′ ∈ L(V2). From this fact we obtain a w′-labeled pseudo-285

run of V1 from s1 to t1 such that w encodes the counter updates of this pseudo-run.286

Additionally, we obtain a w′-labeled run of V2 from s2 to t2. We can compose these287

two pseudo-runs to one w′-labeled pseudo-run of V1 × V2 from (s1, s2) to (t1, t2). So,288

there is a sequence πw := ((pi, qi), (~xi, ~yi))0≤i≤n of pseudo-configurations and transitions289

((pi−1, qi−1), bi, (~ui, ~vi), (pi, qi)) ∈ ∆ (for 1 ≤ i ≤ n) with (p0, q0) = (s1, s2), (pn, qn) = (t1, t2),290

( ~x0, ~y0) = (~0,~0), (~xi, ~yi) = ( ~xi−1 + ~ui, ~yi−1 + ~vi) for each 1 ≤ i ≤ n, w = code( ~u1) . . . code( ~un)291

(note that this equation holds by the choice of our transducer TV1 from Lemma 4.1), and292

w′ = b1b2 . . . bn. Since we have L(V1) ∩ L(V2) = ∅ by assumption, πw is a pseudo-run of293

V1 ×V2, but actually not a run, i.e., at least one counter of V1 ×V2 falls below zero at294

some time. As stated above, w′ labels a run of V2, i.e., no counter of V2 ever falls below295

zero. This implies the existence of 0 ≤ i ≤ n with ~xi ∈ Zd \ Nd.296

Set k̂ := ‖∆1‖ · Rack(V1 ×V2). By definition we know that Bk̂ ∩ Cd = ∅ holds. So, we297

only have to prove K(V1,V2) ⊆ Bk̂, i.e., we show that for each w ∈ K(V1,V2) there is a298

counter 1 ≤ i ≤ d having a value at most k̂ before falling below zero. We show this result299

by contradiction: assume there is w ∈ K(V1,V2) \Bk̂. This means, in w for each counter300

1 ≤ i ≤ d we have two possibilities: (i) the counter i stays non-negative (i.e., w ∈ Gi) or (ii)301

the counter i falls below zero and before this happens for the first time it exceeds the value302

k̂. We construct then another word v ∈ K(V1,V2) \ Bk̂ having more counters 1 ≤ i ≤ d303

satisfying v ∈ Gi than w. By induction we obtain a word v ∈ K(V1,V2) \Bk̂ with v ∈ Gi304

for each 1 ≤ i ≤ d. This implies v ∈ Cd and therefore the existence of another word v′ ∈ Σ∗305

with (v, v′) ∈ R(TV1) and v′ ∈ L(V2). Then v′ is the label of runs in V1 (since v ∈ Cd) and306

V2 (since v′ ∈ L(V2)). Hence, we obtain v′ ∈ L(V1) ∩ L(V2), which is a contradiction to307

our assumption that V1 and V2 accept disjoint languages.308

I Lemma 5.2. We have K(V1,V2) ⊆ Bk̂.309

To show this lemma we first have to introduce another notion: let I ⊆ {1, . . . , d}. For310

a vector ~v ∈ Zd we define the projection ~vI to the components specified in I as follows:311

~vI [j] = ~v[j] if j ∈ I and ~vI [j] = 0 if j /∈ I. Now, let V = (Q,Σ,∆, s, t) be a d-VASS. For a312

pseudo-configuration c = (q,~v) ∈ Q× Zd we define cI := (q,~vI). The projection VI of V to313

I is the d-VASS VI = (Q,Σ,∆I , s, t) with ∆I := {(p, a,~vI , q) | (p, a,~v, q) ∈ ∆}.314

Proof. Let w ∈ K(V1,V2). Towards a contradiction we suppose that w /∈ Bk̂ holds. Then315

for each 1 ≤ i ≤ d we have either w ∈ Gi (i.e., the i-th counter never falls below 0), or316

w /∈ Gi and µi(w) > k̂ (i.e., the i-th counter reaches a value > k̂ before falling below 0 for317

its first time). Let Iw ⊆ {1, . . . , d} be the set of indices 1 ≤ i ≤ d with w ∈ Gi. Assuming318

|Iw| < d we want to construct from w another word v ∈ K(V1,V2) \Bk̂ with |Iv| > |Iw|.319

