Sylva: Sparse Embedded Adapters via Hierarchical Approximate
Second-Order Information

Baorun Mu
University of Toronto, Vector Institute, CentML
Toronto, Canada
baorun.mu@mail.utoronto.ca

Shang Wang
University of Toronto, Vector Institute, CentML
Toronto, Canada
wangsh46@cs.toronto.edu

ABSTRACT

Fine-tuning is the gateway to transferring learned knowledge in a
pre-trained Large Language Model (LLM) on many downstream ap-
plications. To make LLM fine-tuning more affordable, prior works
follow two paths: i) adapters freeze the pre-trained LLM weights
and inject a small number of trainable weights during fine-tuning,
and ii) pruners remove the less important weights in pre-trained
LLMs and train the remaining sparse weights during fine-tuning.
We find that the former introduces computation overheads due to
the injected trainable parameters, while the latter introduces an
expensive pre-processing step to identify the important weights
and degrades model quality. To get the best of both worlds, we
propose Sylva, a novel LLM fine-tuning procedure that provides
high system performance during fine-tuning and attains state-of-
the-art model quality on downstream applications. Sylva identifies
the most important LLM weights via second-order information
in a pre-processing step, and significantly reduces the computa-
tion and storage costs of the pre-processing step via i) a hierarchi-
cal approximation of second-order information, and ii) an online
projection and rediagonalization algorithm. Sylva trains only the
sparse important weights and embeds these sparse weights into
the pre-trained LLM during fine-tuning to provide high system
performance. We show that end-to-end fine-tuning with Sylva is,
on average, 5.1x faster than ZeRO and 1.2X faster than LoRA, the
state-of-the-art adapter approach. Sylva’s hierarchical approxima-
tion reduces the peak GPU memory in the pre-processing step by
2.3x compared to K-FAC, the most widely used approximation to
second-order information. The source code of Sylva is publicly
available at https://github.com/CentML/Sylva .

CCS CONCEPTS

« Computing methodologies — Machine learning; Parallel
computing methodologies; - Computer systems organization —
Single instruction, multiple data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS °24, June 4-7, 2024, Kyoto, Japan

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0610-3/24/06

https://doi.org/10.1145/3650200.3656619

Christina Giannoula
University of Toronto, CentML
Toronto, Canada
christina.giann@gmail.com

Gennady Pekhimenko
University of Toronto, Vector Institute, CentML
Toronto, Canada
pekhimenko@cs.toronto.edu

KEYWORDS
Fine-tuning, Large Language Models, GPUs

ACM Reference Format:

Baorun Mu, Christina Giannoula, Shang Wang, and Gennady Pekhimenko.
2024. Sylva: Sparse Embedded Adapters via Hierarchical Approximate
Second-Order Information. In Proceedings of the 38th ACM International
Conference on Supercomputing (ICS °24), June 4-7, 2024, Kyoto, Japan. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3650200.3656619

1 INTRODUCTION

Large language models (LLMs) are deployed on various applica-
tions, e.g., machine translation [4, 54], code generation [6, 27], and
text-to-image generation [2, 45]. Training an LLM from scratch for
each application is prohibitively expensive since LLMs typically
have billions of parameters [4, 53]. LLM training requires multi-
ple accelerators with large memory capacities (e.g., NVIDIA A100
80 GB) and ultra-high bandwidth interconnects (e.g., InfiniBand
EDR 100Gb/s [35]). A more cost-efficient approach is fine-tuning
for each downstream task after obtaining a pre-trained LLM, i.e. a
general-purpose LLM trained on large corpora. With fine-tuning,
the learned knowledge of the pre-trained LLM is transferred to
downstream tasks by continuing to train the LLM on the task-
specific datasets [41, 58]. The naive full fine-tuning approach (Fig-
ure 1a) trains all weights of the pre-trained LLM and thus requires
the same hardware capacities as pre-training, which are typically in
high demand and expensive or difficult to access [16, 48]. Memory
optimizations such as Zero Redundancy Optimizer (ZeRO) [42, 43]
are proposed to reduce GPU memory usage for full fine-tuning.
To make LLM fine-tuning more affordable, two directions have
been explored: adapters [8, 10, 19, 20, 31, 46, 59] and pruners [12, 13,
18, 23, 24, 26, 28, 49]. On the one hand, adapters (Figure 1b-c) keep
the pre-trained LLM parameters as frozen weights and inject a small
amount of trainable weights during fine-tuning. Low-Rank Adap-
tation (LoRA) [20], the state-of-the-art adapter approach, inserts
trainable weights as low-rank decompositions during fine-tuning.
Adapters attain state-of-the-art model quality by combining the
frozen pre-trained weights and injected trainable weights. However,
they introduce computation overheads during fine-tuning due to
the injected trainable weights (See Section 2). For example, LoRA
requires forward-backward passes on both the frozen weights and
the injected trainable weights. On the other hand, pruners (Figure
1d) introduce a pre-processing step that identifies and removes the

https://github.com/CentML/Sylva
https://doi.org/10.1145/3650200.3656619
https://doi.org/10.1145/3650200.3656619

ICS 24, June 4-7, 2024, Kyoto, Japan

Baorun Mu, Christina Giannoula, Shang Wang, and Gennady Pekhimenko

7] loss [Z1 model prediction (7 fine-tuning data [] trainable weights [7] frozen weights [] extra computation

Fine-tuning

(a) Full fine-tuning

(b) Serial adapters

(c) LoRA adapters

(d) K-FAC pruner

(e) Sylva

Inference

§ 5] —[]

—F =

Figure 1: Fine-tuning and inference execution flow of various approaches.

less important weights of the pre-trained LLM. A few pioneering
works [18, 26] propose to identify weight importance leveraging
second-order information, specifically the Hessian [15, 29, 50]. How-
ever, the computation and storage cost of the Hessian is prohibitive
for modern deep neural networks. Kronecker-Factorized Approx-
imate Curvature (K-FAC) [17, 34] improves on them by using a
block-diagonal approximation to the Fisher Information Matrix
(FIM) and further approximates each block by the Kronecker prod-
ucts of two much smaller matrices. Indicatively, K-FAC pruner [56]
is practical for convolutional neural networks, but it still requires
excessive memory in the pre-processing step for multi-billion pa-
rameter LLMs (e.g., LLaMA 3B model incurs out-of-memory errors
during pre-processing on 24GB GPUs). Moreover, although pruners
provide high system performance in the fine-tuning process by
leveraging weight sparsity, they typically degrade the model qual-
ity since they remove a large subset of the pre-trained LLM weights
and incur high computation/storage costs in the pre-processing.
We propose a novel method named Sylva! (Figure 1e) which
combines the strengths of adapters and pruners while mitigating
their weaknesses. Sylva optimizes two goals: system performance
during fine-tuning and model quality on downstream tasks. For the
former goal, Sylva identifies a small number of important weights in
the pre-trained LLMs leveraging second-order information and only
trains these sparse weights during fine-tuning (similar to pruners).
For the latter goal, Sylva keeps the pre-trained LLM weights frozen
and employs these frozen weights in prediction (similar to adapters).
Sylva addresses the following two shortcomings of prior works.
First, it significantly reduces the computation and storage costs of
the pre-processing step in pruners via (i) a hierarchical approxima-
tion of the second-order information and (ii) an online projection

1We open-source Sylva at https://github.com/CentML/Sylva .

and rediagonalization algorithm (See Section 3). Second, it elimi-

nates the computation overheads in adapters via embedding the

sparse trainable weights into the frozen pre-trained LLM weights
throughout the fine-tuning procedure.

We show that on average, the end-to-end fine-tuning with Sylva
is 5.1x faster than full fine-tuning with ZeRO optimizer and 1.2x
faster than LoRA, the state-of-the-art adapter approach. We study
the sensitivity of Sylva’s performance on various layer dimensions
and sequence lengths. Sylva’s forward and backward pass time is
up to 2.3X faster on fully connected layers. Additionally, Sylva re-
duces GPU memory usage by up to 35% compared to LoRA during
fine-tuning. In the pre-processing step, Sylva’s hierarchical approxi-
mation reduces the peak GPU memory by 2.3X compared to K-FAC,
the most widely-used approximation to second-order information.

To conclude, we make the following key contributions:

e We comprehensively analyze prior LLM fine-tuning approaches,
and propose Sylva, an effective fine-tuning method for LLMs.

e We design a hierarchical approximation of the second-order in-
formation along with an online projection and rediagonalization
algorithm to significantly reduce the computation and storage
costs, when identifying the most important weights of a pre-
trained LLM. We embed the most important weights as trainable
parameters into the pre-trained LLM to eliminate the extra com-
putation costs that would have been introduced by adapters (e.g.
LoRA) injecting trainable weights.

e We extensively evaluate Sylva by fine-tuning state-of-the-art
LLMs on multi-node systems and showing that Sylva outperforms
prior works in performance and memory efficiency. Sylva also
provides high model quality and low pre-processing costs.

https://github.com/CentML/Sylva

Sylva: Sparse Embedded Adapters via Hierarchical Approximate Second-Order Information

2 BACKGROUND AND MOTIVATION
2.1 Overview of Prior Works

Figure 1 summarizes various approaches that accelerate fine-tuning.

