Low-Bitwidth Floating-Point Quantization for Diffusion Models

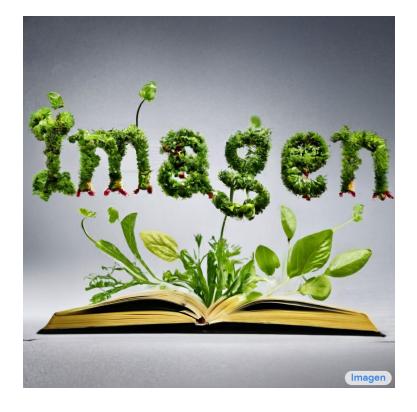
Cheng Chen¹, Christina Giannoula^{1,2}, Andreas Moshovos^{1,2}

¹University of Toronto

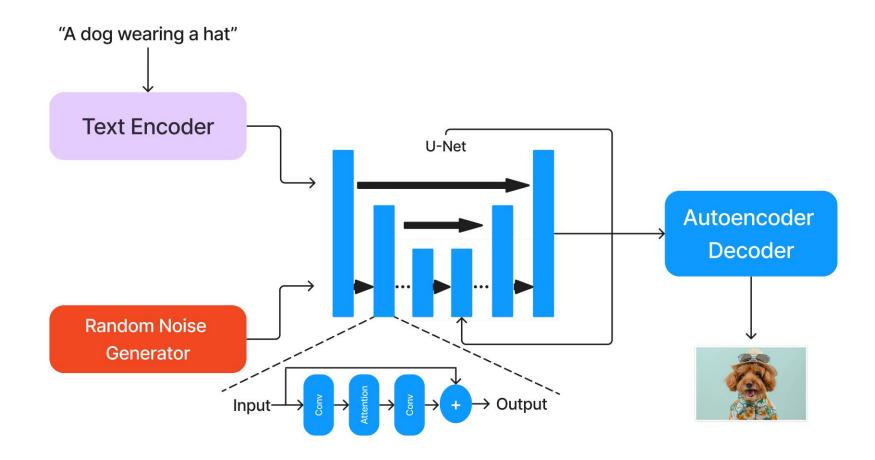
²Vector Institute

SOTA Image generative models are great

Imagen DALLE Midjourney



Example: Stable Diffusion



Integer quantized model generated images

Full precision INT8/INT8 INT4/INT8 How can we improve the degradation introduced by integer quantization? Our key idea: Apply floating-point quantization!

INT vs. FP Performance

	NVIDIA H100 SXM5	NVIDIA H100 PCIe
Peak FP64 ¹	30 TFLOPS	24 TFLOPS
Peak FP64 Tensor Core ¹	60 TFLOPS	48 TFLOPS
Peak FP32 ¹	60 TFLOPS	48 TFLOPS
Peak FP16 ¹	120 TFLOPS	96 TFLOPS
Peak BF16 ¹	120 TFLOPS	96 TFLOPS
Peak TF32 Tensor	500 TFLOPS 1000 TFLOPS ²	400 TFLOPS 800 TFLOPS ²

FP8 and INT8 have the same compute throughput and memory footprint

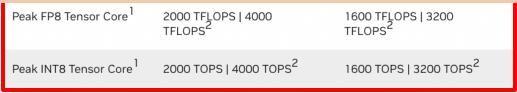
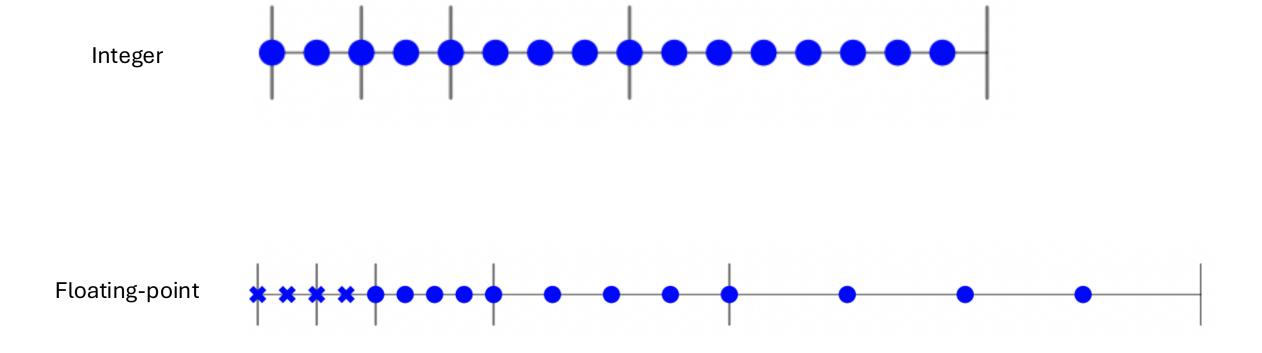


