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Abstract
Atalanta is a lossless, hardware/software co-designed com-
pression technique for the tensors of fixed-point quantized
deep neural networks. Atalanta increases effective memory
capacity, reduces off-die traffic, and/or helps to achieve the
desired performance/energy targets while using smaller off-
die memories during inference. Atalanta is architected to
deliver nearly identical coding efficiency compared to Arith-
metic Coding while avoiding its complexity, overhead, and
bandwidth limitations. Indicatively, the Atalanta decoder
and encoder units each use less than 50B of internal stor-
age. In hardware, Atalanta is implemented as an assist over
any machine learning accelerator transparently compress-
ing/decompressing tensors just before the off-die memory
controller. This work shows the performance and energy
efficiency of Atalanta when implemented in a 65nm technol-
ogy node. Atalanta reduces data footprint of weights and
activations to 60% and 48% respectively on average over a
wide set of 8-bit quantized models and complements a wide
range of quantization methods. Integrated with a Tensorcore-
based accelerator, Atalanta boosts the speedup and energy
efficiency to 1.44× and 1.37×, respectively. Atalanta is effec-
tive at compressing the stashed activations during training
for fixed-point inference.
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1 Introduction
The memory footprint of state-of-the-art deep learning (DL)
models (hitherto referred to as models) has been rapidly in-
creasing. Designers use more layers and weight parameters
to improve task performance, tackle increasingly more com-
plex tasks, and capture more complex patterns in the deluge
of available data to train on. As a result, the energy effi-
ciency and execution performance of state-of-the-art models
remains limited by accesses to tensor data from off-die mem-
ory and in some cases across network links [21, 34].
Hardware-based memory value compression directly re-

duces these off-die access costs. It has been extensively stud-
ied for general purpose systems [17, 63, 72, 84] where it
capitalizes on program-related value behavior such as com-
mon address prefixes, and other repetitive patterns. Unfortu-
nately, these compressors are not well-suited for addressing
the unique properties and requirements of DL [48]. First,
DL tensors exhibit Gaussian-like distributions with a few
outlier values and practically none of the aforementioned
patterns [48, 71]. Second, altering model values is tolera-
ble as long as task performance metrics, like accuracy, are
preserved. Third, DL models predominantly require wide
streaming accesses rather than narrow, random accesses.
The different opportunities and needs of deep learning

have not gone unnoticed. DL-specific quantization [27, 51,
53, 71] and value compression [13, 14, 25, 29, 30, 43, 44, 48,
54, 60, 77] are widely adopted to reduce memory traffic.
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Quantization capitalizes on the tolerance for value changes
and trains or modifies the model to use a sparser value space
that requires fewer bits per value [10, 16, 27, 30, 51, 67, 71,
99, 100]. Today, quantization to 8 bit fixed-point is typically
possible with little or no effect on task performance and for
many tasks. Quantization to 4b has been demonstrated for
inner layers [16] whereas more extreme quantization affects
accuracy much more [15, 16, 19]. Typically quantization uses
a fixed data width among all values of the same tensor, layer,
or network. Given that typically only a small number of val-
ues require the maximum data width needed for the tensor
(or network) as awhole, thesemethods result in lost encoding
efficiency opportunities. Sections 2 and 5.8 further consider
the interplay between quantization and compression.
Prior works in hardware data compression for DL mod-

els [13, 14, 29, 30, 44, 53, 54, 77], as we also show in Sec-
tion 5, are still far from a near-optimal encoding. Specifi-
cally, these works (i) either compress only a subset of the
values, e.g., only zeros [14, 29, 53, 54, 77], only the weight
parameters [30], or (ii) use a fixed data width (e.g., 5-bit) per
value [60] or groups of data values [48], or (iii) target specific,
expected value patterns, e.g., [13, 44].Compression methods
like those from the LZ77 family [22, 94, 101], which aren’t
specific to DL models, have proven effective in applications
where their significant hardware demands, including local
storage, frequent lookups, and encoding table updates, are
acceptable. We consider such methods in Section 5.8.
We propose Atalanta, a near-optimal, practical, and loss-

less hardware/software compressor for efficient DL inference
with application also in training (see Section 5.10). Atalanta
meets the following requirements: First, it provides near-
optimal encoding of weights and activations (e.g., it can
encode frequent values with less than a bit). Second, it has
low area and power costs to be seamlessly integrated with
systems tailored for executing DL models, as well as domain-
specific accelerators such as Tensorcore units [24, 40], sys-
tolic arrays [42] and sparsity-specific DL accelerators [29, 70].
Third, Atalanta provides transparent and lossless compres-
sion, leaving task performance intact. Fourth, it is general
enough to support any arbitrary (quantized or not) model us-
ing fixed-point value tensors. Fifth,Atalanta naturally adapts
and thus rewards quantization to fewer bits where and when
this is possible without necessitating it.

Atalanta is inspired by Arithmetic Coding (AC) [8, 78, 79],
which achieves nearly optimal encoding efficiency by using a
real number in the range [0, 1) to represent an input symbol
sequence (here tensor values). The precision (the number
of bits) required for encoding depends on the sequence and
the expected frequency of values. Uniquely, AC can encode
frequent values using, effectively, less than one bit.
Using AC to enhance DL application energy efficiency

is an open challenge due to AC’s high implementation and
power costs (see Sections 3.1 and 5). AC has been primarily

used in scenarios where communication costs overwhelm-
ingly exceed that of compression, making maximum com-
pression the ultimate objective (e.g., transmitting video over
low-bandwidth links or storing it on hard drives). Architect-
ing an AC-based solution that provides optimal encoding and
low hardware costs (including power, latency, bandwidth,
and area) is challenging for several reasons. 1) To maximize
the compression ratio, it is necessary to keep track of the
expected frequency for each possible value, which leads to
prohibitively large area and power costs for table lookups.
2) AC is inherently sequential, producing only a few bits
per decoding step, which conflicts with the wide and high-
bandwidth needs of DL. 3) AC requires costly arithmetic op-
erations, such as wide multiplications and divisions, which
further increase energy, latency, and area costs in hardware.
4) AC requires advance knowledge of the value distribution,
which is challenging for activations.

