Mist: Efficient Distributed Training of Large Language
Models via Memory-Parallelism Co-Optimization

Zhanda Zhu

Christina Giannoula

Muralidhar Andoorveedu

University of Toronto, Vector
Institute, CentML
zhanda.zhu@mail.utoronto.ca

Qidong Su
University of Toronto, Vector
Institute, CentML
qdsu@cs.toronto.edu

University of Toronto, Vector
Institute, CentML
christina.giann@gmail.com

Karttikeya Mangalam
SiglQ.ai
mangalam@sigiq.ai

Gennady Pekhimenko
University of Toronto, Vector
Institute, CentML
pekhimenko@cs.toronto.edu

CentML

murali@centml.ai

Bojian Zheng

University of Toronto, Vector
Institute, CentML
bojian@cs.toronto.edu

Abstract

Various parallelism, such as data, tensor, and pipeline par-
allelism, along with memory optimizations like activation
checkpointing, redundancy elimination, and offloading, have
been proposed to accelerate distributed training for Large
Language Models. To find the best combination of these tech-
niques, automatic distributed training systems are proposed.
However, existing systems only tune a subset of optimiza-
tions, due to the lack of overlap awareness, inability to navi-
gate the vast search space, and ignoring the inter-microbatch
imbalance, leading to sub-optimal performance. To address
these shortcomings, we propose Mist, a memory, overlap,
and imbalance-aware automatic distributed training system
that comprehensively co-optimizes all memory footprint
reduction techniques alongside parallelism. Mist is based
on three key ideas: (1) fine-grained overlap-centric schedul-
ing, orchestrating optimizations in an overlapped manner,
(2) symbolic-based performance analysis that predicts run-
time and memory usage using symbolic expressions for fast
tuning, and (3) imbalance-aware hierarchical tuning, decou-
pling the process into an inter-stage imbalance and overlap
aware Mixed Integer Linear Programming problem and an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys °25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3717461

intra-stage Dual-Objective Constrained Optimization prob-
lem, and connecting them through Pareto frontier sampling.
Our evaluation results show that Mist achieves an average
of 1.28x (up to 1.73x) and 1.27x (up to 2.04X) speedup com-
pared to state-of-the-art manual system Megatron-LM and
state-of-the-art automatic system Aceso, respectively.

CCS Concepts: - Computing methodologies — Distributed
computing methodologies; Machine learning.

Keywords: LLM, Systems for Machine Learning, Distributed
training

ACM Reference Format:

Zhanda Zhu, Christina Giannoula, Muralidhar Andoorveedu, Qi-
dong Su, Karttikeya Mangalam, Bojian Zheng, and Gennady Pekhi-
menko. 2025. Mist: Efficient Distributed Training of Large Language
Models via Memory-Parallelism Co-Optimization. In Twentieth Eu-
ropean Conference on Computer Systems (EuroSys 25), March 30-
April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
19 pages. https://doi.org/10.1145/3689031.3717461

1 Introduction

Large Language Models (LLMs) have gained high interest and
show remarkable capabilities in various fields like question
answering, summarization, problem solving, and more [5, 23,
60]. However, their significantly increased sizes and dataset
requirements have escalated computational and memory de-
mands. For instance, training LLaMa-3.1-405B [50] uses a
cumulative 30.84M GPU hours of computation on NVIDIA
H100 GPUs [51]. While most companies and researchers can-
not afford to pre-train such LLMs, continuous pre-training
or supervised fine-tuning still costs over 2000 NVIDIA H100
GPU hours per 1B tokens [51]. Therefore, efficient distributed
training techniques have been proposed [6, 12, 40-42, 45, 46,
49, 53, 68, 73, 76, 77, 80, 82, 85, 87, 89] to improve system
performance during training, since even minor reductions in

https://doi.org/10.1145/3689031.3717461
https://doi.org/10.1145/3689031.3717461

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

the training time are translated to significant financial and
environmental benefits [22, 52, 74].

Prior works [35, 49, 55, 57, 68, 73, 89] propose various
parallelization techniques for distributed training. Data Par-
allelism (DP) [1, 42] splits input data across devices, with
each device processing a portion of the data, while main-
taining a full copy of the LLM model. Tensor Parallelism
(TP) [39, 57, 73] partitions the parameters of each layer across
devices, however introducing inter-device communication
over activations to ensure computation correctness. Pipeline
Parallelism (PP) [32, 35, 43, 55] divides the model into stages,
however a large number of stages may lead to performance
inefficiencies, e.g., pipeline bubbles where devices are idle
during training. We henceforth refer to the number of par-
titions in DP, TP and PP methods as DP size, TP size, and
PP size, respectively. Gradient accumulation techniques are
usually applied, dividing a global batch into multiple micro-
batches, to reduce the memory pressure of each microbatch
and facilitate pipeline parallelism [73]. To alleviate mem-
ory pressure in devices, memory footprint reduction tech-
niques [3, 17, 26, 31, 36, 38, 63, 66, 67, 69, 70, 87, 88] have also
been proposed. Activation checkpointing (CKPT) [17, 36, 38,
88] reduces memory footprint during training by recomput-
ing activations during backpropagation. ZeRO [66, 87] elimi-
nates model states redundancy by partitioning the optimizer
states, gradients, or weights across devices. Higher ZeRO
levels partition more model states, thereby providing larger
memory footprint savings, however increasing the inter-
device communication. Offloading [26, 31, 63, 67, 69, 70]
temporarily transfers unused tensors from the GPU to the
CPU, freeing GPU memory however increasing the data
transfer costs. These memory optimizations often require
overlapping data transfers with GPU computation to reduce
performance overhead [63, 69, 87].

In this work, we observe that memory footprint reduction
techniques, although they have been primarily designed to
alleviate memory pressure, they can significantly enhance
performance, since they assist in balancing trade-offs be-
tween runtime overhead and memory footprint reduction.
For instance, applying offloading optimization can free up
some memory in GPU devices, which can then be leveraged
to reduce the TP or PP size, thereby reducing communication
overheads or pipeline bubbles during training. Generally, ex-
ploiting memory footprint reduction techniques to release
some memory footprint in GPU devices can be leveraged
to: 1) reduce the TP size, thus mitigating communication
overheads; 2) reduce the PP size, thus eliminating pipeline
bubbles; and (3) increase the batch size, improving kernel effi-
ciency. Conversely, applying less aggressively memory foot-
print reduction optimizations results in higher GPU memory
usage, which increases the partitioning across devices, thus
incurring higher performance overheads related to paral-
lelism. Therefore, additional GPU memory can be gained
by applying more aggressive memory footprint reduction

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

techniques, which come with some added overhead. This
memory can then be used to reduce the overhead of other
optimizations. As long as the benefit from reducing the over-
head outweighs the additional cost incurred by the memory
footprint reduction techniques, overall training efficiency
improves. See detailed motivational examples in Section 3.1.

Overall, distributed training constitutes an optimization
problem that can be formulated as choosing the best combi-
nation of all available techniques (both parallelism and mem-
ory footprint reduction techniques) to maximize training effi-
ciency, while keeping the memory usage lower than the avail-
able hardware memory capacity. Manual distributed training
methods such as Megatron-LM [73] and DeepSpeed [68],
among others [67, 69, 87], are developed to provide some of
the above optimizations. However, these manual methods re-
quire users to specify configurations, i.e., the combination of
parallelism and memory footprint reduction techniques, for
optimal performance. This can be quite challenging even for
experienced users and takes lots of engineering efforts [89].
Moreover, as model sizes and device counts increase, tun-
ing complexity increases exponentially [89]. To address this
issue, automatic distributed training systems have been pro-
posed [12, 40, 45, 46, 49, 53, 76, 77, 80, 82, 85, 89]. Given LLM
model and GPU hardware, they construct the search space of
various configurations of the their supported optimizations
and automatically find optimal combination of them.

We extensively examine distributed training frameworks
and identify a key shortcoming: they fail to comprehensively
co-optimize memory footprint reduction techniques along-
side parallelism, since they only focus on a subset of the
available search space. Specifically, these systems are still in-
efficient in optimizing training performance, because they (i)
either tune parallelism configuration with a fixed pre-defined
memory optimization [49, 53, 89], (ii) support only one spe-
cific optimization like activation checkpointing [40, 46, 76],
or (iii) make strong assumptions, such as applying the same
memory footprint strategy across all pipeline stages [85].
These constraints lead to a reduced search space and sub-
optimal performance, as demonstrated in Section 3.1.

We analyze how prior works tune the training configu-
rations and find that co-optimizing all available memory
footprint reduction techniques and parallelism is challeng-
ing in these prior existing systems, because they suffer from
three limitations. First, existing automatic systems do not
overlap communication with computation beyond the basic
gradient all-reduce, thus missing important opportunities
for training efficiency. This can cause severe performance
degradation (See Figure 12), which becomes even more se-
vere when all memory optimizations are involved. Second,
they are not able to efficiently explore the exploded search
space when co-tuning all optimizations. When more memory
optimization techniques are incorporated, the search space
increases significantly, and existing systems fail to find the
best configuration in such a huge search space. Third, they

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ...

use the averaged microbatch time to model the pipeline paral-

lelism performance, implicitly assuming uniform microbatch

execution time within a pipeline stage. However, we find
that this is not the case, since first and last microbatches
incur higher communication costs (especially when ZeRO

and offloading are involved), as we explain in Section 3.2.
To tackle the aforementioned limitations, we propose

Mist, a memory, overlap, and imbalance-aware automatic

distributed training system that co-optimizes memory foot-

print reduction techniques with parallelism. Mist consists of
three key ideas: (1) fine-grained overlap-centric schedul-
ing, which carefully orchestrates the implementation of both
memory footprint reduction techniques and parallelism to
maximize the computation-communication overlapping; (2)
symbolic-based efficient performance analysis, which
enables fast exploration of the exploded search space of var-
ious configurations by efficiently predicting runtime and
memory usage via symbolic expressions and batched value
substitutions; and (3) imbalance-aware hierarchical tun-
ing, which takes into account the microbatch variability and
overlap opportunities in pipeline parallelism, decouples the
optimization process into an inter-stage Mixed Integer Lin-
ear Programming (MILP) problem and an intra-stage Dual-

Objective Constrained Optimization problem, and connects

them via Pareto frontier sampling. This third key idea ad-

dresses both the search space explosion and the microbatch
imbalance in pipeline parallelism.

We extensively evaluate Mist on a wide variety of LLMs,
including GPT-3 [9], LlaMa [79], and Falcon [2], across di-
verse training configurations, i.e., varying the global batch
size, model size, and using different kernel implementations
such as FlashAttention [19]) and hardware setups (up to
32 NVIDIA L4 [59] and 32 NVIDIA A100 GPUs [58]), and
demonstrate that Mist significantly outperforms prior state-
of-the-art works [46, 68, 73]. Our evaluation results show
that Mist achieves an average of 1.28x (up to 1.73X) and
1.27X (up to 2.04x) speedup compared to the state-of-the-art
manual implementation Megatron-LM and the state-of-the-
art automatic system Aceso, respectively, across different
GPU, model, and training configurations.

To sum up, we make the following contributions:

o We identify the need of comprehensively co-optimizing
memory footprint reduction techniques alongside paral-
lelism and propose Mist, a highly efficient easy-to-use
automatic distributed training framework for LLMs.

e We propose and implement a symbolic analysis system
that generates symbolic expressions for workload charac-
teristics to quickly explore the exploded search space. We
design a scheduling method that maximizes computation-
communication overlap by carefully coordinating memory
optimization and parallelism techniques. We introduce a
tuning method that decouples the optimization process
into two stages and connects them through Pareto frontier

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Stage 1 Stage 2 Stage 3
ST Activation ™, /" Allgatherfor N [o= =%
' Checkpointing i 1 ZeRO-3 1 (Swapin/Out) |
: \ L R -7
: | : [1

i LT
! - e L e S S S —
I [
Ny]
\ /
- —Data Parallel = =Tensor Parallel {_ it iPipeline Parallel (:Communication

Figure 1. An illustration of optimization configurations.

sampling, addressing microbatch variability and leverag-
ing overlap opportunities in pipeline parallelism.

o We evaluate Mist using various large-scale LLMs in both
NVLink systems (NVIDIA A100 GPUs [58]) and PCle sys-
tems (NVIDIA L4 GPUs [59]) and compare it to multi-
ple strong baselines. Mist significantly outperforms prior
works, up to 2.04X, under various training configurations.

