
IEEE JOURNAL OF LATEX CLASS, VOL. 12, NO. 6, FEBRUARY 2024 1

DPWatch: A Framework For Hardware-Based
Differential Privacy Guarantees

Pawan Kumar Sanjaya∗‡, Christina Giannoula∗‡, Ian Colbert†, Ihab Amer†, Mehdi Saeedi†, Gabor Sines†, and
Nandita Vijaykumar∗‡

∗University of Toronto, ‡ Vector Institute, †Advanced Micro Devices Inc

Abstract—Differential privacy (DP) and federated learning
(FL) have emerged as important privacy-preserving approaches
when using sensitive data to train machine learning models. FL
ensures that raw sensitive data does not leave the users’ devices
by training the model in a distributed manner. DP ensures that
the model does not leak any information about an individual
by clipping and adding noise to the gradients. However, real-
life deployments of such algorithms assume that the third-party
application implementing DP-based FL is trusted, and is thus
given access to sensitive data on the data owner’s device/server.
In this work, we propose DPWatch, a hardware-based framework
for ML accelerators that enforces guarantees that a third party
application cannot leak sensitive user data used for training
and ensures that the gradients are appropriately noised before
leaving the device. We evaluate DPWatch on two accelerators
and demonstrate small area and performance overheads.

Index Terms—Hardware support, Federated learning, Differ-
ential privacy, Accelerators

I. INTRODUCTION

Protecting the privacy of sensitive user data in machine learn-
ing training is of critical importance in many domains such as
healthcare and finance. For example, training a highly accurate
model for medical diagnosis requires the use of sensitive
medical records of patients from multiple hospitals. Similarly,
sensitive user data on mobile devices are used to train models
for text prediction, facial recognition, voice recognition, etc.
Federated learning (FL) [1] and differential privacy (DP) [2]
have emerged as important techniques to safeguard the privacy
of users while using sensitive data for training an ML model.
FL enables training a shared ML model using sensitive data
from various clients, but trains a copy of the shared model
directly on the device/server where the sensitive training data
is located. Only the gradients are shared with the central
server for aggregation. FL helps address regulations such as
GDPR [3] which constrain where data should be stored.

FL alone is insufficient to ensure the privacy of sensitive
data. Prior works [4], [5] demonstrate that it is possible to
extract sensitive user information from the outputs of the
trained model during inference. Differential privacy (DP) [2]
techniques can be leveraged in addition to FL to provide
formal privacy guarantees. DP algorithms add Gaussian noise
to the gradients and clips them before they are used to update
the model weights. DP-enabled FL ensures that a global
model can be trained without any sensitive user data leaving
the owners’ devices and formally ensuring that it is extremely
difficult to infer the presence of a user or record in the dataset
using the outputs of the learned model.

FL and DP together provide strong privacy guarantees; how-
ever, existing ML training frameworks that incorporate FL and
DP still require trusting a third-party application with access

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the
AMD Arrow logo, Radeon, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks of their respective
companies.

to sensitive data and trusting that the application properly
executes the DP-based FL algorithm. As a result, the training
application is granted unrestricted access to the sensitive user
data on the owner’s device, without any guarantees that there
is no malicious use of the data by the application. For example,
for the guarantees of DP-enabled FL to be met, we must
ensure that (a) the sensitive user data is only used to calculate
gradients for the global model; and (b) the gradients are
appropriately transformed using DP algorithms (i.e., noising
and clipping) before being sent to the central server that holds
the global model.

It is challenging to ensure any DP-enabled FL application
meets these requirements before providing access to sensitive
user data. The application performs numerous computations
during the training process using sensitive user data. Sharing
any resulting or intermediate data can violate privacy guaran-
tees. Identifying any leakage of sensitive information is a non-
trivial task. Static or dynamic program analysis techniques [6],
[7] can be used to identify information leakage; however, this
requires access to the source code, which may not be possible
in real deployments. Many tools [6] often require restrictions
on how the program is written and on the programming
language or framework used. Software frameworks that are
designed to allow limited access and operations on data can
potentially address these issues, but this limits the kind of
applications that can be supported (e.g., PINQ [8] does not
support ML). Alternatively, local differential privacy can be
used, where the user data is noised before giving the training
application access to it. However, this significantly impacts the
accuracy of the model [9].

