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Executive Summary

• Accelerate distributed training by comprehensively co-optimizing 
parallelism and memory optimizations.

• Key Challenges
• Exploded and complex configuration search space.

• Inaccurate performance prediction: due to missing overlap and ignoring inter-
microbatch imbalance.

• Mist addresses the challenges with
① Symbolic-based Performance Analysis

② Overlap-Centric Scheduling & Imbalance-aware hierarchical tuning

• Key Result: Up to 𝟏. 𝟕𝟑 × better vs. Megatron-LM and 𝟐. 𝟎𝟒 × vs. the
automatic method Aceso, respectively.
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Large Language Models

• State-of-the-art performance in many applications:

3
Machine Translation Speech RecognitionText Generation

• Widely adopted in both open communities and commercial systems.



Cost of Training Large Language Models

• Extremely resource-consuming and expensive!

4

Training 
Costs ($)

Gas Emissions 
(tons CO2)

Llama 3.1 8B 2.92M 420

Llama 3.1 70B 14.00M 2,040

Llama 3.1 405B 61.68M 8,930

Total 78.60M 11,390

• Strong incentive to reduce the training time of these models.

Training Consumption Source: github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md



Optimizations – Distributed Parallelism
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• Computation Utilization:
• Communication Overhead:
• Memory Usage:

Data Parallelism
Partition input data

Tensor Parallelism
Partition linear layers

• Computation Overhead:  
Communication Overhead:

• Memory Usage:

Pipeline Parallelism
Partitions the model into stages

• Computation Utilization:
• Communication Overhead: 
• Memory Usage:



Optimizations – Distributed Parallelism
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Data Parallelism
Partition input data

Tensor Parallelism
Partition linear layers

Pipeline Parallelism
Partitions model states

Each type of parallelism presents 
trade-offs in computation, 

communication, and memory footprint.

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:  
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead: 
• Memory Usage:



Optimizations - Memory Optimizations
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Activation Checkpointing (CKPT) 
Recompute activations in BWD
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Offloading/Swapping
Offload tensors to CPU

ZeRO
Redundancy elimination

Weights Swap Opt Swap All-gather for ZeRO-3

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:  
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead: 
• Memory Usage:



Optimizations - Memory Optimizations
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Activation Checkpointing (CKPT) 
Recompute activations in BWD
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Offloading/Swapping
Offload tensors to CPU

ZeRO
Redundancy elimination

Weights Swap Opt Swap All-gather for ZeRO-3

Each type of memory optimizations 
presents trade-offs in computation, 
communication, and memory footprint.

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:  
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead: 
• Memory Usage:



Optimizations - Memory Optimizations
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Activation Checkpointing (CKPT) 
Recompute activations in BWD
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Offloading/Swapping
Offload tensors to CPU

ZeRO
Redundancy elimination

Weights Swap Opt Swap All-gather for ZeRO-3

Parallelism and memory footprint
reduction techniques need to be jointly

optimized.

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:  
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead: 
• Memory Usage:



The Need for Comprehensive Co-Optimization
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GPU Memory Footprint



The Need for Comprehensive Co-Optimization
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• Apply a higher level of ZeRO

GPU Memory Footprint

Aggressive Memory Optimizations

Overhead ↑



The Need for Comprehensive Co-Optimization
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• Apply a higher level of ZeRO

Aggressive Memory Optimizations

Overhead ↑ ↑

• Apply more CKPT

GPU Memory Footprint



The Need for Comprehensive Co-Optimization
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• Apply a higher level of ZeRO

Aggressive Memory Optimizations

Overhead ↑ ↑ ↑

• Apply more CKPT

• Apply more offloading

GPU Memory Footprint



The Need for Comprehensive Co-Optimization
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Aggressive Memory Optimizations

• Apply a higher level of ZeRO

• Apply more CKPT

• Apply more offloading

Overhead ↑ ↑ ↑

GPU Memory Footprint

Utilize Gained Memory

• Reduce TP Size

Perf Gain ↑



The Need for Comprehensive Co-Optimization
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Aggressive Memory Optimizations

• Apply a higher level of ZeRO

• Apply more CKPT

• Apply more offloading

Overhead ↑ ↑ ↑

Utilize Gained Memory

• Reduce TP Size

Perf Gain ↑ ↑

• Reduce PP Size

GPU Memory Footprint



The Need for Comprehensive Co-Optimization
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Aggressive Memory Optimizations