The naive fine-tuning approach, known as full fine-tuning (Fig-
ure la), keeps all weights of the pre-trained large language model
(LLM) and continues training them on task-specific datasets. Zero
Redundancy Optimizer (ZeRO) [42, 43] improves the per-device
memory footprint of full fine-tuning via sharding and offloading.
However, ZeRO introduces communication overheads because they
require gathering sharded weights at every iteration. Another line
of prior works [21, 37] improves fine-tuning performance using
pipeline or tensor parallelism. Existing implementations of these
works are only tailored for a few LLM families and thus lack general-
ity. For example, Megatron-LM [37] optimizes the GPT family [4] of
models, and supporting the LLaMA family [53] requires significant
engineering efforts and tuning to provide high system performance.

A group of prior works [19, 20, 31, 46], named as adapters, keeps
all parameters of the pre-trained LLM as frozen weights and injects
a small number of new parameters as trainable weights. Only the
latter are trained during fine-tuning, and thus performance is im-
proved. Houlsby et al., [19] propose the serial adapter (Figure 1b)
that injects trainable weights as new layers into the pre-trained
LLM. Serial adapter achieves state-of-the-art model quality; how-
ever, adding additional layers in LLM worsens inference perfor-
mance compared to full fine-tuning. Some works [31, 46] improve
inference performance via reducing the trainable weights in the
serial adapter, however, at the cost of degrading model quality. Low-
Rank Adaptation (LoRA) [20] (Figure 1c) injects trainable weights
as low-rank decompositions to each existing fully connected (FC)
layer of the pre-trained LLM. After fine-tuning, the injected train-
able weights are merged with the frozen weights via summation.
This way, LoRA does not introduce additional inference latency
while attaining high model quality.

Another group of prior works [12, 13, 18, 23, 26, 49], named
as pruners, identifies and removes the less important weights
in pre-trained LLM in a pre-processing step (Figure 1d). In fine-
tuning, only the non-zero elements of the induced sparse weight
matrices are trained and updated using optimized sparse linear
algebra libraries. LeCun et al. [26] and Hassibi et al. [18] propose
to determine the importance of the pre-trained weights via second-
order information, specifically the Hessian [15, 29]. Singh et al. [49]
and Kurtic et al. [23] improve on computation and storage costs
by using a block-diagonal approximation of the Fisher Information
Matrix (FIM) [1, 22, 33] in place of the Hessian. Kurtic et al. [23]
enables to scale up to medium-sized language models (e.g. BERT [9]).
However, it faces a trade-off between computation/storage costs and
the accuracy of the approximation. Specifically, the GPU memory
capacity limits the block size to be small. However, the smaller
the block size, the more off-diagonal information is disregarded.
Frantar et al. [12, 13] enable to prune GPT-family models [4] using
second-order derivatives; however, at the price of using a layer-
wise reconstruction loss as the pruning objective instead of the
model’s prediction loss, and thus losing theoretical groundings of
prior works [18, 26]. Kronecker-Factorized Approximate Curvature
(K-FAC) [17, 34] is the state-of-the-art approximation to second-
order information since it significantly reduces computation and

ICS 24, June 4-7, 2024, Kyoto, Japan

storage costs compared to using the Hessian [18, 26]. As shown
in Figure 2a (i), K-FAC employs a layer-wise approximation to
the FIM and further approximates each block (corresponding to a
layer in the neural network) using the Kronecker product of two
much smaller matrices. Although K-FAC is practical for medium-
sized LLMs (e.g., BERT), the memory footprints of the Kronecker
factors are excessive for multi-billion parameter LLMs, making it
prohibitive to prune large LLMs on most data-center GPUs.

2.2 Comparison of Prior Works

Table 1 qualitatively compares the aforementioned methods.
Memory Footprint. In ZeRO full fine-tuning, although the gradi-
ents and optimizer states are sharded and offloaded, each GPU still
needs to temporarily store the gradients for all LLM weights in the
backward pass. Serial and LoRA adapters only train the injected
weights, thus reducing the peak memory footprints compared to
naive full fine-tuning. K-FAC pruner sparsifies the LLM weights.
Thus, the memory footprints of weights, gradients and optimizer
states are all reduced compared to ZeRO and adapter approaches.
However, K-FAC pruner introduces excessive memory footprints
during the pre-processing step for the second-order information,
which might exceed the GPU memory capacity. For example, K-
FAC’s pre-processing step requires at least 40GB memory for the
LLaMA-3B, thus causing out-of-memory errors on 24GB GPUs. The
computations during the K-FAC’s pre-processing step to approxi-
mate second-order information are also expensive.

Fine-Tuning Time. On multi-GPU systems, the fine-tuning time
aggregates computation and communication costs. ZeRO requires
computing the gradients of all LLM weights and has large commu-
nication overheads due to gathering the sharded weights at each
iteration. Serial adapter and LoRA eliminate the need to compute
gradients for the frozen weights; however, they introduce extra
computation costs because they attach the trainable weights as
either extra layers (serial adapter) or extra computation paths at
each FC layer of the LLM (LoRA). In LoRA, the trainable weights
and pre-trained weights are processed separately in the forward
and backward passes. Serial and LoRA adapters reduce the commu-
nication time compared to full fine-tuning, since they All-Reduce
only the gradients of the small amount of injected trainable weights.
When setting K-FAC to have the same number of trainable param-
eters with adapters (regardless of model quality degradation led
by the pruned weights), K-FAC pruner provides much higher com-
putation efficiency than adapters since it does not introduce extra
computation paths and has a comparable communication cost.
Inference Time. Serial adapter introduces extra inference latency
compared to full fine-tuning due to extra LLM layers added during
fine-tuning, while LoRA merges the trainable weights into the
frozen weights after fine-tuning. Thus, the inference time of LLM
fine-tuned using LoRA is the same as that using full fine-tuning.
Pruners remove weights from the pre-trained LLM and use sparse
weight matrices, thus reducing the inference time compared to
ZeRO and adapters.

Model Quality. ZeRO’s memory optimizations do not affect the
quality of LLMs, thus, ZeRO provides high model quality, since it
trains all LLM weights with the task-specific dataset. Serial adapter
and LoRA achieve comparable model quality with full fine-tuning,
since they combine the learned knowledge of the pre-trained frozen

ICS 24, June 4-7, 2024, Kyoto, Japan

Baorun Mu, Christina Giannoula, Shang Wang, and Gennady Pekhimenko

Table 1: Qualitative comparison of prior works.

Method Memory Footprint

Fine-tuning Time

Pre-processing Fine-tuning ~ Computation =~ Communication

Inference Time Model Quality ~ Checkpoint Saving

|
ZeRO [42, 43] full fine-tuning ‘ L} L) L] (6] [6] X
Serial Adapter [19] ‘] L] L] [¢] v
LoRA Adapter [20]] L 6] (4] [¢] v
K-FAC Pruner [56] ‘ L] [66] 6 ¢] [&] OO L] 4
Sylva ‘ ¢} ¢} [&] &} ¢} (4] 4

weights with the knowledge of the additional weights trained with
the task-specific dataset. Instead, K-FAC pruner trains a small subset
of pre-trained LLM weights with the task-specific dataset; thus, it
typically degrades model quality.

Checkpoint Saving. ZeRO does not allow sharing the checkpoints
of fine-tuned LLMs since all weights are specialized to a particular
downstream task. Instead, adapters save storage resources for LLM
checkpoints by enabling sharing the frozen weights across multi-
ple downstream tasks, while the injected task-specialized trainable
weights are stored separately. K-FAC pruner also reduces the LLM
checkpoints storage costs: this benefit is obtained via weight prun-
ing, i.e., creating sparsified fine-tuned LLMs, instead of sharing the
weight values across downstream tasks as adapters do.

Our analysis shows that adapters achieve high model quality by
exploiting all the pre-trained LLM weights during fine-tuning, but
they introduce additional computation costs for to the injected train-
able weights. Instead, pruners leverage sparse trainable weights to
reduce computation costs during fine-tuning significantly. How-
ever, they downgrade model quality and introduce an expensive
pre-processing step. To get the best of both approaches, we intro-
duce Sylva as a combination of adapters and pruners, as described
in the next section. Table 1 shows that Sylva provides the most
effective solution in pre-processing memory and performance in
both fine-tuning and inference, and achieves state-of-the-art model
quality. Sylva also reduces the storage costs for checkpoints by
storing only the sparse trainable weights for each downstream task.

3 SYLVA: OVERVIEW

Sylva interpolates between the adapter and pruner approach to
overcome their shortcomings and acquire their strengths. Figure 1le
presents an overview of Sylva. 1) Sylva adopts the pruner’s key
idea of identifying a small number of important weights of the pre-
trained LLM (named sparse trainable weights) via a pre-processing
step, and only training these sparse weights during fine-tuning
to achieve low computation costs. 2) Sylva adopts the adapter’s
key idea of freezing all the pre-trained LLM weights in the fine-
tuning step and leveraging them in prediction to provide high model
quality. In this design, we need to address two key challenges: 1)
how to minimize the computation and storage costs required by the
second-order information in the pre-processing step (Challenge
1), and ii) how to eliminate the computation overheads introduced
by injecting trainable weights into the pre-trained LLM during fine-
tuning (Challenge 2). To address these challenges, we propose
three key techniques.