In this work, we propose DPWatch, a hardware-based
framework for ML accelerators that guarantees that sensitive
data is used safely in DP-enabled ML. DPWatch comprises
two key components. First, we propose a lightweight tagging
mechanism that can identify and track the noised gradients in
hardware to flag data that is safe to leave the device. Any data
that is not marked as safe by DPWatch is prevented from being
shared out of the device. Second, we implement a hardware
noising module that ensures that gradients are noised to satisfy
DP guarantees. Only gradients that are noised by this module
are tagged as safe for sharing. This ensures that the application
developer can only use DP-based FL algorithms to share any
information computed using sensitive user data.

We model DPWatch in the Scale-sim [10] simulator
for ML systolic array-based accelerators configured as the
Genesys [11] and TPU [12] simulators. Our evaluations on
popular ML models demonstrate negligible performance slow-
down and area overhead of on average 0.35% and 0.08%,
respectively. This letter makes the following contributions:
• We motivate the need for additional privacy protection

mechanisms in real-life deployments of DP-enabled FL. We
propose DPWatch, the first hardware-based framework for
ensuring DP guarantees in ML accelerators.

IEEE JOURNAL OF LATEX CLASS, VOL. 12, NO. 6, FEBRUARY 2024 2

...

gn
gn

gn

Global
Model

Noised GradientsgnUser Data
Data Owner

Model Implementor
Training Application Local Models

Fig. 1. Overview of federated learning.

• We propose a lightweight tagging mechanism to track these
gradients and only allow them to be shared over the network.

• We use a hardware noising module to add noise and identify
the noised gradients.

• We evaluate DPWatch in various ML workloads on two ac-
celerators and show small performance and area overheads.

II. BACKGROUND AND GOAL

Federated learning (FL): Fig. 1 provides an overview of FL.
FL enables training a shared model without sensitive training
data leaving the data owners’ systems. In an FL setting, each
client (i.e., data owner) is sent a copy of the global model, and
the clients train the model using their local data for multiple
iterations (training round). At the end of each training round,
the client sends only the model gradients to the FL server that
aggregates the updates from multiple clients. The FL server
then sends the clients a new copy of the global model for the
next round of training.
Differential privacy (DP) in machine learning (ML): DP [2]
aims to prevent malicious actors from inferring the original
training data record(s) or the presence of a particular training
record(s) in a dataset using the output of a trained ML model.
DP aims to post-process outputs of the computation such that
the final output does not change significantly with the addition
or omission of a single record [2]. Post-processing techniques
for DP involve adding noise sampled from a distribution
such as the Gaussian. DP in ML is enabled by modifying
the gradient descent algorithm for training. Instead of using
the gradients (g) calculated for a batch, the ℓ2-norm of the
gradients is clipped to a threshold (C). Gaussian noise with
a standard deviation (σ) proportional to C and a user-defined
scaling factor (z) is added to the gradients (Eq. 1). Model
weights are updated using the noised gradients (ĝ).

ĝ = S +N (0, σ2),where σ = C · z

and S = min

(
1,

C

∥g∥2

)
· g

(1)

An alternative approach [13] that is used to incorporate DP in
a federated setting involves clipping the values of each element
of the gradient to C, followed by adding Gaussian noise (Eq.
2) to compute the noised gradients (ĝ).

∀gi ∈< g1, g2, ..., gk > ,

ĝi = min

(
1,

C

|gi|

)
· gi +N (0, σ2)

(2)

Goal: Our goal in this work is to enable the following guaran-
tees in hardware: First, there is no leakage of sensitive training
data during DP-based ML training. Second, the gradients that
are shared out of the device are noised appropriately. To
ensure that the noised gradients are DP, the gradients must be
clipped according to Eq. 2. If these conditions are satisfied, an
individual can allow third-party applications access to sensitive
data, while ensuring that the guarantees provided by DP and
FL are met.