Table 1. NVIDIA H100 Tensor Core GPU preliminary performance specs

INT vs. FP



Floating-point representation offers higher precision and a wider range compared to integer representation

Our Contributions

• Apply floating-point quantization on diffusion models (weights to FP4 and activations to FP8)

 Adapt rounding learning from low-bitwidth integer quantization to enable FP4 quantization

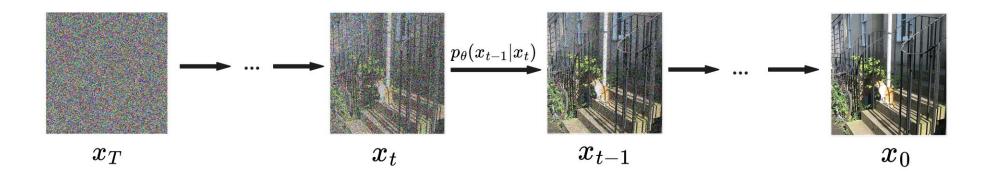
- Improve evaluation methodology
 - Avoid contradicting reality

Result highlight: quality

- FP8/FP8 VS. INT8/INT8 1.56x better
- FP4/FP8 VS. INT4/INT8 1.10x better
- Stable Diffusion:
 - FP4/FP8 better than INT8/INT8

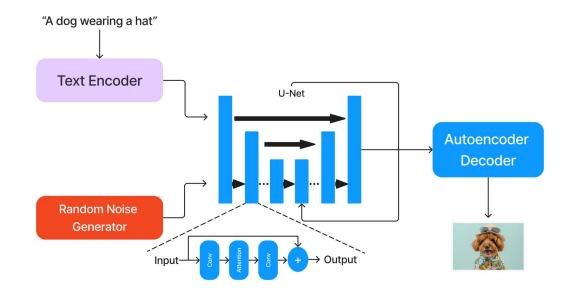
How does diffusion model generate new images?

The denoising process: denoise from noisy images



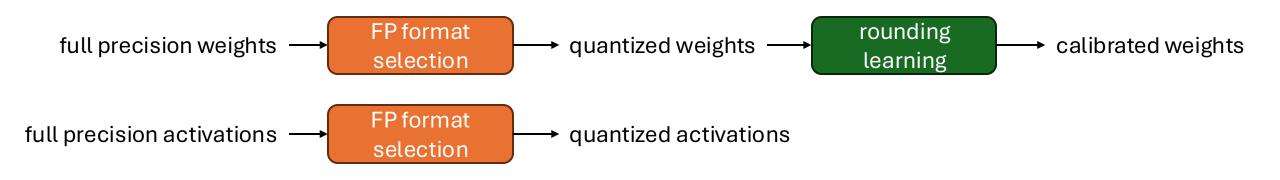
Diffusion models are great, but expensive

- Stable Diffusion (SD)
 - Total parameters: 1.06B
 - Structure:
 - U-Net: 860M
 - Text Encoder
 - Autoencoder Decoder
- Stable Diffusion XL (SDXL)
 - Total parameters: 3.5B
 - U-Net: 2.6B



Our Floating-Point Quantization Method

Quantization pipeline



- Step1: search FP formats and bias
- Step2: apply rounding learning to weights to reduce degradation
- Quantization process takes ~20 hours