1) Hierarchical Approximate Kronecker Factors. During pre-
processing, the weight importance is determined by minimizing the

impact of pruning on the model’s prediction loss, formally, a qua-
dratic model of the loss landscape [18, 26]. Solving this minimization
problem by Lagrange multipliers yields the weight importance that
involves the Hessian H. In K-FAC pruner, the Hessian H is approxi-
mated by the Kronecker products A ® G, where A and G are the
covariances of input and output gradients. Henceforth, A and G are
called the Kronecker factors. The (i, j)-th element in the Kronecker
factor A stands for the correlation (i.e., the degree to which two
variables are related) between the i-th and j-th neuron in the LLM
layer’s inputs. A similar representation holds for the Kronecker
factor G. To reduce the memory overheads of the pre-processing
step of multi-billion parameter LLMs (Challenge 1), we propose a
hierarchical approximation of the Kronecker factors. We observe
that the magnitude of entries in the Kronecker factors tends to
decrease as their distances to the diagonal increase. This is because
the neurons closer to each other in the LLMs have a higher corre-
lation. If the i-th and j-th dimensions are close in the LLM layer’s
inputs, then the (i, j)-th entry in the Kronecker factor A is close to
the diagonal. Based on this observation, we recursively halve the
Kronecker factors and approximate the off-diagonal blocks using
Singular Value Decomposition (SVD). Let r be the rank in the low-
rank decomposition provided by SVD and b be the size of a block
in the partition. As shown in Figure 2a (ii), each off-diagonal block
B € RP*? (in purple for A and in green for G) is approximated
using SVD: B ~ UAV", where each of U € RYXT and V e REXr
contains a set of r orthonormal bases that span the approximating
subspace, A contains a vector of r singular values that stretches
the bases. As a result, at each partition, we only store (a) two tall-
and-skinny matrices (U and V matrices in blue) and a vector (A
in blue) for each off-diagonal block (instead of the entire block B),
and (b) the exact diagonal blocks of the finest partition (shown in
red in Figure 2a (ii)). Denote the dimension of A and G by m and n,
respectively. Let K be the total number of recursive partitions in the
hierarchical approximation. The original Kronecker factor A takes
O(m?) storage, while that of Sylva’s hierarchical approximation
of A is much smaller: the approximated off-diagonal blocks take
O(mr(2k - 1)) storage, and the exact diagonal blocks of the finest
partition take O(m?/2K). The storage complexity of G is analog to
that of A except that it is on the output dimension n.

2) Online Projection and Rediagonalization. We divide the
dataset into many mini-batches of data and then process the mini-
batches one by one because fitting the entire dataset onto the GPU
is prohibitive, in the pre-processing step. Thus, we need to aggre-
gate second-order information from a mini-batch of data with the
previous ones, i.e. update an existing hierarchical approximation
using incoming data. To further reduce the pre-processing step’s

Sylva: Sparse Embedded Adapters via Hierarchical Approximate Second-Order Information

(a) (i) K-FAC approximation of the FIM (b) (i) Naive approach

M T] - !
® | ey Emen
V7 5 !

(a) (ii) Hierarchical approximation of the Kronecker factors

- B

ICS 24, June 4-7, 2024, Kyoto, Japan

) \\ /‘/3 7 70 Z \\
N Iqlp iuiqu o

o ®]~ g 1! — TL 722 :
L LR w ¥
/‘ \) — \A> ;

Figure 2: (a) K-FAC approximation of the FIM and Sylva’s hierarchical approximation of Kronecker factors (b) Comparison
between the brute force approach and the proposed online algorithm (projection and rediagonalization) to update the SVD

factors in the hierarchical approximations.

storage cost and minimize the computation costs of hierarchically
approximating the Kronecker factors (Challenge 1), we propose
an online algorithm that directly updates the SVD factors without
materializing the approximated blocks. For each layer, we save the
inputs 7 and output gradients G. We use z to uniformly denote
the input 7 and output gradients G since the process is similar.
Then, we update the hierarchical approximation of A and G using
I and G, respectively. Naively, as shown in Figure 2b(i), we would
need to () materialize the approximated block using the SVD fac-
tors, (2) add the blocks and 3) do another SVD on the aggregated
block. Materializing the approximated blocks leads to high memory
footprints, and the computation of SVD is expensive. To address
these issues, we propose online projection and rediagonalization
(Figure 2b (ii)). There are three main steps in our algorithm: (D
projecting the incoming data onto the existing basis (2) rediagonal-
ization to get the rotation matrices f] A and \7 and (@) rotating the
extended subspace (concatenation of existing basis (U, V) and the
orthogonal vectors (u, v) to obtain the updated SVD factors (U’,
V’). The updated singular values A’ are simply A. In a nutshell, our
algorithm directly operates on the SVD factors (U, A, V) without
materializing the corresponding approximated block B, which has a
much larger number of elements than that of the SVD factors. Thus,
both computation and storage costs are reduced. Specifically, in the
naive approach, (@ takes O(m?r + mr) computation to retrieve the
approximated block B from the SVD factors,) takes O(m?) com-
putation to add the retrieved block and new block (outer product
of z and itself), and (3) takes O(m?) to recompute the SVD of the
aggregated block. Throughout the entire process, O(m?) storage is
required. With online projection and rediagonalization, (I) obtains
the new basis (u and v) orthogonal to existing subspace (spanned by
U and V) takes O (mr) computation and storage, 2) takes O((r+1)*)
computation and O((r + 1)) storage, since we compute SVD on
the lower dimension r instead of the higher dimension m, and (3
to obtain the new SVD factors via rotating the extended subspace
takes O(m(r +1)?) computation and O(m(r + 1)) storage. Our pro-
posed algorithm has much lower computation and storage costs
than the naive approach since r < m.

3) Embedded Sparse Trainable Weights. To eliminate extra com-
putation introduced by injected trainable weights (Challenge 2),
we propose to embed the sparse trainable weights into the pre-
trained weights during fine-tuning. Specifically, we keep a single
copy of weights as shown in Figure 3b, instead of two: one for
the frozen weights and one for the trainable weights as the naive
approach shown in Figure 3a. This key technique eliminates the
extra computation (red rectangles in Figure 3a) due to injecting
trainable weights. Furthermore, during the backward pass, we lever-
age an optimized library that provides fast Sampled Dense-Dense
Matrix Multiplication (SDDMM) operation to compute the sparse
gradients. The sparse gradients are stored in block sparse matrix
format. Specifically, the non-zero blocks are stored contiguously,
and there is a mask indicating whether each block is non-zero or
not. We scatter and add the sparse gradients to the dense weights
in each optimization step. We use a single copy of weights, i.e.,
the frozen weights and trainable weights are stored in the same
dense matrix, while the frozen weights are not updated throughout
the fine-tuning. We fuse the optimization steps of layers into one
CUDA kernel launch instead of performing a sequence of small
updates. Denote the mini-batch size by b and the sequence length
by s. Let the sparsity (i.e., percentage of zeros in the sparse weight
matrix) be o. For the naive approach, the extra computations (red
rectangles in Figure 3a) take O(bsm®no + bsn) in the forward pass
and O(bsmn?c + bsm) in the backward pass, which are completely
eliminated thanks to the embedding of sparse trainable weights
into the pre-trained weights. Instead, Sylva requires O(bsm?n) in
the forward pass. In the backward pass, Sylva requires O(bsmn?)
computation for the loss with respect to the inputs and O(bsmno)
computation for the loss with respect to the output gradients.

4 SYLVA: DESIGN DETAILS
4.1 A Two-Stage Fine-Tuning Procedure

Based on the ideas that we present in Section 3, we propose a
two-stage fine-tuning procedure as shown in Algorithm 1.

Pre-processing. We sample a subset from the fine-tuning dataset
to approximate second-order information. The number of pre-
processing samples is a configurable hyperparameter in Sylva

ICS 24, June 4-7, 2024, Kyoto, Japan

Baorun Mu, Christina Giannoula, Shang Wang, and Gennady Pekhimenko

] dense matrix storage | | sparse matrix storage [7J loss) model prediction (7 fine-tuning data [trainable weights [frozen weights [extra computation

(a) Naively inject sparse trainable parameters

/ forward | backward optimization step
! i PR
| Em e
| : jesiiise
| ® w
| e ergrree [
[2 B :
Halila | e
! oL/OW o2
! —0L/OW
! - <
: Serers
I P aa
| % ERzaas
| jﬂ_T w
I

(b) Embedded sparse trainable parameters

;. forward | backward | \
i | \

I e) |
| X | @R W !
| 1 RS I
R | (R MR ! |
: - aL/OW i
[I 1 !
\ 1 }
‘ SDDMM]
! L —OL/OW i
: ! Scattered Add |
| I

! 1
‘ o
! I Wo-M+W |

! |

Figure 3: Comparison between naively injecting sparse trainable weights and embedded sparse trainable weights.

