Mist: Efficient Distributed Training of Large Language
Models via Memory-Parallelism Co-Optimization

Zhanda Zhu' % 3, Christina Giannoula'- %3, Muralidhar Andoorveedu?, Qidong Su 2 3,
Karttikeya Mangalam?, Bojian Zheng!' % 3, Gennady Pekhimenko? %3

centML




Executive Summary

e Accelerate distributed training by comprehensively co-optimizing
parallelism and memory optimizations.

* Key Challenges
 Exploded and complex configuration search space.
* Inaccurate performance prediction: due to missing overlap and ignoring inter-
microbatch imbalance.
* Mist addresses the challenges with
(1) Symbolic-based Performance Analysis
(2) Overlap-Centric Scheduling & Imbalance-aware hierarchical tuning

* Key Result: Up to 1.73 X better vs. Megatron-LM and 2. 04 X vs. the
automatic method Aceso, respectively.



Large Language Models

* Widely adopted in both open communities and commercial systems.

N LLaMAH @ OpenAl %\ Claude \%

 State-of-the-art performance in many applications:

Text Generation Machine Translation Speech Recognition



Cost of Training Large Language Models

* Extremely resource-consuming and expensive!

% change
—Nvidia =—S&P 500 Nasdaq

Training |Gas Emissions

Costs (S)| (tons CO,) o
llama3.188 | 2.92M 420 s
Llama3.170B | 14.00M 2,040 £
Llama 3.1 4058 | 61.68M 8,930 -
Total 78.60M 11,390 - T T

* Strong incentive to reduce the training time of these models.

Training Consumption Source: github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL _CARD.md



Optimizations — Distributed Parallelism

Transformer
Layer 2

1=
[}
E -
= .
o
< 2
c 8
=

Transformer
Layer 1
Transformer
Layer 2

Transformer
Layer 1
Transformer

Transformer
Layer 1
Transformer
Layer 1

Transformer
Layer 16

Data Parallelism
Partition input data

Tensor Parallelism
Partition linear layers

Pipeline Parallelism

Partitions the model into stages

Computation Utilization:
Communication Overhead:
Memory Usage:

« Computation Overhead:
Communication Overhead: &
*  Memory Usage:

Computation Utilization: &)
Communication Overhead:
Memory Usage:




Each type of parallelism presents
trade-offs in computation,

communication, and memory footprint.

« Computation Utilization: & «  Computation Overhead: @ « Computation Utilization: 5
« Communication Overhead: & Communication Overhead: &) | |+ Communication Overhead: &
+  Memory Usage: 2 +  Memory Usage: © +  Memory Usage: ©




Activation Checkpointing (CKPT)
Recompute activations in BWD

Optimizations - Memory Optimizations

Transformer

Transformer
Transformer

=" > -=x ~
t Weights Swap )
~ ”

ﬁ__ 4_’

7 ’> o~ LN
l\ Opt Swap 1

Offloading/Swapping
Offload tensors to CPU

Transformer

\ All-gather for ZeRO-3

\
\

ZeRO
Redundancy elimination

Computation Utilization:
Communication Overhead:
Memory Usage: 2

Computation Overhead:
Communication Overhead: &
Memory Usage:

- Computation Utilization: &
« Communication Overhead:
«  Memory Usage:




Optimizations - Memory Optimizations

4 N
o

Each type of memory optimizations
presents trade-offs in computation,
communication, and memory footprint.

Activatio
« Computation Utilization: +  Computation Overhead: & «  Computation Utilization: 9
« Communication Overhead: Communication Overhead: &) | |+ Communication Overhead:
+  Memory Usage: 2 «  Memory Usage: «  Memory Usage: ©

8



Parallelism and memory footprint
reduction technigues need to be jointly

optimized.