2 Background

LLMs [9, 78] require excessive computation and memory,
leading to significant costs and energy consumption [51].
Consequently, distributed training, i.e., scaling hardware and
splitting the model and/or the input data, is the typical solu-
tion to train LLMs [68, 73]. To efficiently conduct distributed
training, various parallelism techniques [35, 42, 73] and GPU
memory footprint reduction methods [17, 26, 63, 66] have
been developed. As shown in Figure 1, different parallelism
and memory optimizations can be applied in combination.

2.1 Parallelism in Distributed Training

Data Parallelism. To scale training, Data Parallelism (DP) [1,
42] distributes input data across GPUs, with each GPU pro-
cessing its data independently using a model replica. It in-
volves only an all-reduce of gradients per iteration, but re-
quires the entire model to fit within each GPU’s memory.
Tensor Parallelism. Tensor Parallelism (TP) [57, 73] parti-
tions the parameters in each layer and conducts all-reduce
over activations in the forward pass and gradients in the
backward pass to maintain computation correctness.
Pipeline Parallelism. Pipeline Parallelism (PP) 25, 35, 37,
43, 55, 56] partitions the model into stages, using p2p com-
munication between stages to pass data through the pipeline.
Although it only involves small communication overhead
to transfer intermediate tensors, the dependency between
stages introduces pipeline bubbles, which causes efficiency
to suffer as a result of the device idle time.

2.2 GPU Memory Footprint Reduction Techniques

Activation Checkpointing. Activation checkpointing (CKPT)
(also known as recomputation) [3, 17, 36, 38, 88] discards cer-
tain activations in the forward pass, while stashing others.
Later in the backward pass, the discarded activations are
recomputed from the stashed activations, and are then used
for gradient computation. This method reduces the memory

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Comparison of distributed training systems. P, G,
O, and A under offloading denote parameter, gradient, op-
timizer states, activation offloading, respectively. Circle for
optimizations represents functionality support and granu-
larity. Circle for tuning represents whether the system can
tune all optimizations it supports.

Parallelism Offloading ZeRO- Auto-Tuning
DP TP PP P G O A 2/3 Capability

Megatron-LM [73]
DeepSpeed [68]

ZeRO-Offload [69]
ZeRO-Infinity [67]

Alpa [89]
Slapo [12]
AdaPipe [76]
Yuan et al. [85]
Aceso [46]

IR NN E S NN
IR NN E SN NN
A RN NN N R R NN
@/ 00000 |®000|"
@/ 00000 |®000

@ OO0O0O0O | ®® 00
AR T T 30 N N I N N N

Mist

® O®O0O0O|®00O0
e ec2®®® O0O0OO0OO

needed for the saved activations, at the cost of recomputing
discarded activations in the backward pass.

Redundancy Optimization. Zero Redundancy Optimizer
(ZeRO) reduces the memory usage by eliminating redundant
copies of optimizer states, gradients, and model weights
across data-parallel devices [66, 87]. ZeRO operates in three
modes: ZeRO-1 (shards optimizer only), ZeRO-2 (shards op-
timizer and gradients), and ZeRO-3 (shards optimizer, gradi-
ents, and weights). While ZeRO-1 introduces no additional
communication, ZeRO-2/3 incur communication overhead
due to all-gathering and reduce-scattering operations.
Offloading. Offloading [26,31, 63, 67,70, 81] (also known as
swapping) involves transferring model states or activations
between the GPU devices and the host CPU. This technique
helps manage GPU memory constraints by temporarily of-
floading data, allowing the GPU to accommodate other tasks.
The efficiency of swapping significantly depends on overlap-
ping, which allows memory transfers to be hidden outside
the critical path.

3 Limitation of Existing Systems

3.1 The Need for Comprehensive Co-Optimization

Distributed training optimization problem involves finding
the optimal configuration of parallelism strategies and mem-
ory reduction methods to maximize performance, given
specific hardware, model, and global batch size. Current
distributed training systems, however, lack the ability to
comprehensively co-optimize memory footprint optimiza-
tions alongside parallelism [46, 85, 89]. As detailed in Ta-
ble 1, manual methods, such as ZeRO-Infinity [67], support
a broader range of memory optimizations but only allow
coarse-grained configuration (enabling or disabling offload-
ing) and lack automatic tuning. Automatic methods, such as
Alpa [89], AdaPipe [76], and Aceso [12], either support fewer

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

No [_______________

_________ OOM ====c----_._
(@) py Lo -TTTTIZEIZsT00M ====csIitTTTTOTT |
A IEE 1 5|3 [7I[s 7
) U Geu, T2 s 2 [sl[2 [8][e 8
CKPT Gpu, i 1 3] 3 [s] s [7] 7
GPU, 2| 2 4] 4 6] 6 [8] s

#CKPT Reduction: GPU 1/2: 16 -> 8; GPU 3/4: 8-> 0

Gru [1 [3] \\ 1 [s] 3 [7] 5 | 7|
Tuned GPY,| 2 |4] 2 |s] 4 [8] 6 | 8 | Speedup
© ket GPU, 1| 1 3] 3 [s] 5 [7] 7 1.22x
GPU, 2] 2 [4] 4 6] 6 [28] 8

«— Reduce PP size, increase micro batch size

GPU, 1,2 1,2
(d) Tuned GPU, 3,4 34 Speedup
ZeRO GPU, 56 56 1.25x
GPU, 7,8 7,8
-— Extra Optimizer Offloading
GPU, 1,2 1,2
(e) Tuned GPU, 3,4 3,4 Speedup!
Offloading GPU, 5,6 5,6 1.16x !
GPU, 7,8 7,8 i
1
1
#CKPT Reduction: 32 ->28 ——__ |
GPU, 1,2 1,2 |
) Al GPu, 3,4 3,4 Speedup |
Tuned Gpu, 5.6 5.6 130x |
GPU, 7,8 7,8 E

FWD with BWD with
El FWD El BWD El All-gathering El Reduce-Scattering
Figure 2. Motivational examples of tuning parallelism with

memory optimizations for GPT-3-2.7B on 4 NVIDIA L4 GPUs
with Seq = 4096, Byjopar = 8. Parallelism is always tuned.

“--+ Index

optimizations or can only tune a subset of the optimizations
they provide. This limited search space leads to sub-optimal
configurations and reduced performance.

To illustrate these trade-offs of different optimizations and
the impact of co-optimization, we present a motivational
example of training GPT-3-2.7B on four NVIDIA L4 GPUs
with a global batch size of 8. We manually enumerate all
DP, TP, PP, and micro batch size b configurations, and when
co-tuning memory optimizations, we also enumerate their
combinations with the parallelism configurations.

As shown in Figure 2(a), without memory optimization, all
parallelism plans result in out-of-memory (OOM) errors. In
Figure 2(b), applying full CKPT (all layers being recomputed,
as in Megatron-LM [73] and Alpa [89]) reduces memory us-
age by recomputing activations, avoiding OOM. The best
parallelism strategy found is DP=2, PP=2, b=1. In Figure 2(c),
if activation checkpointing is tuned (as in Aceso [46] and
Adapipe [76]), the number of recomputed layers is reduced
from 16 to 8 on the first two GPUs, and from 16 to 0 on the
other two, reducing recomputation. During tuning, although
another strategy (DP=1, PP=4, b=1) fully eliminates recom-
putation by using the extra memory from the increased PP
size, the added pipeline bubbles outweigh the benefits of re-
duced recomputation, causing it to under-perform compared
to PP=2. In Figure 2(d), tuning ZeRO (as in DeepSpeed [68])
enables DP=4, PP=1, b=2 with ZeRO-2, preventing OOM by

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ...

O Prelayer E CKPT O #Llayers - 00 [Mem Opt Overhead
= 350 D‘Nun-.CKPT O Postlayer| 10 {m #CkPT #-# A0 1.0 - 350
g Pipeline Bottleneck g
z) 300 g 8 0'8'8 E 300 lPipeMne Bottleneck
Q HU > T
£ 250 = 2 g 250
6 ro.e @
¥ 200 Ll \ £ V200
= 5 o=
& 2 g &
>\150 LILI e 4 0'4E >‘150
[€) S S <
0‘:) 100 z GC) 100
= L 2 N to2 =
— 50 - 50
\
0 0 rllelloo 0
515253545556575s S1 S2 S3 S S1 S S3 S

(a) Runtime of tuning (b) Configurations of (c) Runtime of

parallelism with CKPT comprehensive tuning comprehensive tuning

Figure 3. Motivational example of showing the speedup
source of comprehensive co-optimization for GPT-3-7B on 8
NVIDIA L4 GPUs with Seq = 2048, Byjopar = 512.

sharding gradients. Similarly, in Figure 2(e), tuning offload-
ing enables the same parallelism with an optimizer offloading
ratio of 0.325, avoiding OOM. In both cases, reduced pipeline
bubbles and improved kernel efficiency (from the increased
batch size) outweigh the memory optimization overhead,
increasing training efficiency. These examples show that tun-
ing each memory optimization with parallelism improves
training performance, achieving speedups of 1.22%, 1.25%
and 1.16X for CKPT, ZeRO, and offloading tuning, respective,
compared to the full CKPT strategy.

Building upon these findings, we co-optimize all memory
optimizations with parallelism and identify an even better
strategy: DP=4, PP=1, b=2 with ZeRO-2 and adjusted activa-
tion checkpointing (recomputed layers reduced from 32 to
28), which reduces pipeline bubbles (compared to activation
checkpointing tuning only) and recomputation (compared to
ZeRO tuning only), leading to a 1.30X speedup while main-
taining memory savings.

To further demonstrate the benefits of comprehensive co-
optimization, we consider an example of training GPT-3-7B
on eight NVIDIA L4 GPUs with a global batch size of 512.
When only activation checkpointing is tuned, the best paral-
lelism strategy identified is DP=1, PP=8, b=1, which causes
severe pipeline imbalance and hardware idling, as shown in
Figure 3(a). However, by comprehensively co-optimizing all
techniques, we find a better strategy: DP=2, PP=4, b=2, with
adjusted activation checkpointing and optimized offloading
ratios, detailed in Figure 3(b), where OO and AO stand for
optimizer and activation offloading, respectively. This con-
figuration uses offloading to gain GPU memory, which is
then used to reduce PP size from 8 to 4 and eliminate re-
computation for the last two stages. As shown in Figure 3(c),
co-optimization reduces pipeline stages and device idle time,
improving overall performance despite some offloading over-
head, as the optimizer offloading overhead is amortized over
multiple micro-batches and activation offloading can overlap
with computation. Comprehensive co-optimization yields
a 1.22x speedup over tuning only parallelism and a 1.11x

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Stage 1
Stage 2
Stage 3
Stage 4

Figure 4. [llustration of pipeline parallelism overlap oppor-
tunity and inter-microbatch imbalance. a’ is the extra com-
munication happened in the first microbatch.

speedup over tuning parallelism with activation checkpoint-
ing, demonstrating significant performance gains.

However, existing systems lack support for comprehensive
co-optimization. For instance, Aceso [46] does not support
ZeRO or offloading, Slapo [12] only tunes activation check-
pointing within a fixed parallelism plan, and AdaPipe [76]
focuses solely on pipeline parallelism and activation check-
pointing. It limits their ability to fully leverage the trade-offs
between memory reduction and runtime overhead, leading
to suboptimal performance.