Search space for each floating-point format

Encoding candidates

FP8: E2M5, E3M4,E4M3,E5M2

FP4: E1M2, E2M1

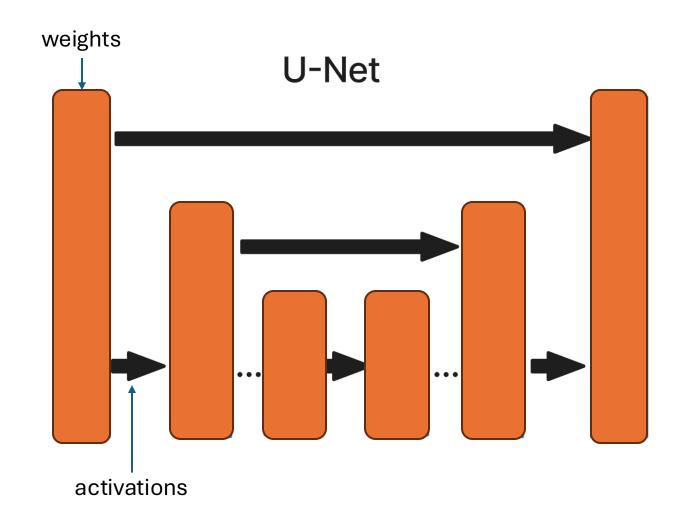
Bias candidates

 generate ~100 evenly spaced values between the minimum and maximum of the tensor and calculate the bias for each value

Total search space

- ~400 for FP8 and ~200 for FP4, for each tensor
- ~200-600 tensors

Step 1 – greedy search



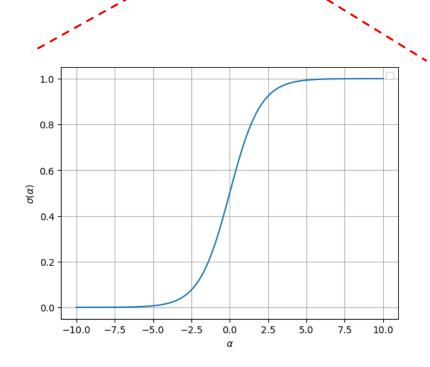
Randomly sampled images

Need rounding learning!

replace round-to-nearest with learned rounding

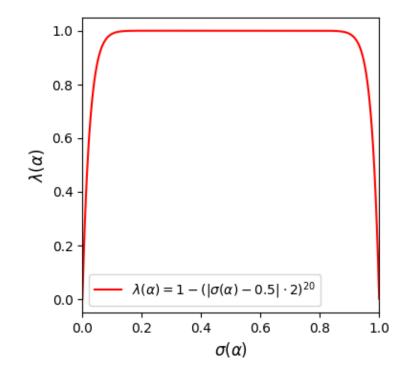
$$W_i^q = s_i \left\lfloor \frac{W_i}{s_i} \right\rfloor \longrightarrow W_i^q(\alpha_i) = s_i \cdot \left(\left\lfloor \frac{W_i}{s_i} \right\rfloor + \sigma(\alpha_i) \right)$$

Objective: $\underset{\alpha}{argmin} MSE(W(\alpha)^q A, WA)$



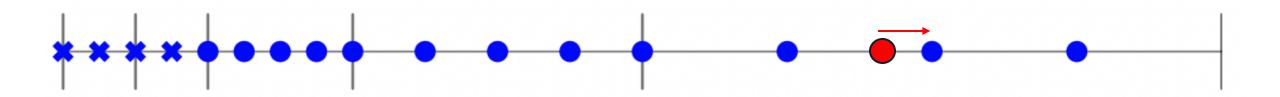
push the sigmoid to the boundary of [0,1]

