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Abstract—Time Series Analysis (T'SA) is a critical workload to
extract valuable information from collections of sequential data,
e.g., detecting anomalies in electrocardiograms. Subsequence
Dynamic Time Warping (sDTW) is the state-of-the-art algorithm
for high-accuracy TSA. We find that the performance and energy
efficiency of sDTW on conventional CPU and GPU platforms
are heavily burdened by the latency and energy overheads of
data movement between the compute and the memory units.
sDTW exhibits low arithmetic intensity and low data reuse on
conventional platforms, stemming from poor amortization of the
data movement overheads. To improve the performance and
energy efficiency of the sSDTW algorithm, we propose MATSA,
the first Magnetoresistive RAM (MRAM)-based Accelerator for
TSA. MATSA leverages Processing-Using-Memory (PUM) based
on MRAM crossbars to minimize data movement overheads and
exploit parallelism in sDTW. MATSA improves performance by
7.35x/6.15%/6.31x and energy efficiency by 11.29x/4.21x/2.65 x
over server-class CPU, GPU, and Processing-Near-Memory plat-
forms, respectively.

I. INTRODUCTION

In the era of Internet-Of-Things and Big Data, emerging
applications operate on petabyte-scale datasets that are in-
creasingly difficult to store and analyze. Small sensors and
edge devices continuously generate data sampled over time,
resulting in time-ordered observations (e.g., temperature or
voltage). Such a collection of data values is referred to as
a time series (TS) [1]. TS is a common data representation
in many real-world scientific applications, including sensing,
genomics, neuroscience, financial markets, epidemiology, and
environmental sciences [2].

Time series analysis (TSA) splits the time series into
subsequences of consecutive data points to extract valuable
information from large datasets. This information can help
filter relevant subsequences to minimize the cost of applying
complex and expensive domain-specific analysis algorithms. A
real-life example is the detection of anomalies in an electro-
cardiogram and the elimination of subsequences that indicate
normal behavior [3]. TSA determines subsequences of interest
using different similarity approaches, such as the Euclidean
Distance (ED) or the subsequence Dynamic Time Warping
(sDTW). Prior work demonstrates that sDTW provides a
higher precision than ED in most scenarios [4]]; as such, we
focus on optimizing sDTW algorithm for TSA analysis.

sDTW is an embarrassingly parallel workload, because each
query can be executed without data dependencies from other
queries by multiple concurrent processing units. However,
sDTW builds a 2D dynamic programming matrix that incurs
quadratic runtime and memory complexity. To understand the
bottlenecks of sDTW in state-of-the-art conventional CPU
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and GPU architectures, we comprehensively characterize the
kernel’s performance on these platforms (§I-D). We observe
significant performance and energy efficiency overheads in
sDTW due to: 1) underutilization of the execution units, and
2) a large number of expensive main memory accesses. The
first problem stems from the low number of operations that
the sDTW kernel executes per byte brought from memory,
which keeps the arithmetic units idle for the largest part of
the execution time. The second problem stems from the large
memory footprint of the dynamic programming matrix, caus-
ing poor spatial and temporal locality. Consequently, sSDTW
exhibits poor performance on CPU and GPU platforms.

To overcome the memory access challenge, prior works [S]—
[7] have considered memory-centric platforms that integrate
processing and storage elements on the same chip to reduce
data movement across the constrained data bus that connects
a CPU to main memory [8], [9]. Based on that, we implement
and characterize sDTW in a real Processing-Near-Memory
(PNM) platform, UPMEM [10], and observe that this new
platform does not provide performance benefits compared to
CPU and GPU executions, due to the large latency of simple
operations such as addition and comparison operators. Overall,
we conclude that the sSDTW kernel exhibits memory-bound
behavior on CPU and GPU platforms and compute-bound
behavior on the PNM platform (§II-D).

In contrast to PNM, Processing-Using-Memory (PUM) [7],
[11]-[15] executes operations using the memory cells and
sense amplifiers, completely eliminating the memory and
compute dichotomy. PUM enables 1) performing computation
in the memory array, since the memory units that store the
data also execute the computation, and 2) exploiting a much
larger amount of parallelism available in the memory microar-
chitectures (as high as the number of crossbar columns avail-
able [[16], i.e., thousands) compared to conventional CPU and
GPU systems. From the technology perspective, non-volatile
memories (NVM) offer a promising substrate to implement
PUM [17]. However, different NVM substrates exhibit varying
latency, energy, and endurance characteristics, a key design
constraint for different accelerators [18]. Magnetoresistive
RAM (MRAM)-based PUM substrates offer low read/write
latencies, low energy per operation, and high endurance [19],
[20]. Considering these characteristics, we explore MRAM as
a potential NVM substrate to accelerate the sSDTW kernel.

To this end, our goal in this work is to leverage MRAM-
based PUM to enable high-performance and energy-efficient
sDTW execution for a wide range of applications. We propose
MATSA, the first MRAM-based Accelerator for TSA. MATSA
derives its performance benefits from three key mechanisms.



First, MATSA decomposes sDTW’s computational kernel into
simple bitwise boolean computations and executes them in the
MRAM crossbar. This key idea significantly minimizes data
movement overheads as it is performed where data resides.
Second, we implement a novel data mapping that reduces the
runtime memory footprint of sDTW from quadratic to linear
based on four vectors. This key idea enables computing the
complete 2D dynamic programming matrix on-the-fly without
storing it. Third, MATSA integrates an effective computation
scheme that overcomes the inter-cell computation dependen-
cies of the matrix by 1) following an anti-diagonal approach
and 2) exploiting pipelining to increase parallelism.

We evaluate MATSA’s performance based on state-of-the-
art latency and energy characteristics of MRAM devices [21]],
[22]. To do so, we implement an in-house simulator for
MATSA and select 64 synthetic datasets to understand its
design tradeoffs. Then, we use six real-world datasets (Human,
Song, Penguin, Seismology, Power and ECG) to compare three
different versions of MATSA against other state-of-the-art
platforms, showcasing its applicability to a wide range of real
case scenarios. Our evaluation shows that MATSA improves
performance by 7.35x/6.15x/6.31x and energy efficiency by
11.29%x/4.21x/2.65x over server-class CPU, GPU, and PNM
platforms, respectively.

In summary, we make the following novel contributions:

« We thoroughly characterize the state-of-the-art sDTW
time series analysis (TSA) algorithm’s performance and
energy efficiency on conventional CPU, GPU, and PNM
(UPMEM) platforms. Our characterization leads to new
observations about the characteristics of SDTW that limit
its acceleration in current conventional hardware.

o We propose MATSA, the first MRAM-based Accelerator
for TSA. MATSA 1) exploits a novel data mapping tai-
lored for MRAM substrates that reduce memory footprint
in sDTW, 2) efficiently performs computation in-memory
to avoid off-chip data movement, and 3) provides an
effective computation scheme to increase parallelism.

e We conduct a comprehensive evaluation of MATSA
across a diverse set of synthetic and real-world datasets.
Our results showcase 6.60x average improvement in
overall performance and a average 6.05x boost in en-
ergy efficiency over state-of-the-art compute-centric and
memory-centric platforms.

II. BACKGROUND & MOTIVATION
A. Time Series Analysis

A time series T is a sequence of n data points ¢;, where
1 < ¢ < n, collected over time. A subsequence of 7T, also
known as a window, is denoted by T; ,,, where ¢ is the index
of the first data point, and m is the number of samples in the
subsequence, with 1 <4, and m < n — 4.

There are two main approaches to perform time series
analysis: 1) the self-join, and 2) the query-filtering. In self-join,
all sequences of a given time series are compared against the
remaining subsequences of the same time series. In contrast,
query filtering compares a set of queries against a reference.

Time series analysis algorithms usually define a distance
metric to measure the similarity between two subsequences.
Based on such distance metric, the literature classifies the
subsequences with low distance as motifs [23] (similarities)
and high distance as discords [24] (anomalies). The state-of-
the-art set of tools to perform time series analysis is Matrix
Profile [25] (MP). Due to lower computation requirements,
prior MP algorithms utilize one-to-one Euclidean Distance
as the similarity metric. Recent proposals [4] have started
to utilize Dynamic Time Warping (DTW)-based solutions
because of higher precision [26]. DTW enables the detection
of events of interest in out-of-sync subsequences, e.g., in
subsequences that have different sampling rates.

Figure |1| shows the key difference between the one-to-one
and the DTW approaches, in which we compare two similar-
shape subsequences that differ in their offset and scale.
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Fig. 1: Example of similarity calculation between two sub-
sequences (blue and green). The one-to-one approach in a)
provides a low similarity as it only compares each i*" point
of blue with each i*" point of green. In contrast, DTW in b)
successfully matches the points of the subsequences.

We observe that the DTW algorithm offers better results
as it compares a given point with respect to several potential
candidates (i.e., determines the best alignment). In contrast,
one-to-one executes point-to-point alignment that cannot de-
termine the best alignment in the presence of an offset. One-
to-one can be considered as a special case of DTW where the
warping window is set to ’1’. Therefore, we aim to optimize
DTW, a more generic and high-precision algorithm, to provide
a TSA accelerator for a wide range of applications.

B. Time Series Analysis Applications

Time series analysis constitutes one of the most important
and general data mining primitives for a wide range of
real-world applications [27]: epidemiology, genomics, neu-
roscience, medicine, environmental sciences, economics, and
many more. Table [I| presents a few examples for applications
of TSA.

In statistics, econometrics, meteorology, and geophysics,
the primary goal of time series analysis is prediction and
forecasting. At the same time, in signal processing, control en-
gineering, and communication engineering, it is used for signal
detection and estimation. In data mining, pattern recognition,
and machine learning, time series motif and discord discovery
are used for clustering, classification, anomaly detection, and
forecasting. Finally, the most important application of time
series motif and discord discovery is clustering seismic data
and discovering earthquake pattern clusters from the contin-
uous seismic recording. Consequently, seismic clustering can



‘ Field ‘ References H Field ‘ References ‘
Bioinformatics [128]-[30] Speech Recognition 131]
Robotics 1321, 133] Weather Prediction 134]
Neuroscience 1281, 135] Entomology 136]
Machine Learning | [37]-[39] || Geophysics [40]—[43] |
Econometrics 144] Statistics 145] T
Finance 146], [47] Control Engineering [481-[50]
Signal Processing I51] Pattern Recognition 152]
Communication [53}-155] || Medicine 15611597 |
Astronomy [60], [61] || Social Networks [62], 163] |
Clustering 1371, 138] Classification 391 |
Earthquakes [40]-[43] GPS Tracking l64]
Virtual Reality [65] Gesture Recognition | [66], [67] |
Trajectories 168] Traffic Monitoring 691 |

TABLE I: Time Series Analysis main applications

be applied to earthquake relocation and volcano monitoring to
help improve earthquake and volcanic hazard assessments.

Within this field, the subsequence Dynamic Time Warping

(sDTW) algorithm is a fundamental kernel due to its superior
accuracy and generality when compared to other TSA meth-
ods [4]. Examples of real-life use cases that can benefit from
high-performance and energy-efficient sSDTW are:

o Circulatory Failure Detection in Intensive Care
Units. TSA consumes 90% of the end-to-end execution
time [70]]. Figure [2| describes the aforementioned process
based on an example processing flow.

« Electroencephalography (ECG). TSA is deployed to
monitor and filter ECG readings when monitoring pa-
tients [59]).

o Earthquake Detection. TSA is critical to process seis-
mograph data and detect anomalies for further analy-

sis [42].
N
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Fig. 2: Example TSA application, where TSA acts as a filter
to avoid most of the computation. TSA selects the relevant

queries (anomalies) and discards the irrelevant ones.

C. Dynamic Time Warping (DTW)

DTW algorithm was first introduced by [[71f]. The first step
of DTW is to compute the distance between a particular
point from a subsequence and a set of points from another
subsequence, only keeping the minimum of them. This process
is repeated for all the points of the first subsequence. Then,
DTW computes the addition of all distances, providing a

similarity measure between the subsequences (the lower the
distance, the higher the similarity).

Assuming that we have two subsequences, Q (query) and R
(reference), of length n and m, respectively, where:

Q:q17q27"'7qi7"-7QH 5 T'm (1)

DTW constructs an n-by-m scoring matrix (S) to determine
the similarity between the two subsequences. Each (i'", j*)
cell of the matrix (s;;) is filled in two steps. First, the
algorithm calculates the distance d(g;,r;) between the two
corresponding points of the subsequences. There are several
approaches to calculate such distance, while d(g;,c;) =
abs(q; — ¢;) and d(q;,c;) = (q; — ¢j)? are the most common
ones [[71]]. Second, the distance value is added to the minimum
of the three neighboring cells as follows:

R = T1,725 05 Tjy ..

