
Mist: Efficient Distributed Training of Large Language
Models via Memory-Parallelism Co-Optimization

Zhanda Zhu1, 2, 3, Christina Giannoula1, 2, 3, Muralidhar Andoorveedu1, Qidong Su1, 2, 3,
Karttikeya Mangalam4, Bojian Zheng1, 2, 3, Gennady Pekhimenko1, 2, 3

1 2 3 4

Executive Summary

• Accelerate distributed training by comprehensively co-optimizing
parallelism and memory optimizations.

• Key Challenges
• Exploded and complex configuration search space.

• Inaccurate performance prediction: due to missing overlap and ignoring inter-
microbatch imbalance.

• Mist addresses the challenges with
① Symbolic-based Performance Analysis

② Overlap-Centric Scheduling & Imbalance-aware hierarchical tuning

• Key Result: Up to 𝟏. 𝟕𝟑 × better vs. Megatron-LM and 𝟐. 𝟎𝟒 × vs. the
automatic method Aceso, respectively.

2

Large Language Models

• State-of-the-art performance in many applications:

3
Machine Translation Speech RecognitionText Generation

• Widely adopted in both open communities and commercial systems.

Cost of Training Large Language Models

• Extremely resource-consuming and expensive!

4

Training
Costs ($)

Gas Emissions
(tons CO2)

Llama 3.1 8B 2.92M 420

Llama 3.1 70B 14.00M 2,040

Llama 3.1 405B 61.68M 8,930

Total 78.60M 11,390

• Strong incentive to reduce the training time of these models.

Training Consumption Source: github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md

Optimizations – Distributed Parallelism

5

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

Data Parallelism
Partition input data

Tensor Parallelism
Partition linear layers

• Computation Overhead:
Communication Overhead:

• Memory Usage:

Pipeline Parallelism
Partitions the model into stages

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

Optimizations – Distributed Parallelism

6

Data Parallelism
Partition input data

Tensor Parallelism
Partition linear layers

Pipeline Parallelism
Partitions model states

Each type of parallelism presents
trade-offs in computation,

communication, and memory footprint.

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

Optimizations - Memory Optimizations

7

Activation Checkpointing (CKPT)
Recompute activations in BWD

Tr
an

sf
o

rm
e

r
La

ye
r

1

Tr
an

sf
o

rm
e

r
La

ye
r

2

In
p

u
t

Tr
an

sf
o

rm
e

r
La

ye
r

3

Tr
an

sf
o

rm
e

r
La

ye
r

4

Offloading/Swapping
Offload tensors to CPU

ZeRO
Redundancy elimination

Weights Swap Opt Swap All-gather for ZeRO-3

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

Optimizations - Memory Optimizations

8

Activation Checkpointing (CKPT)
Recompute activations in BWD

Tr
an

sf
o

rm
e

r
La

ye
r

1

Tr
an

sf
o

rm
e

r
La

ye
r

2

In
p

u
t

Tr
an

sf
o

rm
e

r
La

ye
r

3

Tr
an

sf
o

rm
e

r
La

ye
r

4

Offloading/Swapping
Offload tensors to CPU

ZeRO
Redundancy elimination

Weights Swap Opt Swap All-gather for ZeRO-3

Each type of memory optimizations
presents trade-offs in computation,
communication, and memory footprint.

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

Optimizations - Memory Optimizations

9

Activation Checkpointing (CKPT)
Recompute activations in BWD

Tr
an

sf
o

rm
e

r
La

ye
r

1

Tr
an

sf
o

rm
e

r
La

ye
r

2

In
p

u
t

Tr
an

sf
o

rm
e

r
La

ye
r

3

Tr
an

sf
o

rm
e

r
La

ye
r

4

Offloading/Swapping
Offload tensors to CPU

ZeRO
Redundancy elimination

Weights Swap Opt Swap All-gather for ZeRO-3

Parallelism and memory footprint
reduction techniques need to be jointly

optimized.