Atalanta offers near-AC encoding efficiency and practical-
ity for seamless integration with deep learning (DL) acceler-
ators at a low cost, achieved through the following key tech-
niques: 1) Partitioning the value space per tensor into sub-
ranges allows each value 𝑣 to be mapped to a (symbol, offset)
pair, where 𝑣 = symbol + offset, with values within the same
sub-range sharing a common base symbol. This approach
enables Atalanta to track probabilities at a sub-range granu-
larity, eliminating the high area and power costs of AC hard-
ware, with minimal loss in compression effectiveness (Sec-
tion 5). Customizing sub-ranges for each tensor is achieved
through a heuristic algorithm that maximizes compression
effectiveness (Section 4.3). 2) To meet the high-bandwidth re-
quirements of DL, Atalanta divides tensors into chunks and
integrates multiple hardware coder/encoder units, increas-
ing execution parallelism. Each unit independently processes
a chunk of the tensor, a common approach in DL accelera-
tors [39], producing a single value per cycle. 3) Atalanta elim-
inates expensive AC arithmetic operations by approximating
them with lightweight calculations, using only shift opera-
tions and narrow fixed-point multiplications and additions.
4) The key observation that the distribution of activation
values remains almost the same regardless of input allows
Atalanta to pre-select sub-ranges and their probabilities for
activations through profiling.

We evaluate Atalanta using a wide variety of DL models,
and highlight the following experimental results:
• Implemented in a 65nm tech node, Atalanta encoder and
decoder occupy only 0.02𝑚𝑚2 and 0.017𝑚𝑚2 area, respec-
tively, and consume 2.8𝑚𝑊 and 2.65𝑚𝑊 power, respec-
tively (this is measured over a subset of the models).
• Per model, the compression rate for activations varies from
1.43× to 4.2×, and from 1.13× to 11.4× for weights.
• Atalanta rewards quantization and pruning delivering re-
ductions in off-die traffic.
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• When integrated with a Tensorcore-based accelerator, Ata-
lanta improves performance and energy efficiency by 1.44×
and 1.37×, respectively.
• Atalanta rivals and often reduces footprint more than the
much more expensive Deflate method.

2 To Quantize and Compress
Deep learning models are not set in stone. Their architecture,
value representation, and arithmetic can change as long as
they perform well on their target tasks. However, designing
and training these models is challenging. After selecting an
architecture, it’s usually trained using floating-point values
and carefully selected or painstakingly explored hyperparam-
eters and recipes. Once effective, designers often streamline
the model using quantization.
Quantization alters the value representation and arith-

metic used in inference. A direct alteration usually hurts
task performance which can often recover by retraining or
fine-tuning the model by running extra training epochs. Ide-
ally, retraining would always be feasible and cost-effective.
However, it demands access to the training dataset, ample
computational resources, time, potential changes to hyper-
parameters, and ensuring the final task performance loss is
tolerable. Meeting all these conditions isn’t always feasible.
Regardless, there are many quantized models that proved
sufficient and efficient (Section 5 studies such models).
The body of quantization work far exceeds what can be

reasonably covered here, e.g., [27, 51]. We study the inter-
play of quantization and compression using representative
methods from two primary classes: a) direct quantization to
narrow-fixed point values, and b) indirect quantization to a
dictionary of representative values.
Direct Quantization: These methods use fixed-point inte-
gers, often with a few bits. Quantization to 8-bit integers is
commonly effective for vision tasks and frequently results in
tolerable task performance loss in others, e.g., [4, 45]. Nar-
rower bitwidths have also been demonstrated e.g., [15, 16, 20, 67].
However, the chosen bitwidth must accommodate all values,
including rare high-magnitude outliers. This can be ineffi-
cient for skewed distributions where most values are small.
Atalanta excels at exploiting such distributions and benefits
from pruning [53]. Section 5 shows the effectiveness of our
method in models using 8-bit to 2-bit per tensor precisions
for ResNet18 [67] and 4-bit models [16]. An additional ad-
vantage of Atalanta is its flexibility to support any bit length,
thus enhancing any future advances in direct quantization.
Indirect (Dictionary) Quantization: These methods quan-
tize values to a few representative values, or centroids, e.g.,[30].
They reduce footprint for two reasons: 1) they store values
as narrow indexes to the dictionary of centroids, and 2) they
can spread the centroid selection in the target value range to
better match the expected distribution. We defer the discus-
sion and evaluation of the interplay of Atalanta and Indirect
Quantization until Section 5.12.