So, let i ∈ {1, . . . , d} \ Iw be the index of the last counter exceeding the upper bound k̂320

before it falls below zero for its first time, i.e., i is the number of the counter having the longest321

prefix w1 of w with µi(w1) ≤ k̂. Additionally, let 0 ≤ j < n be the first computational step in322

which counter i exceeds k̂, i.e., ~xj [i] > k̂ and ~xh[i] ≤ k̂ for each 0 ≤ h < j. Now, restrict the323

pseudo-run πw to the counters in Iw and all of V2’s counters. Since none of these counters falls324

below zero, the pseudo-run πw is actually a run in VIw
1 ×V2. This especially holds for πw’s325

sub-run from ((pj , qj), ( ~xj
Iw , ~yj)) to ((pn, qn), ( ~xn

Iw , ~yn)) inVIw
1 ×V2. Since (pn, qn) = (t1, t2)326

holds, there is—according to Theorem 2.2—also a run from ((pj , qj), ( ~xj
Iw , ~yj)) to some327
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k̂

0

2
3

4

1 = i

j

Figure 1 The values of the counters in the course of a run encoded by some word w ∈ K(V1,V2)\
Bk̂. The values of the counters 2 and 3 never fall below zero implying w ∈ G2 ∩G3. The counters
1 and 4 exceed the value k̂ before they fall below zero the first time (i.e., w /∈ G1 ∪ G4 and
µ1(w), µ4(w) > k̂). Since counter 1 exceeds k̂ after counter 4 does, we choose i = 1 in our proof.
The first intersection of counter 1’s curve and k̂ marks the step j.

configuration ((pn, qn), ( ~x′m
Iw
, ~y′m)) of length at most Rack(VIw

1 × V2) ≤ Rack(V1 × V2).328

Since VIw
1 is a projection of V1 to the counters in Iw, we can also extend this run to a329

pseudo-run with all counters. Let ((p′h, q′h), ( ~x′h, ~y′h))j≤h≤m be this pseudo-run extended330

to all 2d counters satisfying ((pj , qj), ( ~xj , ~yj)) = ((p′j , q′j), ( ~x′j , ~y′j)), p′m = pn = t1, and331

q′m = qn = t2. Let ((p′h−1, q
′
h−1), b′h, ( ~u′h, ~v′h), (p′h, q′h)) ∈ ∆ be the corresponding transitions332

(for j < h ≤ m). Set v := code( ~u1) . . . code( ~uj) code( ~u′j+1) . . . code( ~u′m). Our next aim is to333

prove that |Iv| > |Iw| and v ∈ K(V1,V2) \Bk̂ holds.334

B Claim 5.3. |Iv| > |Iw|335

Proof. We show Iw ] {i} ⊆ Iv. By the choice of our pseudo-run we have Iw ⊆ Iv (recall336

that all counters from Iw always stay ≥ 0). So, we only have to show i ∈ Iv. We have337

~xj [i] = ~x′j [i] > k̂ = ‖∆1‖ · Rack(V1 ×V2), m − j ≤ Rack(V1 ×V2), and ~u′h[i] ≤ ‖∆1‖ for338

each j < h ≤ m. Hence, we obtain ~x′h[i] ≥ 0 for each j ≤ h ≤ m, i.e., on our new run the339

counter i never falls below zero. We infer v ∈ Gi and, therefore, i ∈ Iv. C340

B Claim 5.4. v ∈ K(V1,V2) \Bk̂341

Proof. First, we show v ∈ K(V1,V2). The sequence342

((ph−1, qh−1), bh, ( ~uh, ~vh), (ph, qh))1≤h≤j , ((p′h−1, q
′
h−1), b′h, ( ~u′h, ~v′h), (p′h, q′h))j<h≤m343

of transitions in V1 ×V2 induces some accepting run (q0,~0)
b1...bjb′

j+1...b′
m−−−−−−−−−−→V2 (q′m, ~v′m) in344

V2, i.e., we have b1 . . . bjb
′
j+1 . . . b

′
m ∈ L(V2). Additionally, the word v encodes the counters’345

course of updates in the transition sequence (ph−1, bh, ~uh, ph)1≤h≤j , (p′h−1, b
′
h,
~u′h, p