$$\lambda(\alpha) = 1 - (|\sigma(\alpha) - 0.5| * 2)^{20}$$

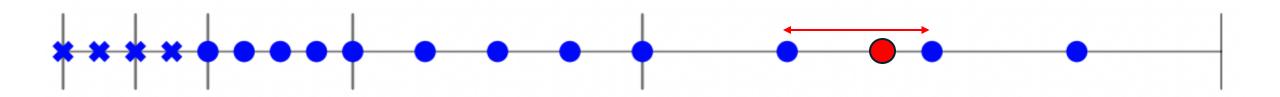


Objective: $\underset{\alpha}{argmin} MSE(W(\alpha)^q A, WA) + \lambda(\alpha)$

Round-to-nearest



Rounding learning



Results

Evaluation Methodology

Unconditional generation

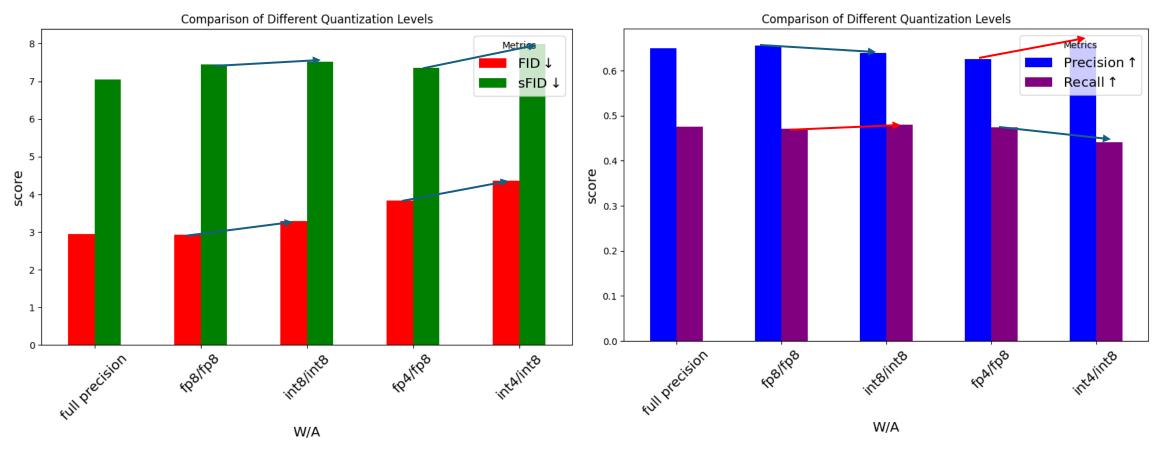
- FP models outperform INT @ same bitwidth
- FP4 needs rounding learning

Text-to-image generation

- FP models outperform INT @ same bitwidth
- need to improve evaluation methodology
 - Metrics do not reflect reality

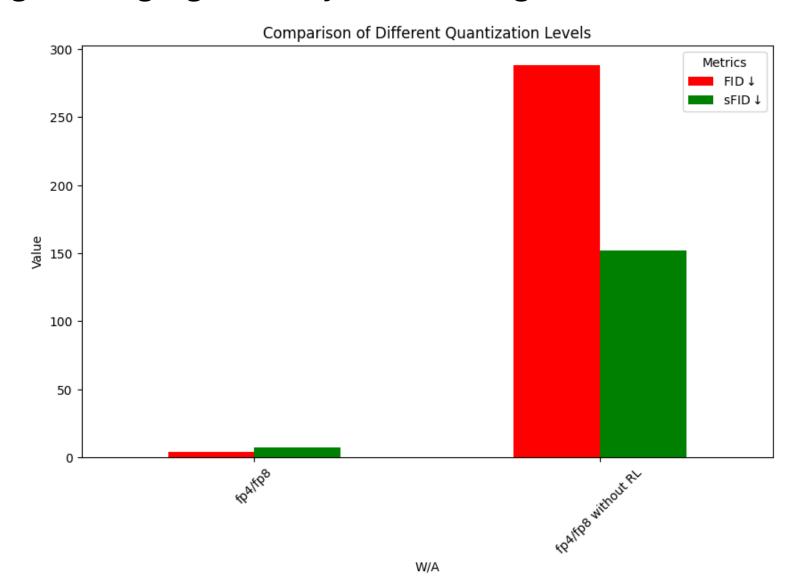
Metrics

FID, sFID, Precision, Recall



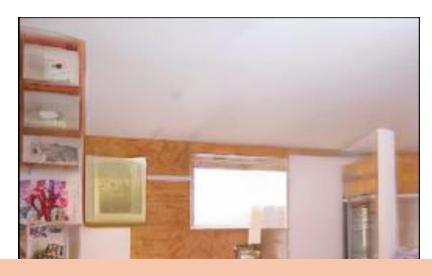
FP quantized models outperform INT at the same bitwidth