(See Section 5.5). We perform a forward-backward pass and store
per-sample activation 7 and output gradients G (lines 5 - 7). At the
first iteration, we initialize hierarchical approximate of A and G
(lines 8 - 11) using Algorithm 2. For the following iterations, we
update the hierarchical approximations (lines 13 - 15) using online
projection and rediagonalization (Algorithm 3).

After one round over the sampled data, we compute the inversion
(line 19) by recursively applying Eqn. (5) - (8). We compute the
importance of each input dimension using Eqn. (19) and that of
each output dimension using Eqn. (20) (line 20). To obtain the
element-wise importance of the weights, we compute an outer
product of the importance of input and output dimensions. We sort
the weights based on their importance to obtain the weight mask
and keep the top candidates (line 21). We set the selected weights
as trainable and the other weights as frozen, i.e., we compute only
the gradients and update the sparse weights (line 21).
Fine-Tuning. During fine-tuning, we compute the forward pass
as in Eqn. (21) (line 26). The backward pass includes two parts: (i)
computing the gradients of loss with respect to the inputs, as in
Eqn. (22), and (ii) compute the gradients of loss with respect to the
sparse weights, as in Eqn. (16) (line 27). The sparse gradients are
all-reduced in data-parallel training (line 28). In every optimization
step, we scatter-add the sparse gradients to the dense weight matrix
(line 29). The optimization step takes a list of dense weight matrices,
the index of non-zero elements and the sparse gradients stored
contiguously.

4.2 Hierarchical Approximate Curvature

Partition of Kronecker Factors. To reduce the storage required
by the Kronecker factors (A and G), we note that the off-diagonal
elements of A and G stand for the correlation between two dimen-
sions in input or output. Intuitively, the neurons closer to each other
in terms of their positions have a higher correlation The number
of partition in the hierarchical approximation is a configurable
hyperparameter in Sylva (See Section 5.5). Let k denote the cur-
rent level of partition and BK denote a block at level k. So trivially,
A = B?. The same holds for G. Leveraging this favourable structural
property, we can get the hierarchical approximation for each of the

Kronecker factors A and G using the following algorithm: (1) We
partition a matrix B¥ into four equally sized blocks:

k+1 k+1
B11 B12

BF = (1)
B
(2) We approximate the off-diagonal blocks Blf; land Blzf;'l using
Singular Value Decomposition (SVD):
k k k k+1T
By; ' ~ Uy Ay VG @)
k+1 _ prk+1 ak+1yk+1 T
By~ Upi Agp Va ®)

where U, V are orthonormal rotation matrices and A are diagonal
matrices of the top singular values. (3) We recursively partition
each of the diagonal blocks B’flﬂ and BIZC; ! into smaller blocks by
repeating steps (1) and (2), until the dimension of the finest partition
is smaller than a user-defined threshold.

A hierarchical approximation is (r, k) if the off-diagonal blocks
are approximated using rank-r SVD and the matrix is partitioned x
times.

We denote a (7,) hierarchical approximation by H(,.). A block
at the k-th level partition is

OB v
B* = 4)
UETASVER Bl
for k = 0, ..., k. The dimension of B is zlk of the original matrix.
The blocks at the finest partition are kept as exact.
Recursive Block Inversion. Given a hierarchical approximation,
we can compute the matrix inversion in a bottom-up manner by
recursively applying the block inversion formula given the inver-
sion (or SVD) of submatrices. Consider a block B in the hierarchi-
cal approximation. The base case is the inversion of the diagonal
blocks. Consider block at the k-th level partition as in Equation

4. Given the inverses of the diagonal blocks B1_11 = [BlﬂL 11=1 and

Sylva: Sparse Embedded Adapters via Hierarchical Approximate Second-Order Information

Algorithm 1 Sylva’s Two-Stage Fine-Tuning Procedure

1: Input: model parameters W, training dataset D = {(x;,yi)},
sparsity o, number of sample N, number of partition K, rank r

2: /* Stage 1. Pre-processing */

3. Hp «— null, Hg < null

4: fori=1to N do

5. draw a mini-batch from the dataset D

6: compute a forward and backward pass (Eqn. 14 - 16)
7. save inputs 7 and output gradients G

8: if Hp is null or Hg is null then

9: /* Initialize hierarchical approximate curvature */
10: Hr «— HAC(, I,K,1,r)

11: Hg — HACO, G, K, 1,1)

12: else

13: /* Online projection and rediagonalization */

14: Hp «— OPD(0, I,K,)

15: Hg «— OPD(0, G, K, r)

16: end if

17: end for

18: /* Compute weight importance and mask */

—_
)

: compute H v Hg ! yusing recursion (Eqn. 5 - 8)
. compute weight importance Q (Eqn. 19 - 20)

: compute mask M = Q > the o-th quantile of Q
: set W © M as trainable weights

: /* Stage 2. Fine-tuning */

: while not converged do

draw a mini-batch from the dataset D
compute a forward pass (Eqn. 14 - 16)
compute a sparse backward pass

all-reduce sparse gradients W © M

optimize sparse weights using ScatterAdd (Eqn. 17)
: end while

WO N NN NN NN NN
S © ® N U A VYN = O

B, = [BlfgL 1171, we compute the kernel matrix

_ -1
K= VérlE‘nlUl2 A (5)
A2 VLB Uy |

The dimension of K is r X r, where r is the rank in the hierarchical
approximation. Denote the inversion of diagonal blocks by

B! 0
D= [! —1] (6)
0 B,
and the rotation matrices by

L= [Bl_llU]z 0]

0 B2_21U21
V] B! 0
R=|'21"11 B 7
[0 V121]322] @
As a result, the inverse of B is
B~! =D - LKR. 8)

4.3 Online Projection and Rediagonalization

To efficiently aggregate second-order information over many mini-
batches of training data into the hierarchical approximation of

ICS 24, June 4-7, 2024, Kyoto, Japan

Kronecker factors, we propose an online algorithm that does not
need to materialize the approximated blocks. Brand [3] proposes
a numerical method for fast additive low-rank modifications for
tracking singular values and subspaces. Based on it, we design an
online algorithm that directly updates the SVD factors in our hi-
erarchical approximation without re-computing the approximated
blocks and maintains the best rank-r approximation greedily. Con-
sider a block B in the hierarchical approximation. Denote the block
after ¢t iterations of update by B;. In each iteration, given the per-
sample input or output z of the mini-batch, we want to update
the singular value decomposition B; = U;A;V; to incorporate the
rank-1 perturbation zz" resulting from an incoming data. Firstly,
we find the additional basis u; and v; that are orthogonal to the
rotation matrices U; and V;

Uri1 = ze1 — UpUJ 2441 9
Similarly, we have
Vel = 21 — ViV] 241 (10)

Next, we compute the rediagonalization

T T T
v Ar 0 + Uy ze41| | Vs Ze41 (11)
0 0 laeall | | Ivesall
———
(@) @

where (D) is a diagonal matrix and () is a rank-1 matrix (outer prod-
uct of two vectors). We obtain the rotation of extended subspaces
by diagonalizing ¥

¥ =UAV'. (12)
The updated SVD is then
U1 =[Ur],
A1 = A,
Ve =V [V ven] ' (13)

We greedily select the top-r singular values and their corresponding
eigenbasis and discard the rest to maintain a limited memory usage,
regardless of the number of incoming data. By the Eckart-Young-
Mirsky theorem [11, 36], the rank-r SVD provides the optimal
approximation for a given r. By the end, we obtain the best rank-r
approximation for each block in the hierarchy:.

4.4 Embedded Sparse Trainable Weights

To optimize the memory footprint of the model during fine-tuning,
we propose to construct sparse adapter modules, which provide fine-
grained control over the number of trainable parameters. Denote
the weights trained to convergence by W. Let the weight mask be
M. The injected trainable parameters are denoted as W. We use ©
to denote the element-wise product. The adapter W and its gradient
% are sparse. W is initialized as W © M. The rest of the pre-trained
weights W © =M are kept frozen throughout the fine-tuning. In the
forward pass, we compute

Y = (W o -M)X + WX. (14)

In the backward pass, we compute the gradient of loss with respect
to the input
oL _ oLT

=W +(Wo M)aL (15)
X oY VY

ICS 24, June 4-7, 2024, Kyoto, Japan

and the gradient of loss with respect to the weight
oL LT
oW oY
In the optimization step, we update the sparse trainable weights
with their gradients

(16)

We—W- —. (17)
oW

FIM-Induced Sparsity. We leverage second-order information
to obtain the weight mask M with fined-grained sparsity. The rank
deficiency of Hessian provides source and reasoning of parameter
redundancy in trained networks [50]. In other words, the Hessian
induces the effective dimension of trained overparameterized net-
works. Taking advantage of this observation, since we want to
maximize the information in sparsified gradients on the effective
dimensions of the network, we project the gradients onto Hessian’s
range, i.e., the space spanned by rows/columns of the Hessian. De-
note the gradient of loss with respect to the parameters in the /-th
layer by T' = Vw £ € R™*" where m and n are the input and
output dimensions of a layer in the neural network. We use AT to
represent the difference in the gradient and the targeting sparse
gradients. The vectorized gradients and change in gradients are g
and Ag, respectively. We use g4 to denote the gradients correspond-
ing to g-th input or output dimension. We compute the importance
of input and output dimensions separately. For each of them, we
solve the following constrained optimization problem,

min{rgirn{Tr(ArTHAr)} st.ATeq +gq = o} (18)
q

where eqisa canonical basis, all elements are zeros except that
the g-the element is one. Using the Kronecker factorization (Figure
2a(i)), we can rewrite the inner objective as Tr(AT' T AATG). Solving
problem (18) by the Lagrange multiplier, we have the importance
metrics for input and output dimensions

.
g, Gyj
]_—1] (19)
[A71]);

and
.
9, Agx
. (20)
(G ki

The outer product of Eqn. (19) and Eqn. (20) yields an importance
score for each of the parameters. We sort the parameters in each
layer by descending importance and select the top candidates as
trainable weights in fine-tuning.