′
h)j<h≤m346

in V1. According to p0 = s1, pj = p′j , and p′m = t1 this transition sequence is a pseudo-347

run of V1 labeled by b1 . . . bjb
′
j+1 . . . b

′
m. By the choice of our transducer TV1 (which is348

the one from the proof of Lemma 4.1), we learn (v, b1 . . . bjb
′
j+1 . . . b

′
m) ∈ R(TV1) implying349

v ∈ (R(TV1))−1(b1 . . . bjb
′
j+1 . . . b

′
m). We finally obtain v ∈ K(V1,V2).350

Now, we prove v /∈ Bk̂. If we have Iv = {1, . . . , d} then we learn v ∈
⋂d

h=1 Gh = Cd.351

Since Cd ∩ Bk̂ = ∅ holds, we have v /∈ Bk̂ in this case. Now, assume Iv 6= {1, . . . , d}. Let352
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i′ ∈ {1, . . . , d} \ Iv be arbitrary. From Iw ∪ {i} ⊆ Iv we learn i′ /∈ Iw and i′ 6= i. Hence, we353

have v, w /∈ Gi′ . Since w /∈ Bk̂ holds (by the assumption at the outset of this claim’s proof),354

we infer µi′(w) > k̂, i.e., the counter i′ exceeds k̂ in w before it falls below zero for the first355

time. Additionally, in v the counter i′ falls below zero sometime. We have to show that it356

exceeds the value k̂ before it first drops below zero.357

Recall that i was the counter with the longest prefix w1 of w with µi(w1) ≤ k̂. This358

implies µi′(w1) > k̂. Note that w1 is a prefix of code( ~u1) . . . code( ~uj) and therefore also of v.359

Hence, we have µi′(v) > k̂. Since i′ was arbitrary, this holds for all counters in {1, . . . , d} \ Iv.360

In other words, for each h ∈ {1, . . . , d} we have either v ∈ Gh or µh(v) > k̂. Hence, v /∈ Bk̂361

holds in this case. C362

So, we have learned that there is another word v ∈ K(V1,V2) \ Bk̂ having more non-363

negative counters Iv than w. Finally, induction yields a word v̂ ∈ K(V1,V2) \ Bk̂ with364

Iv̂ = {1, . . . , d}, i.e., v̂ ∈
⋂d

h=1 Gh = Cd. This implies v̂ ∈ Cd ∩K(V1,V2) - a contradiction365

to K(V1,V2) | Cd. J366

With the help of Lemma 5.2 we are able to finally prove our main result Theorem 5.1.367

−1 0 1 2 . . . k̂ k̂+1

Γd

ai

ai

Γd \ {ai, ai}

ai

ai

Γd \ {ai, ai}

ai

ai

Γd \ {ai, ai}

ai

ai

ai

ai

Γd \ {ai, ai} Γd

Figure 2 A DFA Ai accepting the language Bk̂,i. It simulates the counter i bounded by k̂.

Proof of Theorem 5.1. Since we have K(V1,V2) ⊆ Bk̂ and Bk̂ ∩ Cd = ∅, the set Bk̂ is a368

separator of K(V1,V2) and Cd. This language is also regular: in Figure 2 we depict a DFA369

Ai accepting the language Bk̂,i := {w ∈ Γ ∗d | w /∈ Gi and µi(w) ≤ k̂} for 1 ≤ i ≤ d. Since370

Bk̂ =
⋃d

i=1 Bk̂,i holds, we obtain a DFA accepting Bk̂ using the classical product construction.371

The resulting DFA has the size
∏d

i=1 |Ai| =
∏d

i=1(k̂ + 3) ∈ O(k̂d).372

We have seen that Bk̂ separates K(V1,V2) and Cd. With the same arguments as in373

Lemma 4.2, one shows that if R witnesses T−1(K) | L, then T (Σ∗ \R) witnesses T (L) | K.374

Since K(V1,V2) = R(TV1)−1(L(V2)) and L(V1) = R(TV1)(Cd), we conclude that375

R(TV1)(Γ ∗d \Bk̂) (2)376

witnesses L(V1) | L(V2). Since we have a DFA of size O(k̂d) for Bk̂ and thus such a DFA for377

Γ ∗d \Bk̂, we obtain an NFA for (2) of size O(|Q1| · k̂d) = O(|Q1| ·‖∆1‖d ·Rack(V1×V2)d). J378

The term O(|Q1| · ‖∆1‖d ·Rack(V1 ×V2)d) from Theorem 5.1 is doubly exponential in d379

(and polynomial in the remaining numbers). In other words, for two given disjoint d-VASS380

V1 and V2 there is a doubly exponential sized NFA separating their languages L(V1) and381

L(V2). If we are looking for a deterministic automaton separating these languages, we can382

use the power set construction to obtain a DFA of triply exponential size. The lower bounds383

by Czerwiński et. al. [10] show that these upper bounds are tight.384

I Corollary 5.5. From a given number d ∈ N+ and two disjoint d-VASS V1 and V2 we can385

compute386
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(1) an NFA separating L(V1) and L(V2) of size doubly exponential in d, |V1|, and |V2|.387

(2) a DFA separating L(V1) and L(V2) of size triply exponential in d, |V1|, and |V2|.388

