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Abstract

Reliability is necessary in safety-critical applications
spanning numerous domains. Conventional hardware-based
fault tolerance techniques, such as component redundancy,
ensure reliability, typically at the expense of significantly
increased power consumption, and almost double (or more)
hardware area. To mitigate these costs, microarchitectural
fault tolerance methods try to lower overheads by leverag-
ing microarchitectural insights, but prior evaluations focus
primarily on only application performance. As different safety-
critical applications prioritize different requirements beyond
reliability, evaluating only limited metrics cannot guarantee
that microarchitectural methods are practical and usable
for all different application scenarios. To this end, in this
work, we extensively characterize and compare three fault
detection methods, each representing a different major fault
detection category, considering real requirements from diverse
application settings and employing various important metrics
such as design area, power, performance overheads and latency
in detection. Through this analysis, we provide important
insights which may guide designers in applying the most
effective fault tolerance method tailored to specific needs,
advancing the overall understanding and development of
robust computing systems. For this, we study three methods
for hardware error detection within a processor, i.e., (i) Dual
Modular Redundancy (DMR) as a conventional method, and
(ii) Redundant Multithreading (R-SMT) and (iii) Parallel Error
Detection (ParDet) as microarchitecture-level methods. We
demonstrate that microarchitectural fault tolerance, i.e., R-
SMT and ParDet, is comparably robust compared to conven-
tional approaches (DMR), however, still exhibits unappealing
trade-offs for specific real-world use cases, thus precluding
their usage in certain application scenarios.

1. Introduction

Modern computing systems demand strong robustness,
safety, and/or security properties, thus requiring high toler-
ance against transient and permanent hardware faults, such
that to prevent failures and guarantee uninterrupted and
reliable operation [20, 37, 38, 62, 91]. Hardware failures can
jeopardize human lives, or disrupt the successful completion

of critical and costly tasks [9, 40, 60, 75]. For microelectronic
circuits operating in high radiation environments, increased
reliability is paramount due to radiation interference, which
causes highly increased error rates [19]. However, errors
are present even in lower radiation environments. This
is because technology scaling in modern Integrated Cir-
cuits (ICs), aimed at enhancing performance and energy
efficiency through the miniaturization of transistor sizes,
also increases susceptibility to radiation-particle induced
faults [67, 81]. Moreover, this susceptibility is expected to
increase further with continued scaling. Likewise, chip man-
ufacturers increase reliability by introducing conservative
margins in operating voltage and frequency, and future
microprocessors will need robust tolerance to transient
errors in order to exploit lower margins and harness back
power and performance gains [1, 96].

All such systems require fault tolerance mechanisms,
like fault detection, which however, in order to increase
reliability come with the cost of either negatively impacting
performance, or increasing power consumption, or IC area,
depending on the method design and trade-offs. As a
result, different methods exhibit different overheads in a
number of metrics and represent distinct points in the
fault detection method design space. The selection of
the most suitable method, depends on the constraints of
the design and the application domain, since apart from
reliability, critical systems from various application domains
have different requirements depending on their particular
characteristics. For example, High Performance Computing
(HPC) applications, which have growing needs for reliability
due to scaling and tight margins, but they also primarily
need high performance to solve complex problems and
process massive amounts of data [26, 61]. Instead, deep
space missions prioritize the need for low area and power
costs due to energy constraints in spacecraft probes with
limited battery capacities [36, 80]. Therefore, in both cases
hardware fault tolerance mechanisms have to be deployed,
which however need to meet different constraints: the first
mechanism must exhibit low performance overheads, while
the second one low area and power overheads. In like
manner, other application scenarios have other distinct
requirements for performance, area or power and demand
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Figure 1: Different fault detection mechanisms can exhibit

similar performance and reliability but differ significantly

in other unevaluated metrics (detection latency and area).

Thus, evaluations must consider all relevant metrics. Here,

Method A (DMR) and Method B (R-SMT) are assessed against

design constraints from a nano-satellite application. Green

bars meet the constraints, while red bars violate them.

fault tolerance mechanisms which comply with their unique
constraints. As a result, engineers need to have an accurate
estimation on the strengths and weaknesses of each method,
covering various metrics apart from performance, when
choosing one for a particular application.

Prior works propose effective error detection methods
which leverage microarchitectural insights [2, 8, 31, 50, 58,
59, 66, 71, 74, 89, 92], aiming to achieve high performance
and low area footprint of the secured systems, and reduce
by-design some of the overheads associated with fault toler-
ance. However, such works mainly focus on the performance
aspect of their methods, and do not comprehensively evalu-
ate overheads in other metrics, such as area or power (i.e. [8,
31, 50, 58, 59, 66, 74, 82, 89]), which are of crucial importance
for some application domains. In Fig. 1, we demonstrate that
by assessing only performance and reliability, evaluations of
microarchitectural fault detection methods are not complete
nor adequate: as we find after reviewing a wide range of
safety-critical applications (Section 3), many such systems
demand low overheads in other metrics, like area, power
or detection latency, rather than performance. Thus, prior
works mainly cover a subset of the use case scenarios that
need high performance guarantees (e.g., HPC applications)
along with reliability, and overlook other use cases, such as
space missions or automotive, that have different priorities.