Sparse Embedded Adapters. To reduce the computation over-
head caused by the additional forward-backward propagation through
the adapters, we observe that some of the matrix operations can
be merged as one, leading to an implicit parameterization and
eliminating the redundant computation. Computing Eqn. (14) as
is introduces additional computation and storage compared to a
standard forward pass, as shown in Figure 3. Specifically, it requires
another Sparse Matrix Multiply (SpMM) and activation memory for
the intermediate tensors W ® -MX and WX. Instead of storing the
frozen and trainable weights separately, we keep a unified dense
weight matrix while only computing and storing the gradients for

Baorun Mu, Christina Giannoula, Shang Wang, and Gennady Pekhimenko

Algorithm 2 Hierarchical Approximate Curvature (HAC)

1: Input: hierarchical approximation 9, input or output gradients
z, number of partition K, current partition level k, rank r
2. if k < K then

3. compute sub-block BX using z

4 All-Reduce BF

5. /* Approximate off-diagonal blocks using SVD */
6 HE — SVD(BK,, r), Hy1 « SVD(BE, r) (Eqn. 2)
7. /* Recursively call HAC on diagonal blocks */

8 HE — HAC(H,BF K k+1,7)

o HE — HAC(H,BK, K. k+1,r)

10: end if

11: return H

Algorithm 3 Online Projection and Diagonalization (OPD)

1: Input: hierarchical approximation H, input or output gradients
z, number of partition K, rank r

2: forkinl,..,K do

Ut, At, V[— 7’[1](2

/* Projection */

compute uz41 orthogonal to U; (Eqn. 9)

compute v;41 orthogonal to V; (Eqn. 10)

/* Rediagonalization */

compute rotation matrices UAV (Eqn. 11-12)

/* Update SVD factors */

1. Upyq « rotating [Uy, upy1] using U (Eqn. 13)

11: V41 < by rotating [V, vi41] using \ (Eqn. 13)

122 Apg — A (Eqn. 13)

13: /" Keep the best rank-r approximation */

14: 'Hlkz — Upsln:r], Apra[ir], Vesa[e 1]

15: repeat lines for 7—{2"1

16: end for

17: return H

the sparse trainable weights. As a result, the forward pass takes the
same computation and activation memory as the standard one

Y = WX. (21)
Similarly, Eqn. (15) becomes a General Matrix Multiply
9 oL’
L = W'E , (22)
oX oY

instead of an addition of two, as in Eqn. (15). The computation sparse
gradient in Eqn. (16) is a Sampled Dense Dense Matrix Multiply
(SDDMM). Only the rows of % and columns of X that correspond
to the non-zero elements in W are loaded to the memory and used
to compute the gradients. We use block sparsity to demonstrate the
performance benefit in Section 5. The block size and sparsity in
adapters are configurable hyperparameters in Sylva.

5 EVALUATION

5.1 Methodology

Model and Datasets. We use four set of benchmarks: (i) RoBERTa-
Large (355M parameters) [32] with the GLUE benchmark [55].

Sylva: Sparse Embedded Adapters via Hierarchical Approximate Second-Order Information

Oforward pass [backward pass

ICS 24, June 4-7, 2024, Kyoto, Japan

[optimization step

oz 28 800{ g) = 3000 T 1 1 1
- . — — g old 21212 __1 11 1 4000 X T s000] 1 D
g] 1 = | 2000 3000
g 400 L] 1000) 5 2000 H oo
3 200 — iR < 220 | 1000 1 g5 LﬁEﬁ l:E'B 63 2000 15757 4 62 85 37.4
S§Y 8§ S§&5 $8¢s s S5 F85 §&5 S8 &85 g5 F8s S85 F85
8 GPUs 16 GPUs 4 GPUs 8 GPUs 16 GPUs 4 GPUs 8 GPUs 6 GPUs 4 GPUs 8 GPUs 16 GPUs 4 GPUs 8 GPUs 16 GPUs
RoBERTa-Large T5-Large GPT2-Large LLaMA-3B LLaMA-7B

Figure 4: Fine-tuning time per iteration (Y-axis) on GPT2-Large, LLaMA-3B, and LLaMA-7B, as the number of GPUs (X-axis)
increases from 4 to 16. The fine-tuning time is broken down into forward pass time (in orange), backward pass time (in purple)

and optimization step time (in green).

Table 2: Comparison of Peak GPU memory consumption (GB) during fine-tuning on various rank r and sparsity o (%).

| GPT2-L | | LLaMA-3B | | LLaMA-7B
r/o (%) ‘ ZeRO LoRA Sylva K-Pruner ‘ r/o (%) ‘ ZeRO LoRA Sylva K-Pruner ‘ r/o (%) ‘ ZeRO LoRA Sylva K-Pruner
32/95 12.5 12.4 12.1 12.1 96/95 14.1 11.9 10.5 6.8 64/98 14.6 16.7 15.4 13.0
128/80 - 13.4 12.8 12.7 192/90 13.9 11.5 6.8 128/95 20.3 17.6 13.0
512/50 - 19.4 153 13.9 384/80 20.8 133 8.3 256/90 OOM 20.3 13.1

(if) GPT2-Large (812M parameters) [40] with the E2E NLG chal-
lenge [39]. (iii) T5-Large (738M parameters) [41] with the Super-
Naturallnstructions [57] dataset. (iv) LLaMA-3B and 7B [53] on the

OpenAssistant Conversations Dataset (OASST1) [25].

Baselines. We compare with (1) full fine-tuning, (2) LoRA [20]

as the adapter baseline, and (3) K-FAC pruner [56] as the pruner
baseline. For the performance evaluation of full fine-tuning base-
line, we use ZeRO optimizer [42, 43] for GPT2-Large and LLaMA,
and gradient checkpointing [7] for T5-Large. For RoBERTa-Large,
there is no memory optimization needed, and we simply do full
fine-tuning in PyTorch [38]. We choose the memory optimization
that provides better fine-tuning time and does not result in out-of-
memory (OOM) errors. The choice of memory optimization does
not affect model quality.

Hardware. We use g2-standard-48 instances on Google Cloud
Platform (GCP). Each node has 4 NVIDIA L4 GPUs (24 GB) and
an Intel Cascade Lake CPU. We evaluate all methods on up to 16
GPUs. All instances are located in the same regions and connected
via a network bandwidth of around 15 Gbps.

Software. We use PyTorch 2.1.0 [38] for all methods and Deep-
Speed 0.10.0 [44] for the ZeRO optimizer. To showcase the perfor-
mance benefit of leveraging sparsity, we use Triton block sparse
module [47, 52], which provides CUDA kernels for block sparse
SpMM and SDDMM operations. Note that although we use block
sparsity to demonstrate Sylva’s performance benefit, our method
is not limited to block sparse patterns and can benefit from other
CUDA kernels or hardware-enabled acceleration.

5.2 Fine-Tuning Time

We compare the end-to-end fine-tuning time per iteration using
up to 16 GPUs. Sylva is, on average, 5.1x faster than ZeRO opti-
mizer on GPT2-Large and LLaMA. As shown in Figure 4, ZeRO is
significantly slower than LoRA and Sylva at a typical data center
network bandwidth (10 ~ 20 Gbps) without ultra-high bandwidth
interconnects (e.g. InfiniBand EDR 100Gb/s [35]). This is because

ZeRO trades off latency for larger memory efficiency. ZeRO stage
1 partitions optimizer states across the GPUs, and stage 2 addi-
tionally shards reduced gradients. Both need additional gathering
for every optimization step. Besides, the communication overhead
is exacerbated as we increase the number of GPU nodes. This is
because ZeRo adds communication overheads in both backward
and optimization steps, thus increasing execution time Sylva is 1.2x
faster than full fine-tuning with gradient checkpointing enabled
on T5-Large. The forward pass time in K-FAC Pruner is the best
on GPT2-Large and LLaMA because it uses sparse weight matri-
ces, significantly reducing computation costs. The forward and
backward pass time of Sylva is 1.2 ~ 1.4X faster than LoRA on
GPT2-Large and LLaMA. This is because Sylva eliminates extra
computation led by the injected trainable parameters in LoRA. On
T5-Large, LoRA and Sylva perform similarly. On RoBERTa-Large
and T5-Large, K-FAC Pruner performs worse than LoRA and Sylva,
because the layer dimensions are relatively small. Also, there is a
trade-off between the performance gain from reduced computation
FLOPs and the overhead of performing irregular memory access in
the memory hierarchy. On RoBERTa-Large, LoRA performs slightly
better than Sylva, specifically on the backward pass, because Sylva
uses sparse instead of dense matrices, which causes irregular mem-
ory access. The optimization step time is relatively small compared
to forward/backward pass time in all methods except for ZeRO.