3.2 Why Existing Auto Systems Fail to Co-Optimize?

We summarize the key shortcomings of existing systems in
achieving comprehensive co-optimization:

Shortcoming #1: Lack of overlap awareness. Existing
automatic distributed training methods fail to account for
computation-communication overlap beyond basic gradi-
ent synchronization overlap. This results in significant per-
formance degradation, as seen in our experiments where
Aceso underperforms manual implementation Megatron-LM
(with overlap) in 6 out of 10 cases despite a larger search
space (See Figure 12). Moreover, techniques like ZeRO and
offloading add extra communication overheads, requiring
overlap with computation or pipeline bubbles to maintain
efficiency [66, 67]. In Figure 3(b), Stage 2 shows a 13% over-
head if activation offloading is not overlapped, and for Stage
3, offloading optimizer states for a 7B model with a PP = 4
takes 7 seconds, resulting in a 40% overhead with a batch
size of 64. Additionally, computation-communication inter-
ference results in inaccurate performance predictions. For
instance, we observe a 7.7% performance degradation for the
linear layer in attention module of the motivational example
when it is executed concurrently with all-reduce operations,
which becomes worse when CPU-GPU communication is
also involved. Ignoring overlap leads to mis-estimating opti-
mization configurations and results in sub-optimal strategies.
Shortcoming #2: Unable to navigate the exploded search
space. Co-optimizing memory footprint reduction tech-
niques with parallelism significantly expands the search
space, making it difficult to efficiently find the best com-
bination. For example, Alpa takes over 40 hours to find the
best parallelization strategy for GPT-3-39B on 64 GPUs [89].
As depicted in Figure 5, simultaneously tuning parallelism
and memory optimizations further dramatically increases
the search space and complexity. Even after applying search
space pruning methods, such as inter and intra-stage tuning

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

+

DP+TP

+PP (cont.)
+ZeRO (cont.)
+CKPT (cont.)
+00 (cont.)
+GO (cont.)
+PO (cont.)
+AO (cont.)

10150

10125
10100
107° /—./—/’—'

1050
10% ‘/V—V/_/'—'
g2 ———— ¢ *
10°
16 32 48 64 80
#Layers

tite

#Configs (log scale)

+

Figure 5. Growth in the number of configurations within the
search space as each optimization is incrementally added.

decoupling, the search space remains significantly larger
than what existing performance predictors can efficiently

handle [21, 34,48, 71, 84]. For example, Proteus, a fast simulation-

based tool that supports the prediction of performance in
parallelization and recomputation, requires around 6 sec-
onds to simulate one optimization configuration for GPT-2
on 32 GPUs [21]. Despite its speed, this kind of tool is still
impractical for effectively exploring the vast search space
presented by our problem.

Shortcoming #3: Inaccurate performance prediction
due to the lack of inter-microbatch imbalance aware-
ness. Existing automatic distributed training systems often
suffer from inaccurate performance predictions when new
memory optimizations are involved due to their inability to
account for inter-microbatch variability. Automatic paral-
lelism planners [46, 89] typically assume uniform microbatch
execution times within a pipeline stage. However, the first
and last microbatches take longer due to extra operations like
parameter all-gathering, gradient reduce-scattering, and op-
timizer offloading, as shown in Figure 4. In the motivational
example of tuning GPT-3-7B, simply averaging microbatch
times leads to performance prediction error of up to 21.55%,
depending on the number of microbatches, which may cause
up to a twofold performance slowdown. Our evaluation, as
shown in Figure 13, ignoring inter-microbatch imbalance
leads to about a 9% slowdown compared to optimal solutions.
These inaccuracies undermine the effectiveness of tuning
process, leading to the selection of sub-optimal strategies.

3.3 Why Simple Heuristics Can Not Address it?

Why manual frameworks with simple heuristics cannot ad-
dress co-optimization? Manual frameworks struggle to de-
liver optimal performance in comprehensive co-optimization
scenarios, because the best performance can only be achieved
with fine-grained configuration for each stage, including
layer assignments, DP and TP sizes, recomputed layers, and
offloading ratios for each type of model states. The vast and
exponentially large search space makes manual exploration
impractical, leading users to rely on simple heuristics. For
example, a recent study [85] uses a heuristic that applies
uniform checkpointed layers and activation offloading ra-
tios across all pipeline stages to reduce tuning search space.
However, pipeline parallelism inherently exhibits memory

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

and computation imbalances, making uniform strategies sub-
optimal. As shown in Figure 3(b), heterogeneous optimiza-
tions per stage are selected. In our motivational examples,
uniform heuristics results in 26% and 20% performance degra-
dation for the 2.7B and 7B models, respectively, compared
to the optimal strategies achieved through comprehensive
co-optimization. As workloads scale, the complexity of tun-
ing grows, making fully automated systems increasingly
essential to efficiently handle the expanded search space and
deliver optimal performance [46, 76, 89].

Our Goal is to develop a fully automated distributed train-
ing optimization system for LLMs that addresses all the short-
comings above and comprehensively co-optimize memory foot-
print reduction techniques alongside parallelism.

4 Mist: Overview and Key Ideas

To accelerate distributed training, we introduce Mist, a mem-
ory, overlap, and imbalance aware automatic distributed
training system that comprehensively co-optimizes mem-
ory footprint reduction techniques with parallelism. Overall,
Mist proposes three key ideas:

1. Fine-Grained Overlap-Centric Scheduling and In-
terference Modeling. Mist proposes an overlap-centric
scheduling approach that carefully orchestrates parallelism
and memory optimizations to maximize the overlap of com-
putation and communication. By optimizing the order and
granularity of these techniques, Mist mitigates memory op-
timization overhead while maintaining manageable tuning
complexity. Additionally, data-driven interference model-
ing accurately predicts performance when computation and
communication kernels run concurrently. This approach ad-
dresses Shortcoming #1, the lack of overlap awareness.

2. Symbolic-Based Efficient Performance Prediction.
Building upon the scheduling strategy, Mist introduces a
symbolic analysis system to significantly enhance the per-
formance prediction efficiency. Unlike traditional methods
that require repeated simulations for each optimization con-
figuration [21, 46, 89], Mist symbolizes the model and opti-
mizations, requiring only a single simulation pass to predict
runtime and memory usage in the form of symbolic expres-
sions. Subsequent predictions are simplified to value substitu-
tions in these expressions, dramatically reducing redundant
simulation and allowing for rapid batched evaluation of mul-
tiple configurations. This approach effectively mitigates the
Shortcoming #2 search space explosion.

3. Imbalance-Aware Hierarchical Tuning via Pareto
Frontier Sampling. Finally, Mist proposes an imbalance-
aware hierarchical auto-tuner that decouples tuning into
intra-pipeline-stage and inter-pipeline-stage processes, while
still considering the microbatch imbalances and overlap op-
portunities in PP. To find the best intra-stage configurations,
our intra-stage tuning uses a dual-objective approach to
balance time between imbalanced and stable microbatches.

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ...

Hardware Info Model Info Inputs Info

} }
Symbolic Shape Annotation

b,s, h,d,v=symbols("b s d hv", (4, 2048, 32, 128, 50304))
I I

Overlap- - -
Centric Symbolic Shaped Model | |Symbolic Shaped Tensors
Schedule GPT(n_embd=h*d, n_head=h, ...) torch.randint(0, v, (b, s))
I T

(85.1) ¥

Symbolic Tracer

{Symbolic Comp. Graph }

{ ¥

Symbolic Performance Analyzer

‘ Overlap- & Interference- ‘

‘ FiSineIRy Al Aware Runtime Analyzer

[

{ Peak Mem Expression } { Latency Func }
I I
Symbolic-Blased Efficient Performance Analllysis (85.2)

T 1]

Imbalance-Aware Hierarchical Tuning (§5.3)

¥
Intra-Stage Tuning Inter-Stage Tuning
(Batched Value Subs) (MILP)

Intra-Stage Plan Candidates: Inter-Stage Plans:
DP & TP & ZeRIO &Offloading Pipeline Partjtion & CKPT.

L 1]

12
Execution Engine
. Overlapped ‘ Mem Buffer ‘
‘ AU PRClinng ‘ ‘ Offloading Engine Optimization

Figure 6. High-level System Overview of Mist.

Inter-stage tuning formulates an MILP problem to determine
the best pipeline partitioning using data points sampled from
the Pareto frontier of intra-stage tuning. This approach pre-
serves a pruned search space from hierarchical tuning (help-
ing to solve Shortcoming #2) while addressing the lack of
inter-microbatch imbalance awareness (Shortcoming #3).
System Overview. Figure 6 presents the high-level overview
of Mist. The model and its input data are annotated with
symbolic shapes and traced to generate a symbolic shaped
computational graph. This graph, on top of the Overlap-
Centric Scheduling, is analyzed by our symbolic performance
analyzer to derive the peak memory expression and run-
time function whose inputs are optimization-related sym-
bols. During intra-stage tuning, Mist evaluates these sym-
bolic expressions with specific optimization values in batches.
This evaluation identifies a Pareto-optimal set of parallelism
and memory optimization plans for each potential inter-
stage candidate, utilizing our Symbolic-Based Efficient Per-
formance Prediction strategy to efficiently navigate the ex-
tensive search space. Subsequently, the inter-stage tuning
phase formulates a MILP problem using stable microbatch
times (Ty;qp1e) and their deviations (Tyej;,) sampled from
intra-stage tuning results. This determines the optimal pipeline
partitioning and combination of (Ts;qpie, Tyeira), addressing
both inter-microbatch imbalances and inter-stage imbalances
in pipeline parallelism. Once the optimal tuning plans are
identified, Mist employs an orchestrated execution engine to
execute them, including automatic pipeline transformation,

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Optimization variables in the schedule template.

Name Value Type Meaning

G Integer Gradient accumulation steps

S Integer Number of pipeline stages

L; Integer Number of layers in stage i

b; Integer Micro batch size for stage i

DP; Integer DP size for stage i

TP; Integer TP size for stage i

ZeRO; One-Hot [0-3] ZeRO level for stage i

CKPT; Integer Number of recomputed layers for stage i
wWO; Float [0, 1] Weight offloading ratio for stage i
GO; Float [0, 1] Gradient offloading ratio for stage i
00; Float [0, 1] Opt states offloading ratio for stage i
AO; Float [0, 1] Activation offloading ratio for stage i

overlapped offloading communication, and memory buffer
optimizations.

5 Mist: Design Details
5.1 Fine-Grained Overlap-Centric Scheduling

Mist coordinates memory optimizations and parallelism with
two primary objectives: balancing optimization effectiveness
with manageable tuning complexity and maximizing overlap
opportunities to reduce runtime overhead.

Optimizations and Granularity. Mist comprehensively
supports various parallelism techniques such as DP, TP, and
PP, alongside memory optimizations like fine-grained of-
floading, flexible activation checkpointing, and different lev-
els of ZeRO optimization. Based on the observation that all
transformers are identical and share computational proper-
ties within a pipeline stage, Mist adopts stage-wise tuning
granularity, meaning all layers within the same pipeline stage
use the same parallelism and memory optimization config-
urations to balance optimization effectiveness and search
space. Specifically, for gradient accumulation steps G and
the number of pipeline stages S, the combination of (L;, b;,
DPl', TPi, ZeROi, CKPT,, WO,’, GOl-, OO,‘, AO,) defines the
configuration for pipeline stage i (see Table 2 for detailed ex-
planations of the symbols). Notably, swapping strategies are
represented as floating-point ratios, enabling fine-grained
control of memory offloading and enhancing computation-
communication overlap potential.