Fig. 1 evaluates various important metrics and shows
the overheads of two different fault detection methods
(Method A and Method B) compared to without any fault
detection ("w/out FT", in grey bars). Fig. 1 also shows
the constraints of a nano-satellite system [22, 84] that
requires fault detection with the dashed horizontal lines.
When choosing between the two candidate fault detection
mechanisms (Method A and B), if engineers only consider
existing evaluations focused on performance and reliability

(grey background plots), both methods appear to meet
these application constraints, and Method A might be
selected. However, when additional metrics critical for
orbital systems, such as detection latency, IC area and
power, are assessed, it becomes evident that Method A
is unsuitable due to its high area and power overheads,
which cause the total area cost of the system to exceed
the area and power constraints (illustrated with a red bar).
Instead, Method B meets these constraints of the application,
thereby being the most suitable method to be selected.
This example underscores the need for a comprehensive
evaluation of fault detection methods across a variety of
important metrics tailored to assess the requirements of
target applications.

To this end, the goal of our work is to extensively
characterize a diverse set of different fault detection meth-
ods in various key requirements. To our knowledge, there
is no prior work to extensively compare and examine
microarchitectural fault detection methods across a wide
range of use case application scenarios that have different
key requirements. Therefore, we conduct the following:

Firstly, we review various application domains requiring
robustness properties -both safety-critical and emerging
ones (like HPC)- and identify that they have distinct yet
important requirements beyond reliability, which however,
are overlooked in most evaluations of prior hardware fault
tolerance mechanisms. Based on these requirements, we
group application domains on real-world use-cases to three
types: (a) performance-critical, as the applications which
need high performance guarantees, (b) area/power-critical,
as the applications that need low area and power overheads,
and (c) latency-critical, as the applications which need low
error detection latency.

Secondly, based on these use-case categories, we propose
a better evaluation methodology that more appropriately
compares fault detection methods and their trade-offs. We
provide the key metrics on which hardware error detection
needs to be evaluated in order to understand in which real-
world applications is best fit and in which ones might result
in important application degradation. These metrics consist
of (i) detection efficiency -namely the effectiveness in error
detection- (ii) detection latency -the elapsed time between
fault manifestation and error detection- (iii) performance,
(iv) design area and (v) power.

Thirdly, we analyse prior works on hardware error
detection and select 3 diverse redundancy approaches
across both microarchitectural and conventional methods: (i)
hardware redundancy, (ii) multithreading within micropro-
cessors, and (iii) heterogeneous error detection mechanisms.
This selection captures different fault detection capabilities,
providing valuable insights into their effectiveness and
efficiency in maintaining system reliability. We further select
one method from each of these three major fault detection
method classes: We choose Dual Modular Redundancy, a
conventional method of hardware redundancy, Redundant
Multithreading via Simultaneous Multithreading (R-SMT),
a microarchitectural method which utilizes multithreading
within microprocessors and is representative of the design
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space encompassing all prior redundant multithreading
techniques, and the most recent state-of-the-art hetero-
geneous fault detection method, Parallel Error Detection
with Heterogeneous Cores (ParDet). DMR, is a method
of hardware redundancy that duplicates whole hardware
components, providing robustness at the expense of sig-
nificantly increased power consumption and design area.
R-SMT [31, 50, 58, 66, 71, 74] duplicates the execution in
redundant hardware threads. ParDet [2] uses multiple paral-
lel heterogeneous cores to re-execute parts of the program
independently. Please refer to Section 2 for a comprehensive
description of all prior fault detection methods.

Fourth, we implement and evaluate all methods using
the gem5 simulator [14], in same core configuration for
fair comparison. We implement statistical fault injection
to induce transient and permanent faults to all methods,
covering the whole range of appeared faults in the reviewed
application domains. This approach allows to assess relia-
bility in the microarchitectural level, offering both accurate
and early in the design stage reliability results. We evaluate
all representative methods using our proposed evaluation
methodology (of 5 metrics) and a variety of workloads.

We provide new insights and important key observa-
tions that can be leveraged to find which method is the most
appropriate for a particular application-specific computing
system. By comparing DMR, R-SMT, and ParDet, researchers
can gain a holistic view of the trade-offs involved in
different microarchitectural redundancy strategies, their
impact on system robustness, and their suitability for
various applications. This comparative analysis helps in
identifying the most effective fault tolerance method tailored
to specific needs and advances the overall understanding
and development of robust computing systems.

Our most significant key insights are:
• Microarchitectural methods i.e., R-SMT and ParDet,
can have comparably high capability on identifying
errors compared to conventional methods, i.e., DMR.

• Low detection latency is crucial in identifying perma-
nent errors to guarantee high detection efficiency.

• R-SMT is suitable for area-critical applications.
• ParDet is suitable for performance-critical applications
thanks to providing best performance across all evalu-
ated workloads.
Overall, we make the following key contributions:

• We find that fault detection methods have different
trade-offs in reliability, latency, performance, area and
power, and that different applications have different
priorities (apart from the reliability which is always the
first) among these requirements. We group applications
in three categories based on their secondary priority
and this categorization can assist both when designing
new detection methods to navigate the requirements
of the prospective target applications and in selecting
suitable existing methods for a specific domain.

• We propose a more appropriate evaluation methodol-
ogy for fault detection methods, which consists of five
key metrics. We believe that our evaluation methodol-

ogy will be adopted by our research community and
industry, when proposing new fault detection methods,
in order for new proposed mechanisms to be proven
practical and usable in the targeted application types.