5.3 Model Quality

Our method achieves comparable or slightly worse model quality
compared to full fine-tuning and LoRA at a high sparsity in the
range of 95% ~ 99% (Table 3). As we show in Section 5.5, Sylva
performs better using a moderate sparsity in the range of 86% ~
96%, while LoRA obtains its best scores with a small rank of 4. K-
FAC Pruner degrades model quality because it uses sparse weights,
which do not fully utilize learned knowledge in pre-trained weights.

ICS 24, June 4-7, 2024, Kyoto, Japan

M Fullfine-tuning [LoRA [K-FAC Pruner [l Sylva

030
015 025 05 |

0.20 0.4

Latency (ms)
°
s

0.00 0.00 0.0 - =
1024 2048 4096 1024 2048 4096 1024 2048 4096

Layer Dimension Layer Dimension Layer Dimension

Sequence Length = 512 Sequence Length = 1024 Sequence Length = 2048

Figure 5: Latency of forward-backward propagation and op-
timization step for a single layer at various layer dimensions
and sequence length.

5.4 Memory Footprint

We compare the peak GPU memory usage on various rank r (for
LoRA) and sparsity o (for K-FAC Pruner and Sylva). As shown
in Table 2, Sylva requires less GPU memory than LoRA on all
models. The advantage of Sylva grows as sparsity decreases, i.e.,
if we inject a larger number of trainable weights into LLMs. For
example, LoRA causes OOM errors on LLaMA-7B with a rank of 256,
while Sylva can fit onto a 24 GB GPU in an equivalent configuration
(o0 = 90%). This is because LoRA requires storing intermediate
results provided by both the frozen pre-trained weights and injected
trainable weights and then taking the sum of them. In contrast,
Sylva only requires one pass on the embedded weights and thus
needs to store fewer intermediate results. K-FAC Pruner requires
the least GPU memory during fine-tuning. However, their pre-
processing step requires excessive GPU memory and might lead
to OOM errors on the GPUs, as we show later (See Section 5.6
Pre-Processing Costs).

5.5 Sensitivity Study

Model Quality. We compare the hyperparameter sensitivity of
LoRA and Sylva on GPT2-Large model and the E2E NLG Challenge.
We control Sylva’s sparsity and LoRA’s rank together so that the
number of trainable parameters is the same during fine-tuning. We
also study Sylva’s sensitivity to block size, the number of partitions
in the hierarchical approximation, and the number of samples in the
pre-processing step. (i) Sparsity: Sylva obtains better model quality
than LoRA with sparsity in the range of 86.7% ~ 96.7% (Table 4).
At a sparsity of 99.5%, Sylva obtains a worse model quality than
LoRA (with a rank of 4). (ii) Block size: As shown in Table 5, the
quality slightly decreases as the block size increases. A moderate
block size such as 64 balances the model quality and performance
tradeoff. Specifically, it obtains high model quality while being 10%
faster than a block size of 16 and only 4% slower compared to a
block size of 128. With a high sparsity of over 90%, the end-to-
end latency of different block sizes is comparable. (iii) Number of
Partition: The model quality decreases as we increase the number
of partitions (Table 6). We prioritize a smaller number of partitions,
because it yields a more accurate approximation and has less pre-
processing time as long as it is able to fit onto the GPU memory.
(iv) Number of Samples in Pre-Processing: On average, the model
quality is the highest with 1024 samples (Table 7). We noticed that
Sylva’s highest score for MET and ROUGE-L is obtained with 128
samples, although the average score with 128 samples is lower
than that obtained with 1024 samples. This indicates that more

Baorun Mu, Christina Giannoula, Shang Wang, and Gennady Pekhimenko

pre-processing samples provide richer information on the dataset,
thus yielding a higher average score.

Performance. Besides comparing the end-to-end fine-tuning
time, we benchmark the forward/backward pass computation time
for a single Linear module (common in attention or FC modules) on
various layer dimensions and sequence lengths. As shown in Figure
5, the advantage of Sylva over full fine-tuning and LoRA enlarges as
the layer dimensions increase and the maximum sequence length
increases. Sylva is up to 2.3X faster than LoRA and 1.3x faster than
full fine-tuning. This is because the computation complexity for
activations increases linearly to the layer dimensions and sequence
lengths. K-FAC Pruner has the lowest latency because it uses sparse
weight matrices. Thus, computation in forward/backward passes
is sparse matrix operations (SpMM or SDDMM) instead of dense.
However, K-FAC Pruner sacrifices model quality, as we shown in
Section 5.3. Note that the discrepancy between Figure 4 and 5 is
because there are layers that LoRA, K-FAC Pruner and Sylva do not
optimize (e.g., embedding, normalization), which results in lower
end-to-end speedup compared to that on a single layer.

Model ‘ Metric ‘ Ful FT LoRA K-Pruner Sylva
MNLI 903 90.4 90.2 903

SST-2 96.4 95.9 95.5 96.0

MRPC 90.9 90.7 89.7 91.9

CoLA 68.0 68.1 65.6 68.0

RoBERTa-Large ONLI 94.7 94.8 93.6 94.2
QQP 92.2 914 90.2 90.9

RTE 86.3 85.4 775 853

STS-B 92.2 91.9 911 913

Ts-Large | ROUGE-L | 47.8 47.7 40.1 47.6
BLEU 68.2 68.5 64.7 665

NIST 8.8 8.8 7.9 8.5

GPT2-Large MET 46.7 460 435 45.1
ROUGE-L | 719 695 64.0 69.2

CIDEr 24 2.4 21 23

LLaMA-7B | MMLU | 368 36.6 33.1 36.1

Table 3: Model quality between full fine-tuning, LoRA, K-FAC
pruner and Sylva on RoBERTa-Large, T5-Large, GPT2-Large
and LLaMA-7B.

5.6 Pre-Processing Costs

Sylva reduces the peak GPU memory by up to 2.3X compared to K-
FAC Pruner (Table 2). For LLaMA-7B, the pre-trained model weights
and Kronecker factors alone take 48 GB of GPU memory, without
considering the activation memory and gradients allocated in the
pre-processing step. Our hierarchical approximation and algorithm
reduce peak GPU memory usage to 20.1 GB during computing
second-order information. Since the pre-trained weights take about
13 GB, the storage is reduced by at least 5.0x compared to naively
computing the Kronecker factors. To approximate the second-order
information in the pre-processing step, we sample about 10% points
of the dataset. For example, the pre-processing step of GPT2-Large
takes 17.2 minutes on 4 GPUs, while fine-tuning it for 5 epochs
takes about 3 hours. Thus, Sylva’s pre-processing does not add
significant overhead overall.

5.7 Inference Performance

Since the adapters are merged back to the pre-trained weights
after fine-tuning for both LoRA and Sylva, LoRA and Sylva have
a similar inference performance to full fine-tuning. The K-FAC

Sylva: Sparse Embedded Adapters via Hierarchical Approximate Second-Order Information

Method ‘ r/o(%) | BLEU NIST MET ROUGE-L CIDEr

LoRA 128 67.8 8.6 46.4 69.1 2.4
Sylva 86.7 68.8 8.8 46.0 69.9 24
LoRA 96 68.0 8.7 46.3 69.4 24
Sylva 90 68.8 8.7 46.2 69.6 2.4
LoRA 32 67.8 8.6 46.2 69.1 24
Sylva 96.7 68.4 8.8 46.2 69.0 24
LoRA 4 68.5 8.7 46.3 69.8 24
Sylva 99.5 66.7 8.6 454 68.6 24

Table 4: Sensitivity of model quality to rank for LoRA and
sparsity for Sylva.

Method | Block Size | BLEU ~ NIST ~MET ROUGE-L CIDEr

16 68.8 8.7 46.2 69.7 24
Sylva 64 68.8 8.7 46.2 69.6 24
128 67.6 8.7 45.4 68.3 2.3

Table 5: Sensitivity of model quality to block size in Sylva.

Method ‘ # Partition ‘ BLEU NIST MET ROUGE-L CIDEr

4 68.8 8.7 46.2 69.6 24
Sylva 6 68.2 8.6 45.2 68.9 2.3
8 67.1 8.5 44.7 67.9 2.3

Table 6: Sensitivity of model quality to the number of parti-
tions in the hierarchical approximation of Sylva.

Method | #Samples | BLEU ~NIST ~MET ROUGE-L CIDEr

128 67.8 8.6 46.3 69.9 2.3
Sylva 256 67.5 8.7 45.9 69.1 2.4
1024 68.8 8.8 46.0 69.9 24

Table 7: Sensitivity of model quality to the number of samples
used in the pre-processing step of Sylva.

pruner removes a subset of the pre-trained weights in the pre-
processing step, yielding a sparse model after fine-tuning. Thus,
K-FAC pruner obtains 1.4X speedup during inference compared to
the other methods on LLaMA-7B.