Proof. (1) By Theorem 5.1 we can compute an NFA separating L(V1) and L(V2) with the389

following number of states:390

O(|Q1| · ‖∆1‖d · Rack(V1 ×V2)d)391

= O(|Q1| · ‖∆1‖d · (|Q1| · |Q2| ·max{‖∆1‖, ‖∆2‖}+ 2)((6d)!+1)·d) ,392
393

which is doubly exponential in d, |V1|, and |V2|.394

(2) We can determinize the NFA from (1) using the classical power set construction. This395

results in an equivalent DFA of size exponential in the size of the NFA. J396

Since the exponent of the term O(|Q1| · ‖∆1‖d · Rack(V1 ×V2)d) only depends on the397

dimension d, we could also ask for an upper bound of an NFA or DFA separating the398

languages of two VASS of fixed dimension. In this scenario we have to distinguish two cases:399

the numbers in our VASS are encoded in unary or binary. First, we consider the unary case.400

Here, we can construct a separating NFA of polynomial size and a DFA of exponential size.401

I Corollary 5.6. Fix a number d ∈ N+. From two disjoint d-VASS V1 and V2 in which the402

numbers are encoded in unary, we can compute403

(1) an NFA separating L(V1) and L(V2) of size polynomial in |V1| and |V2|.404

(2) a DFA separating L(V1) and L(V2) of size exponential in |V1| and |V2|.405

Proof. (1) Since d is assumed to be fixed, the size of the regular separator of L(V1) and406

L(V2) from Theorem 5.1 is a polynomial in the sizes of V1 and V2.407

(2) To achieve this result, we only have to determinize the NFA from statement (1). J408

Now, we have to consider VASS of fixed dimension d with binary encoded numbers. To409

this end, we first have to introduce a binary norm: for a vector ~v ∈ Zd set ‖~v‖2 := log ‖~v‖.410

Based on this, we define the binary norm ‖∆‖2 of a set of transitions ∆. Slightly abusing411

terminology, when we speak of VASS with binary encoding (or with binary encoded numbers),412

then this only means we measure its size with ‖ · ‖2 in place of ‖ · ‖. In this case, for two413

given VASS we find a separating NFA of exponential size and a separating DFA of doubly414

exponential size.415

I Corollary 5.7. Fix a number d ∈ N+. From two disjoint d-VASS V1 and V2 with binary416

encoding, we can compute417

(1) an NFA separating L(V1) and L(V2) of size exponential in |V1| and |V2|.418

(2) a DFA separating L(V1) and L(V2) of size doubly exponential in |V1| and |V2|.419

Proof. (1) Since we encode numbers in binary the values ‖∆1‖ and ‖∆2‖ are exponential in420

the description size of V1 resp. V2. Hence, the NFA constructed in Theorem 5.1 has421

size exponential in the sizes of V1 and V2.422

(2) Again, this is a direct consequence of the first statement using the classical power set423

construction to determinize the constructed NFA. J424

5.1 Upper Bound for Binary Encoded 1-VASS425

Interestingly, the given upper bound for a DFA separating the languages of two given binary426

encoded VASS of dimension 1 is not tight, yet. We can use a better construction than the427

classical power set construction to determinize our constructed separating NFA. In this case,428

we obtain a DFA which also has exponential size (in comparison to doubly exponential size429

with the power set construction).430
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I Theorem 5.8. Given disjoint 1-VASS V1 and V2 with binary-encoded numbers, we can431

compute a DFA separating L(V1) and L(V2) of size exponential in |V1| and |V2|.432

We take a closer look at the resulting NFA constructed in the last step of the proof of433

Theorem 5.1 (resp. in Corollary 5.7(1)). With the knowledge about this special NFA, we will434

apply an improved power set construction resulting in a DFA separating L(V1) and L(V2)435

without the exponential blowup.436

So, let Vi = (Qi, ∆i, si, ti) be two 1-VASS, TV1 = (Q1, δ1, {s1}, {t1}) be the rational437

transducer constructed from V1 as described in the proof of Lemma 4.1 and let A =438

(S, Γ1, δA, {0}, FA) be the DFA depicted in Figure 2 accepting Bk̂ where k̂ = ‖∆1‖·Rack(V1×439

V2). In other words, we have S = {−1, 0, 1, . . . , k̂, k̂ + 1} and FA = {−1}. The complement440

of Bk̂ is accepted by the DFA A = (S, Γ1, δA, {0}, FA) with FA = {0, 1, . . . , k̂ + 1}. In441

the following let ≤ denote the natural ordering on S ⊆ Z. Then we can observe that A’s442

transition relation δA is compatible with the ordering ≤:443

I Observation 5.9. Let w ∈ Γ ∗1 be a word and m,m′, n ∈ S with m w−→A n and m′ ≥ m.444