• We implement and comprehensively evaluate the most
representative hardware fault detection methods from
a wide range of fault detection strategies and across
all crucial metrics, using the methodology we establish.
The new insights we provide will be useful to industry
engineers for selecting the optimal methods in differ-
ent application domains when designing application-
specific computing systems and enhancing them with
the corresponding fault detection methods.

2. Hardware Error Detection Methods

We choose to evaluate one method from each different
category of hardware fault detection, namely Hardware
Redundancy, Redundant Multithreading and Heterogeneous
Systems, to provide insights for a variety of different fault
detection strategies.

2.1. Hardware Redundancy

Spacial hardware redundancy, where the whole core or
individual components are duplicated and the outputs of
both copies compared for fault detection, has been used in
many commercial systems like the IBM G5 [79], Tandem
(now HP) NonStop [11, 13], and others [23], most recently
in ARM Cortex-R CPUs [6, 41]. Component redundancy, is
the primary method of choice in high-risk space missions,
due to the high reliability it provides [78, 93]. Additionally,
multi-core architectures like Chip Multi-Processors (CMPs)
have also been proposed as a platform for DMR [32, 33,
46, 58]. In this study we evaluate a DMR scheme with
one redundant core, since it provides increased robustness
compared to individual component redundancy and to also
provide a baseline of conventional fault detection.

2.2. Redundant Multithreading

Redundant Multithreading employs different hardware
threads to run the same program, and compares their results
for fault detection. Rotenberg [74] exploits two different
instruction streams (A-stream and R-stream) which redun-
dantly run on the same processor using Simultaneous Mul-
tithreading for detecting faults. Mukherjee and Reinhardt
[71] expand this, evaluating performance improvements
like branch and operand prediction by the leading thread
and propose the idea of sphere-of-replication.

Other approaches [31, 66, 82] aim at reducing the
execution overhead of the redundant thread, introducing
partial redundant multithreading: SlicK [66] re-executes
only store instructions along with their backward slices,
eliminating completely slices which are predicted to be fault-
free from the redundant thread. Opportunistic Transient
Fault Detection [31] executes a redundant thread during
low ILP phases and cache misses and for high ILP phases
exploits instruction reuse to reduce the re-execution of the
redundant thread. Slipstream processors [82] implement a
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pair of streams, assisting each other in both performance
and fault tolerance, with the A-stream running ahead of
R-stream and eliminating unnecessary instructions from the
R-stream. All these works target to improve performance
over the initial design [71, 74], while maintaining reliability,
degrading however other metrics, which as we identify in
Section 3 are of equal or even greater importance, depending
on the application setting.

Additionally, prior works only evaluate their microar-
chitectural methods in terms of detection efficiency and
performance, thus not covering all key metrics needed to
comprehensively assess the methods in real-world applica-
tion scenarios. In this study, we aim to compare methods
between the different categories to provide general insights
for a variety of different hardware strategies, therefore as a
representative method from the Redundant Multithreading
category, we evaluate the original design. Other variations
(i.e. [31, 66, 82] are variations of either full or partial
Redundant Multithreading and therefore represent close
points in the design space.

However, several prior works [31, 50, 58, 66] propose per-
formance optimizations upon the original R-SMT scheme. In
our work, we choose not to include additional performance
optimizations in the R-SMT scheme. Such optimizations
like perfect branch prediction and operands prediction
[74] provide slight performance improvements over R-SMT
(without affecting reliability), but negatively affect other
metrics such as area overheads. These inherit trade-offs of
the mechanism, do not drastically alter its position in the
design space; all R-SMT variations represent close points,
improving some metrics but deteriorating others. Since
we want to provide insights for a variety of different
redundancy strategies, we evaluate the lower-bound for
R-SMT scheme, without any performance optimizations.

2.3. Heterogeneous Systems

Austin et al. [8, 92] combines the main core with a
single checker core to re-execute instructions upon commit
enabling both error detection and correction. However, this
mechanism leaves the pipeline frontend unprotected, thus
incurring significantly lower detection coverage. Necro-
mancer [5] mitigates permanent manufacturing faults in
CMPs. In this scheme, special, lighter, cores are added in
the CMP and defective cores continue executing, providing
performance enhancing hints to the lighter ones, which
substitute the defective ones. Lastly, Parallel Error Detection
with Heterogeneous Cores (ParDet) [2] is the state-of-the-art
method in Heterogeneous Fault Detection methods, which
utilizes small cores for error detection and exhibits low
overheads in performance, area and power. In our analysis,
we evaluate ParDet, as the latest and mostly performant
efficient heterogeneous fault detection method.