8ij = d(gi, cj) +min(si—1,j-1,8i-15, Sij—1)  (2)
The algorithm fills the entire matrix using dynamic program-
ming. Then, the goal is to find the best alignment (i.e.,
minimum accumulated cost), known as the warping path (W).
W is a contiguous set of matrix cells that defines the best
mapping between Q and R.
Subsequence Dynamic Time Warping (sDTW). sDTW is
a more general DTW algorithm that allows the query to be
aligned with part of the reference. Algorithm [I] presents the
pseudocode of sDTW.

Algorithm 1 Subsequence DTW (sDTW)

1: procedure SDTW(Q,R)

2 S < zeros(N, M);

3: 5[0,0] = dist(Q[0], R[0]);

4: fori<+ 1to N do

5: S[i,0] - S[i — 1,0] + dist(Qlz], R[0]);
6

7

8

9

for i< 1to N do
for j < 1 to M do
Sli, j] < dist(Q[d], R[j]) +

return min(S[N,:|)

First, SDTW initializes the matrix S with zeros. Second, it
calculates the distance value of the top-left corner and then
the remaining elements of the first row, taking into account
the previous values. Third, it fills the remaining elements of
the matrix using dynamic programming row by row. Finally, it
returns the minimum element of the last row of the S matrix,
which indicates the similarity between the query and the best
alignment with (part of) the reference. The nested for loops
(lines 6 and 7 in Algorithm|[I)) are responsible for the quadratic
runtime and memory complexities.

D. Bottlenecks of sDTW in Conventional and PNM Platforms

sDTW’s quadratic computational complexity is challenging
to overcome, especially when accurate results are required and
algorithmic optimizations are insufficient [72]. To determine
the bottlenecks in conventional platforms, we perform a de-
tailed characterization of parallelized and optimized sDTW
kernels on CPU, GPU, FPGA, and PNM platforms.

CPU. We profile the performance of sDTW on an Intel
Xeon Phi 7210 CPU using the Intel Advisor tool [73[]. We



build the roofline plot and present the result in Figure [3}
left. First, we observe that SDTW-CPU can utilize only 41%
of the system’s integer peak performance, i.e., 59 GINTOPS
out of 145 GINTOPS, and exhibits low arithmetic intensity
(0.55 INTOP/Byte). Second, the total memory traffic generated
during runtime is 267 GB. In contrast, the memory footprint
of the sDTW kernel is only 570 MB. This demonstrates that
sDTW is a memory-bound kernel for CPU targets.

GPU. Several prior works propose accelerating SDTW using
GPUs (e.g., [74])). However, these implementations are tailored
and optimized for specific workload sizes. They rely on
high-latency global memory when working with arbitrary-
sized datasets, which results in large performance penalties
compared to the optimal input size. To quantify the bottle-
necks, we develop an optimized CUDA-based implementation
that supports arbitrary subsequence sizes and characterize it
on the NVIDIA Tesla V100 GPU. We analyze the sDTW
kernel using NVIDIA Visual Profiler [75] and generate the
roofline plot in Figure [3}right. We observe that sSDTW-GPU’s
performance improves with respect to SDTW-CPU but utilizes
merely 1% of the GPU’s available peak performance. We
explain this observation by 1) the low arithmetic intensity of
sDTW and 2) the limited per-thread available local memory.
Even increasing the available local memory does not improve
performance and the algorithm hits the memory roof due to
1), thus greatly underutilizing the platform. Based on this
analysis, we conclude that GPU is not a good target for sDTW
kernels executing on arbitrary subsequence sizes, which is the
common case in many applications.

== CPU Mem: 79 GB/s
CPU OPS: 144 GINTOPS

== GPU Mem: 828 GB/s
== GPU OPS: 15.7 TINTOPS
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Fig. 3: Roofline plots for sDTW on a many-core CPU platform
(left) and a server-class GPU (right).

FPGA. sDTW acceleration using FPGAs requires large
onboard memory to achieve high performance. As most of
the prior work based on FPGAs does not provide high on-chip
memory capacity, data is distributed over the chip. We develop
an optimized FPGA implementation targeting a Xilinx Alveo
U50 and build the roofline model in Figure f}eft. We observe
that the eight compute units that fit in the FPGA achieve less
than 7% of the available peak throughput and are insufficient
to exploit the inherent parallelism in the SDTW kernel.

== FPGA Mem: 257 GB/s
FPGA OPS: 191 GINTOPS

== UPMEM Mem: 1570 GB/s
== UPMEM OPS: 146 GINTOPS
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Fig. 4: Roofline plots for sDTW on FPGA (left) and UPMEM
(right) platforms.

Key Observation 1: Conventional architectures fail to
provide a high performance and energy efficient accel-
eration solution because execution time and energy are
wasted on the data movement between memory and
processing units.

Processing-Near-Memory (PNM). PNM platforms place
processing units in the same die as memory units. The idea
behind this paradigm is to exploit the lower latency and higher
bandwidth available in memory and mitigate the data move-
ment overheads between the processing units and memory. To
evaluate the performance and energy efficiency of sDTW on
PNM, we implement an optimized version of the algorithm
on UPMEM [76], the first commercially available server-class
PNM platform. We build the roofline model in Figure @}right
and observe that sSDTW is compute-bound in UPMEM. This
observation can be attributed to the low-power general-purpose
cores in UPMEM that offer poor throughput (146 GINTOPS
in contrast to 15700 GINTOPS for the GPU). As arithmetic
operations are at the core of sSDTW, PNM cannot provide high
performance for it. We also observe that UPMEM reduces
the energy consumption by 37% with respect to the GPU
by reducing the data movement overheads (§[V-C). However,
poor performance in contrast to the GPU inhibits the effective
usability of the platform for the SDTW kernel.

Key Observation 2: General-purpose PNM sub-
strates provide higher energy efficiency compared to
CPU/GPU/FPGA platforms. However, they fail to offer
a high performance solution because of the limited arith-
metic computation throughput supported by the hardware.

E. Overcoming bottlenecks in TSA

Need for Processing-Using-Memory (PUM). We observe
that when executing the sDTW kernel, 1) CPU, GPU, and
FPGA platforms are memory-bound, and 2) PNM platforms
are compute-bound. In contrast to these platforms, PUM
accelerators execute operations directly using the memory
cells where data resides [15]. PUM enables 1) exploiting
large internal memory bandwidth for memory-bound kernels,
and 2) exploiting massive computation parallelism (as high
as each bitline) for compute-bound kernels, overcoming key



restrictions of CPU, GPU, FPGA and PNM architectures.
Based on these observations, we argue that an accelerator
based on PUM is needed to improve TSA’s performance and
energy efficiency providing a balanced solution.

Cell Technology Choice. A PUM-based accelerator’s per-
formance, energy efficiency, and endurance depend on the
underlying substrate’s cell technology; thus, it is a critical
design choice. Non-Volatile-Memories (NVM) offer a low-
energy substrate for PUM as they do not require periodic
refresh operations in contrast to DRAM-based PUM [16], [[77].
However, it is challenging to support frequent write operations
as NVM-based PUM architectures due to significant write
latency and low endurance [78]. Table [IIj presents the charac-
teristics of NVM technologies we considered for accelerating
the sDTW kernel. We discard NAND Flash, ReRAM, and
PCM in the first step due to their low endurance and high write
latency. Next, we consider FRAM due to its high endurance
but discard it due to the high read latency. We then consider
MRAM technologies (§II-F) and discard STT-MRAM due to
a high write latency. In contrast to STT-MRAM, SOT-MRAM
offers 1) high endurance, 2) low read and write latencies,
and 3) CMOS compatibility that eases manufacturability [[79].
Considering these characteristics, we argue that SOT-MRAM
is a promising substrate for implementing PUM accelerators
for kernels with frequent write operations, and evaluate its
feasibility for accelerating the SDTW kernel.

[ Technology | Write/Read Energy | Write/Read Time | Write Cycles |
NAND Flash 470pJ / 46p] 200us / 25.2us 10°
ReRAM 1.1nJ / 525f] 10us / Sns 10°
PCM 13.5pJ / 2pJ 150ns / 48ns 107
FRAM 1.4n) / 1.4nJ 120ns / 120ns 101
STT-MRAM 2nJ / 34pJ 250ns / 10ns > 1015
SOT-MRAM 334pJ / 247p] 1.4ns / 1.1ns > 101°

TABLE II: Characteristics of different NVM technologies [|19].

We conclude that the MRAM-PUM acceleration approach
has the potential to overcome TSA’s bottlenecks and provide
a faster and more efficient solution than the state-of-the-art.

F. MRAM-based PUM Computation

Many prior works demonstrate significant performance and
energy efficiency improvements for machine learning work-
loads via PUM in resistive crossbars [80] by exploiting matrix-
vector multiplication. Other approaches can exploit bitwise
operations with high performance and energy savings [81]-
[83]. Figure 5}a shows a typical crossbar organization with
memory cells connected using bitlines and wordlines.
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Fig. 5: a) Crossbar organization. b) Magneto-resistive cell. c)
Reconfigurable SA that performs in-memory operations based
on the voltage variations across the bitline.

Figure [5}b shows the basic structure of a Spin-Orbit Torque
(SOT)-MRAM cell composed of a stack of Magnetic Tunnel
Junctions (MTJs) (cyan and red blocks in the figure) and a
Heavy Metal Layer (grey block in the figure).

« Magnetic Tunnel Junction (MTJ). Consists of a fixed
layer with a pinned magnetization direction, a free layer
whose magnetization can be changed, and an insulating
tunnel barrier between them.

« Heavy Metal Layer. This layer is placed next to the MJT
to facilitate the spin-orbit torque effect. Common heavy
metals used include tantalum (Ta) and tungsten (W).

The change of orientation of one of the layers of the stack
results in a variation in the device’s electrical resistance. How-
ever, compared to Spin-Transfer-Torque MTJ (STT-MTJ) [19],
SOT-MIJT features separated read and write paths, enhancing
endurance and widening the read/write margin. Then, sense
amplifiers interpret the resulting voltage as boolean:

« Read Operation. During a read operation, the resistance
of the MTJ is measured. The resistance is sensitive to
the relative alignment of the magnetization in the fixed
and free layers, allowing the stored data (Boolean values
representing O or 1) to be read.

« Write Operation. During a write operation, an electric
current is applied through the heavy metal layer, inducing
a spin current. This spin current exerts torque on the free
layer, causing its magnetization direction to switch and
changing the stored Boolean data.

Unlike STT-MT]J, which faces read disturbance issues lim-
iting the read circuit frequency, SOT-MTJ allows for flexible
adjustment of current magnitude in the read circuit without
concerns about read disturbance effects. As a consequence, it
enables more accurate sensing which is crucial to implement
in-memory operations. This suggests SOT-MRAM as a better
candidate for PUM applications.

Bitwise PUM Mechanism. The matrix-vector PUM map-
ping proposed in prior works cannot be applied to dynamic
programming (DP) algorithms (e.g., SDTW) since they per-
form matrix-vector multiplication. DP requires computing a
2D scoring matrix by traversing it row-by-row. Moreover, prior
crossbar substrates offer limited support for other operations
(e.g., minimum calculation). To overcome this challenge,
MAGIC [84] proposes decomposing complex operations into
simple Boolean functions (e.g., AND, NOR, XOR) to support
them in the substrate. The key idea is to vertically map the
operands (e.g., 32-bit integers) to the crossbars’ columns using
(typically) one bit per cell (e.g., each operand value takes 32
bits of a given column). Then, the desired operation (e.g.,
addition) is decomposed to simple bitwise operations (e.g.,
NOR) and performed bit-by-bit via sequentially activating two
cells for each operand simultaneously. This approach creates
a difference in the voltage over the bitline depending on the
content of the activated cells, which depends on the resistance
they hold. Then, a modified sense amplifier calculates the
result based on that voltage difference and thresholds, storing
itin a cell of the same column. While this process is inherently



sequential and the latency per operation is higher than a
CMOS-based approach, the 1) independence across columns
and 2) the lack of data movement enables immense parallelism
and, thus, an overall higher throughput than CMOS-based
solutions. Figure [5}c shows a sense amplifier (SA) slightly
modified with respect to commodity ones, including different
voltage thresholds for the operations.