• Apply a higher level of ZeRO

• Apply more CKPT

• Apply more offloading

Overhead ↑ ↑ ↑

Utilize Gained Memory

• Reduce TP Size

Perf Gain ↑ ↑ ↑

• Reduce PP Size

GPU Memory Footprint

• Increase batch size



Motivational Example
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• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8



Motivational Example
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• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8



Motivational Example
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• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8



Motivational Example
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• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8



Why do existing systems fail to co-optimize?
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• Shortcoming #1: Unable to navigate the exploded search space.
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Why do existing systems fail to co-optimize?
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• Shortcoming #1: Unable to navigate the exploded search space.
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Why do existing systems fail to co-optimize?
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• Shortcoming #1: Unable to navigate the exploded search space.

• Shortcoming #2: Inaccurate performance prediction.
• #2.1 Underestimate performance by missing overlap

Activation 
Swap-Out 𝑖 − 1

Weight 
Swap-In 𝑖 + 1

Weight 
All-Gather 𝑖 + 1

GPU 
Compute

PCIe

PCIe/NVLink
a b

a

c d

b c d

a b c d

a b c d

Stage 1

Stage 2

Stage 3

Stage 4

All grey bubbles can 
be used for some 

memory transferring.

Mitigate the Overhead of
Offloading and ZeRO

Forward Layer 𝑖 

Overlap Opportunities
in Pipeline Parallelism



Why do existing systems fail to co-optimize?
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• Shortcoming #1: Unable to navigate the exploded search space.

• Shortcoming #2: Inaccurate performance prediction.
• #2.1 Under-estimate performance by missing overlap

• #2.2 Mispredict performance by ignoring inter-microbatch imbalance

The first and last micro-
batches cost more time.

extra (+-) ~7% error ratio for the inter-stage 
performance prediction, leading to up to extra 
15% performance degradation.



Outline
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Background

Shortcomings

Key Ideas

Evaluation

of distributed training and its optimizations

of existing distributed training systems

of Mist to address these shortcomings

on state-of-the-art workloads



Mist’s Key Ideas
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① Symbolic-Based Efficient Performance Prediction

several seconds for
each configuration

Insight: Repeated simulation
is doing redundant work

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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① Symbolic-Based Efficient Performance Prediction

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.

several seconds for
each configuration



Mist’s Key Ideas
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① Symbolic-Based Efficient Performance Prediction

several seconds for
each configuration

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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① Symbolic-Based Efficient Performance Prediction

Batched Prediction Speed: 
>10^5 samples/s

several seconds for
each configuration

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU

GPU Compute Fi-1 Fi Fi+1

GPU ⟷ GPU

GPU → CPU

Forward computation
of layer 𝑖

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU

GPU → CPU

Optimizer step of
layer 𝑖 + 1

Insight 1: Decompose
Optimizer Steps

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU Ui+1 Ui+2

GPU → CPU

Weight all-gather of
layer 𝑖 + 1

Insight 2: Pre-compute
optimizer step and

overlap weight all-gather
with computation

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU Gi+1 Oi+1 Gi+2 Oi+2

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU Ui+1 Ui+2

GPU → CPU Oi+2 Pi+2 Oi+2 Pi+2

Gradients swap-in
Opt states swap-in

Opt states swap-out
Weights swap-out

Insight 3: Overlap
offloading for optimizer

step related tensors

❶ Forward Pass of the First Microbatch

Insight 4: Each offloading 
type can be set with a 

ratio from 0 to 1.

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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② Fine-Grained Overlap-Centric Scheduling.

Insight 5: Overlap
offloading for activations

CPU → GPU Gi+1 Oi+1 Gi+2 Oi+2

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU Ui+1 Ui+2

GPU → CPU Oi+2 Pi+2 Ai Oi+2 Pi+2 Ai+1

Activation swap-out

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU Gi Oi Gi+1 Oi+1 Gi+2 Oi+2 Gi+3 Oi+3 Pi Pi+1 Pi+2 Pi+3 Pi Gi Ai Pi-1 Gi-1 Ai-1 Pi-2 Gi-2 Ai-2 …