Then there is n′ ∈ S with n′ ≥ n and m′ w−→A n′. J445

In the next step we apply the rational transduction R(TV1) to L(A) = Γ ∗1 \ Bk̂. We446

do this with the help of the classical construction resulting in the following NFA B =447

(QB, Σ, δB, IB, FB) accepting (R(TV1))(Γ ∗1 \Bk̂):448

QB = Q1 × S and IB = {(s1, 0)},449

for all (p,m), (q, n) ∈ QB and a ∈ Σ: ((p,m), a, (q, n)) ∈ δB if, and only if, there is450

w ∈ Γ ∗1 with p (w , a)−−−−→TV1
q and m w−→A n, and451

for all (p,m) ∈ QB: (p,m) ∈ FB if, and only if, there are w ∈ Γ ∗1 and n ∈ FA with452

p
(w , ε)−−−−→TV1

t1 and m w−→A n.453

Hence, B is the separating NFA of exponential size from Corollary 5.7(1). We show next that454

the determinization of B is possible without exponential blowup. To this end, we first need455

the following observation of B’s behavior namely that the compatibility of A’s transition456

relation δA with ≤ is passed on to B’s transition relation δB:457

I Lemma 5.10. Let w ∈ Σ∗, (p,m), (q, n) ∈ QB, and m′ ∈ S with (p,m) w−→B (q, n) and458

m′ ≥ m. Then there is n′ ∈ S with n′ ≥ n and (p,m′) w−→B (q, n′).459

Proof. We prove this by induction on the length of w. If w = ε, then our statement is true:460

since B has no ε-transitions, (p,m) ε−→B (q, n) implies p = q and m = n. Therefore, our461

statement holds for n′ = m′.462

Now, assume w = w′a for some word w′ ∈ Σ∗ and a letter a ∈ Σ. From (p,m) w−→B (q, n)463

we learn that there is an intermediate state (r, `) ∈ QB with (p,m) w′

−→B (r, `) a−→B (q, n).464

Since |w′| < |w| holds, the induction hypothesis yields an `′ ∈ S with `′ ≥ ` and (p,m′) w′

−→B465

(r, `′). By the definition of the transition relation of B we obtain from (r, `) a−→B (q, n) a word466

v ∈ Γ ∗1 with r (v,a)−−−→TV1
q and ` v−→A n. According to Observation 5.9 there is n′ ∈ S with467

n′ ≥ n and `′ v−→A n′. But this implies (r, `′) a−→B (q, n′) and therefore (p,m′) w−→B (q, n′). J468

We can also show that the set of accepting states of B is upwards closed wrt. the natural469

ordering of its set of states. This is the following lemma:470

I Lemma 5.11. Let (p,m) ∈ FB and m′ ∈ S with m′ ≥ m. Then we also have (p,m′) ∈ FB.471
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Proof. By definition of FB there are w ∈ Γ ∗1 and n ∈ FA = {0, 1, . . . , k̂+ 1} with p (w,ε)−−−→TV1
472

t1 and m w−→A n. Due to Observation 5.9 there is n′ ∈ S with n′ ≥ n and m′ w−→A n′. Since473

n′ ≥ n ≥ 0 holds, we also learn n′ ∈ FA implying (p,m′) ∈ FB. J474

Finally, we have to determinize the NFA B. To this end, we recall the classical power475

set construction of B: the result of this construction is the DFA P = (2QB , Σ, δP, {ιP}, FP)476

where477

ιP = {(s1, 0)},478

(X, a, Y ) ∈ δP if, and only if, Y = {y ∈ QB | ∃x ∈ X : (x, a, y) ∈ δB}, and479

FP = {X ⊆ QB | X ∩ FB 6= ∅}.480

By induction we learn that X w−→P Y holds if, and only if, Y is exactly the set of states that481

are reachable from X via w, i.e., y ∈ Y iff there is x ∈ X with x w−→B y. In particular, if Y482

is accepting and we have ιP
w−→P Y , then there is y ∈ Y ∩ FB 6= ∅ with (s1, 0) w−→B y. This483

means, an accepting run in P also witnesses an accepting run in B.484

(s1, 0)

ιP

(p,m)

(p,m′)

≥
X

(q, n)

(q, n′)

≥

Y

u

u

v

v

Figure 3 Visualization of the power set construction on the NFA B. The states in gray are states
of the DFA P, the white ones are states of B. The reachability of and acceptance of (q, n′) (red) is
ensured by Lemmas 5.10 and 5.11.