« Computation Utilization: & «  Computation Overhead: @ « Computation Utilization: 5
« Communication Overhead: & Communication Overhead: &) « Communication Overhead: @
+  Memory Usage: 2 +  Memory Usage: © +  Memory Usage: ©




The Need for Comprehensive Co-Optimization

ey memory Footprine ||| NNARNENRNNRRREARN

10



The Need for Comprehensive Co-Optimization

Aggressive Memory Optimizations

* Apply a higher level of ZeRO

Overhead

GPU Memory Footprint



The Need for Comprehensive Co-Optimization

Aggressive Memory Optimizations

* Apply a higher level of ZeRO
* Apply more CKPT

Overhead ™ P

GPU Memory Footprint



The Need for Comprehensive Co-Optimization

Aggressive Memory Optimizations

* Apply a higher level of ZeRO
* Apply more CKPT

* Apply more offloading

Overhead ™ ™ 1

GPU Memory Footprint



The Need for Comprehensive Co-Optimization

Aggressive Memory Optimizations Utilize Gained Memory

* Apply a higher level of ZeRO * Reduce TP Size
* Apply more CKPT

* Apply more offloading

Overhead ™ ™ 1 Perf Gain P

GPU Memory Footprint



The Need for Comprehensive Co-Optimization

Aggressive Memory Optimizations Utilize Gained Memory
* Apply a higher level of ZeRO * Reduce TP Size

* Apply more CKPT * Reduce PP Size

* Apply more offloading

Overhead ™ ™ 1 Perf Gain ™ P

GPU Memory Footprint



The Need for Comprehensive Co-Optimization

Aggressive Memory Optimizations Utilize Gained Memory

* Apply a higher level of ZeRO * Reduce TP Size

* Apply more CKPT * Reduce PP Size

* Apply more offloading * Increase batch size
Overhead ™ ™ P @ Perf Gain P ™ P

O
ey memory Footprine ||| NNARNENRNNRRREARN

16



Motivational Example

* GPT-3-2.7B model on 4 GPUS, Seq=4096, Bsz,,,,=8



Motivational Example

o —— ==

* GPT-3-2.7B model on 4 GPUS, Seq=4096, Bsz,,,,=8

18



Motivational Example

N o R T T e —————
____ZZZZ== OOM ===z IZIZC_______
@ ckpr Leeeeoeooo--m=mT OOM PR
GPU1 1 |3 1 5 3 7 5 7
b) Ul Gpy, 2 sl 4 8| e 8
CKPT Gpu, 1[ 1 [3] 3 |s] s [7] 7 :
GPU, 2 4] a4 |e] 6 [8] 8 i
;- Data - . — FWD with — BWD with
2L Index | |FWD | |BWD ! All-gathering ! Reduce-Scattering

* GPT-3-2.7B model on 4 GPUS, Seq=4096, Bsz,,,,=8



Motivational Example

__________ OOM ===zZZZ°_7°_"
@) cpr emmmmmmmeoommmE OOM
GPU,[ 1 [3 1 |5 3 |7 5 7
b) U Gpy, 2 s|| 4 8| e 8
CKPT Gpu, 1] 1 3] 3 [s] s 7] 7 .
|
GPU, 2 4] 4 |6] 6 |[8] 8 i
Use ZeRO-2 & #CKPT Reduction: 32 ->28 — :
GPU, 1,2 1,2 :
@ Al 6Py, 3,4 3,4 Speedup |
Tuned GPU,[ 5.6 5, 6 130x !
GPU,| 7,8 7,8 |
|
;- Data FWD with BWD with
i i |[Fwp [ |BwWD | i
Ll Index : : ! All-gathering ! Reduce-Scattering

* GPT-3-2.7B model on 4 GPUS, Seq=4096, Bsz,,,,=8



Why do existing systems fail to co-optimize?

e Shortcoming #1: Unable to navigate the exploded search space.