Rounding learning significantly reduces degradation at low-bitwidth



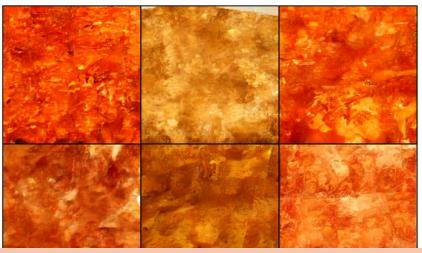
(a) full-precision

(b) FP8/FP8

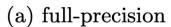


Hard to tell the difference

Full precision FP8/FP8



FP4/FP8 generate close to random noise without rounding learning



(d) FP4/FP8 without rounding learning

(a) full-precision

(c) FP4/FP8

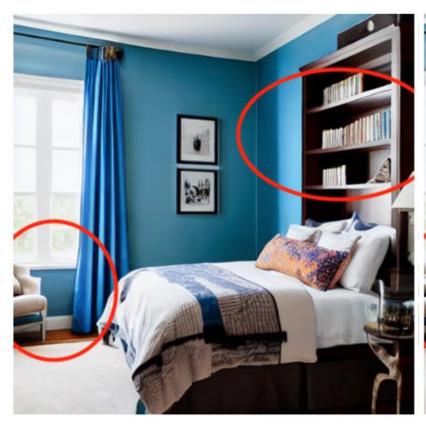
Experience minimal degradation for FP4/FP8