3. Key Requirements of Safety-Critical Ap-

plications

Tolerating as many hardware errors as possible to
provide continuous safe and reliable operations, is a pre-

requisite in safety-critical systems including space [93],
automotive [51], healthcare [54], and nuclear safety systems
[39]. However, in such systems, robustness is not the sole
requirement. In addition to robustness -which is always the
first priority for all critical systems- different application
scenarios might need to prioritize different requirements
as a second priority. We analyze several critical application
scenarios, and find that they can be classified in three
different categories, depending on their second-level priority
requirement:
(1) Performance-Critical: Safety-critical applications that
need to provide high-performance capabilities along relia-
bility can be grouped as performance-critical. For instance,
HPC workloads target high performance efficiency, while
they need to tolerate increased error rates due to tran-
sistor scaling. Certain automotive use cases also demand
high performance [70], fueled by the heavy computational
requirements of autonomous driving. Similarly, emerging
applications in spaceborne systems need to deliver even
more high performance [90] while retaining high fault
tolerance, driven by the integration of artificial intelligence
[29, 77] and edge computing [15, 24], which require more
compute capabilities.
(2) Area/Power-Critical: In many important applications,
the first priority -additionally to fault tolerance- is the
minimization of silicon area, and hence such applications
can be considered as area/power-critical. These include
energy-constrained systems, such as on-board computers in
deep-space missions [16, 47, 87]: larger IC area corresponds
to increased energy consumption and increased probability
of radiation particle collisions, which thus significantly
increase the probability of errors.
(3) Latency-Critical: Latency in error detection, i.e., the
time period from the time that the error arises to the
time that the error is detected by the method, is another
key requirement that needs to be optimized [44] in many
different application domains (space [18], automotive [52],
nuclear [55]), forming the class of latency-critical applica-
tions. Increased latency not only prolongs the response
time of error-hardened systems, but also increases the
performance overheads in error corrections (late detection
of an error requires replaying more instructions to restore a
safe state) and compromises reliability (accumulated faults
that have not been yet detected significantly increase the
failure risk, which is particularly important in systems with
limited error tolerance).

Overall, different critical application scenarios have
different second-level needs, i.e., they need to prioritize
either performance, area, and latency, second to reliability.
Fault detection mechanisms impose different performance
and area overheads, and also have different degrees of
detection efficiency and latency, thus influencing all the
above requirements. Prior works [8, 31, 50, 58, 59, 66, 74, 82,
89] mainly focus their evaluations of existing fault detection
methods only on performance metrics, thus targeting only
a subset of the applications (e.g., performance-critical such
as the HPC focused only). To this end, we conduct a
comprehensive evaluation study of the a diverse set of
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microarchitecture-level fault detection methods to present,
for the first time, meaningful insights and trade-offs that
cover all the aforementioned application requirements.
To facilitate such a complete comparative evaluation, we
consider the following metrics:
1) detection efficiency: the effectiveness in accurately

detecting the errors occurred.
2) detection latency: the time difference between error

manifestation and its detection.
3) performance overhead: the system performance degra-

dation imposed by the error detection method.
4) area overhead: the additional surface area required for

the error detection resources.
5) power overhead: the additional power consumption

due to the implementation and function of the error
detection mechanism.

4. Description of Evaluated Methods

In this section, we present the main functionality and
characteristics of each method that is considered in this
paper. All three methods enhance the microprocessor’s
reliability in the presence of transient and permanent faults.

4.1. Spatial Dual Modular Redundancy (DMR)

DMR is a spatial redundancy technique, in which
each hardware component is replicated and computation
is repeated in both component copies of the system, to
provide reliable operation through redundancy. We evaluate
a DMR scheme that consists of two single core processors
which share the same memory subsystem. Both cores are
executing the same instructions concurrently. As shown in
Fig. 2a, each instruction of the main core (green segments)
is executed concurrently with the corresponding same
instruction of the redundant core (yellow segments). In this
scheme, both transient and permanent errors are detected by
comparing the instruction results from the two processors.

4.2. Redundant Simultaneous Multithreading (R-

SMT)

R-SMT [31, 50, 58, 66, 71, 74], is a class of time
redundancy fault-tolerant technique, in which redundant
execution is taking place into two different SMT threads
running on the same processor core, and redundantly
executing the same instructions. Fig. 2b shows the main and
redundant instructions from the two threads interleaving
execution within the core. Then, the two SMT threads
validate the instruction results for error detection. To do
so, instruction results of the primary thread are stored to a
hardware buffer (named comparison buffer) and consumed
by the redundant thread which subsequently utilizes them
to perform result comparisons. When the comparison buffer
is full, the primary thread stalls (full comparison buffer stalls),
until redundant thread consumes some entries. Similarly,
when the buffer is empty, the redundant thread stalls, until
it gets filled again.

Figure 2: High-level overview of state-of-the-art hardware

detection methods. Green segments represent the main

execution, while yellow ones the redundant execution for

error detection.

4.3. Parallel Error Detection with Heterogenous

Cores (ParDet)

ParDet [2] is a microarchitectural method to retain low
area, power, and performance overheads. ParDet parallelizes
fault detection by combining the main processor with
auxiliary low power processor cores, that redundantly
repeat the same instructions with the main core.

Specifically, the execution on the main core is segmented
into parts, each consisting of consecutive instructions. Each
segmented part after being executed on the main core is
offloaded to one auxiliary (checker) core for re-execution
(as shown in Fig. 2c), along with the architectural state
before (starting state) and after (ending state) that part’s
execution. Each checker core is initialized with the starting
architectural state and executes the current segment. If no
errors have occurred after the execution of the segment’s
instructions, its architectural state is expected match the
provided ending state, so errors are detected by comparing
these two architectural states. This way, program segments
can be verified independently and in parallel across multiple
low-power auxiliary cores (as illustrated in Fig. 2c with the
overlap of yellow segments in the y-axis, which represents
time). The process of copying the starting and ending
architectural states is called checkpointing. Finally, all values
that are read and written by the main core are duplicated in
a hardware buffer (load-store log), which checker cores can
access. The load-store log is split in segments, the number
of which is equal to the number of checker cores. Offloading
to a checker core is performed, when the segment of the
load-store log that corresponds to that checker core is
completely filled, or after a certain number of instructions.