LN Training Configuration

gradient_accumulation_steps = 2?2

model_strategies = [] —~ 150 |
for stage_idx in range(num_stages): % 10 - DP+TP
CKPT stage_strategy = { o 10125 | ° ° o o + PP (cont.)
z;ti;zlze 2? o 10100 | -4~ +ZeRO (cont.)
e : .'?;\‘, (o)
Memory s e S . | = +CKPT (cont.)
HPR : "num_layers_in_stasge": 2?2 n + + - | ¥ +00 (cont.)
(@)
Optimizations |offload S o i 2 10 / ) , v |+ +GO (cont)
"weights_offloading_ratio": FIXED o 25 V”””””’ﬂ Y
"grads_offloading_ratio": EIXED @) 10 Z-Q ¢ * * +PO (cont.)
"opts_offloading_ratio": FIXED #F 100 X H] H : « | - +AO (cont.)
"act_offloading_ratio": FIXED 16 32 48 64 80
ZeRO "zero_level": FIXED # Layers

}

model_strategies.append(stage_stratesgy)

DP TP PP
Parallelism

21



Why do existing systems fail to co-optimize?

e Shortcoming #1: Unable to navigate the exploded search space.

¢

DP+ TP

+ PP (cont.)
+ZeRO (cont.)
+ CKPT (cont.)
+ 00 (cont.)

+ GO (cont.)

+ PO (cont.)

+ AO (cont.)

CKPT

Memory
Optimizations |offi0ad

L

¢

ZeRO




Why do existing systems fail to co-optimize?

e Shortcoming #1: Unable to navigate the exploded search space.

e Shortcoming #2: Inaccurate performance prediction.

* #2.1 Underestimate performance by missing overlap
All grey bubbles can

PCle Activation Weight be used for some
Swap-Outi—1 Swap-Ini + 1 memory transferring.
: Stage 1
PCle/NVLink Weight ctace 2
All-Gatheri + 1 age
GPU ] N | Stage 3
Compute orwar ayerl Stage 4
Mitigate the Overhead of Overlap Opportunities
Offloading and ZeRO in Pipeline Parallelism

23



Why do existing systems fail to co-optimize?

e Shortcoming #1: Unable to navigate the exploded search space.

e Shortcoming #2: Inaccurate performance prediction.
e #2.1 Under-estimate performance by missing overlap
* #2.2 Mispredict performance by ignoring inter-microbatch imbalance

Stage 1
Stage 2
Stage 3
Stage 4

\ VT
\\ I/
The first and last micro-

batches cost more time. 15% performance degradation.

extra (+-) ~7% error ratio for the inter-stage
performance prediction, leading to up to extra




Outline

Background |of distributed training and its optimizations

Shortcomings |of existing distributed training systems

on state-of-the-art workloads

[ Key Ideas ]of Mist to address these shortcomings
[ Evaluation ]




@ Symbolic-Based Efficient Performance Prediction.

Mist’s Key ldeas

@ Symbolic-Based Efficient Performance Prediction

Traditional Analyzer —

Loop (for each configuration)

——
4— —

Concrete Configuration | -, crete
H#GPUs: 4 x 8,
GradAccumu: 16,
Parallelism: (2, 8, 2),
Memory Opts: ...

Model Exec Info
1. Concrete Latency
2. Concrete Memory

Analyzer

—

=

several seconds for
each configuration

Insight: Repeated simulation
is doing redundant work



@ Symbolic-Based Efficient Performance Prediction.

Mist’s Key ldeas

@ Symbolic-Based Efficient Performance Prediction

—

Traditional Analyzer

Loop (for each configuration)

>>10° Efficiency Diff

Symbolic Analyzer

——
4— —

Concrete Configuration | -, crete

H#GPUs: 4 x 8, Model Exec Info

Analyzer

GradAccumu: 16, 1. Concrete Latency
Parallelism: (2, 8, 2), 2. Concrete Memory
Memory Opts: ...

U

Symbolic Configuration
#GPUs: N x M,
GradAccumu: G,
Parallelism: (DP, TP, PP),
Memory Opts: ...