3 Arithmetic Coding Primer
This section is a refresher of arithmetic coding fundamentals.
Reflecting on our own experience, arithmetic coding requires
a non-trivial investment to comprehend. We refer the reader
to [46, 65] for more detailed introductions.
Informally, Arithmetic Coding (AC) converts a sequence

of symbols (such as tensor values) into a code, a real number
in [0, 1), which can be used to reproduce the input sequence.
The code’s precision (number of bits) is determined by the
order of symbols and their expected frequency, making it
potentially large. The encoding process involves adjusting a
value range that encodes the sequence of symbols seen so far.
The code can be any value within this range. As symbols are
processed, the range narrows, with the relative position of
the code encoding the sequence seen so far. The less frequent
the symbol, the narrower the range, requiring more bits
for precision. To achieve maximal compression, Arithmetic
Coding requires advance knowledge of the symbol frequency
and arbitrary precision and arithmetic.
Let us consider an example of encoding four symbols,

A through D, respectively with frequencies of 0.4, 0.1, 0.3,
0.2. AC could assign range [0, 0.4) to A, [0.4, 0.5) to B, and
[0.5, 0.8) and [0.8, 1.0) respectively to C and D. A single B can
be represented by any number in [0.4, 0.5). While this may
seem inefficient, it is only so because presently we are look-
ing at single values. Figure 1 shows how the sequence ABA
ends up being encoded with a code in [0.16, 0.176), e.g., 0.16.
As it encounters the symbols, coding progressively adjusts
the position and size of the initial [(𝑙𝑜𝑤) = 0.0, (ℎ𝑖𝑔ℎ) = 1.0)
range. For example, encoding A restricts the range to
[0.0, 0.4). Encoding the B that follows, further restricts the
range to its [0.4, 0.5) sub-range which is [0.16, 0.20).

Step 1 Step 2 Step 3

1

0.8

0.5

0.4

0

0.40

0.32

0.20

0.16

0

0.200

0.192

0.180

0.176

0.160

B

D

C

A

B

D

C

A

B

C

A

D
Step 1 (A): 

low = 0 + 1 * 0 = 0
high = 0 + 1 * 0.4 = 0.4

Step 2 (B): 
low = 0 + 0.4 * 0.4 = 0.16
high = 0 + 0.4 * 0.5 = 0.2

Step 3 (A): 
low = 0.16 + 0.04 * 0 = 0.16
high = 0.16 + 0.04 * 0.4 = 0.176

Figure 1. An example of AC encoding.

Formally, AC accepts a sequence 𝑆 of input symbols 𝑆 =

𝑠𝑁 ...𝑠𝑖 ...𝑠0 from a vocabulary 𝑉 of symbols {𝑣𝑠 , ..., 𝑣0} ∈ 𝑉
and a table of ranges/probabilities

[
𝑝ℎ𝑖𝑔ℎ 𝑗 , 𝑝𝑙𝑜𝑤 𝑗

)
, one per

symbol in 𝑉 . For maximal compression, each range is sized
proportional to the probability of occurrence of the respec-
tive symbol. The result is a 𝑐𝑜𝑑𝑒 value, a number in [0, 1)
which uniquely represents the input sequence 𝑆 . Internally,
the method uses two state variables ℎ𝑖𝑔ℎ and 𝑙𝑜𝑤 . The fol-
lowing is a pseudo-code implementation:

Encoding starts with a [0.0, 1.0) range (#1). Each symbol 𝑠𝑖
is read (#3) and used to index the table of ranges (#4). Line #5
calculates the current 𝑟𝑎𝑛𝑔𝑒 length. The new boundaries are
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Algorithm 1: Infinite precision Arithmetic Coding
(AC).
Data: 𝑆 = 𝑠𝑁 , ..., 𝑠0, 𝑝ℎ𝑖𝑔ℎ𝑠 , ..., 𝑝ℎ𝑖𝑔ℎ0, 𝑝𝑙𝑜𝑤𝑠 , ..., 𝑝𝑙𝑜𝑤0
Result: 𝑐𝑜𝑑𝑒 representing the input sequence 𝑆

1 𝑙𝑜𝑤 = 0.0; ℎ𝑖𝑔ℎ = 1.0;
2 while i < N do
3 𝑠 = 𝑠𝑖

4 𝑝𝑟𝑜𝑏ℎ = 𝑝ℎ𝑖𝑔ℎ𝑠𝑖 ; 𝑝𝑟𝑜𝑏𝑙 = 𝑝𝑙𝑜𝑤𝑠𝑖

5 𝑟𝑎𝑛𝑔𝑒 = ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤
6 ℎ𝑖𝑔ℎ = 𝑙𝑜𝑤 + 𝑝𝑟𝑜𝑏ℎ × 𝑟𝑎𝑛𝑔𝑒
7 𝑙𝑜𝑤 = 𝑙𝑜𝑤 + 𝑝𝑟𝑜𝑏𝑙 × 𝑟𝑎𝑛𝑔𝑒
8 i++
9 end

10 𝑐𝑜𝑑𝑒 ← 𝑙𝑜𝑤

offset from the current low by adding the scaled with 𝑟𝑎𝑛𝑔𝑒
symbol boundaries (#6-#7). Once the full symbol sequence
has been processed, the code can be any value between low
and high. Decoding performs the inverse computation.

3.1 Challenges with Arithmetic Coding
The above arithmetic coding method is not a good fit for
our purposes: 1) It requires expandable precision arithmetic,
2) uses a range table with one entry per potential input value,
and 3) performsmultiple expensive operations (e.g., decoding
would require arbitrary precision division).

Expandable precision arithmetic implementations are
costly and unsuitable for our needs, as execution time grows
proportionally with precision, reaching thousands of cycles
for typical tensors. This makes them unsuitable for our pur-
poses. Fortunately, there are AC approximations that use
finite-precision arithmetic.