III. MATSA ARCHITECTURE
A. Overview

MATSA is an MRAM-based Accelerator for Time Series
Analysis. Figure [6] presents an overview of our proposed
architecture. MATSA is composed of several chips divided
into multiple banks. Banks belonging to the same chip share
buffers and I/O interfaces and work in a lock-step approach.
Each bank is composed of several Multiple Memory Matrices
(MATs). The MATs share a Global Row Buffer (GRB) and
are connected to a Global Row Decoder (GRD). We place a
Local Row Buffer (LRB) for every pair of subarrays to improve
performance. Each subarray is composed of magnetoresistive
devices that are connected to the Write Word Lines (WWL),
Write Bit Lines (WBL), Read Word Lines (RWL), Read Bit
Lines (RBL), and Source Lines (SL). The compute-enabled
subarrays perform the sDTW computation using Reconfig-
urable Sense Amplifiers (RSAs).

The execution flow is orchestrated by a hierarchy of small
controllers implemented as finite state machines (FSMs).
MATSA comprises of 1) a global controller that orchestrates
inter-bank flow, 2) inter-mat controllers that take care of the
inter-mat flow, and 3) subarray controllers that activate the
memory rows and drive the RSAs to run sDTW’s algorithm.

B. MATSA Subarrays

MATSA subarrays are comprised of MRAM cells following
a crossbar organization and can work either in regular memory
or compute mode. This is a desirable feature since our design
consists of 1) subarrays that temporarily buffer the data until
they are being processed and 2) subarrays that perform the
actual computation. Adjacent subarrays are connected using
pass gates and aux columns (purple one in Figure [6) to enable
the data flow through the hierarchy.

Memory Subarrays. MATSA subarrays in regular memory
mode support both read and write data operations and work
in the same way as conventional non-PUM-enabled memory.

Compute Subarrays. MATSA subarrays working in com-
pute mode perform bit-wise operations on input data located in
cells of the same column. This enables the parallel execution
of many operations since all columns in the subarray work in
parallel. The key idea is to select two or three input values
simultaneously using the Memory Row Decoder (MRD). This
produces an equivalent resistance that depends on the content
of the selected cells and modifies the sensing voltage across
the column accordingly. MATSA’s Ctrl can select different
operations from the Reconfigurable Sense Amplifiers (RSAs)
that are placed per column. We modify the RSAs to execute
operations by equipping them with different resistances to

model the voltage thresholds, logic gates (i.e., NOR, XOR,
INV), a register, and a multiplexer (see Figure [6). The RSAs
in Compute subarrays support the same operations as mem-
ory subarray RSAs, enabling switching between operating in
compute and memory modes.

C. PUM Operations

MATSA implements the following PUM operations to sup-
port the execution of SDTW (detailed in Algorithm [I):

« Vertical Row Copy. MATSA executes consecutive mem-
ory read and write operations in the same cycle to
improve performance by activating two rows simultane-
ously. In the first half cycle, the subarray’s MRD activates
the source row read by the LRB. Next, the destination
row is activated to store the data in the second half cycle.
This mechanism works at MAT and bank levels using the
Global Row Buffer (GRB) to accelerate the copies across
the hierarchy.

« Diagonal Row Copy. The Ctrl executes a diagonal copy
shift data between adjacent columns. The Ctrl leverages
the available registers in the RSA and the interconnec-
tions between the RSAs. The operation is executed in two
steps. First, the RSA reads the value in the source column.
Second, the destination RSA (in an adjacent column)
reads the value from the source RSA and writes it to
its column.

« Addition/Subtraction. MATSA executes Bit-serial addi-
tion/subtraction across columns. The Ctrl executes op-
erations starting from the least significant bit of the
two operands until the most significant bit. Every bit
operation requires two memory cycles, further divided
into four half cycles. In the first half-cycle, the RSAs read
voltage difference across all cells activated in the same
bit lines as input operands and calculate the Sum. The
RSA updates the Sum based on the stored Carry value
in the register. In the second half-cycle, the RSAs write
the Sum value to the destination cell. In the third half-
cycle, the RSAs calculate the new Carry value based on
a majority function of the operand rows and an auxiliary
row reserved for the Carry bit. In the fourth half-cycle,
RSAs write the new Carry value in the auxiliary row for
the next Carry calculation.

« Absolute Calculation. To calculate the absolute value,
MATSA first checks the sign bit, leading to two possible
scenarios: 1) if the number is positive, no change is
needed; otherwise, 2) if the number is negative, MATSA
inverts the bits of the number and adds ’1’ to the result
(similar to 2’s complement).

e Minimum Value. To calculate the minimum value be-
tween three elements, MATSA performs two comparisons
based on the subtraction operation. First, it calculates the
difference between the two numbers. Second, it checks
the resulting sign from the previous step and selects one
of the two numbers for comparison against the third. The
final comparison sign determines the minimum between
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Fig. 6: MATSA'’s high-level architecture and data mapping flow.

three values. The logic can be similarly extended for
comparing more than three values.

D. Data Mapping

Section demonstrates that sSDTW is an embarrassingly
parallel algorithm. We design MATSA’s data mapping to lever-
age MRAM’s parallel column-wise computation capability.
Three data structures are involved in the sDTW computation:
1) reference sequence (of length O(M)), 2) query sequence
(of length O(N)), and 3) the warping matrix (dynamic pro-
gramming matric with size O(NM)). The data structures are
mapped to the subarray as follows:

¢ Reference Elements (R[j]). We vertically map each
reference element to 32 cells of a column. If 1) the
number of available columns is larger than the number
of elements in reference, we replicate the reference to
multiple columns to increase parallelism (distributing the
queries between them). If 2) the number of available
columns is lower than the number of elements in ref-
erence, we divide the query and complete the process
in sequential batches. No action is needed if 3) available
columns are equal to the number of elements in reference.

¢ Query Elements (Q[i]). We vertically map each query
element to 32 cells of a column. New query elements are
introduced on the left side of the crossbar, and they are
right-shifted in each successive step (see §III-E).

e Current S_vector (S[i, j]). We define the current
vector of the warping matrix as the S_vector. We verti-
cally map each element of the S_vector to 32 cells of
a column, being aligned with the query and reference
elements (i and j indexes, respectively).

« Temporal S_vectors (S[i-1, j-1], S[i-1, 3],
S[i, 3j-1]). We vertically map the three temporal
vectors along the reference and query elements. Mapping
the temporal vectors in the same subarray leverages
parallelism in the subarray as each column can compute
lines 8-9 of Algorithm [I] completely in parallel. Then,
those vectors are efficiently updated also in parallel for
the next iteration of the loop thanks to the vertical and
diagonal row copies.

o Aux Cells. Each column has a slice of 64 cells used to
hold the partial results during the execution flow.

We calculate the distance between each data point in the
reference and the query by iterating over the current S_vector
of the warping matrix (see Algorithm [I). Each element in the
S_vector (mapped across different crossbar columns) requires
accessing previous S_vector values that are mapped to the
same column (i.e., S[i — 1,j]) and adjacent columns (i.e.,
Sli,j — 1], S[i — 1,5 — 1]). To break this data dependency,
we add three temporal S_vectors in the crossbar array that
are updated in each step of the computation: S[i — 1,5 — 1],
Sli —1,7] and S[i,j — 4] (see Figure [6). Overall, our opti-
mization reduces the memory footprint from O(NM) (whole
matrix) to O(4M) (S_vector plus three aux ones).

E. Execution Flow

MATSA’s execution flow follows a wavefront ap-
proach [[85]], which reflects the computation pattern in dynamic
programming applications. The motivation is that sDTW’s
matrix has to be computed in the wavefront manner due to
inter-cell dependencies. Figure [/|shows an example of how we
tackle this restriction by assuming one reference time series
(red one) and two queries (green and ocher).
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Fig. 7: Wavefront-based sDTW computation in MATSA.

computed computed

The key idea is to make computation flow diagonally by
assigning one element in the wavefront to each processing ele-
ment (PE), and using the diagonal row copy operation (§III-C)
to shift data between columns on the wavefront. This is needed
since each cell requires taking values from its left column, thus



their data values need to be available prior to computation.
Because of that, each PE advances computation in the vertical
direction with one cell delay with its left PE, ensuring that
the data needed to calculate the next value is available.
Figure [7}a shows an initial state where the computation just
started. In this example, only PEs where their column contain
black rectangles are are performing computation. Note that in
every step the wavefront introduces a new PE to the active
set, achieving maximum performance after number_of PEs
steps. When reaching point, all PEs are able to perform
useful work in a given execution step. Figure [7}b shows how
this initialization phase can be amortized by pipelining. By
introducing a new query to compare against the reference
before the prior one finishes, MATSA ensures that all PEs
have work to do even during the transitions between queries.
Overall, this execution flow enables 1) leveraging the subarray
columns in parallel for the query, and 2) creation of an inter-
subarray pipeline to leverage parallelism across queries, i.e.,
by processing queries in parallel. The execution flow of each
cell goes through the following steps:

1) Distance Calculation. Calculation of dist(Q[i], R[j]),
which provides the first partial result P1. This process
implies several substeps depending on the selected dis-
tance metric, (e.g., subtraction — absolute value).

2) Minimum. Calculation without storing the result of
min(S[i—1,7—1],S[i—1, j], S[¢, j—1]), which produces
the value for the next step S1.

3) Addition. Calculation of the addition between the min-
imum value selected in the previous step (S1) and the
partial result P1.

4) Diagonal Copy. Copying the SJi,j] vector into the
S[é, j — 1] vector shifted by one to the right.

5) Diagonal Copy. Copying the S[i — 1, j] vector into the
Sli — 1,7 — 1] vector shifted by one to the right.

6) Vertical Copy. Copying the S[i, j] vector into the S[i —
1, 4] vector.

7) Diagonal Copy. Copying the Q[i] vector into the same
Q[i] vector but shifted one position to the right.

F. Programming Interface & System Integration

Programming Interface. We expose an API (Listing|T) that
allows to invoke MATSA from the host processing unit.
void matsa (DTYPE = ref, DTYPE * queries, uint64_t x
ref_size, uint64_t x query_sizes, uint64_t n_gueries,

char * mode, char * dist_metric, DTYPE anomaly_thres,
bool * anomalies, DTYPE * distances)

Listing 1: MATSA’s host interface function.

MATSA expects input data to be in a supported type/pre-
cision DTYPE (integer: int8, int16, int32 or int64;
fixed-point: fp32 or fp64), the selected mode (either
query_filtering, where queries are compared against the ref-
erence or self join, where slices of the reference are com-
pared against themselves) and the distance metric (abs_diff
or square_diff). MATSA can also take an anomaly threshold,
which returns an array with the detected ones.

System Integration. MATSA is designed to work syn-
ergistically with the CPU to accelerate TSA. We propose
three MATSA versions to meet the requirements of different
environments, as we describe next.

a) MATSA-HPC. A high-performance PCle-based acceler-
ator intended to be integrated into servers.

b) MATSA-Embedded. A small chip intended to be inte-
grated with edge devices (e.g., sensors).

¢) MATSA-Portable. A USB-based accelerator intended for
use in desktops and laptop computers.

IV. EVALUATION
A. Methodology

To comprehensively quantify the performance and energy
efficiency improvements of MATSA, we compare it with the
following systems.

e CPU-ARM (cpuarm): 4-core ARM CPU @ 2.5GHz,
32KB L1 and 8GB LPDDRA4.

o CPU-i7 (cpui7): 6-core (12 threads) Intel i7 x86 CPU
@ 3.2GHz, 64KB L1, 256KB L2, 12MB L3 and 64GB
DDRA4.

« CPU-Xeon (cpuxeon): Two 18-core (36 threads) Intel
Xeon Gold 6154 x86 CPUs @ 3GHz, 32KB L1, 1IMB
L2, 24.75 MB L3 and 768GB DDRA4.

o GPU (gpu): NVIDIA Tesla V100 with 32GB of HBM.

¢ FPGA (fpga): Xilinx Alveo U50 with 8GB HBM

memory.
¢« UPMEM (upmem): Server-class Processing-Near-
Memory DIMMs with 2560 DPUs running at
425MHz [10].

¢ MATSA-Embedded (matsa—-embedded): consisting
of 128 compute-enabled crossbars (IMB) and 896
regular-memory crossbars (7MB).

« MATSA-Portable (matsa-portable): consisting of
1024 compute-enabled crossbars (8MB) and 7168
regular-memory crossbars (S6MB).