Now, let X ⊆ QB be some intermediate state of this w-labeled run from {(s1, 0)} to485

Y , i.e., we have ιP
u−→P X

v−→P Y with w = uv. Let (p,m) ∈ X and (q, n) ∈ Y ∩ FB with486

(s1, 0) u−→B (p,m) v−→B (q, n). Assume that there is another state (p,m′) ∈ X with m′ ≥ m.487

Then Lemmas 5.10 and 5.11 state that there is also another state (q, n′) ∈ Y ∩ FB with488

n′ ≥ n and (s1, 0) u−→B (p,m′) v−→B (q, n′), which also witnesses acceptance of w (cf. Figure 3,489

colored in red). This means, the set of w-labeled accepting runs of B also is in some sense490

upwards closed. Therefore, it suffices to store only the greatest value m ∈ S for each state491

p ∈ Q1 such that (p,m) ∈ X holds. This can be represented by a partial mapping from Q1492

into S. Here, we extend these partial mappings to maps with the help of a new symbol493

⊥ /∈ S, such that f(q) = ⊥ means that f is undefined at q, that is, there is no such state494

(q, n). The result is a DFA having (|S|+ 1)|Q1| many states, which is exponential in the sizes495

of V1 and V2. This is much smaller than the size of P: it contains 2|Q1|·|S| many states496

which is doubly exponential in |V1| and |V2|.497

Concretely, our DFA C = (QC, Σ, δC, {ιC}, FC) accepting L(B) = (R(TV1))(Γ ∗1 \Bk̂) is498

defined as follows:499

QC = (S∪{⊥})Q1 , i.e., the set of all maps from Q1 to S∪{⊥} with ⊥ /∈ S; here, f(q) = ⊥500

means that no state (q, n) ∈ QB is reachable,501

ιC : Q1 → S ∪ {⊥} with ιC(s1) = 0 and ιC(q) = ⊥ for each q ∈ Q1 \ {s1},502

for all f, g ∈ QC and a ∈ Σ: (f, a, g) ∈ δC if, and only if, for each q ∈ Q1 we have503

g(q) = max{n ∈ S | ∃p ∈ Q1 : ((p, f(p)), a, (q, n)) ∈ δB} where max ∅ := ⊥, and504
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FC = {f ∈ QC | ∃q ∈ Q1 : (q, f(q)) ∈ FB}.505

We have to show now that our construction is correct, i.e., we show L(C) = L(B). We do506

this with the help of the following two propositions each proving one inclusion.507

I Proposition 5.12. L(C) ⊆ L(B).508

Proof. To prove this inclusion we first have to prove the following helping statement:509

B Claim 5.13. Let g ∈ QC and w ∈ Σ∗ with ιC
w−→C g. Then we have g(q) = max{n ∈ S |510

(s1, 0) w−→B (q, n)} for each q ∈ Q1 with g(q) 6= ⊥.511

Proof. We first show g(q) ≥ max{n ∈ S | (s1, 0) w−→B (q, n)} for each q ∈ Q1 with g(q) 6= ⊥.512

We do this by induction on the length of w. So, if w = ε the statement is obvious since513

g = ιC holds in this case. Now, let a ∈ Σ and w′ ∈ Σ∗ with w = w′a. Then there is a state514

f ∈ QC with ιC
w′

−→C f
a−→C g.515

Let (p,m), (q, n) ∈ QB be arbitrary states with (s1, 0) w′

−→B (p,m) a−→B (q, n). Since516

|w′| < |w| holds, the induction hypothesis yields f(p) ≥ max{m′ ∈ S | (s1, 0) w′

−→B (p,m′)}517

implying f(p) ≥ m. From Lemma 5.10 we know that there is n′ ∈ S with n′ ≥ n and518

(p, f(p)) a−→B (q, n′). Additionally, we know (f, a, q) ∈ δB implying g(q) = max{n′′ ∈ S |519

∃p ∈ Q1 : ((p, f(p)), a, (q, n′′)) ∈ δB} and therefore g(q) ≥ n′ ≥ n. Since (q, n) ∈ QB was520

arbitrary, we infer g(q) ≥ max{n ∈ S | (s1, 0) w−→B (q, n)}.521

Now we show the inverse inequality. To this end, we show (s1, 0) w−→B (q, g(q)) holds for522

all q ∈ Q1 with g(q) 6= ⊥. Again, we show this by induction on |w|. So, let w = ε. Then we523

have g = ιC and g(q) 6= ⊥ if, and only if, q = s1. Obviously, we have (s1, 0) ε−→B (s1, 0). Next,524

let w = w′a for a letter a ∈ Σ and a word w′ ∈ Σ∗. There is f ∈ QC with ιC
w′

−→C f
a−→C g.525

The induction hypothesis yields (s1, 0) w′

−→ (p, f(p)) for each p ∈ Q1 with f(p) 6= ⊥. Let526

q ∈ Q1 with g(q) 6= ⊥. Due to (f, a, g) ∈ δC there is p ∈ Q1 with ((p, f(p)), a, (q, g(q))) ∈ δC527