Atalanta’s AC component is inspired by Nelson’s software
AC implementation [65]. Readers can refer to Nelson’s expla-
nation of this non-trivial modification to AC. Due to space
limitations, it suffices to note that Nelson’s implementation,
while less costly than pure AC, it is still impractical for our
purposes due to 1) its requirement of a probability entry per
value, which necessitates a 256-entry table for 8b models,
2) severe bandwidth limitations as it encodes and decodes a
single bit at a time, and 3) the use of expensive operations
proportional to the number of probability table entries.
Even if we assume that we can alter Nelson’s implemen-

tation to process a whole value per step and to avoid the
cost of expensive operations, just the cost of the probability
table proves prohibitive. A properly configured coder/de-
coder unit for 8b models, would need to have a table of
256(𝑠𝑦𝑚𝑏𝑜𝑙𝑠)×10𝑏 (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)×2 ≈ 5𝐾𝑏 of storage just for
the probability table (with higher overheads for 16b models
which are still in use in applications requiring high resolution
output, such as segmentation). Since we have to replicate
the units to achieve high bandwidth data supply, these costs

are multiplied further. The resulting power for the practi-
cal configuration studied in Section 5.6 proves prohibitive
reaching an overhead of 93.6% vs. DRAM power alone.

4 Atalanta
Atalanta introduces a modified encoding/decoding process
where 1) all updates to the state (high, low, and code) are
performed in a single step, and 2) arithmetic coding is used
only for a variable portion of each value. As a result, it uses
tables with atmost 16 entries and low complexity operations
(shifts and narrow fixed point multiplication), resulting in a
novel energy efficient and higher bandwidth implementation.
Atalanta manages to use very few entries by partitioning
the input value space into several non-overlapping ranges
[𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 ] with no constraints on range spread or origin. A
value 𝑣 is encoded as (symbol, offset) where symbol = 𝑣𝑚𝑖𝑛
and offset = 𝑣 − symbol, and we define an unsigned integer
𝑂𝐿 = 𝑙𝑜𝑔2 (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛) bits, that represents the bitwidth of
the range of the values. We have experimented with several
4b, 8b, and 16b models and found that using 16 ranges, with
8b 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 , and 3b𝑂𝐿 (4b for 16b models) is sufficient
(see Section 5.6 — more than 16 ranges at best improved
compression by 0.1% or less, whereas for many models even
8 ranges would have been enough). While Atalanta’s imple-
mentation supports 16 ranges, by appropriately setting the
range boundaries, we do not have to use them all further
improving energy efficiency.

At a high-level, Atalanta innovates over AC as follows:
• AC requires the expected frequency per possible value, in-
curring prohibitive area and power costs for table lookups.
Instead, Atalanta partitions the value space per tensor into
sub-ranges, and tracks of the expected frequency of each
sub-range, thus providing low area/power costs.
• The original AC is inherently sequential, producing only a
few bits per decoding step. Instead, Atalanta: 1) groups all
per bit operations into a single bit-parallel operation per
input value (encode) and per symbol (decode), and 2) splits
tensors in chunks and integrates multiple hardware units
to increase execution parallelism.
• AC requires costly (energy, latency, and area) arithmetic
operations, such as wide multiplications and divisions. In
contrast, Atalanta uses only shift operations and narrow
fixed-point multiplications and additions, and thus achiev-
ing low energy/latency/area costs.
• AC requires advance knowledge of the distribution of all
values. Instead, Atalanta needs to know the data value dis-
tribution at a sub-range granularity, which is achieved via
lightweight profiling. This also makes Atalanta more tol-
erant in variations in the input distribution across inputs.
• Atalanta uses profiling and a heuristic algorithm to split
the input value range into subranges optimizing the foot-
print of the encoded stream.
We detail Atalanta data value encoding and decoding.
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Encoding: The Atalanta encoder compresses a value se-
quence into two streams. It first maps each value into a
(symbol, offset) pair and then arithmetically encodes just the
symbol (𝑣𝑚𝑖𝑛) (1st stream) while storing the offset verbatim
using only as many bits as necessary (2nd stream). Very
frequent symbols may end up using no offset bits. Atalanta
also stores the following metadata: 1) the number of symbols
encoded, and 2) the range and probability table (encoding
table for short) which needs less than 50 bytes for our ex-
ample implementation.The table encodes the value range
(𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 ) and the assigned probability range (𝑙𝑜𝑤𝑖 , ℎ𝑖𝑔ℎ𝑖 )
per symbol. We use 10b for the probabilities, and we assign
the full range of (0𝑥0, 0x3ff ) across the symbols. A software
optimizer (Section 4.3), determines per tensor value ranges
that reduce the overall footprint.

Table 1 shows an example encoding table for the weights
of a layer of BILSTM (see Section 5). The row index “IDX”
and the symbol probability ‘p’ are shown for clarity — they
are not stored. Row 0 assigns the four values in [0𝑥00, 0𝑥03]
the [0𝑥000, 0𝑥1𝐸𝐵) range (a probability ‘p’ of 0.4795). Any of
these values will be encoded as symbol 0 and will be decoded
to 𝑣𝑚𝑖𝑛 = 0𝑥00. The exact value 𝑣 is recovered by adding
the recorded 𝑂𝐿 = 2b to 𝑣𝑚𝑖𝑛 . Values absent from the tensor
are assigned a zero probability with 𝑡𝑙𝑜𝑤 = 𝑡ℎ𝑖𝑔ℎ (rows 3-
12). Row 13 captures all values in [0𝑥𝐷0, 0𝑥𝐹3] assigning
them symbol 13. Notice that the offset requires 6 bits since
0𝑥𝐹0−0𝑥𝐷0 = 0𝑥23. Since 0𝑥23 < 26−1 not all offset values
will be used. Our implementation store the symbols in order
such that 𝑣𝑚𝑖𝑛 [𝑖] = 𝑣𝑚𝑎𝑥 [𝑖 − 1] + 1 for 𝑖 > 0 allowing us to
store only 𝑣𝑚𝑎𝑥 and 𝑡ℎ𝑖𝑔ℎ per row reducing costs.