—

10
11

several seconds for
each configuration

=

from mist import global_symbol_manager as gsm

# Define symbols

b, s, h, d, tp = gsm.symbols("b s h d tp", (4, 128, 12, 64, 8),
integer=True, positive=True)

# Initialize the model configuration using symbolic parameters

config = GPT2Config(n_embd=h*d, n_head=h, tp=tp, ...)

# Construct the GPT-2 model with symbolic configuration

model = GPT2LMHeadModel (config)

# Create symbolic input tensors

input_ids = torch.randint(@, Vv, (b, s), dtype=torch.long)

# Execute the model with symbolic inputs

logits = model(input_ids).logits

>>> logits
symbolic_tensor((b, s, V), concrete_shape=(4, 128, 50257), ...)

27



Mist’s Key ldeas

@ Symbolic-Based Efficient Performance Prediction.

@ Symbolic-Based Efficient Performance Prediction

—

Traditional Analyzer

Loop (for each configuration)

>>10° Efficiency Diff

Symbolic Analyzer

——
4— —

Concrete Configuration | -, crete
H#GPUs: 4 x 8,

Analyzer

GradAccumu: 16, 1. Concrete Latency
Parallelism: (2, 8, 2), 2. Concrete Memory
Memory Opts: ...

Model Exec Info

U

Symbolic Configuration
#GPUs: N x M,
GradAccumu: G,
Parallelism: (DP, TP, PP),

Memory Opts: ...

Symbolic
Analyzer

Model Exec Info
1. Symbolic Latency
2. Symbolic Memory

—

several seconds for
each configuration

=

from mist import global_symbol_manager as gsm

# Define symbols

b, s, h, d, tp = gsm.symbols("b s h d tp", (4, 128, 12, 64, 8),
integer=True, positive=True)

# Initialize the model configuration using symbolic parameters

config = GPT2Config(n_embd=h*d, n_head=h, tp=tp, ...)

# Construct the GPT-2 model with symbolic configuration

model = GPT2LMHeadModel (config)

# Create symbolic input tensors

input_ids = torch.randint(@, Vv, (b, s), dtype=torch.long)

# Execute the model with symbolic inputs

logits = model(input_ids).logits

>>> logits
symbolic_tensor((b, s, V), concrete_shape=(4, 128, 50257), ...)

28



Mist’s Key ldeas

@ Symbolic-Based Efficient Performance Prediction.

@ Symbolic-Based Efficient Performance Prediction

Traditional Analyzer = Loop (for each configuration)
— ——
4—
Concrete Configuration | -, crete
>>10° Efficiency Diff #GPUs: 4 x 8, Analyzer Model Exec Info
— GradAccumu: 16, 1. Concrete Latency
Parallelism: (2, 8, 2), 2. Concrete Memory
Symbolic Analyzer Memory Opts: ...
@ Batched Eval
Symbolic Configuration symbolic Value
#GPUs: N x M, Model Exec Info Model Exec Info
Analyzer ; Eval
GradAccumu: G, 1. Symbolic Latency 1. Concrete Latency
Parallelism: (DP, TP, PP), 2. Symbolic Memory 2. Concrete Memory
Memory Opts: ...

—

_ several seconds for
each configuration

>10"5 samples/s

Batched Prediction Speed:

29




@ Fine-Grained Overlap-Centric Scheduling.

Mist’s Key ldeas

@ Fine-Grained Overlap-Centric Scheduling.

|< ©® Forward Pass of the First Microbatch >|

CPU - GPU

GPU Compute Fi1 F. Fiq

GPU <« GPU f

/
GPU - CPU /

/
Forward computation

of layer i



@ Fine-Grained Overlap-Centric Scheduling.

Mist’s Key ldeas

@ Fine-Grained Overlap-Centric Scheduling.

|< ©® Forward Pass of the First Microbatch >|

CPU - GPU
GPU Compute Fi1 Si+1 Fi Sis2 Fis1
GPU — GPU T
GPU - CPU |
I
Insight 1: Decompose Optimizer step of

Optimizer Steps layeri + 1



@ Fine-Grained Overlap-Centric Scheduling.