« MATSA-HPC (matsa-hpc): consisting of 4096
compute-enabled crossbars (32MB) and 28672 regular-
memory crossbars (224MB).

Baselines. We use ZSim+Ramulator [86] and McPAT for
the cpuarm platform. For the cpui7 and cpuxeon plat-
forms, we have access to the target hardware and measure
performance and energy consumption values by averaging five
repeated executions. The energy consumption is determined
using Intel RAPL tools. To evaluate the performance of the
upmem platform, we implement and optimize the SDTW algo-
rithm as shown in Algorithm [T} To evaluate the performance
on the fgpa platform, we implement the sSDTW algorithm
using High-Level Synthesis vendor tools from Xilinx and
optimize the implementation to utilize eight compute units and
maximize the utilization of the available HBM bandwidth. We
evaluate the performance of the gpu platform by optimizing a
CUDA-based implementation of SDTW to maximize the HBM
bandwidth utilization via memory coalescing. We measure the
GPU’s energy consumption using the NVIDIA-smi tool.



MATSA. Due to the lack of a cycle-accurate simulator
for MRAM-based accelerators, we implement an in-house
simulator for MRAM-based PUM. Figure [§|shows an overview
this simulator. We provide the workload characteristics and the
MRAM device characteristics under study, and the simulator
computes the performance and energy efficiency in return. We
plan to release this simulator for public use of the community
after acceptance of this work.

We perform a sensitivity analysis by sweeping MRAM
devices’ latency and energy from conservative to optimistic
values based on MRAM device trends [87] listed in Table
Based on that, we conservatively select an operating point
(highlighted in bold) for the evaluations taking into account
realistic MRAM device progress projections [88]. We input
the workload parameters and MRAM characteristics obtained
from the parameter sweep to the simulator to get the work-
load’s execution time and energy consumption.

[INPUT)] I

Perfor-

sDTW
Algorithm

[OUTPUT]
Execution

B. MATSA Characterization

We perform a design space exploration of MATSA taking
into consideration performance parameters of the cells (i.e.,
read/write latencies and energies).

Read/Write Latencies. We evaluate how changing the
read/write latencies affects the execution time and present the
results in Figure 0] We observe that, increasing read latency
by 10x incurs a 4.7 x execution time penalty, while increasing
the write latency incurs a 6.5 penalty.
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Fig. 9: Execution time when varying cell read and write
latencies (ref_size=128K, query_size=8K, num_queries=8K,
matsa_cols=128K).
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Fig. 8: Overview of MATSA Simulator.

Execution
Energ

| Parameter ‘ Values ‘
Crossbar Size (cells) 256x256
Number of Crossbars | 128, 256, 512, 1024, 2048, 4096
Read Latency (ns) 1, 3,5, 10, 20
Write Latency (ns) 1, 3, 5, 10, 20
Read Energy (pJ) 20, 50, 100
Write Energy (pJ) 30, 70, 400

TABLE III: MATSA design space exploration parameters.

Datasets. We perform MATSA’s design exploration using the
datasets in Table[IV] which ease understanding of the tradeoffs.
Then, we compare MATSA against baselines in real scenarios
using the real datasets in Table The data type for these
evaluations is int 32, which covers the data ranges of all the
evaluated the workloads.

| Parameter \ Values \

64K, 128K, 256K, 512K
4K, 8K, 16K, 32K
4K, 8K, 16K, 64K

TABLE IV: Workloads used in MATSA characterization.

Reference Size
Query Size
Number of Queries

Time Series

| Reference Size | Query Size [ Num. Queries |

Human [_89] 7997 120 128K
Song [90] 20234 200 64K
Penguin [91] 109842 800 32K
Seismology [90] 1727990 64 16K
Power [92] 1754985 1536 16K
ECG [93] 1800000 512 16K

TABLE V: Real-world workloads used in our evaluation.

Key Observation 3: using a low write latency memory
technology is crucial for MATSA’s design.

Read/Write Energies. We evaluate how the total execution
energy varies with the per word write/read energy, and show
the results in Figure[T0] We observe here that the contributions
of read energy and write energy are similar, thus both of them
have to be carefully taken into consideration.
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Fig. 10: Execution energy when varying cell read and write
energies (ref_size=128K, query_size=8K, num_queries=8K,
matsa_cols=128K).

Key Observation 4: read energy contributes 45% and
write energy contributes 55% to the total energy consump-
tion of a given execution.

Dataset Sizes. First, we evaluate how the execution time
varies with different dataset sizes (i.e., ref_size and query_size)
and present the results in Figure [IT] Second, we evaluate how
the execution energy varies with different dataset sizes and
present the results in Figure |12l We observe that both reference
size and query size contribute equally to the execution time and
energy. This happens because the total number of operations
needed is directly proportional to ref_sizexquery_size. Our
observation corroborates our earlier analysis stating that query-
specific SDTW implementations do not fairly represent GPU
performance, and there is a need for a more general solution.
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Fig. 11: Execution time when varying dataset sizes

(num_queries=8K, matsa_cols=128K).
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(num_queries=8K, matsa_cols=128K).

Key Observation 5: Total execution time and energy
consumption are proportional to both ref size and the
query_size.

MATSA sizes. We evaluate how the execution time varies
when changing the number of MATSA’s compute-enabled
columns in Figure [T3] MATSA provides almost-ideal scaling.
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Fig. 13: Execution time when varying MATSA sizes.

Key Observation 6: Bit-serial computation across
columns enables almost-ideal scaling when increasing the
size of the workload.

Endurance. Assuming that MATSA is built using 5/10ns
rd/wr cells and runs 24/7 for ten years, we estimate that each
cell will be written ~ 4 x 10° times. Based on Table [T, limited-
endurance cells (e.g., ReRAM) would fail within one day. In
contrast, high-endurance cells (10'® writes for SOT-MRAM)
can provide a very large usable lifetime.

Hardware Overheads. MATSA introduces hardware over-
heads in two components: 1) Reconfigurable SAs and 2)
MATSA controllers. Reconfigurable SAs add 13 transistors to
a traditional SA, thus taking into consideration typical SA and
cell areas [94], [95]], our design increases the overall crossbar
area by less than 1%. MATSA controllers are implemented as
small finite-state machines whose area is negligible compared
to the memory arrays.
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C. System Evaluation

MATSA-Embedded and MATSA-Portable. We compare
the performance of MATSA-Embedded (32K compute-enabled
columns) and MATSA-Portable (256K compute-enabled
columns) with cpuarm, cpui7, and fpga baselines in Fig-
ure Eh The smallest version, MATSA-Embedded, provides
30.20%x/1.30%x/8.14x lower execution times than cpuarm,
cpui’, and fpga, respectively. MATSA-Portable is further
able to improve the performance by 241.66x/10.40x/65.28 x
with respect to the same baselines, respectively. These per-
formance improvements stem from the higher available paral-
lelism in PUM, where all compute-enable columns can com-
pute independently. Next, we compare the energy consump-
tion of MATSA-Embedded and MATSA-Portable with the
same baselines in Figure [T4b. MATSA-Embedded reduces the
energy consumption by 45.67x/10.64x/24.58 x with respect
to cpuarm, cpui?7 and fpga baselines, respectively. We
observe that 1) the energy reduction comes from eliminating
the expensive off-chip data movement and 2) MATSA-Portable
reduces the energy consumption by roughly the same factor as
MATSA-Embedded. We deduce from these results that scaling
MATSA improves the performance but does not penalize the
energy efficiency.
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Fig. 14: Latency and energy consumption of MATSA-
Embedded (num_cols=32K) and MATSA-Portable

(num_cols=256K) versus baselines (rd_lat=5ns, wr_lat=10ns,
rd_en=50nJ, wr_en=70nJ).

MATSA-HPC. We first perform a performance compari-
son of MATSA-HPC and present the results in Figure [T3h.
We observe that MATSA-HPC achieves 7.3x/6.15x/6.3x
lower execution times than cpuxeon, gpu and upmemn,
respectively, owing to enormous available parallelism (one
million compute columns). Second, we compare the energy
consumption of MATSA-HPC in Figure [T5p and observe that
it provides 11.29x/4.21x/2.65%x lower energy consumption
than cpuxeon, gpu and upmem, respectively. The energy
efficiency benefits of MATSA-HPC stem from the elimination
of the off-chip data movements. We note that cpuxeon is
bottlenecked by 1) the limited parallelism (number of cores)
and 2) the high data movement costs through the memory
hierarchy. The gpu baseline provides high parallelism but is
limited by data movement from and to memory. The PNM-
based upmem baseline provides high parallelism and lowers
data access costs compared to CPU and GPUs. However,



% " [ cpuxeon [0 gpu [ upmem Il matsa-hpc

g 10

pj 2|

e

“ o™ oo° Qe‘\‘?'“\ se'\"‘“o oo*® «
Input Dataset

S 108

& 104

§103

‘<\““\a“ o ?0“96\“ sé“"“o' ?°‘“¢‘ « Ne"‘ge

Input Dataset

Fig. 15: Execution times and energy consumption of

MATSA-HPC (num_cols=1M) versus baselines (rd_lat=5ns,
wr_lat=10ns, rd_en=50nJ, wr_en=70nJ).

the sSDTW kernel is compute-bound in upmem due to small
general-purpose cores, in contrast to MATSA, a dedicated
accelerator design for the sDTW kernel.

MATSA Benefits. Table [VI| summarizes MATSA’s benefits.

| MATSA Version | Baseline | Speedup | Energy Savings |
Embedded cpuarm 30.20% 45.67x
Portable cpui? 10.41x 10.65x
FPGA 65.01x 24.58 x
Xeon 7.35% 11.29%
HPC UPMEM 6.31x 2.65%
GPU 6.15x 4.21x%

TABLE VI: MATSA’s Speedup and Energy over baselines.

V. RELATED WORK

To our knowledge, MATSA is the first SDTW accelerator via
MRAM-based PUM. We compare extensively to CPU, GPU,
FPGA, and state-of-the-art PNM platforms in §[V] In this
section, we describe related works focusing on accelerating
sDTW and prior PUM-based accelerators.

Accelerating Dynamic Time Warping (DTW). Several
works attempt to accelerate the SDTW kernel using GPUs [74],
[96] and FPGAs [97], [98]. demonstrates that MATSA
improves upon the performance of GPUs and FPGAs by 6.15x
and 65.28 x respectively, and supports arbitrary-sized datasets,
a key drawback of prior work.

Processing Near/Using Memory. There has been a signifi-
cant interest in Processing-[Near/Using]-Memory-based solu-
tions for overcoming the von Neumann bottleneck in mod-
ern computation platforms [6], [8], [12], [14]-[16], [76],
[84], [99]-[229] for various applications using accelerators
or general-purpose cores. In [174], ARM cores are used as
NDP compute units to improve data analytics operators (e.g.,
group, join, sort). IMPICA [230] is an NDP pointer chasing
accelerator. Tesseract [231]] is a scalable NDP accelerator for
parallel graph processing. TETRIS [173]] is an NDP neural
network accelerator. Lee et al. [232] propose an NDP ac-
celerator for similarity search. GRIM-Filter [[146] is an NDP
accelerator for pre-alignment filtering [233[|-[237] in genome
analysis [238]]. Boroumand et al. [9] analyze the energy and
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performance impact of data movement for several widely-
used Google consumer workloads, providing NDP accelerators
for them. CoNDA [150] provides efficient cache coherence
support for NDP accelerators. SparseP [239]], [240] provides
efficient data partitioning/maping techniques of the SpMV
kernel tailored for near-bank NDP architectures. Finally, an
NDP architecture [169] has been proposed for MapReduce-
style applications.. Xu et al. [241]] propose a memristor-based
accelerator for accelerating the sSDTW kernel. Despite promis-
ing performance, they do not discuss endurance challenges
associated with memristors that restrict the lifetime of the
accelerator. In contrast, MATSA considers this challenge and
offers a usable lifetime of several decades. Chen and Gu [242]
propose an sDTW accelerator that exploits DTW pipelining
using a specially designed time flip-flop. Although this work
uses memristors for computation, they do not leverage PUM.
The data must be moved from/to memory (i.e., memristors
do not store the data). In contrast, MATSA eliminates off-
chip data movement to obtain high performance and energy
efficiency.

VI. CONCLUSIONS

This paper presents MATSA, the first MRAM-based Accel-
erator for Time Series Analysis. The key idea is to exploit
magnetoresistive crossbars to enable energy-efficient and fast
time series computation in memory. MATSA provides the
following key benefits: 1) significantly higher parallelism
exploiting column-level bitwise operations, and 2) reduction
in data movement overheads by leveraging PUM. MATSA
improves performance and energy consumption over CPU,
GPU, FPGA, and PNM platforms.