(this also implies f(p) 6= ⊥). Hence, we have (s1, 0) w′

−→B (p, f(p)) a−→B (q, g(q)). C528

Let w ∈ L(C). Then there is g ∈ FC with ιC
w−→C g. Since g is accepting, there is a state529

q ∈ Q1 with (q, g(q)) ∈ FB. By definition of B we know g(q) 6= ⊥ in this case. By Claim 5.13530

we know g(q) = max{n ∈ S | (s1, 0) w−→B (q, n)}. Hence, we learn (s1, 0) w−→B (q, g(q)) ∈ FB.531

This finally implies w ∈ L(B). J532

I Proposition 5.14. L(B) ⊆ L(C).533

Proof. Again, we first need some helping statement:534

B Claim 5.15. Let w ∈ Σ∗ and (q, n) ∈ QB with (s1, 0) w−→B (q, n). Then there is g ∈ QC535

with ιC
w−→C g and g(q) ≥ n.536

Proof. We show this statement by induction on the length |w| of the word w. The case w = ε537

is obvious since g := ιC satisfies ιC
ε−→C ιC and ιC(s1) = 0 ≥ 0 (note that (q, n) = (s1, 0)538

holds). Now, let a ∈ Σ and w′ ∈ Σ∗ with w = w′a. Then there is a state (p,m) ∈ QB with539

(s1, 0) w′

−→B (p,m) a−→B (q, n). By induction hypothesis there is f ∈ QC with ιC
w−→C f and540

f(p) ≥ m. According to Lemma 5.10 we also know that there is n′ ∈ S with n′ ≥ n and541

(p, f(p)) a−→B (q, n′). In this case, we have ((p, f(p)), a, (q, n′)) ∈ δB.542

Let g ∈ QC be the uniquely defined state with (f, a, g) ∈ δC. Then we have g(q) is the543

maximal value n ∈ S with ((r, f(r)), a, (q, n)) ∈ δB for some r ∈ Q1. In particular, we have544

g(q) ≥ n′ ≥ n and ιC
w′

−→C f
a−→C g. C545
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Now, let w ∈ L(B). Then there is a state (q, n) ∈ FB with (s1, 0) w−→B (q, n). According546

to Claim 5.15 there is a state g ∈ QC with ιC
w−→C g and g(q) ≥ n. By Lemma 5.11 we also547

know (q, g(q)) ∈ FB. But then we infer g ∈ FC, i.e., w ∈ L(C). J548

Finally, we are able to prove the previously stated Theorem 5.8.549

Proof of Theorem 5.8. The DFA C as constructed above accepts the language L(C) =550

L(B) = (R(TV1))(Γ ∗1 \Bk̂) according to Propositions 5.12 and 5.14. This automaton has551

|QC| = |(S ∪ {⊥})Q1 | = |S ∪ {⊥}||Q1| ∈ O(k̂|Q1|) = O((‖∆1‖ · Rack(V1 ×V2))|Q1|)552

= O((‖∆1‖ · (|Q1| · |Q2| ·max{‖∆1‖, ‖∆2‖}+ 2)6!+1)|Q1|)553
554

many states. The last term is exponential in the size of V1 and V2. J555

From the proof technique, we can extract a slightly more abstract statement that might556

be of independent interest. An ordered NFA is an NFA A together with a quasi-ordering557

(Q,4) on its set of states Q such that if p 4 q, then all words accepted from p are also558

accepted from q. An anti-chain of A is an anti-chain in (Q,4).559

I Proposition 5.16. If A is an ordered NFA whose anti-chains have at most ` states, then560

A has an equivalent DFA with |Q|` states.561

Here, the states of the DFA are the anti-chains of (Q,4). This is useful whenever ` is small562

(e.g. logarithmic) in the size of A (i.e., in |Q|). In our proof, for example, one can equip563

QB = Q1 × [−1, k̂ + 1] with the ordering (p,m) 4 (q, n) if and only if p = q and m ≤ n.564

Then clearly, an anti-chain in (QB,4) contains at most |Q1| states.565

6 Lower Bounds566

In this final section we want to show that all of the upper bounds shown in Section 5 are tight.567