Table 1. Symbol and Probability Count Table Example

IDX v_min v_max OL tlow thigh p
0 0x00 0x03 2 0x000 0x1EB 0.4795
1 0x04 0x07 2 0x1EB 0x229 0.0605
2 0x08 0x0F 3 0x229 0x238 0.0146
3 0x10 0x3F 6 0x238 0x23A 0.0020
4 0x40 0x4F 4 0x23A 0x23A 0.0000
5 0x50 0x5F 4 0x23A 0x23A 0.0000
6 0x60 0x6F 4 0x23A 0x23A 0.0000
7 0x70 0x7F 4 0x23A 0x23A 0.0000
8 0x80 0x8F 4 0x23A 0x23A 0.0000
9 0x90 0x9F 4 0x23A 0x23A 0.0000
10 0xA0 0xAF 4 0x23A 0x23A 0.0000
11 0xB0 0xBF 4 0x23A 0x23A 0.0000
12 0xC0 0xCF 4 0x23A 0x23A 0.0000
13 0xD0 0xF3 6 0x23A 0x23C 0.0020
14 0xF4 0xFB 3 0x23C 0x276 0.0566
15 0xFC 0xFF 2 0x276 0x3FF 0.3838

Listing 1 shows in pseudo-code the encoding process. The
16b (HIGH,LOW) registers hold the current range (initially
(1.0, 0] = (0xffff, 0x0000)). A 5b underflow bit counter UBC
avoids cases where 16b arithmetic is insufficient. Encoding
a value proceeds as follows: Step 1: Lookup which entry
of the probability table the 8b input ‘val’ matches (using
the 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 fields (lines 8-10). Step 2: Using the OL field,
extract the corresponding least significant bits from ‘val’

and write them to the offset stream (lines 11-12). Step 3:
Adjust (HIGH, LOW) according to the value’s probability
(lines 13-16). Step 4: Shift out to the Symbol stream any
common prefix of (HIGH, LOW) (lines 17-23) filling their
least significant bit positions with 1s and 0s respectively. If
there have been underflow bits detected earlier (non-zero
UBC), place them after the first output bit, setting them to its
inverse value (see Section 4.1). Step 5: Prevent cases where
16b arithmetic is not enough (lines 27-31). Ignoring the most
significant bit of (HIGH, LOW), check whether there is a
prefix of 0s in HIGH that is matched with a prefix of 1s in
LOW. Shift those out counting the bit length in UBC. Table 2
shows an encoding example.

Table 2. Encoding the value sequence 0xff, 0x03 using the
example probability count table of Table 1.

Initial State: (HIGH,LOW) = (0xffff, 0x0000)
implies range = 0x10000

Input Value 0xff
Lookup PCNT [v_min, v_max]: entry 15 (tlow, thigh, OL)=(0x276, 0x3ff, 2)
Output to Offset Stream 0xff >>OL –>11(2)
Shrink (HIGH, LOW): HIGH = 0x0000 + (0x10000 * 0x3ff) >>10 -1

= 0xffbf
LOW = 0x0000 + (0x10000 * 0x276) >>10
= 0x9d80

(HIGH,LOW) common prefix? 1b long, write it to AC stream
Output a 1(2)

Adjust (HIGH,LOW) shift left filling HIGH with 1s and LOW with 0s
(HIGH,LOW) = (0xff7f, 0x3b00)

Input Value 0x3
Lookup PCNT [v_min, v_max]: entry 0 (tlow, thigh, OL) = (0x0, 0x1eb, 2)
Output to Offset Stream 0x3 >>OL –>11(2)
Shrink (HIGH, LOW): HIGH = 0x3b00 + (0x1eb * 0xc480) >>10 - 1

= 0x9937
LOW = 0x3b00 + (0x0 * 0xc480) >>10
= 0x3b00

(HIGH, LOW) common prefix? No

Decoding: The decoder (pseudo-code in Listing 2) accepts
as input two sequences: 1) the compressed symbols and 2) the
corresponding offsets, and outputs the original values. At
each step, it first decodes a value prefix from the symbol
sequence. Using the symbol table, it then extracts the appro-
priate number of offset bits, which it adds to the value prefix.
The process continues until all symbols have been decoded.
Our decoder produces a single value per step using a similar
process to the encoder. It maintains (HIGH, LOW) registers
and a 16b CODE register which is a window into the symbol
stream. At each step, to decode a symbol, it scales CODE by
the current range (HIGH,LOW), offsets it by LOW, and then
scans the probability range table to find the matching range.
4.1 Implementation
Encoder: Figure 2 shows the encoder implementation which
mirrors Listing 1. We provide an overview emphasizing the
handling of over/underflow. Separate encoders for activa-
tions and weights are initialized once per layer: 1) HI_in and
LO_in: set the 16b HIGH and LOW (the extra 1b is an enable).
2) SYMT_in: sets the symbol table (𝑣𝑚𝑖𝑛 and offsets) once per
tensor. The implementation assumes that: i) the full range is
mapped, and ii) the rows are ordered in value (symbol) order.
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1 HIGH, LOW: 16b regs, initially 0xffff, 0x0000
2 IN: input value
3 PCNT[]: Symbol & Prob. Count Table (Table 1)
4 val: 8b input value
5 UBC: 5b outstanding underflow bits, initially 0
6
7 Encode_Value:
8 Table Lookup:
9 find i s.t. PCNT[i].vmin≤ val ≤PCNT[i].vmax
10 tlow,thigh,OL = PCNT[i].(tlow,thigh,OL)
11 Output to Offset stream:
12 write the OL LSbs of val-PCNT[i].vmin
13 Adjust high & low:
14 range = HIGH - LOW + 1
15 HIGH = LOW + (range * thigh) >> 10 - 1
16 LOW = LOW + (range * tlow) >> 10
17 Output to Arithmetic Coding Stream:
18 HIGH & LOW common prefix?
19 Shift out to Symbol stream:
20 if UBC != 0 // underflow
21 shift out MSb from HIGH and LOW
22 output the inverse of MSb UBC times
23 UBC = 0
24
25 vacated LSbs: fill w/ 1s/0s for HIGH/LOW
26 Underflow Handling:
27 (HIGH,LOW) of the form x0...0xxx,x1...1xxx)?
28 UBC += #bits in (0...0)
29 remove 0...0 and 1...0 from (HIGH,LOW)
30 vacated LSbs: fill w/ 1s/0s for HIGH/LOW