5. Methodology

We evaluate the three methods in the gem5 simulator
[14], implementing DMR and R-SMT and using the original
artifact [4] for ParDet. We choose a representative set of 9
benchmarks from MiBench suite [34]. MiBench has been
widely used by prior fault tolerance and reliability assess-
ment studies [21, 25, 63–65], as it consists of realistic work-
loads with reasonable execution time, therefore enabling the
thousands of executions required for such a comprehensive
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fault injection experiment, to complete within reasonable
simulation time. Additionally, the workloads we choose
span a wide variety of different application domains, as
presented in Table 1, suitable for our application-specific
analysis.

TABLE 1: Benchmarks Application Domains and Classes.

Benchmark Application domain Second-level priority

class

dijkstra robotics [83] area/power-critical
djpeg medical imaging [86], re-

mote sensing
latency-critical,
area/power-critical

fft, ifft satellite communications,
medical [17], HPC [12]

performance-critical

patricia satellite communications,
avionics

latency-critical,
area/power-critical

qsort automotive, industrial
control [34]

latency-critical,
performance-critical

sha IoT [10] area/power-critical
edges, medical imaging [34], latency-critical,
smooth autonomous driving [76] performance-critical

Table 2 summarizes the system configuration we use
in our evaluation experiments. We model a medium- to
high-end processor with the ARMv8 ISA. The configuration
we use resembles closely real-world CPU configurations
of modern critical systems from various domains, like i.e.
the ARM Cortex A72 [7], used in automotive [85]. Equally
performant cores (also featuring other ISAs) are also used
space-grade processors [42], like i.e. Gaisler NOEL-V [28].

We conduct a statistical fault injection (SFI) experiment.
For each benchmark, 1000 single-bit transient (which appear
only for a finite period of time) and permanent faults
(stuck-at faults) are injected into the register files, randomly
generated following a uniform distribution. According the
widely adopted methodology from [48], this is equal to
approximate 4% error margin with 95% confidence level.
Modelling single-bit transient and permanent faults covers
sufficiently the whole range of the studied application
domains, since both error types appear due to scaling [67]
and under heavy radiation [19], hence occur in all the
reviewed use-cases.

In our experiments, we assume that every large SRAM
array (e.g., cache memories) is protected by parity or ECC
schemes [27, 43, 73, 95] and we inject faults only in the
register file. The register file is a critical component in

TABLE 2: System Configuration.

Common options for all methods

CPUa 3-way out-of-order, 2GHz, 192-entry ROB,
64-entry IQ, 128 int + 128 float registers

L1 Dcache 32kB, 8-way, 2-cycle hit latency
L2 cache 2MB shared, 16-way, 20-cycle hit latency

R-SMT specific options

Comparison buffer size 10 entries
ParDet specific options

Checker cores 12 cores @ 1GHz, 4 stage, in-order
Load-store log size 36KiB
afor ParDet this refers to the main core.

modern processors, responsible for storing and manipulating
data during instruction execution. Faults in the register
file can significantly affect the correctness and reliability
of program execution, potentially resulting in erroneous
outcomes, and impacting the entire pipeline stages. While
focusing on a specific component, our evaluation indirectly
assesses the overall resilience of the fault detection methods
we consider, in the context of the entire pipeline. The reason
is that the physical register file is not protected by any
scheme due to strict performance requirements, as it is
located in the critical path of the processor pipeline. This
is not the case for other performance-critical hardware
components, such as the load/store queue, TLBs, L1 cache
memories, etc., which are usually protected, typically by a
parity scheme.
Fault Injection. For assessing detection efficiency, we
classify the outcome of each fault injection as (i) detection:
if the fault mitigation technique successfully detects and
reports the error, (ii) mask: if the execution is completed
successfully and the program results were correct, (iii)
silent data corruption (SDC): if the execution is completed
successfully but produced erroneous results, (iv) crash: if
the benchmark crashed and (v) hang: if the simulation does
not terminate within three times the normal execution time.

Detection latency is measured as the elapsed time -in
clock cycles- between the fault injection and the detec-
tion, while the overhead in the processor performance is
evaluated with the Instructions Per Cycle (IPC) metric, in
fault-free execution.

The area overheads are calculated based on relevant
literature works. Area modelling simulators, like i.e. McPAT
[49], provide only coarse-grained area estimations. RTL
simulators on the other, can both perform fault injection
and calculate more accurate area overheads, but have
significantly slower simulation times, and therefore do not
allow for the multiple simulation runs necessary for SFI to
reach high confidence. Instead, by assessing reliability in
the microarchitectural level using SFI on gem5 and basing
our area analysis on previous literature, we are able to
both accurately access reliability and obtain precise area
measurements from real implementations. However, we do
utilize McPAT to obtain power consumption estimations,
since power depends highly on the workload and this would
not be captured through power estimations from literature.