GPU Compute … Si Fi-1 Si+1 Fi Si+2 Fi+1 Si+3 Fi-1 Fi Fi+1 … Bi+1 Bi Bi-1 …

GPU ⟷ GPU Ui Ui+1 Ui+2 Ui Ui+1 Ui+2 Ri+2 Ui Ri+1 Ui-1 Ri Ui-2 Ri-1 …

GPU → CPU Oi-1 Pi-1 Ai-2 Oi Pi Ai-1 Oi+1 Pi+1 Ai Oi+2 Pi+2 Ai+1 Ai-2 Ai-1 Ai Ai+1 Gi+2 Gi+1 Gi Gi-1

❶ Forward Pass of the First Microbatch ❷ Stable Forward Pass ❸ Backward Pass

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.



Mist’s Key Ideas
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③ Imbalance-Aware Hierarchical Tuning via Pareto Frontier Sampling.

Inter-Stage

③ Imbalance-Aware Hierarchical Tuning via Pareto 
Frontier Sampling.

However, 𝒕𝒊 and 𝒅𝒊 
are correlated. 

• Formulize inter-stage tuning as a MILP problem. 

Intra-Stage

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

𝒕𝒊: Time of stable micro batch in stage 𝒊
𝒅𝒊: Time difference between the first microbatch

and 𝒕𝒊 in stage 𝒊

Normal pipeline
time calculation

Consider
microbatch
differences

Sample (𝒕𝒊, 𝒅𝒊) from the
pareto frontier of intra stage 



Mist Overview
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An automatic distributed
training performance analysis
and tuning system with
overlapped execution engine.



Outline
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Background

Shortcomings

Key Ideas

Evaluation

of distributed training and its optimizations

of existing distributed training systems

of Mist to address these shortcomings

on state-of-the-art workloads



Methodology

Hardware
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NVIDIA A100 GPUNVIDIA L4 GPU
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Hardware

40

NVIDIA A100 GPUNVIDIA L4 GPU

Workloads
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NVIDIA A100 GPUNVIDIA L4 GPU

Workloads

Baselines Megatron-LM, DeepSpeed, Aceso



1) Performance Speedup w/ FlashAttn
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GPT-3 model on L4 GPUs
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1) Performance Speedup w/ FlashAttn
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• L4 GPUs:       𝟏. 𝟑𝟐 × on average (up to 𝟏. 𝟓𝟗 × ) over Megatron-LM
• A100 GPUs:  𝟏. 𝟑𝟒 × on average (up to 𝟏. 𝟕𝟐 × ) over Megatron-LM
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(b) Llam a2 - L4 GPUs
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(c) Falcon - L4 GPUs
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(d) GPT3 - A100 GPUs
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(e) Llam a2 - A100 GPUs
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2) Speedup Breakdown
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Relative averaged speedup of tuning over different search spaces for GPT 
model on 8, 16, and 32 L4 GPUs.
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Relative averaged speedup of tuning over different search spaces for GPT 
model on 8, 16, and 32 L4 GPUs.
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Relative averaged speedup of tuning over different search spaces for GPT 
model on 8, 16, and 32 L4 GPUs.
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Relative averaged speedup of tuning over different search spaces for GPT 
model on 8, 16, and 32 L4 GPUs.



2) Speedup Breakdown
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Relative averaged speedup of tuning over different search spaces for GPT 
model on 8, 16, and 32 L4 GPUs.



3) Tuning Time
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• Vs. Aceso: with the same search space,      
Mist is 𝟏. 𝟗𝟕 × faster.

• Vs. Alpa:   even with larger search space,  
Mist is 𝟗. 𝟑𝟑 × faster. 
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𝟗. 𝟑𝟑 × faster

𝟏. 𝟗𝟕 × faster

Tuning a 22B model on 32 GPUs.



Executive Summary

• Mist accelerates distributed training by co-optimizing parallelism and 
memory optimizations.

• Key Challenges
• Exploded and complex configuration search space.

• Inaccurate performance prediction: due to missing overlap and ignoring inter-
microbatch imbalance.

• Mist addresses the challenges with
① Symbolic-based Performance Analysis

② Overlap-Centric Scheduling & Imbalance-aware hierarchical tuning

• Key Result: Up to 𝟏. 𝟕𝟑 × better vs. Megatron-LM and 𝟐. 𝟎𝟒 × vs. the
automatic method Aceso, respectively.
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