Mist’s Key ldeas

@ Fine-Grained Overlap-Centric Scheduling.

|< ©® Forward Pass of the First Microbatch >|

CPU - GPU
GPU Compute Fi1 Si+1 Fi Sis2 Fis1
GPU «— GPU Ui+1 Ui+2
GPU - CPU >\
\
Insight 2: Pre-compute Weight all-gather of
optimizer step and layeri + 1

overlap weight all-gather
with computation



@ Fine-Grained Overlap-Centric Scheduling.

Mist’s Key ldeas

@ Fine-Grained Overlap-Centric Scheduling.

|< ©® Forward Pass of the First Microbatch >|

CPU - GPU Gi+1|Ois1 Gi+2|Ois2
GPU Compute Fi.?\ ‘\ Si+1 Fi Si+2 Fis1
GPU <> GPU \\ \\ Uit Uis2
GPU - CPU \ \ Oiv2| Pis2 Ois2| Pis2
\\ 4
Insight 3: Overlap \.\ [/ . Insight 4: Each offloading
offloading for optimizer Gradients swap-in type can be set with a

Opt states swap-in
Opt states swap-out
Weights swap-out

step related tensors ratio from O to 1.



@ Fine-Grained Overlap-Centric Scheduling.

Mist’s Key ldeas

@ Fine-Grained Overlap-Centric Scheduling.

|< ©® Forward Pass of the First Microbatch >|

CPU - GPU Gi+1|Ois1 Gis2| Oir2
GPU Compute Fi1 Si+1 Fi Sis2 Fis1
GPU < GPU Ui+1 Uis2
GPU - CPU Ois2| Pisa| A Ois2| Pir2 | A+
Yo _— v

Insight 5: Overlap

. L. Activation swap-out
offloading for activations P



@ Fine-Grained Overlap-Centric Scheduling.

Mist’s Key ldeas

@ Fine-Grained Overlap-Centric Scheduling.

| «—— @ Forward Pass of the First Microbatch > | < @ Stable Forward Pass > | | < © Backward Pass —
CPU - GPU Gi | O Gis1|Ois1 Gi+2|Oix2 Gis3|0is3 Pi Pis1 Pis2 Piss| | Pi | Gi | Ai [Pi1|Gia|Ai-a| Pi2[Gi-2| Aiz
GPU Compute Si Fi1 Sis1 F; Sis2 Fisq Sis3 Fi1 F; Fii1 Bi+1 Bi Bi1
GPU < GPU Ui Uin Uin Ui Uin Uin Risa| Ui Ris1|Ui1 Ri [Ui2 Ria| ...
GPU > CPU  |Oi.1|Pi-1|Ai2 Oi | Pi [Aia Oi+1|Pis1| Ai Oi+2|Pis2[Aisa| | A2 Ai1 A Ais Gix2 Gis1 Gi Gi1
:. i | Layer Index Pi | FP16 Params Gi| Gradients 0| Optimizer States Ai | Activations \I Time
| ' : : (incl. FP32 Params) ' i R
: Fi | Forward Exec (incl. TP) Bi | Backward Exec (incl. TP) Ui | Parameter All-gathering Ri | Gradient Reduce-scattering Si | Opt Step '
i 7

35




@ Symbolic-Based Efficient Performance Prediction.
@ Fine-Grained Overlap-Centric Scheduling.

M ISt’S Key Ideas @ Imbalance-Aware Hierarchical Tuning via Pareto

Frontier Sampling.

@ Imbalance-Aware Hierarchical Tuning via Pareto Frontier Sampling.

