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1 DATA MOVEMENT IN DISAGGREGATED
SYSTEMS

Traditional data centers include monolithic servers that tightly
integrate CPU, memory and disk (Figure 1a). Instead, Disaggre-
gated Systems (DSs) [8, 13, 18, 27] organize multiple compute (CC),
memory (MC) and storage devices as independent, failure-isolated
components interconnected over a high-bandwidth network (Fig-
ure 1b). DSs can greatly reduce data center costs by providing
improved resource utilization, resource scaling, failure-handling

and elasticity in modern data centers [5, 8-10, 10, 11, 13, 18, 27].
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Figure 1: (a) Traditional systems vs (b) DSs.

The MCs provide large pools of main memory (remote memory),
while the CCs include the on-chip caches and a few GBs of DRAM
(local memory) that acts as a cache of remote memory. In this
context, a large fraction of the application’s data (~ 80%) [8, 18, 27]
is located in remote memory, and can cause large performance
penalties from remotely accessing data over the network.

Alleviating data access overheads is challenging in DSs for the
following reasons. First, DSs are not monolithic and comprise inde-
pendently managed entities: each component has its own hardware
controller, and a specialized kernel monitor uses its own functional-
ity to manage the component it runs on (only communicates with
other monitors via network messaging if there is a need to access
remote resources). This characteristic necessitates a distributed and
disaggregated solution that can scale to a large number of indepen-
dent components in the system. Second, there is high variability in
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remote memory access latencies since they depend on the locations
of the MCs, contention from other jobs that share the same net-
work and MCs, and data placements that can vary during runtime
or between multiple executions. This necessitates a solution that is
robust towards fluctuations in the network/remote memory band-
width and latencies. Third, a major factor behind the performance
slowdowns is the commonly-used approach in DSs [5, 8, 18, 27] of
moving data at page granularity. This approach effectively provides
software transparency, low metadata costs in memory manage-
ment, and high spatial locality in many applications. However, it
can cause high bandwidth consumption and network congestion,
and often significantly slows down accesses to critical path cache
lines in other concurrently accessed pages.

2 PRIOR WORK

Prior works [2-5, 8, 12-14, 18, 19, 24, 27, 28, 30] propose OS ker-
nels, system-level solutions, software management systems, archi-
tectures for DSs. These works do not tackle the data movement
challenge in DSs, and thus our work is orthogonal to them.

Prior works on hybrid systems [1, 6, 7, 15, 17, 20-23, 25, 26, 29]
integrate die-stacked DRAM [16] as DRAM cache of a large main
memory [1, 7, 15] in a monolithic server, and tackle high page move-
ment costs in two-tiered physical memory via page placement/hot
page selection schemes or by moving data at smaller granularity,
e.g., cache line. However, data movement in DSs poses fundamen-
tally different challenges. First, accesses across the network are
significantly slower than within the server, thus intelligent page
placement cannot by itself address these high costs. Second, DSs
incur significant variations in access latencies based on the current
network architecture and concurrent jobs sharing the MCs/network,
thus necessitating an solution primarily designed for robustness to
this variability. Finally, DSs include independently managed MCs
and networks shared by independent CCs running unknown jobs.
Thus, unlike hybrid systems, the solution cannot assume that the
memory management at the MCs can be fully controlled by the
CPU side. Our work is the first to examine the data movement
problem in fully DSs, and design an effective solution for DSs.

3 DAEMON'’S KEY IDEAS

DaeMon (Figure 2) is an adaptive and scalable mechanism to allevi-
ate data costs in DSs, consisting of three techniques.

(I) Decoupled Multiple Granularity Data Movement. We in-
tegrate two separate hardware queues to serve data requests from
remote memory at two granularities, i.e., cache line (via the sub-
block queue to LLC) and page (via the page queue to local memory)
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Figure 2: High-level overview of DaeMon.
granularity, and effectively prioritize moving cache lines over mov-
ing pages via a bandwidth partitioning approach: a queue controller
serves cache line requests with a higher predefined fixed rate than
page requests to ensure that any given time a certain fraction of
the bandwidth resources is always allocated to serve cache line
moves fast. This key technique enables (i) low metadata overheads
by retaining page migrations, (ii) high performance by leveraging
data locality within pages, and (iii) fewer slowdowns in cache line
data movements that are on the critical path, from expensive page
moves that may have been previously triggered.

(IT) Selection Granularity Data Movement. To provide an adap-
tive data movement solution, we include in each CC two separate
hardware buffers to track pending data migrations for both cache
line (via the inflight sub-block buffer) and page (via the inflight page
buffer) granularity, and a selection granularity unit to decide if a
data request should be served by cache line, page or both based
on the utilization of the inflight buffers. Given that DaeMon priori-
tizes cache line over page moves, the inflight buffers are utilized
in different ways, allowing us to capture the application behavior
and the system load during runtime. For example: (a) If there is
low locality within pages, the page buffer has higher utilization
than the sub-block buffer (cache lines are prioritized), thus the
selection unit favors moving cache lines and throttles pages (and
vice-versa). (b) Under low bandwidth utilization scenarios, the page
buffer utilization is low, thus the selection unit schedules more page
movements (or both granularities) to obtain data locality benefits
(and vice-versa).

(III) Link Compression on Page Movements. We employ hard-
ware compression units at both the CCs and MCs to highly com-
press pages migrated over the network. Link compression on page
moves reduces the network bandwidth consumption and alleviates
network bottlenecks.

Synergy of Three Techniques. DaeMon cooperatively integrates
all three techniques to significantly alleviate data movement over-
heads, and provide robustness towards network, architecture and
application characteristics:

(1) Prioritizing requested cache lines helps DaeMon to tolerate high
(de)compression latencies in page migrations over the network,
while also leveraging benefits of page migrations (low metadata
costs, spatial locality in pages).

(2) Compressed pages consume less network bandwidth, enabling
DaeMon to reserve part of the bandwidth to effectively prioritize
critical path cache line accesses.

(3) Compression on page moves helps DaeMon to adapt to the data
compressibility: if the pages are highly compressible, the inflight
page buffer empties at a faster rate, and DaeMon favors sending
more pages (and vice-versa).

4 DAEMON’S KEY RESULTS

We evaluate DaeMon using a range of capacity intensive work-
loads with different memory access patterns from machine learning,
high-performance-computing, graph processing, and bioinformat-
ics domains. Over the widely-adopted approach of moving data at

page granularity, DaeMon decreases memory access latencies by
3.06X on average, and improves system performance by 2.39X on
average. We demonstrate that DaeMon provides (i) robustness and
significant performance benefits on various network/architecture
configurations and application behavior, (ii) scalability to multiple
hardware components and networks, and (iii) adaptivity to dynamic
workload demands, even when multiple heterogeneous jobs are

concurrently executed in the DS.
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