Overlapped Schedule. Building upon these optimization
strategies, the overlapped schedule optimizes the execution
order of memory optimizations and parallelism techniques
to maximize hardware utilization while maintaining a low
GPU memory footprint. As depicted in Figure 7, computation,
GPU-GPU communication, and CPU-GPU communication
are overlapped. As shown in @, during the forward pass, the
computation of layer k overlaps with the activation swap-
ping out of layer k — 1, and the swapping in and all-gathering
of parameters for layer k + 1. Similarly, as shown in @, in
the backward pass, the computation of layer k overlaps with

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

|<— @ Forward Pass of the First Microbatch —>| |<— @ Stable Forward Pass —>| |<— © Backward Pass ———»

CPU > GPU | Gi | (o] Gi+1|Oi1 Gi+2|Oi+2| Gi+3|Oix3 Pi | Pis1 Pis2 Pis3| | Pi | Gi | Ai | Pi1|Gia| Ai1| Pi2 | Gi2| A2
GPU Compute Si Fi1 Si+1 Fi Si+2 Fis1 Si+3 Fi Fis1 Bi+1 Bi Bi-1
GPU <« GPU Ui Uina Uiz Ui | Ui Ui Rie2| Ui Ri+1| Ui Ri [Ui2 Ri1| ...
GPU - CPU |Oi1|Pia|Ai2 Oi | Pi |Ai-1 Ois1|Pis1| A Oiv2| Pis2 | Aisa | [Ai2 |Ai-1 | Ai Ais1 Gis2 Gi+1 Gi Gi1
e T = S T T T T DT \
! Layer Index . FP16 Params Gi | Gradients Optimizer States H Activations i Time
i D n . a (incl. FP32 Params) . :
! 1
\

Forward Exec (incl. TP) Backward Exec (incl. TP) Parameter All-gathering Gradient Reduce-scattering Opt Step

Figure 7. Overlap Schedule Template of Mist

the gradient reduction and the swapping-out of the previ-
ous backward layer k + 1, along with the swapping in of
parameters, gradients and activations, and all-gathering of
parameters for the next layer k — 1. This overlap ensures
that the computation in layer k is not stalled by data move-
ment or pre-fetching, leading to better hardware utilization.
Additionally, Mist supports inter-stage overlap by hiding
communications that are independent of previous stages
within pipeline bubbles, as shown in Figure 10.

Optimizer Step Decoupling and Repositioning. Further-
more, in scenarios involving ZeRO optimization and offload-
ing, a monolithic optimizer step can lead to increased peak
memory usage and redundant communication. Specifically,
to perform an optimizer step in the mixed-precision opti-
mizer, the following tensors must be in the GPU device at the
same time: FP16 parameters, FP16 gradients, FP32 optimizer
states, and FP32 master parameters [66]. When offloading is
applied, peak memory during the optimizer step may exceed
that of the backward pass, as only partial layer states reside
in GPU memory during the forward and backward computa-
tions, while a monolithic optimizer step requires all of them
for the whole model. Additionally, optimizer steps require
rematerializing all states through offloading or all-gathering,
which also occur during the forward and backward passes,
introducing redundant communication. To address these is-
sues, Mist decouples the optimizer step into multiple steps,
repositioning each layer’s optimizer step immediately before
its first forward pass. Moreover, to eliminate synchronization
between pipeline stages for nan and inf checks, the validate-
and-update method from zero-bubble pipeline parallelism
can be employed, delaying synchronization and reverting
optimizer states if necessary [64].

5.2 Symbolic-Based Efficient Performance Analysis

Performance modeling is crucial for optimizing distributed
training as it enables efficient configuration exploration. Ex-
isting systems rely on simulation-based performance predic-
tion, running a concrete simulation for each configuration to
estimate computation, communication, and memory usage.
As shown in Figure 8, a traditional simulator initializes a
GPT model with a concrete parallelism configuration of e.g.,

Traditional Analyzer [Loop (for each configuration)

Concrete Configuration Concrete
#GPUs: 4 x 8,
GradAccumu: 16,
Parallelism: (2, 8, 2),
Memory Opts: ...

Model Exec Info
1. Concrete Latency
2. Concrete Memory

>>10° Efficiency Diff

Analyzer

Symbolic Analyzer

ﬂ Batched Eval

Symbolic Configuration
#GPUs: N x M,
GradAccumu: G,
Parallelism: (DP, TP, PP),
Memory Opts: ...

Symbolic

Analyzer Model Exec Info

1. Concrete Latency [T
2. Concrete Memory

Model Exec Info
1. Symbolic Latency
2. Symbolic Memory

Figure 8. Comparison of the symbolic performance analyzer
with the traditional analyzer.

(DP=2, TP=8, PP=2) on 32 GPUs, applies memory optimiza-
tions, and simulates execution to measure performance and
peak memory usage. Although each simulation is efficient,
it still takes about 6 seconds per configuration [21]. This
cost makes exhaustive search impractical for our combined
search space. We now demonstrate how Mist’s symbolic-
based performance analysis helps to accelerate the perfor-
mance prediction and thus facilitates the traversal over a
huge search space.

5.2.1 Symbolic Analysis System Mist overcomes these
limitations by employing symbolic-based performance mod-
eling. Symbolic analysis refers to techniques used to ana-
lyze systems by reasoning about symbolic representations
of data or computations rather than concrete values, used
in compiler optimizations [10] and circuit designs [27]. Mist
proposes a symbolic analysis system for LLMs, supporting
symbolic execution, tracing, and analysis. As shown in Fig-
ure 9, users define the model and inputs, simply replacing
the concrete dimensions and optimizations with symbols.
Then all operations are executed with the information of
symbolic shapes. On top of it, Mist traces the computational
graph and performs static analysis to derive symbolic ex-
pressions for execution time and memory usage. Instead
of repeatedly simulating different configurations, Mist only
performs a single symbolic simulation pass and later sub-
stitutes values into these expressions to quickly evaluate
different configurations. This approach enables batched eval-
uation and compilation optimization, making performance
prediction over 10°X faster than traditional analyzers.

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ...

from mist import global_symbol_manager as gsm

Define symbols

b, s, h, d, tp = gsm.symbols("b s h d tp", (4, 128, 12, 64, 8),
integer=True, positive=True)

1 # Initialize the model configuration using symbolic parameters

5 config = GPT2Config(n_embd=h*d, n_head=h, tp=tp, ...)

6 # Construct the GPT-2 model with symbolic configuration

7 model = GPT2LMHeadModel (config)

8 # Create symbolic input tensors

9 input_ids = torch.randint(@, V, (b, s), dtype=torch.long)

10 # Execute the model with symbolic inputs

11 logits = model(input_ids).logits

[SSRN R

>>> logits
symbolic_tensor((b, s, V), concrete_shape=(4, 128, 50257), ...)

Figure 9. Example of defining symbolic model configura-
tions and inputs, followed by symbolic execution.

For memory analysis, Mist uses liveness analysis on the
symbolic computational graph. It tracks live tensors during
execution and determines peak memory usage by identi-
fying the maximum memory allocation at any point. To
support pipeline parallelism, Mist performs intra-layer and
inter-layer analysis: the intra-layer pass extracts memory
statistics (e.g., layer states, saved activations, and intermedi-
ate tensors), while the inter-layer pass combines this data to
generate stage-wise symbolic memory expressions, enabling
efficient estimation across configurations.

For runtime analysis, direct symbolic representation is im-
practical due to the complex behavior of various GPU kernels.
Instead, Mist profiles operator execution dynamically. Com-
putation is estimated using a operator computation database,
which benchmarks new operators or unseen input shapes
on the current hardware and stores results for future use.
Communication is modeled symbolically by dividing com-
municated bytes by the bandwidth, and overlap is managed
via interference modeling, which we introduce below.

The design of our symbolic analysis system is far from
trivial and addresses several significant challenges, making
it both powerful and widely applicable. First, large models
must be run across multiple GPUs due to memory capacity
issues, but direct analysis on multi-GPU setups is inefficient.
We solve this by using the idea of fake tensors and meta
devices, where tensor shapes are represented symbolically
but not materialized physically, allowing analysis without
needing actual hardware. Second, backward pass memory
analysis is difficult due to the absence of an explicit compu-
tational graph. We generate a fake backward graph using
gradient function properties to track memory during back-
propagation. Third, supporting custom kernels like FlashAt-
tention [19] and communication operations required custom
symbolic representations, ensuring flexibility. Beyond opti-
mization, our symbolic analysis system offers clear insights
into workloads, making it easier to understand how specific
parameters and optimizations affect performance, which can
be valuable for both practical use and educational purposes.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm 1: Batched Interference Estimation

Data: C, G2G, C2G, G2C, params

Result: Total latency vector T
1 Function PredINTF (C, G2G, C2G, G2C, params):
2 X « [C,G2G,C2G,G2C]T // Stack features
3 T < ZerosLike(C) // Initialize output

4 for n = 4 downto 2 // The num of concurrent ops
5 do

6 fori=0to (i) —1 // Enumerate all combinations
7 do

// Index pre-defined masks and factors

8 mask « IndexPredefinedMask(n, i)

9 factors « IndexFactors(params,n,i)

10 Update(X, T, mask, factors)

1 end

12 end

13 T += sum(X, axis = —1) // Sum remaining time
14 return T
15 Function Update (X, T, mask, factors):

16 ids — {j | (X; # 0) matches mask}

17 if ids = 0 then return

18 scaled « X[ids] X factors

19 overlap « min(scaled, axis = —1)

20 X|ids] « (scaled — overlap)/factors
21 T[ids] += overlap
22 return

5.2.2 Interference Model To be overlap aware, we inte-
grate an interference model within the symbolic analysis
system. Runtime prediction is much more challenging when
overlap is involved, such as computation, NCCL (GPU <
GPU communication), D2H (GPU—CPU communication),
and H2D (CPU—GPU communication) running simultane-
ously. Mist provides an interference model that predicts the
impact of up to four different types of kernels running si-
multaneously. Instead of using machine learning models like
XGBoost [15], which may overfit in this case, we develop a
mathematical model with fewer parameters and clearer intu-
ition. In this model, each possible combination of co-running
kernels is assigned a set of slowdown factors that quantify
the effect of the execution for each participant.

Algorithm 1 implements batched interference estimation,
which iteratively applies slowdown factors to update execu-
tion times. For each concurrency level (n = 4 to 2 operations),
it iterates through all (i) combinations, retrieves predefined
masks and factors, and invokes Update. The Update function
scales execution time by their respective slowdown factors,
computes the scaled overlapping, and updates remaining exe-
cution times accordingly. By progressively resolving interfer-
ence through successive reductions, the algorithm eliminates
concurrent operations until only a single component remains.
A data-driven approach is used to fit the model, where dif-
ferent shapes and combinations of concurrent kernels are
sampled and benchmarked, and the resulting runtime data
is used to train the slowdown factors.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

G-1D-t3

Stage 1
Stage 2
Stage 3
Stage 4

Figure 10. Illustration of runtime of a pipeline considering
inter-microbatch imbalance. a’ is the extra communication
overhead only involved in the first and last microbatches.

5.3 Imbalance-Aware Hierarchical Tuning via
Pareto Frontier Sampling

Our tuning problem is defined as, given a model, a global
batch size B, and a device mesh (N, M), Mist’s auto-tuner out-
puts the best training plan including the gradient accumula-
tion steps G, layer partitions PP for different pipeline stages,
and combination of [b, DP, TP, ZeRO, CKPT, WO, GO, OO,
AO] for each pipeline stage, as detailed in Section 5.1.