Listing 1. Atalanta encoding a value

3) PCTN_in: sets the probability count entries (thigh,tlow)
10b each (ordered to match the symbol table). The encoder
produces the following outputs: 1) OFS_out: an up to 8𝑏
value containing the corresponding offset and its 4b length
OFS_r (range 0b-8b). 2) A 16𝑏 CODE_out contains CODE_c
(4b+1b to indicate no output) useful bits to be written into
the encoded symbol stream. The 5𝑏 CODE_u signals how
many additional “underflow” bits (explained below) to out-
put. The bits are inserted after the most significant bit of
CODE_out and they are set to its inverse.

Every step the encoder receives a value via the 8𝑏 IN port
(1𝑏 enable). The 1𝑏 “done” signal terminates encoding. The
encoder’s internal state is kept in three registers: 5b UBC,
and 16b HI and LO. Encoding starts in “SYMBOL Lookup” by
finding which range the incoming value (SYMT_in) corre-
sponds to. The range index (SYM[i]) is used: 1) to extract the
appropriate least significant bits from the value and to output
them to the OFFSET stream (OFS_out (bits) and OFS_r (how
many)) and 2) in parallel, to lookup the probability bound-
aries of the range (“PCNT Table”), and then (”Hi/Lo/CODE
Gen”) to scale the HI and LO range boundaries, and finally
to output to the symbol stream any common prefix in them:
CODE_out (bits) and CODE_c (how many bits).
Underflow Detection and Handling: The encoder uses finite
precision arithmetic to execute an algorithm that requires
arbitrary precision arithmetic. It effectively maintains a win-
dow of 16b into what are high and low range boundaries of
arbitrary bit precision. The HI and LO registers contain this
16b-wide window and conceptually, they have suffixes of an

“infinite” number of 1s and 0s respectively. The window is
allowed to slide to less significant bits by shifting out any
prefix that can no longer change. As we encode one symbol
after the other, the HI and LO boundaries shrink with HI
always becoming smaller and LO growing larger. However,
HI>LO always holds since each encoded symbol is of non-
zero probability. As HI and LO approach they will grow an
increasingly longer common prefix. Those are the bits that
the encoder can safely “discard” by shifting them out of the
HI and LO register writing them on the encoded stream.

However, there are cases, where depending on the proba-
bility range of a new symbol and the current range, having a
window of just 16b is not enough to appropriately scale the
range so that HI remains larger than LO. The case is where
HI contains a value of the form 100... and LO a value of
the form 011... which means that HI and LO are converging
around 0.5 (as viewed within the current window and thus
ignoring the common prefix bits that have been shifted out).
To eventually find out whether they will end up being both
above 0.5 or below it, requires arithmetic with more than 16b.
This happens when the range adjustments done are so small
that they need to affect bits that are not yet within the cur-
rent window. The encoder handles such cases preemptively
by entering a state where it records how many underflow
bits are needed allowing the window to slide (lines 26-30 in
Listing 1). The encoder handles this by identifying, starting
from the second most significant bit, any prefix of tHI’ and
tLO’ where tLO is all 1s and tHi is all 0s. This subprefix is
shifted away from tHI’ and tLO’ yielding tHI” and tLO”. To
detect the length of this subprefix, the encoder uses a lead-
ing 1 detector for tHI’ (ignoring the MSb – most significant
bit) and a leading 0 for tLO’ (again ignoring the MSb). The
subprefix is the most significant position among the two.
This is implemented in the 01PREFIX block. This subprefix
is removed from tLO’ and tHI’ producing tLO” and tHI”. Its
length is added to the UBC register which counts the number
of outstanding underflow bits. Those eventually we will be
set to the inverse of the most significant bit of HI (1s or 0s
if we end up respectively on the upper or lower part of the
range below or above 0.5).
Decoder: Figure 2 shows the decoder implementation which
mirrors Listing 2. Two 16b registers HI and LO maintain the
current range whereas a 16𝑏 CODE register and an 8𝑏 OFS
register are used to read, respectively, from the symbol and
the offset streams as values are decoded. The decoder pro-
duces a single value per cycle. The current 16b input in CODE
is compared against the scaled ranges to find where it lies
and which symbol it corresponds to. The ranges are scaled
by multiplying the probability count register values (hiCnt[i]
with the current range defined by HI and LO. Using a process
similar to that of the Encoder, an appropriate number of bits
are discarded from CODE and HI and LO are adjusted. The
“SYMBOL GEN” block produces the output value by adding
enough offset bits to the value read from the base[i] value
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Figure 2. Atalanta Encoder (top) and Decoder (bottom): Filled blocks are registers. Everything else is combinatorial logic.