ACKNOWLEDGEMENTS

This work has been supported by TIN2016-80920-R and
UMAI18-FEDERJA-197 Spanish projects, and HIiPEAC col-
laboration grants. We also acknowledge support from the
SAFARI Group’s industrial partners, especially ASML, Face-
book, Google, Huawei, Intel, Microsoft, and VMware, as well
as support from Semiconductor Research Corporation.

REFERENCES

[1

—

Philippe Esling and Carlos Agon.
CSUR, 2012.

Abdullah Mueen and Eamonn Keogh. Extracting Optimal Performance
from Dynamic Time Warping. In SIGKDD, 2016.

Xinxin Yao and Hua-Liang Wei. A Modified Dynamic Time Warping
(MDTW) and Innovative Average Non-self Match Distance (ANSD)
Method for Anomaly Detection in ECG Recordings. In Recent
Advances in Al-enabled Automated Medical Diagnosis. CRC Press,
2022.

Sara Alaee, Ryan Mercer, Kaveh Kamgar, and Eamonn Keogh. Time
Series Motifs Discovery Under DTW Allows More Robust Discovery
of Conserved Structure. Data Mining and Knowledge Discovery,
35(3):863-910, 2021.

Juan Gémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, and Onur Mutlu. Benchmarking a New Paradigm:
Experimental Analysis and Characterization of a Real Processing-in-
Memory System. IEEE Access, 10:52565-52608, 2022.

Time-series Data Mining. ACM

[2

—

[3

[t

(4]

(5]



(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Christina Giannoula and Ivan Fernandez and Juan Gémez-Luna and
Nectarios Koziris and Georgios Goumas and Onur Mutlu. SparseP:
Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures. Proc. ACM Meas. Anal. Comput.
Syst., 6(1), 2022.

Onur Mutlu, Saugata Ghose, Juan Goémez-Luna, and Rachata
Ausavarungnirun. A Modern Primer On Processing In Memory. In
Emerging Computing: From Devices to Systems: Looking Beyond
Moore and Von Neumann, pages 171-243. Springer, 2022.

Onur Mutlu, Saugata Ghose, Juan Goémez-Luna, and Rachata
Ausavarungnirun. Processing Data Where it Makes Sense: Enabling
In-Memory Computation. Microprocessors and Microsystems, 2019.
Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Ku-
usela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu.
Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks. ASPLOS, 2018.

Fabrice Devaux. The True Processing in Memory Accelerator. In 2019
IEEE Hot Chips 31 Symposium (HCS), pages 1-24. IEEE Computer
Society, 2019.

Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. AlignS: A
Processing-in-Memory Accelerator for DNA Short Read Alignment
Leveraging SOT-MRAM. In DAC, pages 1-6. IEEE, 2019.
Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng,
Bob Brennan, and Yuan Xie. DRISA: A DRAM-based Reconfigurable
In-situ Accelerator. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 288-301. IEEE,
2017.

Shaahin Angizi, Zhezhi He, Amro Awad, and Deliang Fan. MRIMA:
An MRAM-based In-Memory Accelerator. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
39(5):1123-1136, 2019.

S. Angizi, A. S. Rakin, and D. Fan. CMP-PIM: An Energy-efficient
Comparator-based Processing-in-Memory Neural Network Accelerator.
In DAC, 2018.

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan,
Amirali Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu,
Phillip B Gibbons, and Todd C Mowry. Ambit: In-memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM Technology. In
MICRO, 2017.

Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, Jodo Dinis
Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser,
Saugata Ghose, Juan Gémez-Luna, and Onur Mutlu. SIMDRAM: A
Framework for Bit-Serial SIMD Processing Using DRAM. In Pro-
ceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
329-345, 2021.

Kaushik Roy, Indranil Chakraborty, Mustafa Ali, Aayush Ankit, and
Amogh Agrawal. In-memory Computing In Emerging Memory Tech-
nologies for Machine Learning: An Overview. In DAC, 2020.
Eduardo Perez, Cristian Zambelli, Mamathamba Kalishettyhalli Ma-
hadevaiah, Piero Olivo, and Christian Wenger. Toward Reliable Multi-
level Operation in RRAM Arrays: Improving Post-algorithm Stability
and Assessing Endurance/Data Retention. IEEE Journal of the Electron
Devices Society, 2019.

Tim Daulby, Anand Savanth, Alex S Weddell, and Geoff V Merrett.
Comparing NVM Technologies Through the Lens of Intermittent
Computation. In Proceedings of the 8th International Workshop on
Energy Harvesting and Energy-Neutral Sensing Systems, pages 77-78,
2020.

Huai Lin, Xi Luo, Long Liu, Di Wang, Xuefeng Zhao, Ziwei Wang,
Xiaoyong Xue, Feng Zhang, and Guozhong Xing. All-electrical Con-
trol of Compact SOT-MRAM: Toward Highly Efficient and Reliable
Non-volatile In-memory Computing. Micromachines, 2022.

Shimeng Yu and Pai-Yu Chen. Emerging Memory Technologies:
Recent Trends and Prospects. IEEE Solid-State Circuits Magazine,
8(2):43-56, 2016.

William J Gallagher, Eric Chien, Tien-Wei Chiang, Jian-Cheng Huang,
Meng-Chun Shih, CY Wang, Christine Bair, George Lee, Yi-Chun
Shih, Chia-Fu Lee, et al. Recent Progress and Next Directions for
Embedded MRAM Technology. In 2019 Symposium on VLSI Circuits,
pages T190-T191. IEEE, 2019.

Pranav Patel, Eamonn Keogh, Jessica Lin, and Stefano Lonardi. Mining
Motifs in Massive Time Series Databases. In ICDM, 2002.

12

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle.
Finding the Most Unusual Time Series Subsequence: Algorithms and
Applications. Knowledge and Information Systems, 11(1):1-27, 2007.
Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum,
Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen,
and Eamonn Keogh. Matrix Profile I: All Pairs Similarity Joins for
Time Series: A Unifying View That Includes Motifs, Discords and
Shapelets. In ICDM, 2016.

Chotirat Ann Ratanamahatana and Eamonn Keogh. Making Time-
Series Classification More Accurate Using Learned Constraints. In
Proceedings of the 2004 SIAM international conference on data mining,
pages 11-22. SIAM, 2004.

Robert H Shumway and David S Stoffer. Time Series Analysis and Its
Applications: With R Examples. 2017.

André E X Brown, Eviatar Yemini, Laura J Grundy, Tadas Jucikas, and
William Schafer. A Dictionary of Behavioral Motifs Reveals Clusters
of Genes Affecting Caenorhabditis Elegans Locomotion. Proceedings
of the National Academy of Sciences of the United States of America,
110, 2012.

Martin Straume. DNA Microarray Time Series Analysis: Automated
Statistical Assessment of Circadian Rhythms in Gene Expression
Patterning. In Methods in Enzymology, volume 383, pages 149-166.
Elsevier, 2004.

Ziv Bar-Joseph. Analyzing Time Series Gene Expression Data.
Bioinformatics, 20(16):2493-2503, 2004.

Arvind Balasubramanian, Jun Wang, and Balakrishnan Prabhakaran.
Discovering Multidimensional Motifs in Physiological Signals for
Personalized Healthcare. JSTSP, 2016.

Yoshiki Tanaka, Kazuhisa Iwamoto, and Kuniaki Uehara. Discovery
of Time-Series Motif from MultiDimensional Data Based on MDL
Principle. Machine Learning, 58:269-300, 2005.

Alireza Vahdatpour, Navid Amini, and Majid Sarrafzadeh. Toward
Unsupervised Activity Discovery Using Multi-dimensional Motif De-
tection in Time Series. In Int’l. Jont Conf. on Artifical Intelligence,
pages 1261-1266, 2009.

Amy McGovern, Derek H. Rosendahl, Rodger A. Brown, and
Kelvin K. Droegemeier. Identifying Predictive Multi-dimensional Time
Series Motifs: an Application to Severe Weather Prediction. Data
Mining and Knowledge Discovery, 22(1):232-258, 2011.

Ilya Kolb, Giovanni Talei Franzesi, Michael Wang, Suhasa B. Ko-
dandaramaiah, Craig R. Forest, Edward S. Boyden, and Annabelle C.
Singer. Evidence for Long-Timescale Patterns of Synaptic Inputs in
CALl of Awake Behaving Mice. Journal of Neuroscience, 38(7):1821—
1834, 2018.

Baldzs Szigeti, Ajinkya Deogade, and Barbara Webb. Searching
for Motifs in the Behaviour of Larval Drosophila Melanogaster
and Caenorhabditis Elegans Reveals Continuity Between Behavioural
States. Journal of The Royal Society Interface, 12(113):20150899,
2015.

T. Warren Liao. Clustering of Time Series Data - A Survey. Pattern
Recognition, 38(11):1857-1874, 2005.

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-
Series Clustering - A Decade Review. Inf. Syst., 53(C):16-38, 2015.
Eamonn Keogh and Shruti Kasetty. On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. Data
Min. Knowl. Discov., 7(4):349-371, 2003.

Daniel T. Trugman and Peter M Shearer. GrowClust: A Hierarchical
Clustering Algorithm for Relative Earthquake Relocation, with Ap-
plication to the Spanish Springs and Sheldon, Nevada, Earthquake
Sequences. Seismological Research Letters, 88(2A), 2017.

A Double-difference Earthquake Location Algorithm: Method and
Application to the Northern Hayward Fault. Bull. Seism. Soc. Am.,
2000.

Annemarie Christophersen, Natalia I. Deligne, Anca M. Hanea, Lau-
riane Chardot, Nicolas Fournier, and Willy P. Aspinall. Bayesian
Network Modeling and Expert Elicitation for Probabilistic Eruption
Forecasting: Pilot Study for Whakaari/White Island, New Zealand.
Frontiers in Earth Science, 6:211, 2018.

Chris McKee, Ima Itikarai, and Hugh Davies. Instrumental Volcano
Surveillance and Community Awareness in the Lead-Up to the 1994
Eruptions at Rabaul, Papua New Guinea. In Observing the Volcano
World: Volcano Crisis Communication, pages 205-233. Springer Inter-
national Publishing, 2018.



[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

E. Philip Howrey. The Role of Time Series Analysis in Econometric
Model Evaluation. Evaluation of Econometric Models, pages 275-307,
1980.

R.H. Shumway. Applied Statistical Time Series Analysis. Prentice-
Hall, Englewood Cliffs., 1988.

Ruey S. Tsay. Analysis of Financial Time Series. Wiley Series in
Probability and Statistics. Wiley-Interscience, 2005.

Kei Nakagawa, Mitsuyoshi Imamura, and Kenichi Yoshida. Stock Price
Prediction Using k-Medoids Clustering with Indexing Dynamic Time
Warping. Electronics and Communications in Japan, 2019.

George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and
Greta M. Ljung. Time Series Analysis: Forecasting and Control. Wiley-
Interscience, 2015.

Alex T Nelson and Eric A Wan. A Two-Observation Kalman
Framework for Maximum-Likelihood Modeling of Noisy Time Series.
In 1998 IEEE International Joint Conference on Neural Networks
Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No. 98CH36227), volume 3, pages 2489-2494. IEEE, 1998.
David Barber, A Taylan Cemgil, and Silvia Chiappa. Bayesian Time
Series Models. Cambridge University Press, 2011.

S. A. P. Kumar and P. K. Bora. Time Series Analysis and Signal Pro-
cessing. In Conf. on Computational Intelligence and Signal Processing,
pages 24-24, 2012.

Berlin Wu. Pattern Recognition and Classification in Time Series
Analysis. Applied Mathematics and Computation, 62(1):29 — 45, 1994.
Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characteri-
zation of Network-wide Anomalies in Traffic Flows. In IMC, pages
201-206. ACM, 2004.

Raj Jain and Shawn Routhier. Packet Trains—Measurements and a New
Model for Computer Network Traffic. IEEE Journal on Selected Areas
in Communications, 4(6):986-995, 1986.

Paul Barford and David Plonka. Characteristics of Network Traffic
Flow Anomalies. In Internet Measurement Workshop, pages 69-73.
Citeseer, 2001.