To efficiently find the best strategy in a huge search space,
Mist adopts the idea of hierarchical tuning, decoupling the
whole tuning process into intra-stage tuning and inter-stage
tuning [89]. Intra-stage tuning aims at finding the best op-
timization plans for all possible pipeline partitioning candi-
dates, while inter-stage tuning is used to find the best stage
partitioning and device assignment. Compared to existing
automatic parallelization methods, Mist offers two key im-
provements: imbalance and overlap awareness.
Inter-Stage Tuning. Inter-stage tuning finds the best layer
partition and device assignment, as well as the best number
of layers being recomputed. Unlike previous methods that
treat all microbatches as the same [46, 89], Mist discovers that
using either averaged runtime across different microbatches
or simply applying the stable microbatch to tune leads to
sub-optimal results. The former approximation might lead
to bottleneck drifting, and the latter one fails to consider
the extra overhead of optimizations specifically for the first
or last micro batch. As Figure 10 shows, Mist considers the
inter-microbatch imbalance and proposes a new objective as

s
min {(G —1) - max {t;} +Z t; + max (di - Z ti)}
1<i<S 1<i<$ A 1<i<S -
li,ckpt;, i=1 1<j<i
(ni,m;)

1)
where S means the number of stages, /; denotes the number
of layers, ckpt; denotes the number of checkpointed layers,
and (n;, m;) denotes the device assignment, for stage i. For
simplicity, we define any microbatch that is neither first nor
last as a stable microbatch. t; means the stable microbatch
runtime of stage i, and d; means the runtime delta of the first
and last microbatches compared to ¢;. The first term ensures
that Mist correctly identifies the pipeline bottleneck, while
the second and third terms account for inter-stage and inter-
microbatch imbalances, respectively. The third term also
considers the overlap opportunities of hiding communication
independent of previous stages in the pipeline bubbles.

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

Objective 1 can be solved given (t;, d;) according to [;, c;,
and (n;, m;). However, t; and d; are correlated within a stage.
For instance, if optimizer offloading is applied aggressively,
the runtime of the first microbatch significantly increases
and the runtime of the stable microbatches reduces because
of the less intensive memory pressure. This suggests that (¢;,
d;) form pairs along a Pareto frontier within the stage. Thus,
we transform the decision variables and obtain:

s
min {(G —1) - max {t;} +Z t; + max (di - Z tl-)}
1<i<$ 1<i<S _ 1<i<S —
li,ﬁs("i:mi) i=1 1<j<i

)
(i, d;) = IntraStagePareto(i, I;, (n;, m;)) [fi] (3)

where f; is the sampled index from the intra-stage Pareto
frontier introduced in the next section. We directly combine
the checkpointing tuning into the Pareto frontier as it also
serves as a trade-off between t; and d;. Objective (2) can
be reformulated into an MILP problem and solved by the
off-the-shelf solver [28].

Intra-Stage Tuning. As Objective (4) shows, given the
stage partitioning, device assignment, gradient accumula-
tion steps, and memory budget, intra-stage tuning finds the
best data and tensor parallelism, and memory optimization
combinations to maximize the throughput and sample the
Pareto frontier.

min a-G-ty o+ (1-a) -dpzo
P.z,0

. (fwd) (bwd)
i.e. max (Mempeak ,Mempeak < Mempyqge:

©

where a series of @ € [0, 1] are sampled uniformly to con-
struct a Pareto frontier efficiently. And the stable microbatch
time ¢ and delta time d of a certain gradient accumulation
step G and strategy tuple (parallelism p, ZeRO config z, and
offloading configs 0) can be obtained from the interference
model. The parallelism strategy p includes b, DP, TP. The
offloading configuration o consists of 0O, GO, WO, and AO.

tp,z,o =7 (Cstable ncclstable thStable hzdstable) (5)

p.z0 > P.z,0 P.z,0 > P,z,0

dpzo =T (chiratsnect) ! d2n T h2d) 0) = p0 - (6)
where 7 is the interference model proposed before, c means
the GPU computation time, nccl means the GPU-GPU com-
munication time, d2h means the device to host copy time,
and h2d means the host to device copy time. The superscript
stable indicates the time of a stable micro batch, while first
indicates the time of the first micro batch.

All the statistics of runtime and memories are reported
by our symbolic analyzer. With the help of our symbolic-
based performance analyzer, querying single datapoints is
extremely fast. Thus, to get the best strategy, we simply
search in a brute-force way, which would not miss any opti-
mization possibilities, ensuring the optimal solution.

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ...

Table 3. Hardware Specifications.

Platform GPU GPU# Mem. PClIe Spec NVLink Interconnect
GCP L4 [2,4,8,16,32] 24GB Gen3@16x X 100Gbps
AWS A100 [2,4,8,16,32] 40GB Gen4@16x v 400Gbps

Table 4. Workload Specifications.

GPU Models Param# (billion) Global Batch Size Seq Len

L4 GPT, Llama, Falcon [1.3, 2.6, 6.7, 13, 22] [32, 64, 128, 256, 512] 2048
A100 GPT, Llama, Falcon [1.3, 2.6, 6.7, 13, 22] [32, 64, 128, 256, 512] 4096

6 Evaluation

We prototype Mist with ~27K LoC in Python. To support all
optimizations, we have implemented it from scratch based
on PyTorch [61], supporting symbolic torch tracing and exe-
cution, model automatic pipelining, overlapped offloading
and ZeRO execution, and memory buffer optimizations.

We evaluate Mist on various training configurations with
different hardware, models, and hyper-parameters to demon-
strate its ability to effectively find the optimal combination
of memory optimizations and parallelism. Our results show
that Mist constantly outperforms state-of-the-art distributed
training systems. We use training throughput (samples per
second) as our primary metric. Since all optimizations ap-
plied by Mist are lossless, the fidelity of computation is pre-
served, ensuring the model convergence is not affected. Addi-
tionally, we provide speedup breakdown, sensitivity studies,
prediction accuracies, tuning time, and case studies to ex-
plore the sources of our speedup and provide insights.

6.1 Methodology

Hardware Settings. To fully study the capabilities of Mist,
we evaluate its training performance on both PCle and NVLink
systems, as they offer different combinations of hardware
resources. We conduct our major experiments on up to 32
NVIDIA L4 GPUs [59] and 32 NVIDIA A100 GPUs [58]. De-
tailed hardware specifications are shown in Table 3.
Workloads Setting. We selected three representative types
of LLMs, GPT-3[9], LLaMa [23, 78, 79], and Falcon [2]. All
are transformer-based models with some variation in their
components. GPT-3 consists of typical transformer decoder
layers[9]. LLaMa integrates techniques like pre-RMSNorm [86],
gated functions [72], rotary embedding [75], among others,
to improve performance on tasks involving long-range de-
pendencies [23, 78, 79]. Falcon adopts parallel attention and
MLP layers inspired by GPT-J [14] and GPT-NeoX [8], re-
ducing the number of all-reduce operations associated with
tensor parallelism from two to one per layer [2]. Following
common practice, we scale the number of GPUs and the
global batch size with the size of the model. To minimize the
impact of different frameworks and kernel implementations,
we set the dropout ratio to zero and disable all biases in the
linear layers. Table 4 shows the workloads specifications.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Baselines. We compare Mist with three state-of-the-art
deep learning distributed training systems: (1) Megatron-
LM [73] (core_r@.4.9), (2) DeepSpeed [68] (v0.12.6), and
(3) Aceso [46]. Megatron-LM and DeepSpeed are state-
of-the-art manual implementations. Since they do not sup-
port automatic tuning, to achieve the best performance, we
perform a grid search over all possible optimization com-
binations for single-node distributed training. For multi-
node cases, we benchmark the best strategies that Mist finds
within the same search space as Megatron-LM and Deep-
Speed. Aceso is the state-of-the-art automatic distributed
strategy tuner with search space larger than others [12, 76],
which can automatically find the best combinations of par-
allelism and activation checkpointing plans. We follow its
artifact to get its numbers.

In the common practice of training LLMs, FlashAtten-
tion [18, 19], a vital kernel for performing the fast and memory-
efficient attention mechanism, is applied by default to reduce
memory usage and achieve the best performance. When
FlashAttention is enabled, we only compare with Megatron-
LM and DeepSpeed since the Aceso does not support it. We
compare all three baselines on L4 GPUs. For A100 GPUs,
we only compare Mist with state-of-the-art manual and au-
tomatic methods, Megatron-LM and Aceso as DeepSpeed
generally underperforms Megatron-LM in our experiments.

We attempted to compare with Alpa [89], but it fails to
find any feasible solutions on L4 GPUs for our workloads.
Our conjecture is that Alpa only considers memory usage
in the Inter-Op pass by compiling the searched strategy and
running it, while its memory-unaware Intra-Op pass likely
causes OOM errors for all proposed strategies.

6.2 End-to-End Training Performance

Speedup in Real-World Scenarios. Figure 11 compares
the end-to-end throughput of various distributed training
frameworks in real-world scenarios where FlashAttention [138,
19] is enabled. We make two key observations. First, Megatron-
LM outperforms DeepSpeed in most cases. This is mainly
due to the fact that the parallelization plans that work in
Megatron-LM cause out-of-memory issues in DeepSpeed,
forcing DeepSpeed to choose sub-optimal parallelization
strategies. Second, Mist consistently outperforms other dis-
tributed training frameworks, achieving an average speedup
of 1.32X (up to 1.59%) over Megatron-LM on L4 GPUs, 1.51%
on average (up to 1.67X) over DeepSpeed on L4 GPUs, and
1.34X on average (up to 1.72X) over Megatron-LM on A100
GPUs. Specifically for the GPT-3 model, which is the most
heavily optimized model in other frameworks, Mist achieves
1.22X speedup on average (up to 1.32X) on L4 GPUs, and
1.20x speedup on average (up to 1.32X) on A100 GPUs, com-
pared with Megatron-LM. The higher speedup for LLaMa
model mainly comes from the better RMSNorm kernel im-
plementation and efficient rotary embedding implementa-
tion [19]. Overall, we conclude that Mist achieves the best

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

I Megatron-LM W DeepSpeed Mist
S a0 {3k Sl d] 8 40t el S 40t
%30- B i gxrz SXH 22 %30 é: EE = éx'-; 32 %30_ 82 =5 i 8.><r< 2
g, . -E ﬁg < g . S o é 35 5 & 5 3 Hf)': _E &
320 320+ 8 320
<1 £ 1.0 £ 1.0 1
= o =
0 0.0 - 0.0 -
1.3B 2.7B 7B 13B 22B 1.3B 2.7B 7B 13B 22B 1.3B 2.7B 7B 13B 22B
. (a)XGPT3 - L4 GPUs (b) Llama2 - L4 GPUs (c) Falcon - L4 GPUs
g 10.01 T . §§ £21 51007 = 2 5 5 3181007 = LA R
% 751 : = § % 7513 g p S % 7542 ! § 1
E 5.0 A1 § 5.0 A = 5 5.0 A
2.5 1 5 .
I-E IE 2.5 E 2.5
0.0 - 0.0 - 0.0'
1.3B 2.7B 13B 22B 1.3B 2.7B 7B 13B 22B . 2.7B 13B 22B

(d) GPT3 - A100 GPUs

(e) Llama2 - A100 GPUs

(f) Falcon - A100 GPUs

Figure 11. End-to-end training throughput (samples/sec) on L4 GPUs and A100 GPUs, with FlashAttention enabled. Sequence
lengths are 2048 for L4 GPUs and 4096 for A100 GPUs. The numbers of GPUs are 2, 4, 8, 16, 32, respectively.

| Megatron-LM s DeepSpeed Aceso Mist

1.2qx
1.14x]
1.20)

S.x
32183
B

2.4
1.6
0.8
0.0

1.00x
91x:
0.95%
1.09x
1.20x
1.00%
1.04x
1.00%
1.07x

x
Jat
5

x
X
@
i O

(a) L4 GPUS

0. 73><
0.
j1.00x

Throughput

Throughput
orwhoa
oo uo

1.00x
0.62%
1.00
0.89x%
1.09%
1.06x
1,15
0.90x
0,99 x|
1.00.
10.92x
1.094x

1.3B 2.7B 7B 13B 22B
(b) A100 GPUs

Figure 12. End-to-end training throughput (samples/sec) on L4 GPUs and A100 GPUs, without FlashAttention. Sequence
lengths are 2048 for L4 GPUs and 4096 for A100 GPUs. The numbers of GPUs are 2, 4, 8, 16, 32, respectively.

performance over prior state-of-the-art manual implementa-
tions across various models and hardware.

