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Abstract
Graph Neural Networks (GNNs) [1–4] have emerged as state-of-the-
art Machine Learning (ML) models to depict dependent relations in
graph-structure data, providing high accuracy in vertex classifica-
tion and link (edge) prediction tasks [5–8]. Thus, they have been
adopted to many real-world applications, including point-cloud
analysis [9], recommendation systems [10], social network anal-
ysis [11], and drug discovery [12]. GNNs comprise a few layers,
and each layer consists of two steps: aggregation and combination.
The former aggregates the input feature vectors of the neighboring
vertices for each vertex in the graph via a permutation-invariant
operator (e.g., average). The latter processes the aggregated vectors
of all vertices through a small neural network (e.g., a multilayer
perceptron [13]) to produce the output feature vectors, which will
be fed as input feature vectors to the next layer.

The key operators of combination are dense matrix matrix multi-
plications (GEMMs), while aggregation degenerates to a Sparse Ma-
trixMatrixMultiplication (SpMM) kernel, processing the graph data
that is represented as a sparse matrix [14–16]. We profile the GNN
execution in a high-end GPU system [17, 18], and find that aggre-
gation dominates execution time exhibiting high memory intensity,
while combination is compute intensive. The compute-intensive
combination fits to be executed in processor-centric systems (CPUs
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or GPUs). However, aggregation is significantly bottlenecked by
data movement between memory and processors in such systems,
since SpMM is typically memory-bandwidth-bound in CPUs and
GPUs [14, 15, 19].

A promisingway to alleviate the datamovement cost is Processing-
In-Memory (PIM) [17, 20–55] computing paradigm. PIM enables
computation to be performed close to the application data by equip-
ping memory chips with processing capabilities (in-memory pro-
cessors). To provide significantly higher memory bandwidth for the
in-memory processors than standard DRAM modules, manufactur-
ers have commercialized near-bank PIM designs [21]. Near-bank
PIM memory modules tightly couple a PIM core with one (or a
few) DRAM bank, exploiting bank-level parallelism to expose the
high aggregated on-chip memory bandwidth of standard DRAM
to processors. A real PIM system supports multiple near-bank PIM
memory modules, which are connected to a CPU or GPU, hence-
forth referred to as Host. The UPMEM PIM architecture [21] is the
first PIM system to become commercially available. HBM-PIM [56]
and AiM [20] are near-bank PIM systems that have been prototyped
and evaluated in real systems.

A few works [15, 16, 57] propose hybrid Host-PIM accelerators
for GNNs. However, none of them considers real-world PIM sys-
tems. These works design new microarchitectures for near-rank
PIM systems, i.e., accelerator cores are placed at each rank of mem-
ory modules. Near-rank PIM designs have not been commercialized
yet, and are not always able to provide significantly higher mem-
ory bandwidth for processors than standard DRAM [41, 56]. In
the software level, these works have simple fixed parallelization
strategies for GNN aggregation in PIM cores, which would cause
out-of-memory errors for medium-/large-size graphs or achieve
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very low performance in real near-bank PIM systems, as we ex-
plain in our full paper [17, 18]. Moreover, these works use software
emulators for their evaluations (not a real PIM system).

Our goal in this work is to efficiently map GNNs on near-bank
PIM systems and quantify the potential of real PIM architectures in
GNN executions. Efficiently executing GNNs in real PIM systems
encounters three key challenges. 1) GNN execution has repeated
compute-intensive (combination) and memory-intensive (aggrega-
tion) kernels. On the one hand, executing both types of kernels in
PIM cores would incur high performance overheads in combination,
since PIM cores are low-area and low-power cores with relatively
low computation capabilities [26, 41, 56]. On the other hand, exe-
cuting combination on Host cores and aggregation on PIM cores,
respectively, necessitates minimizing the overheads of passing the
output result of one kernel as input to the next kernel. 2) Real-world
graphs exhibit diverse characteristics, e.g., the average, min or max
vertex neighboring degrees vary across different graphs. Therefore,
as discussed in prior works [24, 58–61], the execution behavior of
sparse kernels, such as the SpMV/SpMM, depends on the partic-
ular characteristics of the input given, and there is no typically
one-size-fits-all parallelization solution that performs best across
various inputs [24]. 3) Programming a real near-bank PIM system
for a high-level application is a hard task [31, 62, 63], since software
stacks for PIM systems are still in an early stage. Thus, ML pro-
grammers may need to distribute data of GNNs across thousands
of DRAM banks in a fine-grained and careful way, have expertise
of the PIM hardware [31, 63] and/or program the PIM cores using
low-level APIs [26, 31].