Lal Hussain, Wajid Aziz, Jalal S. Alowibdi, Nazneen Habib, Muham-
mad Rafique, Sharjil Saeed, and Syed Zaki Hassan Kazmi. Symbolic
Time Series Analysis of Electroencephalographic (EEG) Epileptic
Seizure and Brain Dynamics with Eye-open and Eye-closed Subjects
During Resting States. Journal of Physiological Anthropology, 36(1),
2017.

T. Balli and R. Palaniappan. EEG Time Series Analysis with Exponen-
tial Autoregressive Modelling. In Canadian Conf. on Electrical and
Computer Engineering, 2008.

Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya, Kuan-
Yu Chen, David Blaauw, Reetuparna Das, and Satish Narayanasamy.
SquiggleFilter: An Accelerator for Portable Virus Detection. In
MICRO, pages 535-549, 2021.

Guangyuan Chen, Guoliang Lu, Zhaohong Xie, and Wei Shang.
Anomaly Detection in EEG Signals: a Case Study on Similarity
Measure. Computational Intelligence and Neuroscience, 2020.

R Vio, Niels Kristensen, Henrik Madsen, and W Wamsteker. Time
Series Analysis in Astronomy: Limits and Potentialities. Astronomy
and Astrophysics, 435, 10 2004.

Jeffrey D. Scargle. Studies in Astronomical Time Series Analysis.
V. Bayesian Blocks, a New Method to Analyze Structure in Photon
Counting Data. The Astrophysical Journal, 504(1):405-418, 1998.
Kajal Nusratullah, Shoab Ahmad Khan, Asadullah Shah, and
Wasi Haider Butt. Detecting Changes in Context Using Time Series
Analysis of Social Network. In 2015 SAI Intelligent Systems Confer-
ence (IntelliSys), pages 996-1001. IEEE, 2015.

Sitaram Asur and Bernardo A Huberman. Predicting the Future
with Social Media. In Proceedings of the 2010 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology-Volume 01, pages 492-499. IEEE Computer Society, 2010.
Anna Klos, Machiel S Bos, and Janusz Bogusz. Detecting Time-
varying Seasonal Signal in GPS Position Time Series with Different
Noise Levels. GPS Solutions, 22(1):1-11, 2018.

Robert Stoermer, Ralph Mager, Andreas Roessler, Franz Mueller-
Spahn, and Alex H Bullinger. Monitoring Human-virtual Reality
Interaction: a Time Series Analysis Approach. CyberPsychology &
Behavior, 3(3):401-406, 2000.

Shah Muhammed Abid Hussain and ABM Harun-ur Rashid. User
Independent Hand Gesture Recognition by Accelerated DTW. In
ICIEV, pages 1033-1037. IEEE, 2012.

13

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]

Alina Delia Calin. Gesture Recognition on Kinect Time Series Data
Using Dynamic Time Warping and Hidden Markov Models. In
SYNASC, pages 264-271. IEEE, 2016.

Samet Ayhan and Hanan Samet. Time Series Clustering of Weather
Observations in Predicting Climb Phase of Aircraft Trajectories. In
IWCTS, pages 25-30, 2016.

Li Li, Xiaonan Su, Yi Zhang, Yuetong Lin, and Zhiheng Li. Trend
Modeling for Traffic Time Series Analysis: An Integrated Study. IEEE
Transactions on Intelligent Transportation Systems, 16(6):3430-3439,
2015.

Stephanie L Hyland, Martin Faltys, Matthias Hiiser, Xinrui Lyu,
Thomas Gumbsch, Cristobal Esteban, Christian Bock, Max Horn,
Michael Moor, Bastian Rieck, et al. Early Prediction of Circulatory
Failure in the Intensive Care Unit Using Machine Learning. Nature
Medicine, 26(3):364-373, 2020.

Donald J Berndt and James Clifford. Using Dynamic Time Warping
to Find Patterns in Time Series. In KDD workshop, volume 10, pages
359-370. Seattle, WA, USA:, 1994.

Renjie Wu and Eamonn J Keogh. FastDTW is Approximate and Gen-
erally Slower than the Algorithm it Approximates. IEEE Transactions
on Knowledge and Data Engineering, 2020.

Tuomas S Koskela, Mathieu Lobet, Jack Deslippe, and Zakhar Matveev.
Roofline Analysis in the Intel® Advisor to Deliver Optimized Perfor-
mance for applications on Intel® Xeon Phi™ Processor. Technical
report, LBNL, Berkeley, 2017.

Bertil Schmidt and Christian Hundt. cuDTW++: Ultra-Fast Dynamic
Time Warping on CUDA-Enabled GPUs. In Euro-Par, pages 597-612.
Springer International Publishing, 2020.

NVIDIA Visual Profiler. https://developer.nvidia.com/nvidia-visual-
profiler. Accessed 16 November 2023.

UPMEM. Introduction to UPMEM PIM. Processing-in-Memory (PIM)
on DRAM Accelerator (White Paper), 2018.

Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. RAIDR:
Retention-aware Intelligent DRAM Refresh. ACM SIGARCH Com-
puter Architecture News, 2012.

Pengfei Zuo, Yu Hua, Ming Zhao, Wen Zhou, and Yuncheng Guo.
Improving the Performance and Enndurance of Encrypted Non-Volatile
Main Memory Through Deduplicating Writes. In MICRO, 2018.
Alessandro Grossi, Cristian Zambelli, Piero Olivo, Paolo Pellati,
Michele Ramponi, Christian Wenger, Jeremy Alvarez-Herault, and
Ken Mackay. An Automated Test Equipment for Characterization of
Emerging MRAM and RRAM Arrays. IEEE Transactions on Emerging
Topics in Computing, 6(2):269-277, 2016.

Sparsh Mittal. A Survey of ReRAM-based Architectures for
Processing-In-Memory and Neural Networks. Machine Learning and
Knowledge Extraction, 1(1):75-114, 2018.

Yue Zhang, Jinkai Wang, Chenyu Lian, Yining Bai, Guanda Wang,
Zhizhong Zhang, Zhenyi Zheng, Lei Chen, Kun Zhang, Georgios Sir-
akoulis, et al. Time-domain Computing in Memory Using Spintronics
for Energy-efficient Convolutional Neural Network. /EEE Transactions
on Circuits and Systems I: Regular Papers, 68(3):1193-1205, 2021.
Xing Jin, Weichong Chen, Ximing Li, Ningyuan Yin, Caihua Wan,
Mingkun Zhao, Xiufeng Han, and Zhiyi Yu. High-reliability, Recon-
figurable, and Fully Non-volatile Full-adder Based on SOT-MTJ for
Image Processing Applications. IEEE Transactions on Circuits and
Systems II: Express Briefs, 70(2):781-785, 2022.

Jinkai Wang, Yining Bai, Hongyu Wang, Zuolei Hao, Guanda Wang,
Kun Zhang, Youguang Zhang, Weifeng Lv, and Yue Zhang. Recon-
figurable Bit-serial Operation Using Toggle SOT-MRAM for High-
performance Computing in Memory Architecture. IEEE Transactions
on Circuits and Systems I: Regular Papers, 69(11):4535-4545, 2022.
Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nim-
rod Wald, Eby G Friedman, Avinoam Kolodny, and Uri C Weiser.
MAGIC—Menmristor-aided Logic. IEEE Transactions on Circuits and
Systems II: Express Briefs, 61(11):895-899, 2014.

Antonio J Dios, Angeles Navarro, Rafael Asenjo, Francisco Corbera,
and Emilio L Zapata. A Case Study of the Task-based Parallel
Wavefront Pattern. In Applications, Tools and Techniques on the Road
to Exascale Computing, pages 65-72. I0S Press, 2012.
ZSim+Ramulator. |github.com/CMU-SAFARI/ramulator-pim, 2022.
Rajesh Saha, Yogendra Pratap Pundir, and Pankaj Kumar Pal. Compar-
ative Analysis of STT and SOT Based MRAMs for Last Level Caches.
Journal of Magnetism and Magnetic Materials, 551:169161, 2022.


https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
github.com/CMU-SAFARI/ramulator-pim

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]
[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

Tetsuo Endoh, Hiroaki Honjo, Koichi Nishioka, and Shoji Ikeda.
Recent Progresses in STT-MRAM and SOT-MRAM for next generation
MRAM. In 2020 IEEE Symposium on VLSI Technology, pages 1-2.
IEEE, 2020.

Ashok Veeraraghavan, Rama Chellappa, and Amit K Roy-Chowdhury.
The Function Space of an Activity. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 1, pages 959-968. IEEE, 2006.

C M Yeh, H V Herle, and E Keogh. Matrix Profile III: The Matrix
Profile Allows Visualization of Salient Subsequences in Massive Time
Series. In ICDM, 2016.

Penguin Data.  https://www.cs.ucr.edu/~eamonn/MatrixProfile.html,
2022.

David Murray, Jing Liao, Lina Stankovic, Vladimir Stankovic, Richard
Hauxwell-Baldwin, Charlie Wilson, Michael Coleman, Tom Kane, and
Steven Firth. A Data Management Platform for Personalised Real-Time
Energy Feedback. 2015.

A. Taddei, G. Distante, M. Emdin, P. Pisani, G. B. Moody, C. Zee-
lenberg, and C. Marchesi. The European ST-T Database: Standard for
Evaluating Systems for the Analysis of ST-T Changes in Ambulatory
Electrocardiography. European Heart Journal, 1992.

Mesbah Uddin and Garrett S Rose. A Practical Sense Amplifier
Design for Memristive Crossbar Circuits (PUF). In 2018 31st IEEE
International System-on-Chip Conference (SOCC), pages 209-214.
IEEE, 2018.

Yeongkyo Seo, Kon-Woo Kwon, and Kaushik Roy. Area-efficient
SOT-MRAM with a Schottky Diode. [EEE Electron Device Letters,
37(8):982-985, 2016.

Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli,
and Satish Narayanasamy. Accelerated Dynamic Time Warping on
GPU for Selective Nanopore Sequencing. bioRxiv, 2023.
Seongyoung Kang, Jinyeong Moon, and Sang-Woo Jun. FPGA-
Accelerated Time Series Mining on Low-Power IoT Devices. In ASAP,
2020.

Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and
Huazhong Yang. Accelerating Subsequence Similarity Search Based
on Dynamic Time Warping Distance with FPGA. FPGA, 2013.
Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gémez-
Luna, and Onur Mutlu. Processing-in-Memory: A Workload-driven
Perspective. IBM JRD, 2019.

Damla Senol Cali, Gurpreet S Kalsi, Ziilal Bing6l, Can Firtina, Lavanya
Subramanian, Jeremie S Kim, Rachata Ausavarungnirun, Mohammed
Alser, Juan Gomez-Luna, Amirali Boroumand, et al. GenASM: A
High-Performance, Low-Power Approximate String Matching Accel-
eration Framework for Genome Sequence Analysis. In MICRO, 2020.
Gagandeep Singh, Juan Gémez-Luna, Giovanni Mariani, Geraldo F
Oliveira, Stefano Corda, Sander Stuijk, Onur Mutlu, and Henk Cor-
poraal. NAPEL: Near-memory Computing Application Performance
Prediction Via Ensemble Learning. In DAC, 2019.

Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner,
Juan Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal.
NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling. In FPL, 2020.

Harold S Stone. A Logic-in-Memory Computer. /EEE TC, 1970.

W. H. Kautz. Cellular Logic-in-Memory Arrays. IEEE TC, 1969.
David Elliot Shaw, Salvatore J. Stolfo, Hussein Ibrahim, Bruce Hillyer,
Gio Wiederhold, and JA Andrews. The NON-VON Database Machine:
A Brief Overview. IEEE Database Eng. Bull., 1981.

P. M. Kogge. EXECUBE - A New Architecture for Scaleable MPPs.
In ICPP, 1994.

Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in Memory:
The Terasys Massively Parallel PIM Array. IEEE Computer, 1995.
David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-
ine Yelick. A Case for Intelligent RAM. IEEE Micro, 1997.

Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active Pages:
A Computation Model for Intelligent Memory. In ISCA, 1998.

Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge,
Vinh Lam, Pratap Pattnaik, and Josep Torrellas. FlexRAM: Toward an
Advanced Intelligent Memory System. In /CCD, 1999.

Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally,
and Mark Horowitz. Smart Memories: A Modular Reconfigurable
Architecture. In ISCA, 2000.

Richard C Murphy, Peter M Kogge, and Arun Rodrigues. The
Characterization of Data Intensive Memory Workloads on Distributed
PIM Systems. In Intelligent Memory Systems. Springer, 2001.