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

• Computation Overhead:
Communication Overhead:

• Memory Usage:

• Computation Utilization:
• Communication Overhead:
• Memory Usage:

The Need for Comprehensive Co-Optimization

10

GPU Memory Footprint

The Need for Comprehensive Co-Optimization

11

• Apply a higher level of ZeRO

GPU Memory Footprint

Aggressive Memory Optimizations

Overhead ↑

The Need for Comprehensive Co-Optimization

12

• Apply a higher level of ZeRO

Aggressive Memory Optimizations

Overhead ↑ ↑

• Apply more CKPT

GPU Memory Footprint

The Need for Comprehensive Co-Optimization

13

• Apply a higher level of ZeRO

Aggressive Memory Optimizations

Overhead ↑ ↑ ↑

• Apply more CKPT

• Apply more offloading

GPU Memory Footprint

The Need for Comprehensive Co-Optimization

14

Aggressive Memory Optimizations

• Apply a higher level of ZeRO

• Apply more CKPT

• Apply more offloading

Overhead ↑ ↑ ↑

GPU Memory Footprint

Utilize Gained Memory

• Reduce TP Size

Perf Gain ↑

The Need for Comprehensive Co-Optimization

15

Aggressive Memory Optimizations

• Apply a higher level of ZeRO

• Apply more CKPT

• Apply more offloading

Overhead ↑ ↑ ↑

Utilize Gained Memory

• Reduce TP Size

Perf Gain ↑ ↑

• Reduce PP Size

GPU Memory Footprint

The Need for Comprehensive Co-Optimization

16

Aggressive Memory Optimizations

• Apply a higher level of ZeRO

• Apply more CKPT

• Apply more offloading

Overhead ↑ ↑ ↑

Utilize Gained Memory

• Reduce TP Size

Perf Gain ↑ ↑ ↑

• Reduce PP Size

GPU Memory Footprint

• Increase batch size

Motivational Example

17

• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8

Motivational Example

18

• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8

Motivational Example

19

• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8

Motivational Example

20

• GPT-3-2.7B model on 4 GPUS, Seq=4096, Bszglobal=8

Why do existing systems fail to co-optimize?

21

• Shortcoming #1: Unable to navigate the exploded search space.

16 32 48 64 80

Layers

100

1025

1050

1075

10100

10125

10150

#
C

o
n

fi
g

s
 (

lo
g

 s
c
a

le
)

DP+ TP

+ PP (cont .)

+ ZeRO (cont .)

+ CKPT (cont .)

+ OO (cont .)

+ GO (cont .)

+ PO (cont .)

+ AO (cont .)

Parallelism

Memory
Optimizations

DP TP PP

CKPT

Offload

ZeRO

FIXED
FIXED

FIXED
FIXED

FIXED

FIXED

Why do existing systems fail to co-optimize?

22

• Shortcoming #1: Unable to navigate the exploded search space.

16 32 48 64 80

Layers

100

1025

1050

1075

10100

10125

10150

#
C

o
n

fi
g

s
 (

lo
g

 s
c
a

le
)

DP+ TP

+ PP (cont .)

+ ZeRO (cont .)

+ CKPT (cont .)

+ OO (cont .)

+ GO (cont .)

+ PO (cont .)

+ AO (cont .)

Parallelism

Memory
Optimizations

DP TP PP

CKPT

Offload

ZeRO

FIXED
FIXED

FIXED
FIXED

FIXED

FIXED

Search Space

High-Performance ConfigSchedule
(i.e., Implementation)

Why do existing systems fail to co-optimize?

23

• Shortcoming #1: Unable to navigate the exploded search space.

• Shortcoming #2: Inaccurate performance prediction.
• #2.1 Underestimate performance by missing overlap

Activation
Swap-Out 𝑖 − 1

Weight
Swap-In 𝑖 + 1

Weight
All-Gather 𝑖 + 1

GPU
Compute

PCIe

PCIe/NVLink
a b

a

c d

b c d

a b c d

a b c d

Stage 1

Stage 2

Stage 3

Stage 4

All grey bubbles can
be used for some

memory transferring.

Mitigate the Overhead of
Offloading and ZeRO

Forward Layer 𝑖

Overlap Opportunities
in Pipeline Parallelism

Why do existing systems fail to co-optimize?