This means, whenever Corollaries 5.5–5.7 and Theorem 5.8 gives an i-fold exponential upper568

bound for separators with i ≥ 1, then we shall here provide a sequence (V1,W1), (V2,W2), . . .569

of VASSVn,Wn of size polynomial in n such that any separator of L(Vn) and L(Wn) requires570

at least expi(n) states. Recall that exp0(n) = n and expi+1(n) = 2expi(n) for i ≥ 0.571

The case where d is part of the input was already considered by Czerwiński et al. in [10]572

(they use the languages in Eq. (1) with f : n 7→ 22n). We mention this without proof:573

I Proposition 6.1 (Czerwiński et al. [10]). For any n ∈ N there are disjoint VASS Vn and574

Wn of size polynomial in n such that575

(1) any NFA separating L(Vn) and L(Wn) has at least 22n states.576

(2) any DFA separating L(Vn) and L(Wn) has at least 222n states. J577

This provides the lower bounds of the first row in Table 1. In the construction of578

Czerwiński et al., the dimension of Vn and Wn grows (polynomially) with n. This means,579

we need different constructions for fixed dimension. Moreover, in fixed dimension, we cannot580

translate between VASS with unary and binary encodings. This means, we have to distinguish581

between the two encodings. Let us begin with unary encodings (i.e. the blue entries in582

Table 1). In the case of NFA separators, our upper bounds are polynomial, so we need583

not prove any lower bounds. For DFA separators, the exponential lower bound is already584

achieved for VASS that have no counters:585
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s t
ε | 2n − 1

a | −1

s t
ε | −2n

a | 1

Figure 4 1-VASS Vn (left) and Wn (right) in the proof of Proposition 6.3.

s t

a | 0, 0
b | 0, 0

a | 2n − 1, 1

a | −1, 1
b | −1, 1

ε | 0,−2n

s t

ε | 0, 0

ε | 2n, 0

a | 0, 0
b | 0, 0

b | 2n − 1, 1

a | −1, 1
b | −1, 1

ε | 0,−2n

a | −1, 0
b | −1, 0

ε | −1, 0

Figure 5 2-VASS Vn (left) and Wn (right) in the proof of Proposition 6.4.

I Proposition 6.2. For any n ∈ N there are disjoint NFAs An and Bn of size polynomial in586

n such that any DFA separating L(An) and L(Bn) has at least 2n states.587

Proof. For n ∈ N consider the languages Kn = Kf,n and Ln = Lf,n with f : n → n, with588

Kf,n, Lf,n as in Eq. (1). Both languages are regular and accepted by NFAs An and Bn with589

O(n) many states. Since we have Kn = {a, b}∗ \ Ln, Kn is the only regular separator of Kn590

and Ln. But it is well-known that any DFA for Kn has at least 2n states. J591

This provides the lower bound for the two blue entries in Table 1. Let us now turn to592

binary encodings. For NFA separators, all lower bounds are achieved using 1-VASS: Our593

first proposition yields the lower bounds for the light and dark gray entries of Table 1.594

I Proposition 6.3. For any n ∈ N, there are disjoint 1-VASS Vn and Wn, with binary595

encoded numbers, of size polynomial in n such that any NFA (and thus any DFA) separating596

L(Vn) and L(Wn) has at least 2n states.597

Proof. Consider the languages Kn = {am | m < 2n} and Ln = {am | m ≥ 2n}. These two598

languages are accepted by the 1-VASS Vn and Wn as depicted in Figure 4. The transitions599

increasing resp. decreasing the counter by 2n can be encoded in binary using n bits, i.e., Vn600

and Wn have size O(n).601

Since Kn and Ln are regular and Kn = {a}∗ \ Ln holds, the only regular separator of602

Kn and Ln is Kn itself. It is easy to see that any NFA (and thus any DFA) accepting Kn603

requires at least 2n many states. J604

It remains to show the lower bound for the yellow entry of Table 1:605

I Proposition 6.4. For any n ∈ N, there are disjoint 2-VASS Vn and Wn, with binary606

encoded numbers, of size polynomial in n such that any DFA separating L(Vn) and L(Wn)607

has at least 22n states.608

Proof. Consider the languages Kn = Kf,n and Ln = Lf,n with f : n 7→ 2n with Kf,n, Lf,n as609

in Eq. (1). These two languages are accepted by the 2-VASS Vn and Wn, resp., as depicted610

in Figure 5. It is clear that both VASS have size O(n). Similar to the proof of Proposition 6.2611

we can see that any DFA accepting Kn has at least 22n many states. J612
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