Systolic Array

Vector Processor
Vector Memory

Buffer
Compute

WBUFF

IB
U

FF

OBUFF

Memory
Tagging

Unit

M
em

or
y

In
te

rfa
ce

OnChip Memory

Tags

Tags

Tag Setter

Tag Storage
Engine 1

2

3

Instruction
Buffer

6

4

5

7

Fig. 2. Block diagram of a systolic array-based accelerator (configured similar
to the Genesys [11] accelerator) with DPWatch.

Noise Generation Unit

ALU Scratchpad

Tags

Decoder

Tag Generation Unit

OpCode

a

b

c

Fig. 3. Block diagram of the vector processor in the accelerator. The modules
introduced by DPWatch are indicated using unshaded boxes.

III. APPROACH: A FRAMEWORK FOR HARDWARE-BASED
DIFFERENTIAL PRIVACY GUARANTEES

We propose DPWatch, a framework for ML accelerators that
uses hardware mechanisms to identify data that can safely
leave the user’s device, i.e., gradients that have been appropri-
ately noised. Thus, the user can safely disallow any third-party
application from moving out any data that are not the noised
gradients as identified (tagged) by DPWatch.
A. Key Ideas and Components
Lightweight Information Flow Tracking. DPWatch uses
information flow tracking (IFT) to monitor how the sensitive
user data is used by the application. IFT [14] is a technique that
uses metadata to analyze how data flows through the processor
and the main memory. Thus, IFT can be used to track both,
data that is sensitive (i.e., cannot be shared without the DP
transformations) and data that was generated using sensitive
data (and are thus also sensitive). IFT however typically incurs
non-trivial performance and area overheads from storing and
accessing metadata [14]. DPWatch leverages the restricted
programmability and dataflow common in ML accelerators
to design a low-overhead tagging mechanism for accelerators
such as TPU [12] and Genesys [11].

In ML applications, only the noised gradients are safe to
be shared out of the device. The key idea behind DPWatch’s
tagging mechanism is to leverage this to tag only the results
of the noising operation as safe, while all other data is always
assumed to be sensitive. Thus, the host system can prevent any
data that is not marked as safe by DPWatch from being shared
out of the device. This approach has a lower overhead than
traditional IFT systems [14] as the tags of the source operands
need not be fetched to determine the tag of the result. This
approach also allows certain privacy-preserving operations on
the noised gradients themselves within the accelerator. For
example, gradients across multiple iterations are aggregated
in each training round.
Noising Module: We implement a low overhead pro-
grammable module that is used to efficiently noise the gra-
dients within the ML accelerator. This module is programmed
with new instructions and is seamlessly integrated into DP-
Watch’s tagging mechanism. This module ensures that gradi-
ents are appropriately noised as per the required DP guaran-
tees. For the gradients to be tagged as “safe”, the application
must use this module to noise the gradients.
B. Detailed Design
Fig. 2 illustrates our design using an ML accelerator similar
to the Genesys [11] accelerator, which consists of 2 compute

IEEE JOURNAL OF LATEX CLASS, VOL. 12, NO. 6, FEBRUARY 2024 3

elements: a systolic array (5) with 64k processing elements
for multiply-and-accumulate operations and a 32 lane wide
vector processor (VPU) (4) for other operations. The vector
processor uses software-managed buffers (2 & 3) which
can be directly addressed without registers. Fig. 3 illustrates
the changes to the vector processor.
Noising Module: We add a noise generation unit (b) in the
vector processor to generate Gaussian noise. It is based on
the Box-Muller transform [15], considered the best approach
to balance accuracy vs. area [16]. A custom instruction (add-
noise) is introduced to add noise (as shown in Eq. 3) to a
value from the source location (S). The standard deviation for
sampling is calculated using configuration registers (z, C) that
store the noise scaling factor and the clipping threshold.