6. Evaluation

6.1. Analysis of Detection Latency

6.1.1. Re-execution slack in R-SMT. For R-SMT, we de-
fine as re-execution slack (commit slack) the delay between
the retirement of an instruction by the primary thread
and the retirement of the same re-executed instruction by
the redundant thread. To thoroughly analyze the detection
latency of R-SMT, it is necessary to quantify first the re-
execution slack, given it significantly impacts detection
latency. In Fig. 3, we measure the re-execution slack for
various configurations, when varying the mechanism’s
comparison buffer size. We find that smaller buffer sizes
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Figure 3: Distribution of re-execution slack when varying

the comparison buffer size in R-SMT.

result in smaller divergence between the primary and
redundant thread during execution. This is because when
the primary thread has placed more instruction results in
the buffer than the redundant is able to consume, and the
buffer becomes fully occupied, instruction commit of the
main thread halts (named as full comparison buffer stalls),
since there are no available entries to store the subsequent
instruction results. Consequently, the redundant thread
is allowed to commit instead, thus converging with the
primary one. Given that with smaller buffer sizes, the buffer
is more frequently filled, and in turn the primary thread
is more frequently denied committing, smaller comparison
buffer sizes eventually lead to smaller re-execution slack.

6.1.2. Error detection latency. In Fig. 4, we measure the
error detection latency, which yields the same trends across
all benchmarks: DMR demonstrates the lowest minimum
(in all benchmarks) and mean (in 8 out of 9 benchmarks)
latency, because the primary and redundant instructions
are concurrently executed in each core. R-SMT exhibits
higher latency, because the re-execution slack introduces
an additional source of delay in the error detection, given
that both the main execution and the redundant execution
of an instruction must first commit before error detection
can occur. Nonetheless, R-SMT demonstrates higher mean
latency compared to DMR, but with close values in all
benchmarks. Specifically, in 4 out of 9 (fft, ifft, qsort, smooth)
benchmarks the deviation from DMR is less than 20 cycles
and for the rest, never exceeds 240 cycles (djpeg). As shown
in the previous experiment, with the given comparison
buffer size (10 entries), slack is consistently lower than
ten instructions, justifying the marginal latency increase
observed in this experiment. ParDet consistently exhibits
higher min and mean latency in all benchmarks, with up
to two orders of magnitude larger compared to DMR (42x
higher average for patricia): for an error to be detected in
ParDet, the whole segment needs to be first re-executed
in the checker cores, which have considerably much lower
compute capabilities than the main core. Moreover, check-
pointing before offloading segments in a checker core, incurs
additional latency overheads.

Figure 4: Distribution of detection latency across multiple

injection experiments for all evaluated methods.

Figure 5: Detection efficiency in transient errors.

Key insight 1: For R-SMT, slack between threads is the
key factor that causes the high detection latency.

Key insight 2: Although ParDet might have the poten-
tial to detect errors early, since it performs architectural
state comparisons in re-executions, these comparisons
happen infrequently due to the low compute capabilities
of the checker cores, thus detection latency is consis-
tently larger than DMR and R-SMT.

6.2. Analysis of Detection Efficiency

To assess the effectiveness of error detection in each
method, we also inject errors to an unprotected system to
use as a baseline.

Fig. 5 compares the error detection efficiency in the
presence of transient faults. We observe that ParDet detects
the largest number of errors across all benchmarks (52% on
average, compared to 39% for R-SMT and 34% for DMR).
This is because ParDet’s implementation of architectural
state comparison for error detection, which detects cases
where the injected erroneous register will not affect any
instruction/the execution, i.e. when the erroneous register
is overwritten. In contrast, DMR and R-SMT correctly
classify such cases as masked, since no erroneous result is
produced. Masked injections occur both in the unprotected
and protected designs, because the erroneous register is
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overwritten, given that the fault injection can occur in un-
mapped registers (it depends on the fault masks generation,
which follows the uniform distribution according to [48]),
so the value of that register will never be used.

Key insight 3: High detection percentage does not
guarantee low crash percentage, as methods such as
ParDet might suffer from overdetection.

Overdetection, where benign errors that will be sub-
sequently masked are identified as detected, creates false
positives, which is generally unappealing. For instance,
in systems where errors are also corrected after detection,
false positives lead to unnecessary corrective actions, which
introduce additional performance overhead and increase
response time.

R-SMT detects more faults compared to DMR, owned to
the structure of the injection campaign: to fairly compare
fault detection capabilities, the same errors are injected in
all methods, and to better approximate the response of fault
detection in real-world execution scenarios, each injection
is synchronized to occur for all methods when the same time
interval has elapsed (sampled from a normal distribution
and measured from the start of the program execution).
This results in errors manifesting earlier in the program
order in R-SMT, thus causing a higher probability that the
error will propagate to other registers via data dependencies.
Specifically, R-SMT occurs a higher probability to detect
errors, as errors potentially corrupt more instructions.

Despite DMR exhibiting the lowest detection percentage,
it experiences the fewest failures (0.1% on average, crashes
and hangs combined), followed by R-SMT (1.1%) and then
ParDet (6.2%). This is because R-SMT and ParDet have
higher detection latency than DMR, which might cause
the error to propagate deeper, and in turn causing failures
(crashes and hangs) more frequently than DMR.

Lastly, neither DMR nor R-SMT produces SDCs, because
for an erroneous value to be written in program output,
it must first be produced in some instruction result and
consequently, would have been detected.