14

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett,
Jeff LaCoss, John Granacki, Jaewook Shin, Chun Chen, Chang Woo
Kang, Thn Kim, and Gokhan Daglikoca. The Architecture of the DIVA
Processing-in-Memory Chip. In SC, 2002.

Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish
Narayanasamy, David Blaauw, and Reetuparna Das.  Compute
Caches. In HPCA, 2017.

Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan,
Ravi Iyer, Dennis Sylvester, David Blaaauw, and Reetuparna Das. Neu-
ral Cache: Bit-serial In-cache Acceleration of Deep Neural Networks.
In ISCA, 2018.

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality Cache for
Data Parallel Acceleration. In ISCA, 2019.

Mingu Kang, Min-Sun Keel, Naresh R Shanbhag, Sean Eilert, and
Ken Curewitz. An Energy-Efficient VLSI Architecture for Pattern
Recognition via Deep Embedding of Computation in SRAM. In
ICASSP, 2014.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry. Buddy-
RAM: Improving the Performance and Efficiency of Bulk Bitwise
Operations Using DRAM. arXiv:1611.09988 [cs:AR], 2016.

Vivek Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry. Fast Bulk Bitwise AND
and OR in DRAM. CAL, 2015.

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Michael A Kozuch, Phillip B Gibbons, and Todd C. Mowry. RowClone:
Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization.
In MICRO, 2013.

Shaahin Angizi and Deliang Fan. Graphide: A Graph Processing
Accelerator Leveraging In-DRAM-computing. In GLSVLSI, 2019.

J. Kim, M. Patel, H. Hassan, and O. Mutlu. The DRAM Latency PUF:
Quickly Evaluating Physical Unclonable Functions by Exploiting the
Latency—Reliability Tradeoff in Modern DRAM Devices. In HPCA,
2018.

J. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu. D-RaNGe: Using
Commodity DRAM Devices to Generate True Random Numbers with
Low Latency and High Throughput. In HPCA, 2019.

Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. ~Comput-
eDRAM: In-Memory Compute Using Off-the-Shelf DRAMs. In
MICRO, 2019.

Kevin K. Chang, Prashant J. Nair, Donghyuk Lee, Saugata Ghose,
Moinuddin K. Qureshi, and Onur Mutlu. Low-Cost Inter-Linked
Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM. In HPCA, 2016.

Xin Xin, Youtao Zhang, and Jun Yang. ELP2IM: Efficient and Low
Power Bitwise Operation Processing in DRAM. In HPCA, 2020.

Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang. DrAcc: A DRAM
Based Accelerator for Accurate CNN Inference. In DAC, 2018.

S. H. S. Rezaei, M. Modarressi, R. Ausavarungnirun, M. Sadrosadati,
O. Mutlu, and M. Daneshtalab. NoM: Network-on-Memory for Inter-
Bank Data Transfer in Highly-Banked Memories. CAL, 2020.
Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose,
Minesh Patel, Jeremie S Kim, Juan Gomez Luna, Mohammad Sadrosa-
dati, Nika Mansouri Ghiasi, et al. FIGARO: Improving System
Performance via Fine-Grained In-DRAM Data Relocation and Caching.
In MICRO, 2020.

Mustafa F Ali, Akhilesh Jaiswal, and Kaushik Roy. In-Memory Low-
Cost Bit-Serial Addition Using Commodity DRAM Technology. In
TCAS-1, 2019.

Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan
Xie. Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise
Operations in Emerging Non-Volatile Memories. In DAC, 2016.

S. Angizi, Z. He, and D. Fan. PIMA-Logic: A Novel Processing-in-
Memory Architecture for Highly Flexible and Energy-efficient Logic
Computation. In DAC, 2018.

S. Angizi, J. Sun, W. Zhang, and D. Fan. AlignS: A Processing-
in-Memory Accelerator for DNA Short Read Alignment Leveraging
SOT-MRAM. In DAC, 2019.

Yifat Levy, Jehoshua Bruck, Yuval Cassuto, Eby G. Friedman, Avinoam
Kolodny, Eitan Yaakobi, and Shahar Kvatinsky. Logic Operations in
Memory Using a Memristive Akers Array. Microelectronics Journal,
2014.


https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

[135]

[136]

[137]

[138]

[139]

[140]

[141]
[142]
[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-
monian, John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek
Srikumar. ISAAC: A Convolutional Neural Network Accelerator with
In-situ Analog Arithmetic in Crossbars. ISCA, 2016.

S. Kbvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman.
Memristor-Based IMPLY Logic Design Procedure. In /CCD, 2011.
S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser. Memristor-Based Material Implication (IMPLY) Logic:
Design Principles and Methodologies. TVLSI, 2014.

P-E. Gaillardon, L. Amaru, A. Siemon, and et al. The Programmable
Logic-in-Memory (PLiM) Computer. In DATE, 2016.

D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay. ReVAMP:
ReRAM based VLIW Architecture for In-memory Computing. In
DATE, 2017.

S. Hamdioui, L. Xie, H. A. D. Nguyen, and et al. Memristor Based
Computation-in-Memory Architecture for Data-intensive Applications.
In DATE, 2015.

L. Xie, H. A. D. Nguyen, M. Taouil, and et al. Fast Boolean Logic
Papped on Memristor Crossbar. In /ICCD, 2015.

S. Hamdioui, S. Kvatinsky, and et al. G. Cauwenberghs. Memristor
for Computing: Myth or Reality? In DATE, 2017.

J. Yu, H. A. D. Nguyen, L. Xie, and et al. Memristive Devices for
Computation-in-Memory. In DATE, 2018.

Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou,
Vasileios Karakostas, Ivan Fernandez, Juan Gémez-Luna, Lois Orosa,
Nectarios Koziris, Georgios Goumas, and Onur Mutlu. SynCron: Effi-
cient Synchronization Support for Near-Data-Processing Architectures.
In HPCA, pages 263-276. IEEE, 2021.

Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata,
Christina Giannoula, Mohammed Alser, Juan Gémez-Luna, and Onur
Mutlu. NATSA: A Near-data Processing Accelerator for Time Series
Analysis. In ICCD, 2020.

J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu. GRIM-Filter: Fast Seed Location
Filtering in DNA Read Mapping Using Processing-in-Memory Tech-
nologies. BMC Genomics, 2018.

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-
Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-
Memory Architecture. In ISCA, 2015.

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing. In ISCA, 2015.

A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and
O. Mutlu. Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks. In ASPLOS, 2018.

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran
Hajinazar, Krishna T Malladi, Hongzhong Zheng, et al. CoNDA:
Efficient Cache Coherence Support for Near-Data Accelerators. In
ISCA, 2019.

Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and
Nam Sung Kim. Chameleon: Versatile and Practical Near-DRAM
Acceleration Architecture for Large Memory Systems. In MICRO,
2016.

Oreoluwatomiwa O. Babarinsa and Stratos Idreos. JAFAR: Near-Data
Processing for Databases. In SIGMOD, 2015.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie. PRIME: A Novel Processing-In-Memory Architecture for
Neural Network Computation In ReRAM-Based Main Memory. In
ISCA, 2016.

Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and
Nam Sung Kim. NDA: Near-DRAM Acceleration Architecture Lever-
aging Commodity DRAM Devices and Standard Memory Modules. In
HPCA, 2015.

Mingyu Gao, Grant Ayers, and Christos Kozyrakis. Practical Near-Data
Processing for In-Memory Analytics Frameworks. In PACT, 2015.
Mingyu Gao and Christos Kozyrakis. HRL: Efficient and Flexible
Reconfigurable Logic for Near-Data Processing. In HPCA, 2016.
Boncheol Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U.
Kang, M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang. Biscuit:
A Framework for Near-Data Processing of Big Data Workloads. In
ISCA, 2016.

15

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]
[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi,
J. C. Hoe, and F. Franchetti. 3D-Stacked Memory-Side Acceleration:
Accelerator and System Design. In WoNDP, 2014.

Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N.
Patt. Accelerating Dependent Cache Misses with an Enhanced Memory
Controller. In ISCA, 2016.

M. Hashemi, O. Mutlu, and Y. N. Patt. Continuous Runahead:
Transparent Hardware Acceleration for Memory Intensive Workloads.
In MICRO, 2016.

Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatter-
jee, Mike O’Conner, Nandita Vijaykumar, Onur Mutlu, and Stephen
Keckler.  Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems. In
ISCA, 2016.

Duckhwan Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay. Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory. In ISCA, 2016.

G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh. Toward Stan-
dardized Near-Data Processing with Unrestricted Data Placement for
GPUs. In SC, 2017.

Joo Hwan Lee, Jaewoong Sim, and Hyesoon Kim. BSSync: Processing
Near Memory for Machine Learning Workloads with Bounded Stale-
ness Consistency Models. In PACT, 2015.

Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Concurrent
Data Structures for Near-Memory Computing. In SPAA, 2017.

Amir Morad, Leonid Yavits, and Ran Ginosar. GP-SIMD Processing-
in-Memory. ACM TACO, 2015.

Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, and Hyesoon Kim. GraphPIM: Enabling Instruction-Level PIM
Offloading in Graph Computing Frameworks. In HPCA, 2017.
Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das. Schedul-
ing Techniques for GPU Architectures with Processing-in-Memory
Capabilities. In PACT, 2016.

Seth H. Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramo-
nian, Vijayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and
Feifei Li. NDC: Analyzing the Impact of 3D-Stacked Memory+Logic
Devices on MapReduce Workloads. In ISPASS, 2014.

D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski. TOP-PIM: Throughput-Oriented Programmable
Processing in Memory. In HPDC, 2014.

Qiuling Zhu, Tobias Graf, H Ekin Sumbul, Larry Pileggi, and Franz
Franchetti. Accelerating Sparse Matrix-Matrix Multiplication with 3D-
Stacked Logic-in-Memory Hardware. In HPEC, 2013.

Berkin Akin, Franz Franchetti, and James C. Hoe. Data Reorganization
in Memory Using 3D-Stacked DRAM. In ISCA, 2015.

Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. Tetris: Scalable and Efficient Neural Network Acceleration
with 3D Memory. In ASPLOS, 2017.

Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiu-
gov, Javier Picorel Obando, Babak Falsafi, Boris Grot, and Dionisios
Pnevmatikatos. The Mondrian Data Engine. In ISCA, 2017.

Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun,
Yongpan Liu, Yu Wang, Yuan Xie, and Huazhong Yang. GraphH: A
Processing-in-Memory Architecture for Large-scale Graph Processing.
IEEE TCAD, 2018.

Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei
Wu, Kang Chen, Christos Kozyrakis, and Xuehai Qian. GraphP: Re-
ducing Communication for PIM-based Graph Processing with Efficient
Data Partition. In HPCA, 2018.

Yu Huang, Long Zheng, Pengcheng Yao, Jieshan Zhao, Xiaofei Liao,
Hai Jin, and Jingling Xue. A Heterogeneous PIM Hardware-Software
Co-Design for Energy-Efficient Graph Processing. In IPDPS, 2020.
Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu,
Yanzhi Wang, and Xuehai Qian. GraphQ: Scalable PIM-based Graph
Processing. In MICRO, 2019.

Paulo C Santos, Geraldo F Oliveira, Diego G Tomé, Marco AZ Alves,
Eduardo C Almeida, and Luigi Carro. Operand Size Reconfiguration
for Big Data Processing in Memory. In DATE, 2017.

Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gémez-
Luna, and Onur Mutlu. Processing-in-Memory: A Workload-Driven
Perspective. IBM JRD, 2019.

Wen-Mei Hwu, Izzat El Hajj, Simon Garcia De Gonzalo, Carl Pearson,
Nam Sung Kim, Deming Chen, Jinjun Xiong, and Zehra Sura. Reboot-
ing the Data Access Hierarchy of Computing Systems. In /CRC, 2017.



[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]
[191]
[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski,
Rachata Ausavarungnirun, Jakub Berdnek, Konstantinos Kanellopou-
los, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Toana
Stefan, et al. SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems. In MICRO, 2021.

Joao Dinis Ferreira, Gabriel Falcao, Juan Gémez-Luna, Mohammed
Alser, Lois Orosa, Mohammad Sadrosadati, Jeremie S. Kim, Geraldo F.
Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu. pLUTo: In-
DRAM Lookup Tables to Enable Massively Parallel General-Purpose
Computation. arXiv:2104.07699 [cs.AR], 2021.

Ataberk Olgun, Minesh Patel, Abdullah Giray Yaglik¢i, Haocong Luo,
Jeremie S. Kim, F. Nisa Bostanci, Nandita Vijaykumar, Oguz Ergin,
and Onur Mutlu. QUAC-TRNG: High-Throughput True Random
Number Generation Using Quadruple Row Activation in Commodity
DRAMs. In ISCA, 2021.