S +max

(∣∣∣∣SC
∣∣∣∣ , 1) · N

(
0, σ2

)
, where σ = C · z (3)

In order to provide DP guarantees according to Eq. 2,
we must ensure in hardware that the application clipped the
gradients correctly i.e., |S| ≤ C. If |S| ≤ C, then the noising
operation is equivalent to Eq. 2. However, if the gradients
are not clipped properly, the noising operation protects the
privacy of the users by destroying the information captured by
the gradients. This is achieved by scaling the noise sampled
from the original distribution (with a standard deviation of
σ) with |S/C|. This operation is equivalent to generating a
random number from a Gaussian distribution with mean S
and standard deviation of S thereby impacting the accuracy of
the model. Thus, any data shared is processed by the noising
module in DPWatch and is DP.
Tagging Mechanism: DPWatch uses tagging to identify data
safe to be shared out of the device. In an ML application, only
2 operations can generate results that are safe: the noising of
the gradients and the addition of two noised gradients. Thus,
the results of all other operations on the accelerators should
be marked unsafe. A tag value of 0 is used to indicate that the
data is unsafe/sensitive and 1 to indicate safe/noised data. We
add a tag generation unit (a) in the VPU which generates the
tags for the result of an operation based on the opcode of the
corresponding instruction. A tag value of 1 is generated only
for two instructions: vector-add and add-noise. The result of
the vector-add instruction is tagged with 1 only if both the
source operands have tag values of 1 while the result of the
add-noise is marked safe unconditionally.

We add additional storage elements to both the on-chip
buffers where the results of the operations are written to i.e.
vector memory (vmem) (2) and obuff (3). The granularity of
tagging should correspond to the minimum access granularity
to reduce overheads and avoid false positives [14], which is
128 bytes. Thus, we add 1 bit per 128 bytes for both buffers.

Unlike traditional IFT which sets tags based on the tags of
the source operands, we use the opcodes of the instructions
to determine tags. This eliminates data movement overheads
due to loading tags from off-chip memory for each operation.
We modify the memory interface with a memory tagging
unit (MTU) (1) to support storing tags in off-chip memory.
The tag setter (7) sets the tag of the data loaded from off-
chip memory into the buffers. All data loaded from off-chip
memory are tagged with 0 unless the load-tagged custom
instruction is used. The load-tagged instruction is used to
program the MTU to load the data and the corresponding
tags from the off-chip memory. The tag storage engine (6)
stores the tags of the data for all writes to off-chip memory. To
compute memory addresses for the tags, the MTU contains two

configuration registers that store the base address of the tag
region (tag-br) and data region (data-br) in off-chip memory.
C. DPWatch: Operation
All data is initially marked as sensitive and the accelerator is
configured by initializing the various registers (z, C, data-br,
tag-br). During each training iteration, once the gradients are
computed, the training application uses the add-noise instruc-
tion to add noise to the gradients. These noised gradients are
now safe to send out of the device and are automatically tagged
as safe. Any further computation using these noised gradients
causes those results to be marked sensitive unless two noised
gradients are being added together. Thus, the application can
only send the noised gradients out of the device. However,
multiple training iterations are typically performed locally
before sending a model update to the central server. To
calculate the local model update for a training round, the
application must store a copy of the noised gradients in each
iteration and aggregate them using the vector-add instruction.
The result of this aggregation will also be marked safe and
can be shared out of the device.