24

• Shortcoming #1: Unable to navigate the exploded search space.

• Shortcoming #2: Inaccurate performance prediction.
• #2.1 Under-estimate performance by missing overlap

• #2.2 Mispredict performance by ignoring inter-microbatch imbalance

The first and last micro-
batches cost more time.

extra (+-) ~7% error ratio for the inter-stage
performance prediction, leading to up to extra
15% performance degradation.

Outline

25

Background

Shortcomings

Key Ideas

Evaluation

of distributed training and its optimizations

of existing distributed training systems

of Mist to address these shortcomings

on state-of-the-art workloads

Mist’s Key Ideas

26

① Symbolic-Based Efficient Performance Prediction

several seconds for
each configuration

Insight: Repeated simulation
is doing redundant work

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

27

① Symbolic-Based Efficient Performance Prediction

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

several seconds for
each configuration

Mist’s Key Ideas

28

① Symbolic-Based Efficient Performance Prediction

several seconds for
each configuration

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

29

① Symbolic-Based Efficient Performance Prediction

Batched Prediction Speed:
>10^5 samples/s

several seconds for
each configuration

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

30

② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU

GPU Compute Fi-1 Fi Fi+1

GPU ⟷ GPU

GPU → CPU

Forward computation
of layer 𝑖

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

31

② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU

GPU → CPU

Optimizer step of
layer 𝑖 + 1

Insight 1: Decompose
Optimizer Steps

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

32

② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU Ui+1 Ui+2

GPU → CPU

Weight all-gather of
layer 𝑖 + 1

Insight 2: Pre-compute
optimizer step and

overlap weight all-gather
with computation

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

33

② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU Gi+1 Oi+1 Gi+2 Oi+2

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU Ui+1 Ui+2

GPU → CPU Oi+2 Pi+2 Oi+2 Pi+2

Gradients swap-in
Opt states swap-in

Opt states swap-out
Weights swap-out

Insight 3: Overlap
offloading for optimizer

step related tensors

❶ Forward Pass of the First Microbatch

Insight 4: Each offloading
type can be set with a

ratio from 0 to 1.

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

34

② Fine-Grained Overlap-Centric Scheduling.

Insight 5: Overlap
offloading for activations

CPU → GPU Gi+1 Oi+1 Gi+2 Oi+2

GPU Compute Fi-1 Si+1 Fi Si+2 Fi+1

GPU ⟷ GPU Ui+1 Ui+2

GPU → CPU Oi+2 Pi+2 Ai Oi+2 Pi+2 Ai+1

Activation swap-out

❶ Forward Pass of the First Microbatch

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

35

② Fine-Grained Overlap-Centric Scheduling.

CPU → GPU Gi Oi Gi+1 Oi+1 Gi+2 Oi+2 Gi+3 Oi+3 Pi Pi+1 Pi+2 Pi+3 Pi Gi Ai Pi-1 Gi-1 Ai-1 Pi-2 Gi-2 Ai-2 …

GPU Compute … Si Fi-1 Si+1 Fi Si+2 Fi+1 Si+3 Fi-1 Fi Fi+1 … Bi+1 Bi Bi-1 …

GPU ⟷ GPU Ui Ui+1 Ui+2 Ui Ui+1 Ui+2 Ri+2 Ui Ri+1 Ui-1 Ri Ui-2 Ri-1 …

GPU → CPU Oi-1 Pi-1 Ai-2 Oi Pi Ai-1 Oi+1 Pi+1 Ai Oi+2 Pi+2 Ai+1 Ai-2 Ai-1 Ai Ai+1 Gi+2 Gi+1 Gi Gi-1

❶ Forward Pass of the First Microbatch ❷ Stable Forward Pass ❸ Backward Pass

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

Mist’s Key Ideas

36

③ Imbalance-Aware Hierarchical Tuning via Pareto Frontier Sampling.

Inter-Stage

③ Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling.

However, 𝒕𝒊 and 𝒅𝒊
are correlated.