Scott Lloyd and Maya Gokhale. In-memory Data Rearrangement for
Irregular, Data-intensive Computing. Computer, 2015.

Duncan G Elliott, Michael Stumm, W Martin Snelgrove, Christian
Cojocaru, and Robert McKenzie. Computational RAM: Implementing
Processors in Memory. IEEE Design & Test of Computers, 1999.

Le Zheng, Sangho Shin, Scott Lloyd, Maya Gokhale, Kyungmin Kim,
and Sung-Mo Kang. RRAM-based TCAMs for Pattern Search. In
ISCAS, 2016.

Joshua Landgraf, Scott Lloyd, and Maya Gokhale. Combining Emu-
lation and Simulation to Evaluate a Near Memory Key/Value Lookup
Accelerator, 2021.

Arun Rodrigues, Maya Gokhale, and Gwendolyn Voskuilen. Towards
a Scatter-Gather Architecture: Hardware and Software Issues. In
MEMSYS, 2019.

Scott Lloyd and Maya Gokhale. Design Space Exploration of Near
Memory Accelerators. In MEMSYS, 2018.

Scott Lloyd and Maya Gokhale. Near Memory Key/Value Lookup
Acceleration. In MEMSYS, 2017.

Maya Gokhale, Scott Lloyd, and Chris Hajas.
Structure Rearrangement. In MEMSYS, 2015.
Ravi Nair, Samuel F Antao, Carlo Bertolli, Pradip Bose, Jose R Brun-
heroto, Tong Chen, C-Y Cher, Carlos HA Costa, Jun Doi, Constantinos
Evangelinos, et al. Active Memory Cube: A Processing-in-Memory
Architecture for Exascale Systems. /BM JRD, 2015.

Arpith C Jacob, Zehra Sura, Tong Chen, Carlo Bertolli, Samuel Antao,
Olivier Sallenave, Kevin O’Brien, Hans Jacobson, Ravi Nair, Jose R
Brunheroto, et al. Compiling for the Active Memory Cube. Technical
report, Tech. rep. RC25644 (WAT1612-008). IBM Research Division,
2016.

Zehra Sura, Arpith Jacob, Tong Chen, Bryan Rosenburg, Olivier
Sallenave, Carlo Bertolli, Samuel Antao, Jose Brunheroto, Yoonho
Park, Kevin O’Brien, et al. Data Access Optimization in a Processing-
in-Memory System. In CF, 2015.

Ravi Nair. Evolution of Memory Architecture. Proceedings of the
IEEE, 2015.

Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H
Moreno, Richard Murphy, Ravi Nair, and Steven Swanson. Near-Data
Processing: Insights from a MICRO-46 Workshop. IEEE Micro, 2014.
Yue Xi, Bin Gao, Jianshi Tang, An Chen, Meng-Fan Chang, Xi-
aobo Sharon Hu, Jan Van Der Spiegel, He Qian, and Huagiang Wu.
In-Memory Learning With Analog Resistive Switching Memory: A
Review and Perspective. Proceedings of the IEEE, 2020.

K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,
S. Ghose, and O. Mutlu. Accelerating Pointer Chasing in 3D-Stacked
Memory: Challenges, Mechanisms, Evaluation. In /CCD, 2016.
Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng,
and Onur Mutlu. LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory. CAL, 2016.

Christina Giannoula, Ivan Fernandez, Juan Gdémez-Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu. Towards Efficient Sparse
Matrix Vector Multiplication on Real Processing-in-Memory Architec-
tures. In SIGMETRICS, 2022.

Alain Denzler, Rahul Bera, Nastaran Hajinazar, Gagandeep Singh,
Geraldo F Oliveira, Juan Gémez-Luna, and Onur Mutlu. Casper:
Accelerating Stencil Computation Using Near-cache Processing. arXiv
preprint arXiv:2112.14216, 2021.

Amirali Boroumand, Saugata Ghose, Geraldo F Oliveira, and Onur
Mutlu.  Polynesia: Enabling Effective Hybrid Transactional/Ana-

Near Memory Data

16

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]
[215]
[216]
[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

Iytical Databases with Specialized Hardware/Software Co-Design.
arXiv:2103.00798 [cs.AR], 2021.

Amirali Boroumand, Saugata Ghose, Geraldo F Oliveira, and Onur
Mutlu. Polynesia: Enabling Effective Hybrid Transactional Analytical
Databases with Specialized Hardware Software Co-Design. In ICDE,
2022.

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutlu.
FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications. IEEE Micro, 2021.

Gagandeep Singh, Dionysios Diamantopoulos, Juan Goémez-Luna,
Christoph Hagleitner, Sander Stuijk, Henk Corporaal, and Onur Mutlu.
Accelerating Weather Prediction using Near-Memory Reconfigurable
Fabric. ACM TRETS, 2021.

Jose M Herruzo, Ivan Fernandez, Sonia Gonzalez-Navarro, and Oscar
Plata. Enabling Fast and Energy-Efficient FM-Index Exact Matching
Using Processing-Near-Memory. The Journal of Supercomputing,
2021.

Leonid Yavits, Roman Kaplan, and Ran Ginosar.
Purpose In-Storage Resistive Associative Framework.
2021.

Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu
Lim, and Hyesoon Kim. FAFNIR: Accelerating Sparse Gathering by
Using Efficient Near-Memory Intelligent Reduction. In HPCA, 2021.
Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi
Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu,
and Onur Mutlu. Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks.
In PACT, 2021.

Amirali Boroumand. Practical Mechanisms for Reducing Processor-
Memory Data Movement in Modern Workloads. PhD thesis, Carnegie
Mellon University, 2020.

Vivek Seshadri and Onur Mutlu. Simple Operations in Memory to
Reduce Data Movement. In Advances in Computers, Volume 106. 2017.
Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gémez Luna,
Onur Mutlu, and Izzat El Hajj. High-throughput Pairwise Align-
ment with the Wavefront Algorithm using Processing-in-Memory. In
HICOMB, 2022.

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. In-Memory Data
Parallel Processor. In ASPLOS, 2018.

Yue Zha and Jing Li. Hyper-AP: Enhancing Associative Processing
Through A Full-Stack Optimization. In ISCA, 2020.

Onur Mutlu. Memory Scaling: A Systems Architecture Perspective.
IMW, 2013.

Onur Mutlu and Lavanya Subramanian. Research Problems and
Opportunities in Memory Systems. SUPERFRI, 2014.

Hameeza Ahmed, Paulo C Santos, Joao PC Lima, Rafael F Moura,
Marco AZ Alves, Antonio CS Beck, and Luigi Carro. A Compiler for
Automatic Selection of Suitable Processing-in-Memory Instructions. In
DATE, 2019.

Shubham Jain, Sachin Sapatnekar, Jian-Ping Wang, Kaushik Roy, and
Anand Raghunathan. Computing-in-Memory With Spintronics. In 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1640-1645. IEEE, 2018.

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim,
Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina,
Haiyu Mao, Nour Almadhoun Alserr, et al. GenStore: A High-
Performance and Energy-Efficient In-Storage Computing System for
Genome Sequence Analysis. In ASPLOS, 2022.

Geraldo F. Oliveira, Juan Gémez-Luna, Lois Orosa, Saugata Ghose,
Nandita Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, and
Onur Mutlu. DAMOV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks. IEEE Access, 2021.
Seunghwan Cho, Haerang Choi, Eunhyeok Park, Hyunsung Shin, and
Sungjoo Yoo. McDRAM v2: In-Dynamic Random Access Memory
Systolic Array Accelerator to Address the Large Model Problem in
Deep Neural Networks on the Edge. IEEE Access, 2020.

Hyunsung Shin, Dongyoung Kim, Eunhyeok Park, Sungho Park,
Yongsik Park, and Sungjoo Yoo. McDRAM: Low Latency and Energy-
efficient Matrix Computations in DRAM. IEEE TCADICS, 2018.
Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang,
Dimin Niu, and Yuan Xie. iPIM: Programmable In-Memory Image
Processing Accelerator using Near-Bank Architecture. In ISCA, 2020.
D. Lavenier, R. Cimadomo, and R. Jodin. Variant Calling Paralleliza-
tion on Processor-in-Memory Architecture. In BIBM, 2020.

GIRAF: General
IEEE TPDS,



[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

Vasileios Zois, Divya Gupta, Vassilis J. Tsotras, Walid A. Najjar,
and Jean-Francois Roy. Massively Parallel Skyline Computation for
Processing-in-Memory Architectures. In PACT, 2018.

UPMEM. UPMEM Website. https://www.upmem.com, 2023.

Juan Gémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, and Onur Mutlu. Benchmarking a New Paradigm:
Experimental Analysis and Characterization of a Real Processing-in-
Memory System. IEEE Access, 2022.

Juan Gémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, and Onur Mutlu. Benchmarking Memory-Centric
Computing Systems: Analysis of Real Processing-In-Memory Hard-
ware. In IGSC, 2021.

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. Accelerating Pointer
Chasing in 3D-stacked Memory: Challenges, Mechanisms, Evaluation.
In ICCD, 2016.

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. A Scalable Processing-In-Memory Accelerator for Parallel
Graph Processing. In ISCA, 2015.

V T Lee, A Mazumdar, C C del Mundo, A Alaghi, L Ceze, and
M Oskin. Application Codesign of NDP for Similarity Search. In
IPDPS, 2018.

Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, Can Alkan, and
Onur Mutlu. FastHASH: A New GPU-friendly Algorithm for Fast
and Comprehensive Next-Generation Sequence Mapping. In BMC
Genomics, 2013.

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can
Alkan. Shouji: a Fast and Efficient Pre-alignment Filter for Sequence
Alignment. Bioinformatics, 2019.

Hongyi Xin, John Greth, John Emmons, Gennady Pekhimenko, Carl

17

[236]

[237]

[238]

[239]

[240]

[241]

[242]

Kingsford, Can Alkan, and Onur Mutlu. Shifted Hamming Distance:
A Fast and Accurate SIMD-friendly Filter to Accelerate Alignment
Verification in Read Mapping. Bioinformatics, 2015.

Mohammed Alser, Taha Shahroodi, Juan Gomez-Luna, Can Alkan, and
Onur Mutlu. SneakySnake: A Fast and Accurate Universal Genome
Pre-Alignment Filter for CPUs, GPUs, and FPGAs. arXiv, 2019.
Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan. GateKeeper: A New Hardware Arch. for Ac-
celerating Pre-alignment in DNA Short Read Mapping. Bioinformatics,
2017.

Mohammed Alser, Ziilal Bing6l, Damla Senol Cali, Jeremie Kim,
Saugata Ghose, Can Alkan, and Onur Mutlu. Accelerating Genome
Analysis: A Primer on an Ongoing Journey. IEEE Micro, 2020.
Christina Giannoula, Ivan Fernandez, Juan Gdémez-Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu.  SparseP: Towards
Efficient Sparse Matrix Vector Multiplication on Real Processing-In-
Memory Architectures. In Proc. ACM Meas. Anal. Comput. Syst., 2022.
Christina Giannoula, Ivan Fernandez, Juan Gomez-Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu. Towards Efficient Sparse
Matrix Vector Multiplication on Real Processing-In-Memory Architec-
tures. In SIGMETRICS, 2022.

Xiaowei Xu, Feng Lin, Aosen Wang, Xinwei Yao, Qing Lu, Wenyao
Xu, Yiyu Shi, and Yu Hu. Accelerating Dynamic Time Warping With
Memristor-Based Customized Fabrics. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 37(4):729-741, 2018.
Zhengyu Chen and Jie Gu. High-Throughput Dynamic Time Warp-
ing Accelerator for Time-Series Classification With Pipelined Mixed-
Signal Time-Domain Computing. /EEE Journal of Solid-State Circuits,
56(2):624-635, 2021.


https://www.upmem.com

	Introduction
	Background & Motivation
	Time Series Analysis
	Time Series Analysis Applications
	Dynamic Time Warping (DTW)
	Bottlenecks of sDTW in Conventional and PNM Platforms
	Overcoming bottlenecks in TSA
	MRAM-based PUM Computation

	MATSA Architecture
	Overview
	MATSA Subarrays
	PUM Operations
	Data Mapping
	Execution Flow
	Programming Interface & System Integration

	Evaluation
	Methodology
	MATSA Characterization
	System Evaluation

	Related Work
	Conclusions
	References