* Formulize inter-stage tuning as a MILP problem. However, t; and d;
are correlated.
otage 1 Inter-Stage f w
Stage 2 g \
Stage 3 . _ .
Stage 4 112.129 {(G 1) - max {tl} + Z ti + 11'21;?12ng Z ‘ t;)}
i fi,(ni,m;) 1<j<i j

Stage 1 Normal 'plpelme Con5|der (2)
St i 2 time calculation microbatch

- e differences
Stage 3 —=
ctage s Intra-Stage & Sample (t;, d;) from the

pareto frontier of intya stage

t;: Time of stable micro batch in stage i min @G- lpzo + (1= a) - dpzo

d;: Time difference between the first microbatch i e. max (Mem;f;;j) Memf,iff)) < Mempudger
and t; in stage i

(4)

36



Mist Overview

An automatic distributed
training performance analysis
and tuning system with
overlapped execution engine.

‘Hardware Info‘ L

Model Info

J |

Inputs Info

Y

Overlap-
Centric
Schedule
Template

(84.1)

./

37



Outline

Background |of distributed training and its optimizations

Shortcomings |of existing distributed training systems

on state-of-the-art workloads

[ Key Ideas ]of Mist to address these shortcomings
[ Evaluation ]




Methodology

)
a
O
o
S
i
<<
<
Q
>
Z

)
(a T
G)
4
—
<
Q
>
z

Hardware

NVLink Interconnect

Mem. PCle Spec

GPU#

Platform GPU

100Gbps
400Gbps

X
v

,32] 24GB Gen3@16x
2] 40GB Gen4@16x

3
, 3

16
16

58)
385

4
4

b
3

2
2

[

L4
A100 [

GCP
AWS

39



Methodology

NVIDIA L4 GPU NVIDIA A100 GPU

Hardware

GPU Models Param# (billion) Global Batch Size Seq Len

Workloads L4 GPT, Llama, Falcon [1.3, 2.6, 6.7, 13, 22] [32, 64, 128, 256, 512] 2048
A100 GPT, Llama, Falcon [1.3,2.6, 6.7, 13, 22] [32, 64, 128, 256, 512] 4096

40



Methodology

NVIDIA L4 GPU NVIDIA A100 GPU

Hardware

GPU Models Param# (billion) Global Batch Size Seq Len

Workloads L4 GPT, Llama, Falcon [1.3, 2.6, 6.7, 13, 22] [32, 64, 128, 256, 512] 2048
A100 GPT, Llama, Falcon [1.3,2.6, 6.7, 13, 22] [32, 64, 128, 256, 512] 4096

Baselines Megatron-LM, DeepSpeed

41



1) Performance Speedup w/ FlashAttn

B Megatron-LM m DeepSpeed Mist

1.4 1.32x
+ 1.21x 1.26x%

5 1.20x
<= 1 1 1 1
91x
i i i
2.7B 7B 13B 22B

GPT-3 model on L4 GPUs

1

0.95%

40

© o o ©
N DS O

Normalized Thro
o
o

1.3B

Mist consistently outperform the baselines .



1) Performance Speedup w/ FlashAttn

[ Megatron -LM DeepSpeed Mist

54.07¢

< 3.0 A
(®)]
52.0-
|-51.0-
0.0 -

1 BB 2. 7B 138 228
(a) GPT3 L4 GPUs

* L4 GPUs: 1.32 X on average (up to 1. 59 X ) over Megatron-LM

« A100 GPUs: 1.34 X on average (upto 1.72 X ) over Megatron-LM
43



2) Speedup Breakdown

3D Parallelism 1.00x : --- Megatron-LM

0.8 0.9 1.0 1.1 1.2
Relative Averaged Speedup

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

1.3

4.4



2) Speedup Breakdown

3D Parallelism
+ZeRO-2/3

=== Megatron-LM

0.8 0.9 1.0 1.1 1.2 1.3
Relative Averaged Speedup

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

45



2) Speedup Breakdown

3D Parallelism === Megatron-LM
+ZeRO-2/3
+Flexible CKPT

0.8 0.9 1.0 1.1 1.2 1.3
Relative Averaged Speedup

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

46



2) Speedup Breakdown

3D Parallelism === Megatron-LM
+ZeRO-2/3
+Flexible CKPT

+Offloading

0.8 0.9 1.0 | 1.1 1.2
Relative Averaged Speedup

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.