Fig. 6 compares the efficiency in permanent error detec-
tion. All methods experience more crashes and hangs, since
permanent errors propagate more, due to their persistent
nature, i.e., affecting more instructions. This, combined with
the increased detection latency of ParDet renders it the
method with the lowest permanent error detection efficiency.
In contrast, DMR and R-SMT demonstrate higher detection
efficiency, because permanent errors through their wider
propagation more likely corrupt instruction results, thus
making them detectable by these methods.

Key insight 4: R-SMT despite duplicating hardware,
can effectively detect permanent errors, by detecting
altered instruction results before and after the permanent
hardware corruption.

Figure 6: Detection efficiency in permanent errors.

Figure 7: Comparison of performance in error-free execution

for all 3 methods.

Key insight 5: Low detection latency is even more
crucial in permanent error detection, since it provides
higher detection efficiency.

6.3. Performance Analysis

Fig. 7 presents the performance overhead each method
introduces to the execution using the IPC metric. DMR
emerges as the most performant across the three, providing
on average 1.53x and 1.08x better peformance than R-SMT
and ParDet, respectively, as it introduces no performance
degradation from normal (unprotected) execution. ParDet
experiences a performance slowdown less than 2% in
all benchmarks except from djpeg, patricia and edges:
checkpointing causes more frequent stalls of the main
core in these benchmarks. In all benchmarks, ParDet is
more performant than R-SMT by 1.4 times on average.
Lastly, the performance overhead of R-SMT is due to two
reasons: i) the performance degradation of SMT (2-thread
execution) compared to single threaded execution, and ii)
the performance loss due to full comparison buffer stalls.
Fig. 8 shows the impact of full comparison buffer stalls of
R-SMT scheme for various comparison buffer sizes. We find
that larger sizes improve performance by causing more
infrequent full comparison buffer stalls of the primary
thread.

6.4. Area Cost Analysis

In Table 3 we compare the area costs of all three methods
over the unprotected baseline that does not integrate fault
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Figure 8: Slowdown of R-SMT in error-free execution, when

varying the size of the comparison buffer.

detection schemes. For DMR, we assume a two-times area
overhead, since all hardware components of the core are
replicated. Given that area modelling simulators, i.e. McPat
[49], do not estimate the area overhead of SMT, we evaluate
the area overheads of R-SMT by relevant literature [45, 53,
68], in order to also obtain more accurate results: the layout
overhead of SMT in real designs is less than 6% of the core’s
area, excluding cache memories, and the comparison buffer
of 10 entries corresponds to 0.125% of the L1 cache thus
contributing to an additional 0.04% area increase [69]. For
ParDet, we use the results from the original publication [2]
(since we are also modelling the same microarchitecture),
i.e., incurring 24% (0.14mm2/core and 0.08mm2 for the 36KiB
load-store log) overhead over the main core.

TABLE 3: Area Overheads.

Method
Overhead per Component Total

areaComponent Overhead
Unprotected - - 1x

DMR Redundant core 100% 2x

R-SMT SMT overhead 6% 1.0604xComparison buffer (10 entries) 0.04%

ParDet Checker cores (12) 20.2% 1.24xLoad-store log (36 KiB) 3.8%

Key insight 6: R-SMT configurations which maintain
small slack will harness multiple benefits: without need-
ing a large comparison buffer, will enjoy both low area
overhead and better performance, due to infrequent
stalls.

6.5. Power overheads analysis

Fig. 9 shows the total power consumption of all methods
across all benchmarks, estimated using McPAT and normal-
ized to the power consumption of the unprotected design,
which consists of a single-core processor. DMR exhibits
on average power overhead of 43%, given that introduces
an additional core and duplicate instructions. In contrast,
R-SMT demonstrates the lowest power increase among
all methods, with only 15% increase over the unprotected
baseline. This minimal increase is due to maintaining the
same core configuration for all methods, with the power

Figure 9: Power consumption for all 3 methods, normalized

to the unprotected design.

increment attributed only to the execution of the redundant
SMT thread.

If the processor microarchitecture were to be more
aggressive to support SMT initially (e.g., with larger ROB or
register files, etc.), a further increase in power consumption
would be anticipated. However, since the redundant thread
does not significantly congest the main thread due to re-
execution slack, we retained the same microarchitecture for
R-SMT as well, not augmenting it with more resources for
SMT.

Lastly, ParDet incurs a 21% power overhead, due to the
additional power consumption of the checker cores.

Since McPAT provides only coarse estimations for area
and power, we expect more accurate estimations of power
to yield even lower results, when using more accurate and
recent models tailored to current technology.

6.6. Overall Evaluation

In Table 4, we evaluate various configurations of R-SMT
and ParDet, each having a different area cost, using all met-
rics and present averaged numbers across all benchmarks.
For R-SMT, we modify the size of the comparison buffer.
For ParDet, we adjust the number of checker cores, scaling
the load-store log such that the size that corresponds to
each core remains constant in every configuration, since
otherwise detection latency would be affected primary by
that.

ParDet with 3 auxiliary cores and all configurations of
R-SMT exhibit similar area overheads. However, due to the
low core count in checker cores, ParDet achieves lower
performance over R-SMT by nearly a factor of two (2.92x
slowdown compared to 1.53x) and higher error detection
latency by a factor of 20 (96-149 cycles compared to 3011
cycles). Additionally, ParDet experiences 6 times more
crashes, with the increased detection percentage attributed
to overdetection (detecting also benign errors which would
be eventually masked). Thus, in terms of area cost, R-SMT
provides a good trade-off across all metrics.