6 RELATED WORK

To our knowledge, Sylva is the first work that significantly reduces
(i) computation costs in LLM fine-tuning by embedding sparse
trainable weights into the pre-trained LLM, and (ii) storage costs to
approximate second-order information via a hierarchical approx-
imation, and online projection and rediagonalization algorithm,
while also providing high model quality.

Pruners using Second-Order Information. A few prior works
[18, 26] employ Hessian to prune weight matrices. Hessian is shown
to be closely related to the source of rank deficiency in pre-trained
deep neural networks [50]. However, using Hessian as a second-
order information method results in excessive memory footprints in
the pre-processing step, making it prohibitive to be used in common
data-center GPUs. K-FAC [17, 34, 56] uses the Fisher Information
Matrix (FIM) to approximate the Hessian and significantly reduces
the memory footprints needed during the pre-processing step. The
FIM is shown to be equivalent to the Hessian for commonly used
loss (e.g. cross-entropy, squared-error) [33]. In our evaluation, we
show that Sylva reduces storage costs compared to K-FAC. Frantal
et al. [12, 13] use the layer-wise reconstruction loss to identify re-
dundancy between elements of weight matrices. Still, there is no

ICS 24, June 4-7, 2024, Kyoto, Japan

theoretical result that shows optimizing this reconstruction loss is
as good as that proposed in prior works [18, 26]. A recent work [28]
approximates pre-trained weights via a combination of low-rank
and sparse matrix. Finally, [24] proposes a mask search, rearrange-
ment and tuning technique for fast post-training pruning. Although
their method is guided by FIM, it uses a crude diagonal approxima-
tion and disregards correlations between weight elements.
Adapters for Parameter-Efficient Fine-Tuning. Houlsby et al.
[19] proposes parameter-efficient transfer learning via injecting
new layers after every submodule consisting of a few layers. This
significantly reduces the number of trainable parameters and thus
accelerates fine-tuning compared to full fine-tuning. However, this
adds computation overheads to the fine-tuned model since the num-
ber of parameters increases. A few prior works [31, 46] attempt
to improve on Houlsby et al. by reducing the adapter size, how-
ever, at the price of compromising model quality. LoRA [20] is the
state-of-the-art adapter approach, that reduces GPU memory usage,
attains high model quality and is easy to use. Recent works [10, 59]
improves upon LoRA by dynamically controlling rank in adapters
throughout fine-tuning. Dettmers et al. [8] further reduces GPU
memory usage by quantizing the frozen pre-trained weights. We
compare with LoRA in the evaluations (Section 5).

Other LLM Fine-Tuning Approaches. Sung et al.[51] use Fisher
diagonal to extract a fixed sparse mask on the pre-trained LLM, and
identify a set of sparse masked weights (i.e., a subset of the pre-
trained LLM weights) to be re-trained in fine-tuning. This method
has been shown to be effective only in BERT; orgg model with 345
million parameters. Furthermore, there is no efficient implementa-
tion to take advantage of the sparsity in the computation.
Efficient Sparse Linear Algebra Kernels for GPUs. Prior works|5,
14, 30] have proposed software optimizations using CUDA for
sparse linear algebra (e.g., Sparse Matrix Multiply) for GPU ar-
chitectures. Sylva can work synergistically with these prior works,
i.e., integrating optimized sparse computation kernels to improve
performance on GPUs further.

7 CONCLUSION

In this work, we propose Sylva, a novel approach that accelerates
the ubiquitous fine-tuning process that adapts pre-trained models
to downstream tasks. We design a hierarchical approximation of
the second-order information, and an online projection and redi-
agonalization algorithm to significantly reduce the pre-processing
costs to identify important weights compared to K-FAC, the most
widely used approximation to the Fisher Information Matrix. We
effectively embed the sparse trainable weights into the pre-trained
LLM weights to eliminate computation overheads introduced in
adapters. Sylva’s end-to-end fine-tuning is on average 5.1 faster
than ZeRO, a memory efficient optimizer for full fine-tuning, and
on average 1.2X faster than LoRA, the state-of-the-arts adapter
approach for fine-tuning LLMs. In comparison to K-FAC Pruner,
Sylva’s hierarchical approximation reduces the peak GPU memory
by 2.3x in the pre-processing step and provides better model quality
after fine-tuning. We conclude that Sylva is a highly efficient fine-
tuning method for LLMs and we hope that our work encourages
further studies on optimizing the execution (training and inference)
of LLMs as well as other deep neural networks.

ICS 24, June 4-7, 2024, Kyoto, Japan

ACKNOWLEDGMENTS

We thank all UofT EcoSystem research group members for the
technical discussions and feedback on this paper. Special thanks to
Yaoyao Ding for assistance with compiler techniques and CUDA
programming, and Zhanda Zhu for sharing his insights into various
LLM training techniques.

REFERENCES

[1] Shun-ichi Amari. 1998.

l6

[10

[11

[13

=

]

Natural Gradient Works Efficiently in Learn-
ing. Neural Computation 10, 2 (02 1998), 251-276. https://doi.org/10.1162/
089976698300017746

Fengxiang Bie, Yibo Yang, Zhongzhu Zhou, Adam Ghanem, Minjia Zhang, Zhewei
Yao, Xiaoxia Wu, Connor Holmes, Pareesa Golnari, David A. Clifton, Yuxiong He,
Dacheng Tao, and Shuaiwen Leon Song. 2023. RenAlssance: A Survey into Al
Text-to-Image Generation in the Era of Large Model. arXiv:2309.00810 [cs.CV]

Matthew Brand. 2006. Fast low-rank modifications of the thin singular value
decomposition. Linear Algebra Appl. 415, 1 (2006), 20-30. https://doi.org/10.1016/
j.laa.2005.07.021 Special Issue on Large Scale Linear and Nonlinear Eigenvalue
Problems.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., Vancouver, Canada,
1877-1901.

Roberto L. Castro, Andrei Ivanov, Diego Andrade, Tal Ben-Nun, Basilio B.
Fraguela, and Torsten Hoefler. 2023. VENOM: A Vectorized N:M Format for
Unleashing the Power of Sparse Tensor Cores. arXiv:2310.02065 [cs.DC]

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep
Nets with Sublinear Memory Cost. arXiv:1604.06174 [cs.LG]

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
QLoRA: Efficient Finetuning of Quantized LLMs. In Advances in Neural Informa-
tion Processing Systems, A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine (Eds.), Vol. 36. Curran Associates, Inc., New Orleans, USA, 10088—
10115.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171-4186. https://doi.
org/10.18653/v1/N19-1423

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and
Maosong Sun. 2023. Sparse Low-rank Adaptation of Pre-trained Language Models.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 4133-4145. https://doi.org/10.18653/v1/
2023.emnlp-main.252

Carl Eckart and G. Marion Young. 1936. The Approximation of One Matrix by
Another Of Lower Rank. Psychometrika 1 (1936), 211-218.

Elias Frantar and Dan Alistarh. 2022. Optimal Brain Compression: A Framework
for Accurate Post-Training Quantization and Pruning. In Advances in Neural
Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc., New Orleans, USA,
4475-4488.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Massive Language Models Can
be Accurately Pruned in One-Shot. In Proceedings of the 40th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 202),

[14

[15

(17

[18

[19

[21

[22

[24

[26

[27

[28

[29

Baorun Mu, Christina Giannoula, Shang Wang, and Gennady Pekhimenko

Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (Eds.). PMLR, Honolulu Hawaii USA, 10323-10337.
Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
Kernels for Deep Learning. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC "20). IEEE Press,
Atlanta, Georgia, Article 17, 14 pages.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. 2019. An Investigation
into Neural Net Optimization via Hessian Eigenvalue Density. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).
PMLR, Long Beach, USA, 2232-2241.

Erin Griffith. 2023. The Desperate Hunt for the A.I. Boom’s Most Indispensable Prize.
The New York Times. https://www.nytimes.com/2023/08/16/technology/ai-gpu-
chips-shortage.html

Roger Grosse and James Martens. 2016. A Kronecker-factored approximate Fisher
matrix for convolution layers. arXiv:1602.01407 [stat.ML]

Babak Hassibi, David Stork, and Gregory Wolff. 1993. Optimal Brain Surgeon:
Extensions and performance comparisons. In Advances in Neural Information
Processing Systems, J. Cowan, G. Tesauro, and J. Alspector (Eds.), Vol. 6. Morgan-
Kaufmann, Denver, USA.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-Efficient Transfer Learning for NLP. In Proceedings of the 36th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
Long Beach, USA, 2790-2799.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large
Language Models. arXiv:2106.09685 [cs.CL]

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc., Vancouver, Canada. https://proceedings.neurips.
cc/paper_files/paper/2019/file/093f65¢080a295f8076b1c5722a46aa2-Paper.pdf
Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. 2019. Universal Statistics of
Fisher Information in Deep Neural Networks: Mean Field Approach. In Proceed-
ings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics (Proceedings of Machine Learning Research, Vol. 89), Kamalika Chaudhuri
and Masashi Sugiyama (Eds.). PMLR, Naha, Okinawa, Japan, 1032-1041.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin
Fineran, Michael Goin, and Dan Alistarh. 2022. The Optimal BERT Surgeon:
Scalable and Accurate Second-Order Pruning for Large Language Models. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association
for Computational Linguistics, Abu Dhabi, United Arab Emirates, 4163-4181.
https://doi.org/10.18653/v1/2022.emnlp-main.279