Speedup compared with more baselines. Figure 12 com-
pares the throughput of the GPT-3 model with both manual
and automatic parallelization frameworks without FlashAt-
tention. Mist still consistently outperforms or is equal to
all prior distributed training frameworks. Mist achieves an
average of 1.14X speedup (up to 1.26X speedup) compared to
Megatron-LM and an average of 1.27x speedup (up to 2.04x
speedup) compared to Aceso. When training GPT-3 13B on
16 A100 GPUs, Mist does not achieve better performance but
still gets almost the same results, because the naive strategy
happens to achieve the best trade-off among all resources.
We also find that Aceso does not consistently outperform
Megatron-LM even though it has larger search space due
to fine-grained activation checkpointing tuning. The root
cause is that Aceso does not include sharded data parallelism
in the search space and miss several essential opportunities
for communication-computation overlapping.

Discussion on the hardware. As shown in Figures 11
and 12, Mist exhibits higher speedup on L4 GPUs than that on
A100 GPUs, with following reasons. Large-scale distributed
training tasks on L4 GPUs are often limited by smaller mem-
ory capacity and the restricted intra-node and inter-node
bandwidth. In this scenario, Mist plays a crucial role in strik-
ing the best trade-off among various resources to enhance
the resource utilization. On the other hand, training tasks on

3D Parallelism
+ZeR0O-2/3
+Flexible CKPT
+Offloading
+Imbalance-Aware Pipelining

—--- Megatron-LM

0.8 0.9 10 11 12 1.3
Relative Averaged Speedup

Figure 13. Relative averaged speedup of tuning over differ-
ent search spaces for GPT model on 8, 16, and 32 L4 GPUs.

A100 GPUs benefit from larger memory capacity and faster
intra-node NVLink and inter-node InfiniBand connections,
resulting in much higher resource utilization that approaches
the physical limits. This leaves less room for improvement.

6.3 Speedup Breakdown

To understand how each key ideas of Mist contributes to the
final performance, we evaluate it by incrementally enlarging
the search space proposed by Mist in Figure 13. We normal-
ized the throughput by the baseline search space of Megatron-
LM. Three key conclusions are drawn: First, Mist’s advantage
is not from the better implementation; with the same search
space as Megatron-LM, Mist is slightly slower due to imple-
mentation overhead supporting other optimizations. Second,
activation checkpointing tuning provides a 1.12X speedup
on average, with offloading adding an extra 7% speedup,
showing their abilities of striking better trade-offs among

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ...

Bl 3D Parallelism

3D+CKPT Tuning Mist

= L 100
> 3
2 2 75
g g
° 2 5.0
£ £ 25
0.0
32 48 64 80 32 48 64 80

Number of Layers Number of Layers

Figure 14. Performance of GPT-3 with different number of
layers on 32 L4 GPUs. Left: without FlashAttention; Right:
with FlashAttention.

resources. Third, inter-microbatch imbalance-awareness of-
fers an extra 9% speedup upon all prior speedups, as it pro-
vides accurate runtime predictions for pipeline parallelism.
In summary, all optimizations included in Mist are crucial
for improve the system performance.

One key insight we observe is that much of the speedup
comes from reducing activation checkpointing and elimi-
nating pipeline bubbles. However, naively disabling check-
pointing often leads to OOM errors, and tuning it (as done in
Aceso) only partially solves the issue. Further improvements
from increasing ZeRO levels or increasing offloading are es-
sential, as they help to further reduce recomputation. As long
as these overheads can be overlapped or amortized across
multiple microbatches, performance significantly improves.

Additionally, speedups may vary depending on hardware
resources and workload intensity. On A100 GPUs with mod-
erate workloads, most speedups come from activation check-
pointing tuning. However, when memory pressure is high,
combining it with offloading becomes important. For in-
stance, training a 40B GPT-3 model on 32 A100 GPUs, Mist
is expected to get 1.10X speedup compared to 1.04X with
only activation checkpointing tuning.

6.4 Sensitivity Study

To comprehensively understand the robustness of Mist, we
evaluate its performance with different model scales and
different global batch sizes.

Robustness over Different Model Scales. As depicted in
Figure 14, Mist consistently outperforms the baseline search
spaces by up to 1.32X higher throughput, particularly at
80 layers, regardless of whether FlashAttention is enabled.
Activation checkpointing tuning is particularly effective for
smaller model sizes. However, as model size increases, the
speedup from checkpointing alone decreases. With the entire
search space enabled, Mist maintains substantial speedups
across different model sizes.

Robustness over Different Global Batch Sizes. Asshown
in Figure 15, Mist always achieves the best performance com-
pared to the baseline search space across different global
batch sizes. Notably, Imbalance-Aware Inter-Stage Tuning
provides an extra 1.13X speedup on average. One concern
is that with larger global batch sizes and potentially more

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

L 45 <%
=3 x84
Q S A
< gl
B 3.0 - Bl 3D Parallelism
o Mist Without
£ 15 Imbalance-Aware PP
Mist
0.0

256 512 1024 2048
Global Batch Size

Figure 15. Performance of GPT-3 22B with different global
batch sizes on 32 L4 GPUs.

10106

o
o
S

1083
414 431 532

[
o
W

201
92 102 99

Time (Seconds)

=
o
4

=
o
9
L L L

o
o
°

\0? 0 @ ' 0 O O 0 8]
LN qua L CF L x PN x

Figure 16. Tuning Time of the GPT-3 22B model on 32 GPUs.
Orange bars are Mist with different optimizations applied.

microbatches, the benefit of imbalance-aware inter-stage
tuning might diminish, as treating all microbatches as the
same might seem sufficient. However, the sub-optimal strat-
egy produced by inaccurate predictions lead to a significant
performance gap due to the larger gradient accumulation
steps while Mist’s inter-microbatch awareness avoids it.

6.5 Tuning Time Comparison

As Figure 16 shows, to understand the tuning efficiency of
Mist, we evaluate the tuning time by enabling optimizations
one by one and compare it with the tuning time of Alpa [89]
and Aceso [46]. For Alpa, we choose 6 data points because it
doesn’t automatically tune the gradient accumulation steps
and layer grouping size. We make three key observations:
First, Mist helps to reduce the tuning time a lot compared
to Alpa. Second, when Mist is configured to use a similar
search space as Aceso, which is branded as an efficient dis-
tributed training searching system, Mist can be faster. Third,
even when Mist enables more optimization and greatly in-
creases the search space, the tuning time remains reasonable
compared to the significantly longer training time. More-
over, since searching over different gradient accumulation
steps is independent, Mist’s tuning can be parallelized across
different CPU cores or machines to make it faster.

6.6 Accuracy of Symbolic Shape Analysis System

The effectiveness of Mist’s tuning system relies heavily on
the performance prediction accuracy. Therefore, we sample
different strategies and benchmark the accuracy of the pre-
dicted runtime and memory usage compared with the actual
ones. Mist consistently demonstrates a high prediction ac-
curacy for both runtime and memory usage. The averaged
runtime error ratio is 1.79%, and average memory footprint
error ratio is 2.10%. For runtime, our analysis system focuses
more on the magnitude comparison to determine the best

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

strategy. As a result, some minor times, such as the optimizer
step time, are not included. To better understand runtime
accuracy, we shift the predicted runtime so that the mean
values of predicted and actual runtime match.

7 Other Related Work

DNN Performance Modeling. The closest works to ours
in performance modeling are DistSim, Proteus, and dPRO
[21, 34, 48], which use simulation-based approaches to pre-
dict model performance. Mist differs in that we consider an
expanded search space including all memory optimizations
in addition to parallelism strategies. This requires additional
sophisticated modeling with respect to overlap and inter-
ference. Moreover, Mist employs a symbolic modeling first
approach that is well-suited for the efficiency that the ex-
panded search space demands. DistIR [71] is a work that also
employs an analytical-based approach, but employs a cost-
model predictor of operator latencies. Habitat [84] profiles
operators in tandem with methods to extrapolate perfor-
mance to other GPUs for non-distributed scenarios.
Symbolic Analysis. Symbolic analysis examines program
behavior through abstract representations of variables and
computations rather than concrete values, enabling system-
atic exploration of optimization spaces. Foundational ap-
plications in compilers leveraged symbolic techniques for
dependency analysis and loop transformations via constraint
solving [10, 24], while analog circuit design adopted symbolic
methods for parameter space exploration [27, 29]. Unlike
prior works targeting code-level optimizations or hardware
verification, Mist adapts symbolic analysis in the area of per-
formance estimation for deep learning models to efficiently
explore the joint space of parallelism strategies and memory
reduction techniques in distributed training.

Acceleration Techniques. Techniques like tensor compila-
tion and kernel optimizations (e.g., TVM, Hidet, FlashAtten-
tion) are largely different than Mist, since they mainly focus
on lower-level, static graph optimizations from the graph
to hardware level [4, 16, 18-20, 30, 33, 44]. Additionally, ap-
proaches such as gradient compression, quantization, and
sparsity, and automatic mixed precision [7, 11, 13, 54, 83]
are also orthogonal to Mist: they could be integrated into
Mist’s schedule template as additional optimization tech-
niques that can improve system performance and memory
efficiency. Some of these may also be potentially lossy opti-
mizations, i.e., downgrading the accuracy of models, whereas
Mist exclusively targets system-level improvements without
compromising training accuracy.

8 Discussion

Integration of Other Techniques. Mist is extensible to ad-
ditional operators, parallelism strategies, and optimizations.
New acceleration or memory optimization techniques like
quantization [54, 62] or compression [13, 47] are typically

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

implemented using native torch operators or customized
kernels. Native torch operators (including communication
operators) can be straightforwardly supported by Mist, and
customized CUDA kernels can be easily incorporated by
registering them in the symbolic analysis system, as demon-
strated with FlashAttention [19]. Therefore, these optimiza-
tions are directly reflected in the traced computational graph
produced by Mist and analyzed by Mist, thus they will be
configured intelligently to achieve high performance.
Future Work. Mist relies on a symbolic computational
graph, making it less suited for highly dynamic workloads
where a fixed computation graph is difficult to obtain. How-
ever, for workloads like Mixture of Experts (MoE) with expert
parallelism [65], where computation patterns are largely pre-
dictable, data-dependent routing can be handled through
multiple simulations to obtain an average performance esti-
mate. Another limitation is that, while Mist supports fine-
grained overlap of multiple operations, ensuring correctness
remains challenging due to potential data races and value
inconsistencies. Future work should focus on developing
automated mechanisms to manage overlap and prevent ex-
ecution conflicts. Additionally, although Mist can analyze
arbitrary computational graphs, its efficient tuning algorithm
assumes identical layers. Extending it to optimize models
with heterogeneous architectures is an important direction.

9 Conclusion

We propose Mist, a memory, overlap, and imbalance aware
method that enables efficient LLM training by co-optimizing
all memory footprint reduction techniques and parallelism
strategies in a comprehensive manner. Mist contributes a
fine-grained overlap-centric schedule template, an symbolic-
based efficient analysis system, and an imbalance-aware hier-
archical auto-tuner to allow efficient optimization in a large
search space over optimizations with complex interactions.
As a result, Mist achieves 1.27X (up to 2.04X) over state-of-
the-art distributed training systems such as Aceso. We hope
that Mist will be able to help democratize LLM training for
machine learning researchers and practitioners alike.

Acknowledgments

We sincerely thank our shepherd, Zhaoguo Wang, and the
anonymous reviewers for their valuable feedback. We also
appreciate members of the EcoSystem Research Laboratory
at the University of Toronto for their discussions and sugges-
tions, with special thanks to Anand Jayarajan, Xin Li, Wei
Zhao, Yaoyao Ding, and Jiacheng Yang for their contributions.
The authors with the University of Toronto are supported
by Vector Institute Research grants, the Canada Foundation
for Innovation JELF grant, NSERC Discovery grant, AWS
Machine Learning Research Award (MLRA), Facebook Fac-
ulty Research Award, Google Scholar Research Award, and
VMware Early Career Faculty Grant.