• Formulize inter-stage tuning as a MILP problem.

Intra-Stage

① Symbolic-Based Efficient Performance Prediction.

② Fine-Grained Overlap-Centric Scheduling.

𝒕𝒊: Time of stable micro batch in stage 𝒊
𝒅𝒊: Time difference between the first microbatch

and 𝒕𝒊 in stage 𝒊

Normal pipeline
time calculation

Consider
microbatch
differences

Sample (𝒕𝒊, 𝒅𝒊) from the
pareto frontier of intra stage

Mist Overview

37

An automatic distributed
training performance analysis
and tuning system with
overlapped execution engine.

Outline

38

Background

Shortcomings

Key Ideas

Evaluation

of distributed training and its optimizations

of existing distributed training systems

of Mist to address these shortcomings

on state-of-the-art workloads

Methodology

Hardware

39

NVIDIA A100 GPUNVIDIA L4 GPU

Methodology

Hardware

40

NVIDIA A100 GPUNVIDIA L4 GPU

Workloads

Methodology

Hardware

41

NVIDIA A100 GPUNVIDIA L4 GPU

Workloads

Baselines Megatron-LM, DeepSpeed, Aceso

1) Performance Speedup w/ FlashAttn

42

GPT-3 model on L4 GPUs

1 1 1 1 10.95× 0.91×

0.74×
0.80× 0.80×

1.21× 1.20× 1.15×
1.26×

1.32×

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.3B 2.7B 7B 13B 22B

N
o

rm
al

iz
ed

Th
ro

u
gh

p
u

t
Megatron-LM DeepSpeed Mist

Mist consistently outperform the baselines

1) Performance Speedup w/ FlashAttn

43

• L4 GPUs: 𝟏. 𝟑𝟐 × on average (up to 𝟏. 𝟓𝟗 ×) over Megatron-LM
• A100 GPUs: 𝟏. 𝟑𝟒 × on average (up to 𝟏. 𝟕𝟐 ×) over Megatron-LM

1.3B 2.7B 7B 13B 22B
0.0

1.0

2.0

3.0

4.0

T
h

ro
u

g
h

p
u

t

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

0
.9

5
×

0
.9

1
×

0
.7

4
×

0
.8

0
×

0
.8

0
×

1
.2

1
×

1
.2

0
×

1
.1

5
×

1
.2

6
× 1
.3

2
×

(a) GPT3 - L4 GPUs

Megatron-LM DeepSpeed Mist

1.3B 2.7B 7B 13B 22B
0.0

1.0

2.0

3.0

4.0

T
h

ro
u

g
h

p
u

t

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.1

1
×

0
.9

7
×

0
.8

0
×

0
.8

6
×

0
.9

0
×

1
.5

9
×

1
.4

2
×

1
.3

3
×

1
.3

4
× 1

.4
8

×

(b) Llam a2 - L4 GPUs

1.3B 2.7B 7B 13B 22B
0.0

1.0

2.0

3.0

4.0

T
h

ro
u

g
h

p
u

t

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

5
×

0
.9

4
×

0
.7

4
×

0
.8

1
×

0
.8

1
×

1
.4

2
×

1
.2

9
×

1
.2

0
×

1
.2

7
× 1
.3

6
×

(c) Falcon - L4 GPUs

1.3B 2.7B 7B 13B 22B
0.0

2.5

5.0

7.5

10.0

T
h

ro
u

g
h

p
u

t

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×1

.2
5

×

1
.2

3
×

1
.3

2
×

1
.1

2
×

1
.1

0
×

(d) GPT3 - A100 GPUs

1.3B 2.7B 7B 13B 22B
0.0

2.5

5.0

7.5

10.0

T
h

ro
u

g
h

p
u

t

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.7

3
×

1
.5

4
×

1
.5

9
×

1
.3

2
×

1
.3

5
×

(e) Llam a2 - A100 GPUs

1.3B 2.7B 7B 13B 22B
0.0

2.5

5.0

7.5

10.0

T
h

ro
u

g
h

p
u

t

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.0

0
×

1
.4

3
×

1
.4

0
×

1
.3

9
×

1
.1

9
×

1
.2

0
×

(f) Falcon - A100 GPUs

2) Speedup Breakdown

44

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

2) Speedup Breakdown

45

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

2) Speedup Breakdown

46

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

2) Speedup Breakdown

47

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

2) Speedup Breakdown

48

Relative averaged speedup of tuning over different search spaces for GPT
model on 8, 16, and 32 L4 GPUs.