To address the aforementioned challenges, we design PyGim [64],
a high-level ML library to efficiently execute GNNs in real PIM
systems. PyGim provides high system performance in realHost-PIM
executions of GNNs, and bridges the gap between ML engineers,
who prefer high-level programming interfaces (e.g., Python), and
real PIM systems, that typically provide complex and low-level APIs
and may need deep knowledge of PIM hardware.

PyGim co-designs a Cooperative Acceleration (CoA) model
with a novel Parallelism Fusion (PaF) method. CoA runs hetero-
geneous kernels to the best-fit underlying hardware: the processor-
centric Host (CPU/GPU) system executes the compute-intensive
GNN combination, and the memory-centric PIM system executes
the memory-intensive aggregation. PaF serves a dual purpose: it (i)
strives a balance between computation and data transfer costs in
GNN aggregation executed in PIM cores, minimizing the overheads
of passing the output result of combination as input to aggregation
and vice versa, and (ii) provides various parallelization techniques to
cover many real-world graphs with diverse characteristics. Specifi-
cally, in GNN aggregation, we enable three parallelism levels on the
hardware PIM side and, at each level, provide different paralleliza-
tion techniques on the software side. 1) We group the available PIM
cores of the system in clusters, and design edge- and feature-level
parallelism across PIM clusters. 2) We enable vertex- or edge-level
parallelism across cores within PIM cluster. 3) We employ either
vertex- or edge-level parallelism across threads within a PIM core.
The technique of the first parallelism level reduces data transfer
overheads to/from PIMmemory modules, thus reducing costs when
passing the output of one GNN operator as input to the next one.
The techniques of the second and third parallelism levels enable
load balancing schemes that provide high compute balance across

low-power PIM cores and across threads of a PIM core. PaF enables
various GNN aggregation configurations and load balancing strate-
gies, by configuring the number of PIM cores per cluster, vertex-
or edge-level parallelism within a PIM cluster or within a PIM core,
such that to efficiently support diverse real-world graphs.

We design PyGim to adapt to the graph’s characteristics with
minimal programmer intervention. We integrate in PyGim a light-
weight tuner that predicts the best-performing PaF aggregation
configuration based on the particular characteristics of the input
graph. PyGim’s tuner employs effective performance models to
estimate performance of different GNN aggregation configurations
in PIM systems at low cost. This way, we automate the selection
of the PyGim PaF configuration and eliminate the need for man-
ual programmer intervention, while also providing high system
performance. We develop a PIM backend for our optimized imple-
mentations and expose themwith a handy Python API [17, 18], so
that programmers can easily use them. We integrate our API with
PyTorch [65] (it can be integrated to other frameworks [66–69])
to support either CPU or GPU as the Host (GPU-PIM systems are
expected to be commercialized) in GNN PIM-based executions. Py-
Gim supports two widely-used compression formats for real-world
graphs. To our knowledge, PyGim is the first easy-to-use and high-
level ML library to deploy GNN models in real PIM systems, and is
available as open-source to enable the use of PIM systems in GNNs.

We comprehensively characterize GNN execution on the UP-
MEM PIM system, the first real-world PIM architecture, which has
16 PIM DIMMs with 1992 PIM cores connected to Host CPU. We
evaluate our techniques in terms of scalability, data transfer costs,
aggregation kernel and inference performance and energy using
various real-world graphs and GNN models. We compare PyGim
over prior state-of-the-art PIM-based works for GNNs and show
that it achieves significantly higher performance by on average
4.38× (up to 7.20×) and higher energy efficiency by on average
2.86× (up to 3.68×) in GNN inference. PyGim improves GNN infer-
ence performance and energy efficiency over the state-of-the-art
PyTorch scheme running on Host by on average 3.04× (up to 3.44×)
and 1.55× (up to 1.75×), respectively. Moreover, PyGim achieves on
average 11.6× higher resource utilization on PIM system than that
of PyTorch’s backend onGPU systems, which is an optimized CUDA
implementation from pytorch_sparse library [70]. This means that
PyGim uses the PIM system more effectively than PyTorch’s back-
end library uses the GPU system. Our extensive study provides
recommendations for PIM hardware, systems and software.

For more information about the open-source PyGim software
package [64], our thorough characterization on the GNN PIM exe-
cution, results, and insights, we refer the reader to the full version
of the paper [17, 18]. We hope that our parallelization strategies for
GNNs, in-depth PIM analysis, and open-source library will enable
further research on optimizing GNNs and other sparseMLmodels in
memory-centric computing systems, and will enlighten architects
and system designers in the development of future memory-centric
computing systems. The PyGim software package is publicly and
freely available at https://github.com/CMU-SAFARI/PyGim.

CCS Concepts
• General and reference → Performance; Design; Evaluation;
Experimentation; • Computer systems organization → Ar-
chitectures; • Hardware → Power and energy;
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