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SOTA Image generative models are great
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Imagen DALLE Midjourney



Example: Stable Diffusion

3demands significant computing resources 



Integer quantized model generated images 
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INT4/INT8INT8/INT8Full precision

How can we improve the degradation introduced by 
integer quantization? 

Our key idea: Apply floating-point quantization!



INT vs. FP Performance
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https://developer.nvidia.co m/blog/nvidia-hop per-architectur e-in-depth /

FP8 and INT8 have the same compute throughput 
and memory footprint



INT vs. FP
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Integer

Floating-point

Floating-point representation offers higher precision and a wider range compared to integer representation



Our Contributions

• Apply floating-point quantization on diffusion models(weights to 
FP4 and activations to FP8)

• Adapt rounding learning from low-bitwidth integer quantization to 
enable FP4 quantization

• Improve evaluation methodology
• Avoid contradicting reality
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Result highlight: quality

• FP8/FP8 VS. INT8/INT8 1.56x better
• FP4/FP8 VS. INT4/INT8 1.10x better 
• Stable Diffusion:

• FP4/FP8 better than INT8/INT8
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How does diffusion model generate new images? 

9

The denoising process: denoise from noisy images



Diffusion models are great, but expensive
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• Stable Diffusion (SD)
• Total parameters: 1.06B
• Structure: 

• U-Net: 860M
• Text Encoder
• Autoencoder Decoder

• Stable Diffusion XL (SDXL)
• Total parameters: 3.5B

• U-Net: 2.6B

 



Our Floating-Point 
Quantization Method
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Quantization pipeline

• Step1: search FP formats and bias 
• Step2: apply rounding learning to weights to reduce degradation
• Quantization process takes ~20 hours
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FP format 
selection 

full precision weights quantized weights rounding 
learning

calibrated weights

FP format 
selection 

full precision activations quantized activations



Search space for each floating-point format

• Encoding candidates
• FP8: E2M5, E3M4,E4M3,E5M2
• FP4: E1M2, E2M1

• Bias candidates
• generate ~100 evenly spaced values between the minimum and 

maximum of the tensor and calculate the bias for each value

• Total search space
•  ~400 for FP8 and ~200 for FP4, for each tensor
•  ~200-600 tensors
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Step 1 – greedy search   
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weights

activations



Randomly sampled images 
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Full precision FP8/FP8 FP4/FP8

Need rounding learning!



replace round-to-nearest with learned rounding
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Objective:𝑎𝑟𝑔𝑚𝑖𝑛 
α 

𝑀𝑆𝐸(𝑊(α)𝑞𝐴, 𝑊𝐴) 



push the sigmoid to the boundary of [0,1]
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Objective:𝑎𝑟𝑔𝑚𝑖𝑛 
α 

𝑀𝑆𝐸(𝑊(α)𝑞𝐴, 𝑊𝐴) + λ (α)
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Round-to-nearest
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Rounding learning



Results
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Evaluation Methodology

• Unconditional generation
• FP models outperform INT @ same bitwidth
• FP4 needs rounding learning 

• Text-to-image generation
• FP models outperform INT @ same bitwidth
• need to improve evaluation methodology

• Metrics do not reflect reality

• Metrics 
• FID, sFID, Precision, Recall
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Unconditional Generation
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FP quantized models outperform INT at the same bitwidth



Rounding learning significantly reduces degradation at low-bitwidth
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Unconditional Generation

24



Unconditional Generation
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Full precision FP8/FP8

Hard to tell the difference



Unconditional Generation
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FP4/FP8 generate close to random noise without 
rounding learning 



Unconditional Generation
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Unconditional Generation
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Full precision FP4/FP8

Experience minimal degradation for FP4/FP8



Text-to-Image Generation
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Full precision FP8/FP8 INT8/INT8



Text-to-Image Generation
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Full precision FP4/FP8 INT4/INT8



Text-to-Image Generation
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Full precision FP8/FP8 INT8/INT8



Text-to-Image Generation
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Full precision FP4/FP8 INT4/INT8



Text-to-Image Generation
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• INT models outperform FP @ same bitwidth
• Quality improves as models get quantized to lower bitwidth

Reference: MS-COCO

Contradicts reality! 



Evaluation Metrics

• FID, sFID 
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Reference 
Images

Generated 
Images

Inception 
V3

Inception 
V3

X

Y



Evaluation Metrics

• Recall, Precision 
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https://arxiv.org/pdf/1904.06991



Discrepancy between quantitative eval and qualitative eval 
• Standard methodology: use real-world collected images as 

reference
• Metrics measure similarity between reference images and 

generated images
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Reference Full precision model generatedUse the full precision model generated images as 
reference

VS.

Quality 



Text-to-Image Generation
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• Metrics now represent reality 
• FP model outperform INT @ the same bitwidth
• FP4/FP8 generates higher-quality images as INT8/INT8

Reference: Full-precision model generated images



Summary

• Contributions
• Apply floating-point quantization on diffusion models(weights to FP4 and 

activations to FP8)
• Adapt rounding learning for FP quantization
• Improve evaluation methodology 

• Results
• FP8/FP8 VS. INT8/INT8 1.56x better

• FP4/FP8 VS. INT4/INT8 1.10x better 
• FP4/FP8 better than INT8/INT8 in Stable Diffusion
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Questions? 
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