3) Tuning Time

49

• Vs. Aceso: with the same search space,
Mist is 𝟏. 𝟗𝟕 × faster.

• Vs. Alpa: even with larger search space,
Mist is 𝟗. 𝟑𝟑 × faster.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Alpa Aceso 3D Para. +CKPT +ZeRO +OO +AO +GO +WO

Tu
n

in
g

Ti
m

e
(S

e
co

n
d

s,
lo

g
sc

al
e

)

𝟗. 𝟑𝟑 × faster

𝟏. 𝟗𝟕 × faster

Tuning a 22B model on 32 GPUs.

Executive Summary

• Mist accelerates distributed training by co-optimizing parallelism and
memory optimizations.

• Key Challenges
• Exploded and complex configuration search space.

• Inaccurate performance prediction: due to missing overlap and ignoring inter-
microbatch imbalance.

• Mist addresses the challenges with
① Symbolic-based Performance Analysis

② Overlap-Centric Scheduling & Imbalance-aware hierarchical tuning

• Key Result: Up to 𝟏. 𝟕𝟑 × better vs. Megatron-LM and 𝟐. 𝟎𝟒 × vs. the
automatic method Aceso, respectively.

50

	Slide 1: Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism Co-Optimization
	Slide 2: Executive Summary
	Slide 3: Large Language Models
	Slide 4: Cost of Training Large Language Models
	Slide 5: Optimizations – Distributed Parallelism
	Slide 6: Optimizations – Distributed Parallelism
	Slide 7: Optimizations - Memory Optimizations
	Slide 8: Optimizations - Memory Optimizations
	Slide 9: Optimizations - Memory Optimizations
	Slide 10: The Need for Comprehensive Co-Optimization
	Slide 11: The Need for Comprehensive Co-Optimization
	Slide 12: The Need for Comprehensive Co-Optimization
	Slide 13: The Need for Comprehensive Co-Optimization
	Slide 14: The Need for Comprehensive Co-Optimization
	Slide 15: The Need for Comprehensive Co-Optimization
	Slide 16: The Need for Comprehensive Co-Optimization
	Slide 17: Motivational Example
	Slide 18: Motivational Example
	Slide 19: Motivational Example
	Slide 20: Motivational Example
	Slide 21: Why do existing systems fail to co-optimize?
	Slide 22: Why do existing systems fail to co-optimize?
	Slide 23: Why do existing systems fail to co-optimize?
	Slide 24: Why do existing systems fail to co-optimize?
	Slide 25: Outline
	Slide 26: Mist’s Key Ideas
	Slide 27: Mist’s Key Ideas
	Slide 28: Mist’s Key Ideas
	Slide 29: Mist’s Key Ideas
	Slide 30: Mist’s Key Ideas
	Slide 31: Mist’s Key Ideas
	Slide 32: Mist’s Key Ideas
	Slide 33: Mist’s Key Ideas
	Slide 34: Mist’s Key Ideas
	Slide 35: Mist’s Key Ideas
	Slide 36: Mist’s Key Ideas
	Slide 37: Mist Overview
	Slide 38: Outline
	Slide 39: Methodology
	Slide 40: Methodology
	Slide 41: Methodology
	Slide 42: 1) Performance Speedup w/ FlashAttn
	Slide 43: 1) Performance Speedup w/ FlashAttn
	Slide 44: 2) Speedup Breakdown
	Slide 45: 2) Speedup Breakdown
	Slide 46: 2) Speedup Breakdown
	Slide 47: 2) Speedup Breakdown
	Slide 48: 2) Speedup Breakdown
	Slide 49: 3) Tuning Time
	Slide 50: Executive Summary