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer,
and Amir Gholami. 2022. A Fast Post-Training Pruning Framework for Transform-
ers. In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc.,
New Orleans, 24101-24116. https://proceedings.neurips.cc/paper_files/paper/
2022/file/987bed997ab668f91c822a09bce3eal2-Paper-Conference.pdf

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi-
Rui Tam, Keith Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan-
ley, Richard Nagyfi, Shahul ES, Sameer Suri, David Glushkov, Arnav Dantuluri,
Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander Mattick.
2023. OpenAssistant Conversations — Democratizing Large Language Model
Alignment. arXiv:2304.07327 [cs.CL]

Yann Le Cun, John S. Denker, and Sara A. Solla. 1989. Optimal Brain Damage. In
Proceedings of the 2nd International Conference on Neural Information Processing
Systems (NIPS’89). MIT Press, Cambridge, MA, USA, 598-605.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James
Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level
code generation with AlphaCode. Science 378, 6624 (Dec. 2022), 1092-1097.
https://doi.org/10.1126/science.abq1158

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and
Tuo Zhao. 2023. LoSparse: structured compression of large language models based
on low-rank and sparse approximation. In Proceedings of the 40th International
Conference on Machine Learning (ICML’23). JMLR.org, Honolulu, Hawaii, USa,
Article 839, 15 pages.

Zhenyu Liao and Michael W Mahoney. 2021. Hessian Eigenspectra of More
Realistic Nonlinear Models. In Advances in Neural Information Processing Systems,

https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://arxiv.org/abs/2309.00810
https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1016/j.laa.2005.07.021
https://arxiv.org/abs/2310.02065
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1604.06174
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.emnlp-main.252
https://doi.org/10.18653/v1/2023.emnlp-main.252
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://arxiv.org/abs/1602.01407
https://arxiv.org/abs/2106.09685
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Paper-Conference.pdf
https://arxiv.org/abs/2304.07327
https://doi.org/10.1126/science.abq1158

Sylva: Sparse Embedded Adapters via Hierarchical Approximate Second-Order Information

M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(Eds.), Vol. 34. Curran Associates, Inc., Virtual, 20104-20117.

Bin Lin, Ningxin Zheng, Lei Wang, Shijie Cao, Lingxiao Ma, Quanlu Zhang, Yi
Zhu, Ting Cao, Jilong Xue, Yuqing Yang, and Fan Yang. 2023. Efficient GPU
Kernels for N:M-SPARSE Weights in Deep Learning. In Sixth Conference on
Machine Learning and Systems (MLSys’23). Machine Learning and Systems, Miami,
USA.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. 2020. Exploring Versatile
Generative Language Model Via Parameter-Efficient Transfer Learning. In Find-
ings of the Association for Computational Linguistics: EMNLP 2020, Trevor Cohn,
Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, Online,
441-459. https://doi.org/10.18653/v1/2020.findings-emnlp.41

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Ro{BERT}a: A
Robustly Optimized {BERT} Pretraining Approach.

James Martens. 2020. New Insights and Perspectives on the Natural Gradient
Method. Journal of Machine Learning Research 21, 146 (2020), 1-76.

James Martens and Roger Grosse. 2015. Optimizing Neural Networks with
Kronecker-factored Approximate Curvature. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 37), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 2408-2417.
Nvidia Mellanox. 2014. Introducing EDR 100Gb/s - Enabling the Use of
Data. https://network.nvidia.com/pdf/whitepapers/wp_introducing_edr_100gb_
enabling_use_data.pdf

L. MIRSKY. 1960. Symmetric Gauge Functions And Unitarily Invariant Norms.
The Quarterly Journal of Mathematics 11, 1 (Jan 1960), 50-59. https://doi.org/10.
1093/qmath/11.1.50

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021.
Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-
LM. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (St. Louis, Missouri) (SC "21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 58, 15 pages.
https://doi.org/10.1145/3458817.3476209

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 721,
12 pages.

Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E NLG Challenge: Neural Models
vs. Templates. In Proceedings of the 11th International Conference on Natural
Language Generation, Emiel Krahmer, Albert Gatt, and Martijn Goudbeek (Eds.).
Association for Computational Linguistics, Tilburg University, The Netherlands,
463-471. https://doi.org/10.18653/v1/W18-6557

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. Open AL
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1-67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory Optimizations Toward Training Trillion Parameter Models. ArXiv.
Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale
Deep Learning. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC *21).
Association for Computing Machinery, New York, NY, USA, Article 59, 14 pages.
https://doi.org/10.1145/3458817.3476205

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
Speed: System Optimizations Enable Training Deep Learning Models with Over
100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD
’20). Association for Computing Machinery, New York, NY, USA, 3505-3506.
https://doi.org/10.1145/3394486.3406703

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models.
arXiv:2112.10752 [cs.CV]

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils
Reimers, and Iryna Gurevych. 2021. AdapterDrop: On the Efficiency of Adapters
in Transformers. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics,
Online and Punta Cana, Dominican Republic, 7930-7946. https://doi.org/10.
18653/v1/2021.emnlp-main.626

ICS 24, June 4-7, 2024, Kyoto, Japan

[47] Alec Radford Scott Gray and Diederik P. Kingma. 2017. GPU Kernels for Block-

Sparse Weights. https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
Anton Shilov. 2023. TSMC: Shortage of Nvidia’s AI GPUs to Persist for 1.5 Years.
Tom’s Hardware. https://www.tomshardware.com/news/tsmc-shortage-of-
nvidias-ai-gpus-to-persist-for-15-years

Sidak Pal Singh and Dan Alistarh. 2020. WoodFisher: Efficient Second-Order
Approximation for Neural Network Compression. In Advances in Neural Infor-
mation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., Virtual, 18098-18109.

Sidak Pal Singh, Gregor Bachmann, and Thomas Hofmann. 2021. Analytic
Insights into Structure and Rank of Neural Network Hessian Maps. In Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S.Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., Virtual,
23914-23927.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021. Training Neural Networks
with Fixed Sparse Masks. In Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(Eds.), Vol. 34. Curran Associates, Inc., Virtual, 24193-24205.

Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermediate Lan-
guage and Compiler for Tiled Neural Network Computations. In Proceedings of
the 3rd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages (Phoenix, AZ, USA) (MAPL 2019). Association for Computing
Machinery, New York, NY, USA, 10-19. https://doi.org/10.1145/3315508.3329973
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMa: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, 1. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc., Long Beach, USA.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Tal Linzen,
Grzegorz Chrupala, and Afra Alishahi (Eds.). Association for Computational
Linguistics, Brussels, Belgium, 353-355. https://doi.org/10.18653/v1/W18-5446
Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. 2019. EigenDam-
age: Structured Pruning in the Kronecker-Factored Eigenbasis. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).
PMLR, Long Beach, USA, 6566-6575.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amir-
reza Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana
Arunkumar, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Lai,
Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi,
Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali
Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh
Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra,
Sujan Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. 2022. Super-
Naturallnstructions: Generalization via Declarative Instructions on 1600+ NLP
Tasks. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.).
Association for Computational Linguistics, Abu Dhabi, United Arab Emirates,
5085-5109. https://doi.org/10.18653/v1/2022.emnlp-main.340

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming
Jiang, Bing Yin, and Xia Hu. 2023. Harnessing the Power of LLMs in Practice: A
Survey on ChatGPT and Beyond. CoRR abs/2304.13712 (2023).

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. 2024. APT: Adaptive
Pruning and Tuning Pretrained Language Models for Efficient Training and
Inference. arXiv:2401.12200 [cs.CL]

https://doi.org/10.18653/v1/2020.findings-emnlp.41
https://network.nvidia.com/pdf/whitepapers/wp_introducing_edr_100gb_enabling_use_data.pdf
https://network.nvidia.com/pdf/whitepapers/wp_introducing_edr_100gb_enabling_use_data.pdf
https://doi.org/10.1093/qmath/11.1.50
https://doi.org/10.1093/qmath/11.1.50
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.18653/v1/W18-6557
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3394486.3406703
https://arxiv.org/abs/2112.10752
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://www.tomshardware.com/news/tsmc-shortage-of-nvidias-ai-gpus-to-persist-for-15-years
https://www.tomshardware.com/news/tsmc-shortage-of-nvidias-ai-gpus-to-persist-for-15-years
https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://arxiv.org/abs/2401.12200

	Abstract
	1 Introduction
	2 Background And Motivation
	2.1 Overview of Prior Works
	2.2 Comparison of Prior Works

	3 Sylva: Overview
	4 Sylva: Design Details
	4.1 A Two-Stage Fine-Tuning Procedure
	4.2 Hierarchical Approximate Curvature
	4.3 Online Projection and Rediagonalization
	4.4 Embedded Sparse Trainable Weights

	5 Evaluation
	5.1 Methodology
	5.2 Fine-Tuning Time
	5.3 Model Quality
	5.4 Memory Footprint
	5.5 Sensitivity Study
	5.6 Pre-Processing Costs
	5.7 Inference Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