1 HIGH, LOW: 16b regs, initially 0xffff, 0x0000
2 PCNT[]: Symbol & Prob. Count Table (Table 1)
3 CODE: 16b Encoded Symbol Stream Input Register
4 OFS: 16b Offset Stream Input Register
5 OUT: 16b Decoded Value Output
6 Decode_Value:
7 range = HIGH - LOW + 1
8 Table Lookup:
9 find i s.t. range_min≤ val ≤range_max
10 where range_min = (PCNT[i].tlow * range) ≫ 10
11 range_max = (PCNT[i].thigh * range) ≫ 10
12 OL = PCNT[i].OL
13 OUT = PCNT[i].v_min
14 Adjust high & low:
15 HIGH = LOW + range_min - 1
16 LOW = LOW + range_max
17 Consume from Arithmetic Coding Stream:
18 HIGH & LOW common prefix?
19 Shift out from HIGH and LOW
20 vacated LSbs: fill w/ 1s/0s for HIGH/LOW
21 Shift out this many bits from CODE filling in

from encoded stream
22 Underflow Handling:
23 (HIGH,LOW) of the form x0...0xxx,x1...1xxx)?
24 remove 0...0 and 1...0 from (HIGH,LOW)
25 shift out corresponding bits from CODE
26 vacated LSbs: fill w/ 1s/0s for HIGH/LOW
27 fill in CODE from encoded stream
28 invert MSb of CODE
29 Input from Offset stream:
30 read OL bits from Offset Stream
31 ADD those into OUT

Listing 2. Atalanta decoding a value

for the matching range. The figure also shows an example of
decoding a value assuming the probability table of Table 1

Table 3. Atalanta Encoder/Decoder: Bits and Functional
Units.

Enc. Dec.
Register Costs (bits)

Bits per Element Count
Probability Table

HiCnt ob base
10b 3b 8b 16x 16x

HI / LO
16b 2x 2x

UBC
5b 1x

CODE/OFS
16b/8b 1x

Totals
Bits 373b 392b

Bytes 47B 49B

Encoder Decoder
Functional Units

Multipliers Count
16b x 10b 2x 16x
Subtractors
Adders

16b 3x 20x
4b 2x
5b 1x
8b 1x 1x
Unidirectional

Shifters
16b 4x 4x
8b 1x 1x

4.2 Register Bit and Functional Unit Costs
Table 3 reports the number of register bits and the major
combinatorial blocks used by the encoder and decoder. The
encoder uses 373 bits (slightly less than 47 bytes) most of
which are for the encoding table. The corresponding register
bit costs for the decoder are nearly identical. Overall either
unit uses few functional units with the encoder using more
compared to the decoder. Section 5.2 reports the area and
energy of synthesized layouts of the units.

4.3 Encoding/Decoding Table Optimizer
A software optimizer given a tensor generates an optimized
probability table, e.g., Table 1). The optimizer is invoked
once per tensor. Since weights do not change, a single pass
is sufficient. For activations, profiling proved effective since
their distribution does not change much. The optimizer has
to partition the input value range into sub-ranges so that the
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encoded stream is as small as possible. This is a non-trivial
balancing act: the wider a sub-range, the less bit space its
symbols will use and the more bits its offsets will need.
Without loss of generality this description assumes that

the inputs are 8b values. Given a tensor, the process first cre-
ates a per value 𝑖 frequency histogram with 28 buckets (not
shown in the listing) which becomes the input tofindPT().
The first step is to initialize the probability table (PT) by
uniformly distributing the value range [0, 28 − 1] over the
entries (line 36 in Listing 3). Function search() searches
through candidate configurations and returns the best PT
it found and its corresponding footprint in bits. Line 40 de-
cides whether the optimizer will try to search for an even
better configuration; it does if the last attempt found a PT
that reduced size by more than 1%. Search uses recursion
whose depth is not allowed to exceed DEPTH_MAX (2 was
sufficient). The parameter around identifies the PT entries
search() would try to adjust (< 0 means all, otherwise
its entries within a distance of 1 from index around). Call
to By calculating the entropy per range encoded_size()
estimates the compression ratio possible given the current
table configuration.
Generating the Probability Counts: After the 𝑣𝑚𝑖𝑛 values are
decided, the probability counts are generated. The probability
counts range of [0...2𝑚], where𝑚 a design parameter (we
use𝑚 = 10), is partitioned proportional to the frequency of
the values in each range given the 𝑣𝑚𝑖𝑛 configuration.
Final Adjustment for Activations: For activation tensors, it is
possible that some values that do not appear in the profiled
inputs may appear for some other inputs. We handle these
cases via a post processing step which adjusts the probability
count table by “stealing” a single count from another non-
zero entry for each zero entry.

5 Evaluation
Comparison Points:We compare Atalanta against: 1) Base-
line: that does not apply any data compression. 2) Run-
Length Encoding (RLE), Run-Length Encoding for Zeros
(RLEZ) [14, 29, 54]: run length encoding techniques that en-
code values as tuples of (value, distance) where distance is the
number of similar values, or zeros, until the next non-similar,
or non-zero value for RLE and RLEZ, respectively. The dis-
tance is limited to be up to 15 for a maximum overhead of
4-bit per tuple. 3) ShapeShifter [48] which groups the values
in a predetermined group size G and dynamically detects
the minimal precision P needed to represent the values in
the group based on the actual range of values in the group.
Then, the group is represented with (𝐺 × 𝑃 + log2 𝑃𝑚𝑎𝑥 ) bits
where 𝑃𝑚𝑎𝑥 is the max precision supported per value. We
evaluate a variant of ShapeShifter that is optimized for 8-bit
models. Section 5.8 comparesAtalantawith implementations
of: 4) Deflate [57], 5) LZMA [101], and Bit Plane Compres-
sion [18, 44].