Malicious applications may attempt to leak information in
several ways. First, the application might attempt to send the
training data to the server by noising it. During noising, the
value of the noise added is scaled with a factor that depends
on how big the value is compared to the clipping factor. In
practice, the clipping factor is quite small, hence the noise
added would render the data unusable. Second, the application
might use the raw gradients to update the model weights
during each iteration and compute the local model update at
the end of a training round. This local model update is marked
as sensitive and the application necessarily needs to noise it
via the noising module, to share it with the server. If the server
uses that noised model update to calculate the new weights of
the central model, DP guarantees are preserved due to noising.
Security Analysis: In addition to the hardware modules of
DPWatch, we assume that the hardware of the host system and
the privileged software (OS) running on the host system are
trusted. We also assume that an attacker does not have physical
access to the system. To ensure that privacy guarantees are
preserved in a system with DPWatch, the host OS has three
responsibilities. First, configure the various registers (z, C,
data-br, tag-br) with the correct values. Second, ensure that
the application cannot read or write to the memory regions
in off-chip memory where the tags are stored. Third, check
the corresponding tags when the application attempts to send
data out of the device. Only the noised gradients as identified
by DPWatch should be allowed to be shared out of the
device. In the presence of any security vulnerabilities that
allow privilege escalation or manipulation of protected data, a
malicious application can circumvent the checks to leak data.
Limitations: DPWatch currently supports applications where
all operations are performed on the accelerator. Thus, if any
operations need to be performed on the host CPU, DPWatch
cannot track operations or modifications to sensitive data.
While DPWatch can be extended to enable DP guarantees in
GPUs and CPUs, this would require significant changes to
the pipeline and memory hierarchy to enable information flow
tracking and incur non-trivial overheads. With DPWatch, we
leverage the more restricted data flow and limited programma-
bility to design a lightweight tracking mechanism.

IV. EVALUATION

Methodology: We implement and evaluate DPWatch using
Scale-sim [10], a cycle-accurate simulator for DNN com-

IEEE JOURNAL OF LATEX CLASS, VOL. 12, NO. 6, FEBRUARY 2024 4

Fig. 4. DPWatch slowdown(%) over the baseline for TPUv1 and Genesys.

putations on systolic array-based accelerators. We evaluate
DPWatch for systolic array-based accelerators configured as
the Google TPUv1 [12] with 64k MAC units and 24MB of
buffers, and Genesys [11] with 1k MAC units and 640KB of
buffers.
Results: We evaluated the performance of DPWatch for
one communication round for 5 different models: VGG16,
ResNet50, ResNet152, SqueezeNet, and MobileNetV2. The
experiments were performed on the ImageNet [17] dataset
with a batch size of 8 and 10 local training iterations. Fig.
4 presents the slowdown of DPWatch in comparison to the
baseline for TPUv1 and Genesys. We observe that DPWatch
has an average degradation of 0.35% for TPUv1 and 0.08%
for Genesys. The performance overheads from DPWatch are
from (i) The additional operations and data movement required
to calculate the local round update; in the baseline, the round
update can be calculated from the final weights by simply
subtracting the initial weights. However, in DPWatch, the
noised gradients of each iteration need to be fetched and
added together. (ii) The additional memory traffic due to the
tagging mechanism: one additional write request per 1024
requests for Genesys and 8192 requests for TPUv1. The tags
of the gradients also need to be fetched while calculating
the local round update, generating additional read requests.
The slowdown due to tagging is minimal: 0.0045% for TPU
and 0.0028% for Genesys. The slowdown due to local round
update calculation is the primary cause of the degradation and
is dependent on the model size and number of iterations. With
larger batch sizes, degradation is reduced, since total execution
time for training increases. Thus, we conclude that DPWatch
has negligible performance degradation on both accelerators.
Area Overheads: The primary overheads from DPWatch are
the SRAM buffers required to store the tags. We evaluate the
area and power overheads using CACTI 6.5 [18] for TPUv1,
which has a 24MB on-chip buffer. DPWatch requires 1 bit of
tag storage for every 128 bytes of data, which causes 0.015%
area and 0.0005% power overheads in 22nm technology.

V. PRIOR WORK

To our knowledge, DPWatch is the first hardware-based
framework to provide DP guarantees during ML training on
specialized accelerators. We briefly discuss prior work.
Privacy Guarantees in Hardware: Prior works [19]–[21]
propose approaches that provide guarantees in hardware that
sensitive data is noised before an untrusted application is
allowed to access it, for example at the sensors where the
data is collected [19]. These approaches however are limited
to certain kinds of sensor data (e.g., accelerometers), and
were not designed for text/images/videos. Moreover, directly
noising training data is not typically done for ML as it can
lead to significant accuracy loss [9].
Accelerators for DP-enabled Training: Prior works propose