2) Speedup Breakdown

3D Parallelism === Megatron-LM
+ZeRO-2/3

+Flexible CKPT

+Offloading

+Imbalance-Aware Pipelining

0.8 0.9 1.0 1.1 1.2
Relative Averaged Speedup

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

1.3



3) Tuning Time

1E+5

[N
m
+
I

9.33 x faster

1.97 x faster

1E+2 N T — —)

Tuning Time
(Seconds, log scale)

Alpa  Aceso 3D Para. +CKPT +ZeRO +00 +AO +GO +WO

* Vs, Aceso: with the same search space,
Mist is 1. 97 X faster.

Vs, Alpa: even with larger search space,
Mist is 9. 33 X faster.

Tuning a 22B model on 32 GPUs.



Executive Summary

* Mist accelerates distributed training by co-optimizing parallelism and
memory optimizations.

* Key Challenges
 Exploded and complex configuration search space.
* Inaccurate performance prediction: due to missing overlap and ignoring inter-
microbatch imbalance.
* Mist addresses the challenges with
(1) Symbolic-based Performance Analysis
(2) Overlap-Centric Scheduling & Imbalance-aware hierarchical tuning

* Key Result: Up to 1.73 X better vs. Megatron-LM and 2. 04 X vs. the
automatic method Aceso, respectively.

50



	Slide 1: Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism Co-Optimization
	Slide 2: Executive Summary
	Slide 3: Large Language Models
	Slide 4: Cost of Training Large Language Models
	Slide 5: Optimizations – Distributed Parallelism
	Slide 6: Optimizations – Distributed Parallelism
	Slide 7: Optimizations - Memory Optimizations
	Slide 8: Optimizations - Memory Optimizations
	Slide 9: Optimizations - Memory Optimizations
	Slide 10: The Need for Comprehensive Co-Optimization
	Slide 11: The Need for Comprehensive Co-Optimization
	Slide 12: The Need for Comprehensive Co-Optimization
	Slide 13: The Need for Comprehensive Co-Optimization
	Slide 14: The Need for Comprehensive Co-Optimization
	Slide 15: The Need for Comprehensive Co-Optimization
	Slide 16: The Need for Comprehensive Co-Optimization
	Slide 17: Motivational Example
	Slide 18: Motivational Example
	Slide 19: Motivational Example
	Slide 20: Motivational Example
	Slide 21: Why do existing systems fail to co-optimize?
	Slide 22: Why do existing systems fail to co-optimize?
	Slide 23: Why do existing systems fail to co-optimize?
	Slide 24: Why do existing systems fail to co-optimize?
	Slide 25: Outline
	Slide 26: Mist’s Key Ideas
	Slide 27: Mist’s Key Ideas
	Slide 28: Mist’s Key Ideas
	Slide 29: Mist’s Key Ideas
	Slide 30: Mist’s Key Ideas
	Slide 31: Mist’s Key Ideas
	Slide 32: Mist’s Key Ideas
	Slide 33: Mist’s Key Ideas
	Slide 34: Mist’s Key Ideas
	Slide 35: Mist’s Key Ideas
	Slide 36: Mist’s Key Ideas
	Slide 37: Mist Overview
	Slide 38: Outline
	Slide 39: Methodology
	Slide 40: Methodology
	Slide 41: Methodology
	Slide 42: 1) Performance Speedup w/ FlashAttn
	Slide 43: 1) Performance Speedup w/ FlashAttn
	Slide 44: 2) Speedup Breakdown
	Slide 45: 2) Speedup Breakdown
	Slide 46: 2) Speedup Breakdown
	Slide 47: 2) Speedup Breakdown
	Slide 48: 2) Speedup Breakdown
	Slide 49: 3) Tuning Time
	Slide 50: Executive Summary