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ...

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

—_
k=
—

[10

(11

[12

(13

(14

[15

—

—

—

[

—

—

—

—

—

—

[utr}

flans?

—

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. {TensorFlow}: a system for {Large-Scale}
machine learning. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16). 265-283.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessan-
dro Cappelli, Ruxandra Cojocaru, Mérouane Debbah, Etienne Goffinet,
Daniel Hesslow, Julien Launay, Quentin Malartic, et al. 2023. The
falcon series of open language models. arXiv preprint arXiv:2311.16867
(2023).

Muralidhar Andoorveedu, Zhanda Zhu, Bojian Zheng, and Gennady
Pekhimenko. 2022. Tempo: Accelerating Transformer-Based Model
Training through Memory Footprint Reduction. Advances in Neural
Information Processing Systems 35 (2022), 12267-12282.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, David Berard, Geeta Chauhan, An-
jali Chourdia, et al. 2024. PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph Compilation.
(2024). To appear at ASPLOS.

Anthropic. 2024. Claude. https://claude.ai/.

Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. 2022. Varuna: scalable, low-cost training of
massive deep learning models. In Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems. 472-487.

Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong, Feng Yan,
Ruichuan Chen, and Yinlong Xu. 2021. Gradient Compression Super-
charged High-Performance Data Parallel DNN Training. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason
Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. 2022. GPT-
NeoX-20B: An Open-Source Autoregressive Language Model. In Pro-
ceedings of the ACL Workshop on Challenges & Perspectives in Creating
Large Language Models. https://arxiv.org/abs/2204.06745

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems 33 (2020),
1877-1901.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unas-
sisted and automatic generation of high-coverage tests for complex
systems programs.. In OSDI, Vol. 8. 209-224.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri
Rudra, and Christopher Ré. 2022. Pixelated Butterfly: Simple and
Efficient Sparse training for Neural Network Models. In The Tenth
International Conference on Learning Representations, ICLR.
Hongzheng Chen, Cody Hao Yu, Shuai Zheng, Zhen Zhang, Zhiru
Zhang, and Yida Wang. 2023. Slapo: A Schedule Language for
Progressive Optimization of Large Deep Learning Model Training.
arXiv:2302.08005 [cs.LG]

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica,
Michael W Mahoney, and Joseph E Gonzalez. 2021. ActNN: Reducing
Training Memory Footprint via 2-Bit Activation Compressed Training.
In International Conference on Machine Learning (ICML).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021).

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining. 785-794.

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: an
automated end-to-end optimizing compiler for deep learning. In Pro-
ceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
Training deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174 (2016).

Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Paral-
lelism and Work Partitioning. (2023).

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. FlashAttention: Fast and Memory-Efficient Exact Attention with
10-Awareness. In Advances in Neural Information Processing Systems.
Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and
Gennady Pekhimenko. 2023. Hidet: Task-Mapping Programming Par-
adigm for Deep Learning Tensor Programs. In Proceedings of the 28th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2.

Jiangfei Duan, Xiuhong Li, Ping Xu, Xingcheng Zhang, Shengen Yan,
Yun Liang, and Dahua Lin. 2023. Proteus: Simulating the Performance
of Distributed DNN Training. arXiv preprint arXiv:2306.02267 (2023).
facebookresearch/llama. 2023. llama/MODEL_CARD.md. https://
github.com/facebookresearch/llama/blob/main/MODEL_CARD.md.
facebookresearch/llama. 2024. llama3. https://github.com/meta-llama/
llama3.

Thomas Fahringer and Bernhard Scholz. 1997. Symbolic evaluation
for parallelizing compilers. In Proceedings of the 11th international
conference on Supercomputing. 261-268.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, et al. 2021.
DAPPLE: A pipelined data parallel approach for training large models.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 431-445.

Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and
Jiwu Shu. 2023. Mobius: Fine tuning large-scale models on commodity
gpu servers. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2. 489-501.

Henrik Floberg. 2012. Symbolic analysis in analog integrated circuit
design. Vol. 413. Springer Science & Business Media.

John Forrest and Robin Lougee-Heimer. 2005. CBC user guide. In
Emerging theory, methods, and applications. INFORMS, 257-277.
Georges Gielen, Piet Wambacq, and Willy M Sansen. 1994. Sym-
bolic analysis methods and applications for analog circuits: A tutorial
overview. Proc. IEEE 82, 2 (1994), 287-304.

Google. 2022. XLA. https://www.tensorflow.org/xla.

Cong Guo, Rui Zhang, Jiale Xu, Jingwen Leng, Zihan Liu, Ziyu Huang,
Minyi Guo, Hao Wu, Shouren Zhao, Junping Zhao, et al. 2024. GMLake:
Efficient and Transparent GPU Memory Defragmentation for Large-
scale DNN Training with Virtual Memory Stitching. arXiv preprint
arXiv:2401.08156 (2024).

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr.
2021. Pipetransformer: Automated elastic pipelining for distributed
training of transformers. arXiv preprint arXiv:2102.03161 (2021).
Horace He and Shangdi Yu. 2023. Transcending Runtime-Memory
Tradeoffs in Checkpointing by being Fusion Aware. Proceedings of
Machine Learning and Systems (2023).

Hanpeng Hu, Chenyu Jiang, Yuchen Zhong, Yanghua Peng, Chuan
Wau, Yibo Zhu, Haibin Lin, and Chuanxiong Guo. 2022. dpro: A generic
performance diagnosis and optimization toolkit for expediting dis-
tributed dnn training. Proceedings of Machine Learning and Systems
(2022).

https://claude.ai/
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2302.08005
https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md
https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3
https://github.com/meta-llama/llama3
https://www.tensorflow.org/xla

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural information processing
systems 32 (2019).

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter
Abbeel, Joseph Gonzalez, Kurt Keutzer, and Ion Stoica. 2020. Check-
mate: Breaking the memory wall with optimal tensor rematerialization.
Proceedings of Machine Learning and Systems 2 (2020), 497-511.
Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek,
Boogeon Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. 2020.
torchgpipe: On-the-fly pipeline parallelism for training giant models.
arXiv preprint arXiv:2004.09910 (2020).

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Bren-
nan, Mike He, Jared Roesch, Tianqi Chen, and Zachary Tatlock. 2020.
Dynamic Tensor Rematerialization. In International Conference on
Learning Representations.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence
McAfee, Michael Andersch, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Reducing activation recomputation in large transformer
models. Proceedings of Machine Learning and Systems 5 (2023).
Zhiquan Lai, Shengwei Li, Xudong Tang, Keshi Ge, Weijie Liu, Yabo
Duan, Linbo Qiao, and Dongsheng Li. 2023. Merak: An efficient dis-
tributed dnn training framework with automated 3d parallelism for
giant foundation models. IEEE Transactions on Parallel and Distributed
Systems 34, 5 (2023), 1466—1478.

Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. 2022. Amp:
Automatically finding model parallel strategies with heterogeneity
awareness. Advances in Neural Information Processing Systems 35
(2022), 6630-6639

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,
Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
et al. 2020. Pytorch distributed: Experiences on accelerating data
parallel training. arXiv preprint arXiv:2006.15704 (2020).

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang,
Dawn Song, and Ion Stoica. 2021. Terapipe: Token-level pipeline
parallelism for training large-scale language models. In International
Conference on Machine Learning. PMLR, 6543-6552.

Bin Lin, Ningxin Zheng, Lei Wang, Shijie Cao, Lingxiao Ma, Quanlu
Zhang, Yi Zhu, Ting Cao, Jilong Xue, Yuqing Yang, et al. 2023. Efficient
GPU Kernels for N: M-Sparse Weights in Deep Learning. Proceedings
of Machine Learning and Systems (2023).

Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng
Li, Saeed Maleki, Xu Cao, Ning Shang, Yilei Yang, et al. 2024.
{nnScaler}:{Constraint-Guided} Parallelization Plan Generation for
Deep Learning Training. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24). 347-363.

Guodong Liu, Youshan Miao, Zhiqi Lin, Xiaoxiang Shi, Saeed Maleki,
Fan Yang, Yungang Bao, and Sa Wang. 2024. Aceso: Efficient Parallel
DNN Training through Iterative Bottleneck Alleviation. In Proceedings
of the Nineteenth European Conference on Computer Systems. 163-181.
Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen,
Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, et al.
2022. Gact: Activation compressed training for generic network ar-
chitectures. In International Conference on Machine Learning. PMLR,
14139-14152.

Guandong Lu, Runzhe Chen, Yakai Wang, Yangjie Zhou, Rui Zhang,
Zheng Hu, Yanming Miao, Zhifang Cai, Li Li, Jingwen Leng, and
Minyi Guo. 2023. DistSim: A performance model of large-scale hybrid
distributed DNN training. In Proceedings of the 20th ACM International
Conference on Computing Frontiers.

Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xi-
aowei Li. 2017. Flexflow: A flexible dataflow accelerator architecture for
convolutional neural networks. In 2017 IEEE International Symposium

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

on High Performance Computer Architecture (HPCA). IEEE, 553-564.
meta llama. 2024. llama3.1. https://ai.meta.com/blog/meta-llama-3-1/.
meta llama/llama3. 2024. llama/MODEL_CARD.md. https://github.
com/meta-llama/models/llama3_1/blob/main/MODEL_CARD.md.
meta llama/llama3. 2024. llama/MODEL_CARD.md. https://github.
com/meta-llama/models/llama3/blob/main/MODEL_CARD.md.
Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie,
Hailin Zhang, and Bin Cui. 2023. Galvatron: Efficient Transformer
Training over Multiple GPUs Using Automatic Parallelism. Proc. VLDB
Endow. 16, 3 (2023), 470-479. https://doi.org/10.14778/3570690.3570697
Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos,
Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018. Mixed Precision
Training. In 6th International Conference on Learning Representations,
ICLR.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized pipeline parallelism for DNN
training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 1-15.

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and
Matei Zaharia. 2021. Memory-efficient pipeline-parallel dnn training.
In International Conference on Machine Learning. PMLR, 7937-7947.
Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient
large-scale language model training on gpu clusters using megatron-
Im. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-15.

NVIDIA. [n.d.]. NVIDIA A100 GPUs. https://www.nvidia.com/en-
us/data-center/a100/.

NVIDIA. 2023. NVIDIA L4 GPUs. https://www.nvidia.com/en-us/data-
center/l4/.

openai. 2022. ChatGPT. https://openai.com/chatgpt/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems 32 (2019).

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze
Liu, Yifan Xiong, Ziyue Yang, Bolin Ni, Jingcheng Hu, et al. 2023. Fp8-
Im: Training fp8 large language models. arXiv preprint arXiv:2310.18313
(2023).

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based gpu memory
management for deep learning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. 891-905.

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. 2023. Zero
Bubble Pipeline Parallelism. arXiv preprint arXiv:2401.10241 (2023).
Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang,
Reza Yazdani Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yux-
iong He. 2022. Deepspeed-moe: Advancing mixture-of-experts infer-
ence and training to power next-generation ai scale. In International
conference on machine learning. PMLR, 18332-18346.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
2020. Zero: Memory optimizations toward training trillion param-
eter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1-16.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith,
and Yuxiong He. 2021. Zero-infinity: Breaking the gpu memory wall
for extreme scale deep learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1-14.

https://ai.meta.com/blog/meta-llama-3-1/
https://github.com/meta-llama/models/llama3_1/blob/main/MODEL_CARD.md
https://github.com/meta-llama/models/llama3_1/blob/main/MODEL_CARD.md
https://github.com/meta-llama/models/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/models/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.14778/3570690.3570697
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/l4/
https://www.nvidia.com/en-us/data-center/l4/
https://openai.com/chatgpt/

—

[t

—

—

—

—

—

—

[68] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.