accelerators for DP for ML: DIVA [22] is a dataflow architec-
ture with a novel reduction module that accelerates the per-
example gradient generation. DINAR [23] proposes a novel
noise generation algorithm that relies on pre-generated seeds
instead of a hardware noise source. While these works improve
performance, they still require trusting a third-party application
and thus DPWatch is orthogonal to these works.
Software Mechanisms for Protecting User Privacy: Prior
works [24] proposed software IFT techniques to detect and
prevent leakage of sensitive information. These works rely on
a privileged layer of software running between the application
and the hardware to instrument tracking and detection. How-
ever, these works are not designed for ML applications where
gradients computed from sensitive data are sent out of the
device. They also rely on a trusted software layer, increasing
the attack surface of the system; a software bug can allow
malicious applications to leak data. Further, such techniques
incur significant performance overheads (e.g., up to 15% [24]).

VI. CONCLUSION

We propose DPWatch, the first work that enables DP guar-
antees in hardware for FL on ML accelerators, enabling
safe sharing of sensitive data with third party applications.
DPWatch uses a lightweight tagging mechanism and a hard-
ware noising module to identify data that is safe to leave
the device. We implement and evaluate DPWatch on top of
the Genesys [11] and Google TPUv1 [12] accelerators and
demonstrate low performance and area overheads.

REFERENCES

[1] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data.” PMLR, 2017.

[2] C. Dwork et al., “The algorithmic foundations of differential privacy,”
Found. Trends Theor. Comput. Sci., 2014.

[3] “General data protection regulation (Gdpr) – legal text.” [Online].
Available: https://gdpr-info.eu/

[4] L. Melis et al., “Exploiting unintended feature leakage in collaborative
learning,” in IEEE S&P, 2019.

[5] R. Shokri et al., “Membership inference attacks against machine learning
models,” in 2017 IEEE S&P, 2017, pp. 3–18.

[6] C. Abuah et al., “Solo: A lightweight static analysis for differential
privacy,” 2021.

[7] J. Reed et al., “Distance makes the types grow stronger: a calculus for
differential privacy,” in ICFP, 2010.

[8] F. McSherry, “Privacy integrated queries,” SIGMOD, 2009.
[9] N. Ponomareva et al., “How to dp-fy ml: A practical tutorial to machine

learning with differential privacy,” in KDD, 2023.
[10] A. Samajdar et al., “A systematic methodology for characterizing

scalability of dnn accelerators using scale-sim,” in ISPASS, 2020.
[11] S. Ghodrati et al., “Tandem processor: Grappling with emerging opera-

tors in neural networks,” in ASPLOS, 2024.
[12] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” ISCA, 2017.
[13] S. Truex et al., “Ldp-fed: federated learning with local differential

privacy,” in EdgeSys, 2020.
[14] W. Hu et al., “Hardware information flow tracking,” ACM Comput. Surv.,

2021.
[15] D. Lee et al., “A hardware gaussian noise generator using the box-muller

method and its error analysis,” IEEE Trans. Computers, 2006.
[16] J. S. Malik et al., “Gaussian random number generation: A survey on

hardware architectures,” ACM Comput. Surv., 2016.
[17] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”

in CVPR, 2009.
[18] S. Thoziyoor et al., “A comprehensive memory modeling tool and its

application to the design and analysis of future memory hierarchies,”
SIGARCH Comput. Archit. News, 2008.

[19] M. Maycock et al., “Hardware enforced statistical privacy,” IEEE CAL,
2016.

[20] A. I. K. Kalupahana et al., “Serandip: Leveraging inherent sensor ran-
dom noise for differential privacy preservation in wearable community
sensing applications,” IMWUT, 2023.

[21] W.-S. Choi et al., “Guaranteeing local differential privacy on ultra-low-
power systems,” in ISCA, 2018.

[22] B. Park et al., “Diva: An accelerator for differentially private machine
learning,” in MICRO, 2022.

[23] K. Ganesan et al., “Dinar: Enabling distribution agnostic noise injection
in machine learning hardware,” in HASP, 2023.

[24] M. Sun et al., “Taintart: A practical multi-level information-flow tracking
system for android runtime,” in CCS, 2016.