Full precision FP4/FP8

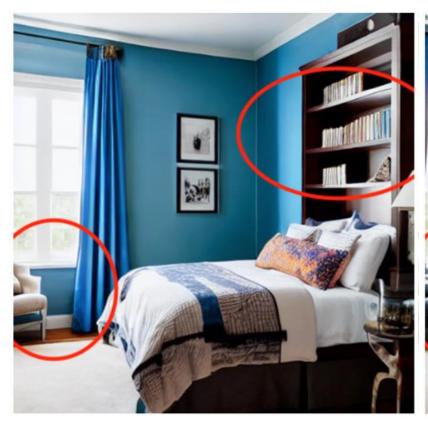
Full precision FP8/FP8 INT8/INT8

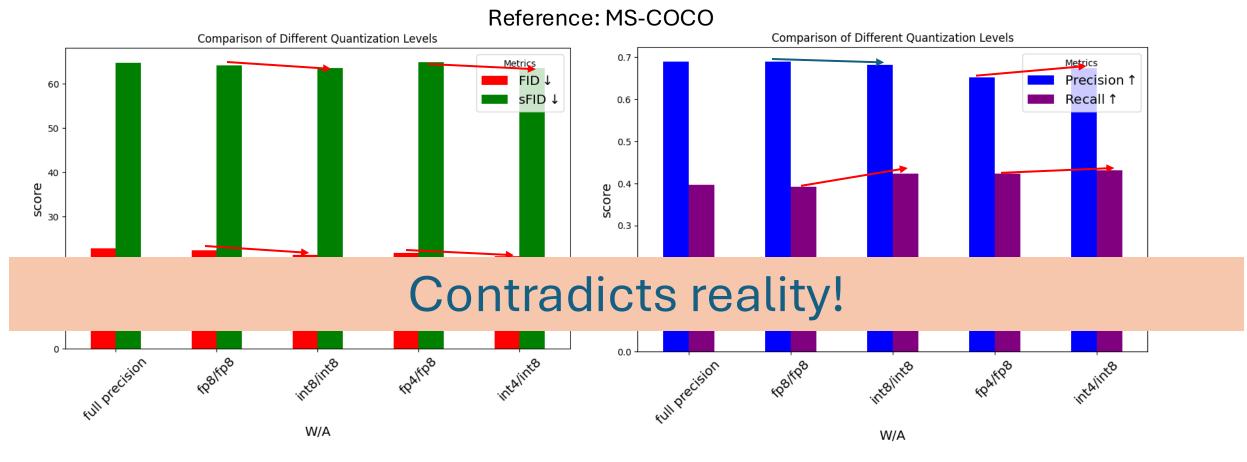
Full precision FP4/FP8 INT4/INT8

Full precision FP8/FP8 INT8/INT8



Full precision FP4/FP8 INT4/INT8

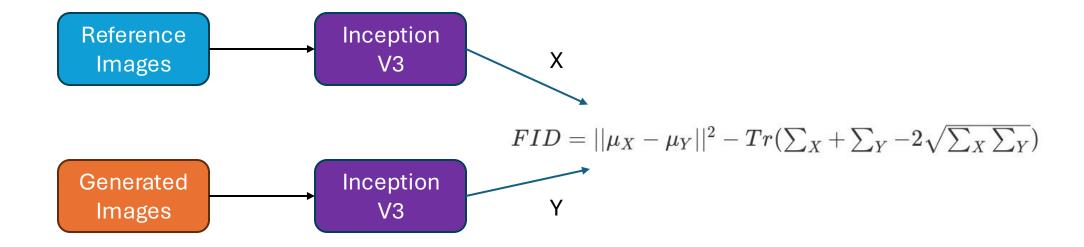




- INT models outperform FP @ same bitwidth
- Quality improves as models get quantized to lower bitwidth

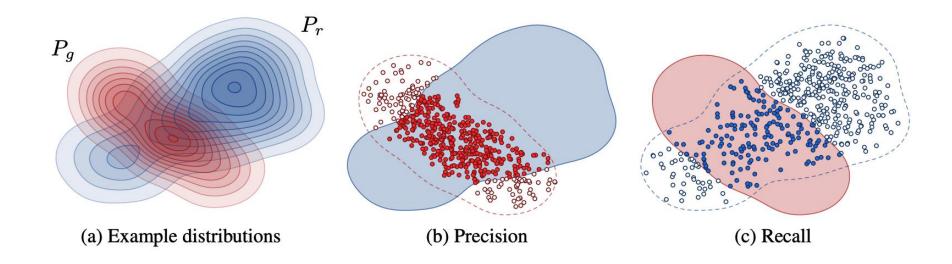
Evaluation Metrics

• FID, sFID



Evaluation Metrics

• Recall, Precision



35

Discrepancy between quantitative eval and qualitative eval

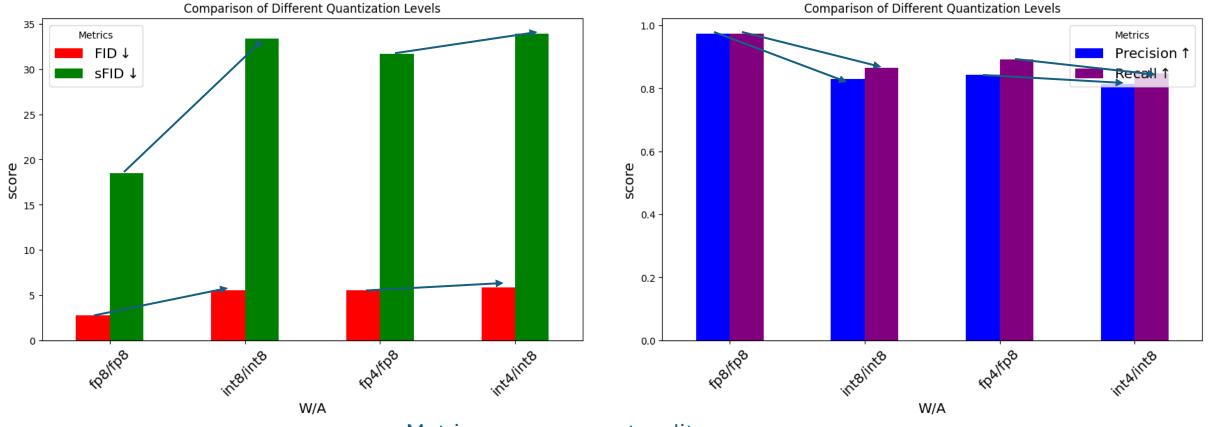
- Standard methodology: use real-world collected images as reference
- Metrics measure similarity between reference images and generated images

VS.

Use the full precision model generated images as reference

Quality

Reference: Full-precision model generated images



- Metrics now represent reality
 - FP model outperform INT @ the same bitwidth
 - FP4/FP8 generates higher-quality images as INT8/INT8

Summary

Contributions

- Apply floating-point quantization on diffusion models(weights to FP4 and activations to FP8)
- Adapt rounding learning for FP quantization
- Improve evaluation methodology

Results

- FP8/FP8 VS. INT8/INT8 1.56x better
- FP4/FP8 VS. INT4/INT8 1.10x better
- FP4/FP8 better than INT8/INT8 in Stable Diffusion

Questions?