Key insight 7: R-SMT is more suitable for area-critical
applications.

In ParDet configurations, increasing the core count
reduces the detection efficiency, because with more cores,
the main one progresses further, and errors propagate
further without being limited when the main core stalls.
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TABLE 4: Overall evaluation for various configurations

Method R-SMT R-SMT R-SMT ParDet ParDet ParDet ParDet DMR

Configuration 1-entry 10-entry 100-entry 3 cores 6 cores 12 cores 16 cores -
Area overhead 6.004% 6.04% 6.4% 6% 12% 24% 32% 100%

Detectability

detected % 37.7 38.9 33.7 53.8 52.6 52.2 51.9 34.7
SDC % 0 0 0 5.2 5.9 5.4 5.6 0
masked % 62.2 60 63.2 35.1 35.6 36.2 36 65.3
crashes % 0.1 0.9 1 5.9 5.5 5.4 4.2 0
hangs % 0 0.2 2.1 0 0.4 0.8 2.3 0

Performance slowdown 1.54 1.53 1.52 2.92 1.56 1.08 1.06 1
Latency (cycles) 96 149 108 3011 3133 3136 3149 96

However, crashes do not increase, because checkpoints
continue to occur at the same frequency, as the segment
size per core remains constant.

Key insight 8: ParDet presents a tradeoff between
performance and detection efficiency versus latency and
area.

R-SMT configurations with varying comparison buffer
size, perform similarly in detection efficiency and detection
latency. This is because error detection continues to occur
as early as possible during the redundant thread’s commit
phase.

Key insight 9: Both R-SMT’s detection efficiency and la-
tency are independent of area configuration (comparison
buffer size), thus hardware designers can safely select the
lowest-area configuration without compromising neither.

Key insight 10: ParDet with increased core counts
is suitable for performance-critical applications, since
along with adequate detection efficiency has minimal
performance overheads.

Key insight 11: DMR or R-SMT with the lowest com-
parison buffer sizes are equally good options for latency-
critical applications, since both provide the minimal
latency.

7. Other Related Work

7.1. Error Detection at Other Architecture Levels

A couple of prior works [30, 72] propose hybrid
software-hardware and software-only error detection meth-
ods. In this work we focus on a comprehensive analysis
of only hardware error detection methods, as opposed to
i.e. software-level detection. This focus is crucial, because
the selection of any hardware method impacts heavily
the late stages (where the impact on area and power is
more accurately computed) albeit must be made during
the early design stages and cannot be altered afterwards.
Consequently, the insights we present impact significantly
all stages of hardware development. Additionally, error
detection is a necessity in modern computing systems,
thus manufacturers have widely integrated error detection
schemes in hardware. Therefore, our work focuses in

effectively evaluating hardware-level methods that have
higher detection efficiency and typically better performance
than software-based schemes.

7.2. Error Correction

Several prior works [3, 35, 56, 57, 88, 94] propose error
correction methods, i.e., schemes to effectively resolve errors
after they have been detected. Error correction is orthogonal
to error detection: a self correcting system has to first
detect errors prior to correcting them, and the overhead of
correction typically dominates that of detection, as restoring
the system to a safe state requires additional processing [3,
88]. For this reason, a comparison between both correction
and detection would not be fair. Instead, we leave the
characterization of error correction methods for future work,
as they will potentially require different metrics than the
ones proposed here, again depending on the requirements
of the applications utilizing correction.

7.3. Other Characterization Studies

Prior characterization studies between hardware meth-
ods (for detection or also correction) include only limited
metrics. One study [57] assesses scrubbing, a hardware
correction technique for memory faults, in terms of relia-
bility. [35] compares the latency of hardware redundancy
schemes for error correction, [94] compares the reliability of
detection techniques for GPUs and [56] discusses the energy
efficiency of fault tolerant methods for parallel HPC systems.
Reis et al. [72] propose a hybrid software-hardware method
evaluated in performance, reliability, and area in comparison
to a software-only method. Gizopoulos et al. [30] discuss
hardware and software methods qualitatively comparing
them in performance, reliability, detection latency and area
overhead, but without evaluating them experimentally in
neither of these metrics. In this work we focus on multi-
metric evaluation of hardware-level methods, covering all
the important metrics needed across all application domains.

8. Conclusion

We presented a comprehensive characterization of
three diverse alternatives on hardware error detection. We
identified that safety-critical applications from different
domains can be classified in three categories based on
their second requirement beyond reliability. We proposed
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five key metrics on which fault detection methods need
to be evaluated to effectively cover all various application
classes. We extensively compared three methods, i.e., (i)
DMR a conventional fault tolerance method, and (ii) R-
SMT and (iii) ParDet two microarchitectural approaches,
in all the proposed metrics using various workloads. Our
work demonstrates that microarchitectural methods achieve
comparable detection efficiency with the conventional one,
and proposes that (i) R-SMT can be used in area/power-
critical applications, since it provides low area and power
without compromising detection efficiency in latency, (ii)
both R-SMT and DMR are suitable for latency-critical
applications and (iii) ParDet fits very well for performance-
critical applications.
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