2020. DeepSpeed: System Optimizations Enable Training Deep Learn-
ing Models with Over 100 Billion Parameters. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. {ZeRO-Offload}: Democratizing {Billion-Scale} model train-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
551-564.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W Keckler. 2016. vDNN: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In 2016 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1-13.

Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Andrew
Fitzgibbon, and Tim Harris. 2021. Distir: An intermediate representa-
tion for optimizing distributed neural networks. In Proceedings of the
1st Workshop on Machine Learning and Systems.

Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint
arXiv:2002.05202 (2020).

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-
billion parameter language models using model parallelism. arXiv
preprint arXiv:1909.08053 (2019).

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy
and policy considerations for deep learning in NLP. arXiv preprint
arXiv:1906.02243 (2019).

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yun-
feng Liu. 2024. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing 568 (2024), 127063.

Zhenbo Sun, Huangi Cao, Yuanwei Wang, Guanyu Feng, Shenggqi
Chen, Haojie Wang, and Wenguang Chen. 2024. AdaPipe: Optimizing
Pipeline Parallelism with Adaptive Recomputation and Partitioning. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3.
86-100.

Jakub Tarnawski, Deepak Narayanan, and Amar Phanishayee. 2021.
Piper: Multidimensional Planner for DNN Parallelization. In Neu-
ral Information Processing Systems. https://api.semanticscholar.org/
CorpusID:244711821

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971 (2023).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat
McCormick, Jamaludin Mohd-Yusof, et al. 2022. Unity: Accelerating
{DNN} training through joint optimization of algebraic transforma-
tions and parallelization. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). 267-284.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dy-
namic GPU memory management for training deep neural networks.
In Proceedings of the 23rd ACM SIGPLAN symposium on principles and
practice of parallel programming. 41-53.

Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting
very large models using automatic dataflow graph partitioning. In
Proceedings of the Fourteenth EuroSys Conference 2019. 1-17.

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ... EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[83] Zhuang Wang, Xinyu Wu, Zhaozhuo Xu, and TS Ng. 2023. Cupcake:

A Compression Scheduler for Scalable Communication-Efficient Dis-
tributed Training. Proceedings of Machine Learning and Systems 5
(2023).

Geoffrey X Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko.
2021. Habitat: A {Runtime-Based} computational performance predic-
tor for deep neural network training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21).

Tailing Yuan, Yuliang Liu, Xucheng Ye, Shenglong Zhang, Jianchao
Tan, Bin Chen, Chengru Song, and Di Zhang. 2024. Accelerating
the Training of Large Language Models using Efficient Activation
Rematerialization and Optimal Hybrid Parallelism. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24). USENIX Association,
Santa Clara, CA, 545-561. https://www.usenix.org/conference/atc24/
presentation/yuan

Biao Zhang and Rico Sennrich. 2019. Root mean square layer nor-
malization. Advances in Neural Information Processing Systems 32
(2019).

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang,
Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al.
2023. Pytorch FSDP: experiences on scaling fully sharded data parallel.
arXiv preprint arXiv:2304.11277 (2023).

Bojian Zheng, Nandita Vijaykumar, and Gennady Pekhimenko. 2020.
Echo: Compiler-based GPU memory footprint reduction for LSTM
RNN training. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 1089-1102.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P Xing, et al. 2022. Alpa: Automating inter-and {Intra-Operator}
parallelism for distributed deep learning. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). 559-578.

https://api.semanticscholar.org/CorpusID:244711821
https://api.semanticscholar.org/CorpusID:244711821
https://www.usenix.org/conference/atc24/presentation/yuan
https://www.usenix.org/conference/atc24/presentation/yuan

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract

Mist is an automatic distributed training configuration op-
timizer designed to tune the optimal configuration for the
combination of parallelism strategies and memory footprint
reduction techniques. This artifact includes the source code
of the Mist prototype along with instructions for evaluating
its functionality and reproducing key results.

A.2 Description & Requirements

A.2.1 How to access The Mist system is available at the
following repositories: https://github.com/dazz993/mist and
Zenodo (DOI: 10.5281/zenodo.14873554)

A.2.2 Hardware dependencies Experiments are conducted
on up to four GCP L4 machines, each equipped with 8x
NVIDIA L4 GPUs, and up to four AWS p4d.24xlarge ma-
chines, each with 8xNVIDIA A100 40GB GPUs. For artifact
evaluation, an ideal testbed consists of a machine with 8 x
GPUs, each with approximately 24GB of memory, as we can
provide configurations suitable for direct evaluation on such
hardware. Unless explicitly stated otherwise, the following
evaluation workflow assumes this testbed. A general evalua-
tion methodology for other GPUs and multi-node evaluation
is also provided in our repository.

A.2.3 Software dependencies We provide a Docker im-
age with NVIDIA GPU support for this artifact. The software

environment includes CUDA 12.1, PyTorch v2.1.1, Megatron-
LM (git-hash 38879f8), DeepSpeed (v0.12.6), and NCCL v2.18.6.

A.2.4 Benchmarks None.

A.3 Set-up

To install the artifact, users should clone the repository and
build the Docker image. For users with GPUs other than L4
GPUs (sm_89), the environment variable TORCH_CUDA_ARCH_LIST
in the Dockerfile may require modification.

1 git clone https://github.com/Dazz993/Mist.git

2 cd Mist

3 docker build -t mist -f Dockerfile .

Run the Docker container, mounting the Mist repository
home to /workspace.

1 docker run --gpus all -it --rm --privileged \

2 --ipc=host --shm-size=20G --ulimit memlock=-1 \
3 --name "mist" -v $(pwd):/workspace/ mist

[Optional] To obtain stable results, especially on L4 machines,
fix the GPU frequency accordingly:

1 nvidia-smi -ac 6251,1050

Z. Zhu, C. Giannoula, M. Andoorveedu, Q. Su, K. Mangalam, B. Zhang, G. Pekhimenko

A.4 Evaluation workflow.

We provide scripts for reproducing single-node results. Multi-
node experiments require large-scale clusters and additional
setup and execution time, so end-to-end scripts are not pro-
vided for artifact evaluation. However, instructions are avail-
able in GitHub repository README. We recommend users
to follow the README as it provides extra explana-
tions.

A.4.1 Major Claims

e (C1): Mist achieves an average of 1.28% (up to 1.73X)
speedup compared to state-of-the-art manual system
Megatron-LM. See Section 6.2 and Figure 11 and 12.
This claim is validated by E2.

e (C2): Mist demonstrates efficient tuning speed even
with a large search space. See Section 16 and Figure 16.
This claim is validated by E3.

A.4.2 Experiments

e E1: Kick-the-Tries [10 human-minutes]. This experiment
evaluates the functionalities of Mist on Large Language
Model analysis, execution, and distributed training opti-
mization. Detailed explanations and expected results are
also provided in the repository README.

[Execution] Given a YAML configuration for running the
GPT-3 1.3B model on two GPUs: test-small-base:

— Run model performance analysis

1 cd /workspace/benchmark/mist/analysis/
2 python run.py --config-name test-small-base

- Execute the model distributed training
1 cd /workspace/benchmark/mist/exec/
2 torchrun --nproc-per-node 2 \

3 benchmark_one_case.py \

4 --config-name test-small-base

— Run model tuning (the hyperparameters in this config-
uration file are specifically tuned for GCP L4 GPUs).

cd /workspace/benchmark/mist/tune/
2 python tune_one_case.py --config-name test-small-base \
3 +output_path=/workspace/benchmark/mist/tune/results/test-small-mist

Then execute the optimized configuration:
1 cd /workspace/benchmark/mist/exec/
2 torchrun --nproc-per-node 2 \
3 benchmark_one_case.py \
4 --config-path /workspace/benchmark/mist/tune/results/ \
5 --config-name test-small-mist

[Results] The executed commands output the analysis
results, execution time, and memory usage for the base
configuration, as well as the execution time and memory
usage for the optimized configurations.

e E2: Run Single-Node Performance Evaluation [4 compute-
hours]. This experiment evaluates the performance of
Mist on a single node for GPT and LLaMA models.

https://github.com/dazz993/mist
https://doi.org/10.5281/zenodo.14873554

Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism ... EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

For the L4 machine, we provide pre-tuned configurations The results are shown in /workspace/benchmark/mist/

that enable a quick assessment of Mist’s speedup com- benchmark-tuning-time/results/.../summary.json.

pared to baseline models. Additionally, we provide a gen-

eral process for evaluating on a new cluster. For further A.5 Notes on Reusability

details, refer to the GitHub repository README. Mist provides a symbolic execution system that represents all

[Execution] tensors with symbolic dimensions. Additionally, it supports

— Evaluate Mist performance. Results are summarized tracing, which generates a corresponding symbolic compu-
in /workspace/benchmark/mist/tuned_configs/l4-24gb/ tational graph. This feature can serve as an educational tool,
gpt/summary.json and corresponding LLaMA folder. helping users understand shape propagation and how each

input dimension is utilized. Furthermore, it serves as a basis
for exploring performance estimation in future research.

1 cd /workspace/benchmark/mist/tuned_configs/
2 bash run_single_node.sh

- Evaluate Megatron-LM performance. Results are under
/workspace/benchmark/megatron/results.

1 cd /workspace/benchmark/megatron/

2 bash scripts/tops/14/gpt2/1_8x14_node_1_pcie.sh

3 bash scripts/tops/14/1lama/1_8x14_node_1_pcie.sh

— Evaluate DeepSpeed performance. Results are under
/workspace/benchmark/deepspeed/results.

1 cd /workspace/benchmark/deepspeed/

2 bash scripts/tops/14/gpt2/1_8x14_node_1_pcie.sh

3 bash scripts/tops/14/11lama/1_8x14_node_1_pcie.sh

[Results] We provide a python file to collect the results for

easy comparison.
1 cd /workspace/benchmark/
2 python scripts/collect_single_node_results_v1.py

It provides tables with absolute throughput values or rel-
ative throughput improvements. Here we provide an ex-

ample:

1

2 | SpeedUp | SpeedUp vs | SpeedUp vs |
3 | | Megatron | DeepSpeed |
4

5 | gpt2-1.3b-flash_False | 1.175X | 1.418X |
6+ +

7 | gpt2-2.7b-flash_False | 1.141X | 1.384X |
8 + + + +
9 | gpt2-7.0b-flash_False | 1.222X | 2.053X |

10 + +

e E3: Benchmarking Tuning Time [0.75 compute hours].
This experiment reproduces the tuning time results for
Mist, as shown in Figure 16.

We demonstrate how tuning time varies as the search
space expands incrementally. To evaluate this, we run a
GPT-22B model on a 4 x 8 GPU setup. Beyond examining
tuning time, this experiment also provides insights into
the performance of large-scale distributed training, as
we can see the performance improvements when more
optimizations are applied.

[Execution]

1 cd /workspace/benchmark/mist/benchmark-tuning-time

2 python run.py --model=gpt2/22b -n 4 -m 8

	Abstract
	1 Introduction
	2 Background
	2.1 Parallelism in Distributed Training
	2.2 GPU Memory Footprint Reduction Techniques

	3 Limitation of Existing Systems
	3.1 The Need for Comprehensive Co-Optimization
	3.2 Why Existing Auto Systems Fail to Co-Optimize?
	3.3 Why Simple Heuristics Can Not Address it?

	4 Mist: Overview and Key Ideas
	5 Mist: Design Details
	5.1 Fine-Grained Overlap-Centric Scheduling
	5.2 Symbolic-Based Efficient Performance Analysis
	5.3 Imbalance-Aware Hierarchical Tuning via Pareto Frontier Sampling

	6 Evaluation
	6.1 Methodology
	6.2 End-to-End Training Performance
	6.3 Speedup Breakdown
	6.4 Sensitivity Study
	6.5 Tuning Time Comparison
	6.6 Accuracy of Symbolic Shape Analysis System

	7 Other Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow.
	A.5 Notes on Reusability