1 PT : Prob. table, array [1...N]
2 histogram : how many times each input value appears

, array [0..VALUE_MAX]
3 depth : integer, around: integer 1...N,
4 DEPTH_MAX : integer, default 2
5 THRESHOLD: real, default 0.99
6 search (histogram, PT, minsize, depth, around)
7 tryPT = PT
8 for i=1 to N
9 if around>=1 and |i - around |!=1: continue
10 save=tryPT[i].𝑣𝑚𝑖𝑛

11 repeat
12 if i==1: 𝑝𝑣𝑚𝑖𝑛=0
13 else: 𝑝𝑣𝑚𝑖𝑛=tryPT[i-1].𝑣𝑚𝑖𝑛

14 if tryPT[i].𝑣𝑚𝑖𝑛==𝑝𝑣𝑚𝑖𝑛: break
15 tryPT[i].𝑣𝑚𝑖𝑛--
16 if depth > DEPTH_MAX:
17 PT, minsize = search(histogram, tryPT,

minsize, depth + 1, i)
18 else:
19 trysize = encoded_size(histogram, tryPT)
20 if try_size<minsize: PT=tryPT, minsize=

trysize
21 tryPT[i].𝑣𝑚𝑖𝑛=save
22 repeat
23 if i==N: 𝑛𝑣𝑚𝑖𝑛=VALUE_MAX
24 else: 𝑛𝑣𝑚𝑖𝑛=tryPT[i+1].𝑣𝑚𝑖𝑛

25 if tryPT[i].𝑣𝑚𝑖𝑛==𝑝𝑣𝑚𝑖𝑛: break
26 tryPT[i].𝑣𝑚𝑖𝑛++
27 if depth > DEPTH_MAX:
28 PT, best_size = search(histogram, tryPT,

minsize, depth + 1, i)
29 else:
30 try_size = encoded_size(histogram, tryPT)
31 if try_size<minsize: PT=tryPT, minsize=

trysize
32 return PT, minsize
33
34 findPT(histogram)
35 initialize PT to uniform distribution
36 repeat
37 size=encoded_size(histogram, PT)
38 PT, newsize = search(histogram, PT, size, 1, -1)
39 if newsize/size>=THRESHOLD: break
40 return PT

Listing 3. Probability Table Generation

DNNmodels: We evaluate a set of (quantized to int8 unless
otherwise noted) models spanning a wide range of appli-
cations (Table 4). The models were obtained directly from
the respective sources and are used unmodified. From the
Torchvision repository, we use those models that have been
pre-quantized to int8 [3]. From the IntelAI repository, we
similarly use only those models whose weights are quan-
tized [38]. ResNet18-PACT was quantized to 4-bit except
for the first and last layers which remain in 8-bit using the
PACT method of Choi et al. [16]. ResNet18-Q is pruned with
the modified training method of BitPruning to arrive at per
layer fixed-point precisions that never exceed 8-bit [67]. The
“per-layer” quantized models were quantized further with
the profiling-based quantization method of Nikolić et al. [68]
which further trims precisions per layer. Finally, we study
pruned versions of Alexnet, Googlenet, and Yolo V8.
Trace Collection: We run inference with the original mod-
els on an NVIDIA RTX 3090 GPU or an Intel processor as
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Table 4. Neural network models studied. PL=Per-Layer, IntelLabs=IntelLabs Distiller. Atalanta vs. Shapeshifter
Atalanta over Shapeshifter

Table Generation Compression Memory Energy
Network Dataset Application Data Type Quantizer HH:MM:SS Wgts Acts Wgts Acts

GoogLeNet [87] ImageNet [80] Classification int8 Torchvision 00:22:26 6.8% 24.7% 2.7% 21.4%
Inception v3 [88] ImageNet Classification int8 Torchvision 00:47:31 7.1% 26.7% 3.1% 23.5%
Mobilenet v2 [82] ImageNet Classification int8 Torchvision 00:22:33 8.6% 24.9% 4.7% 21.6%
Mobilenet v3 [35] ImageNet Classification int8 Torchvision 00:34:44 10.1% 29.1% 6.2% 26.0%
Resnet18 [32] ImageNet Classification int8 Torchvision 00:08:25 5.9% 27.8% 1.8% 24.6%
Resnet50 [32] ImageNet Classification int8 Torchvision 00:23:32 7.2% 37.7% 3.2% 35.0%
Resnext101 [96] ImageNet Classification int8 Torchvision 00:53:44 8.1% 37.2% 4.1% 34.4%
Shufflenet v2 [59] ImageNet Classification int8 Torchvision 00:22:26 14.7% 26.1% 4.6% 22.9%
Inception v4 [86] ImageNet Classification int8 IntelAI 00:38:21 10.3% 27.1% 6.4% 24.0%
Mobilenet v1 [36] ImageNet Classification int8 IntelAI 00:04:46 9.7% N/A 5.7% N/A
Resnet101 [32] ImageNet Classification int8 IntelAI 00:34:46 11.8% N/A 8.0% N/A

R-FCN Resnet101 [35] COCO [52] Object Detection int8 IntelAI 00:35:36 11.7% N/A 7.9% N/A
SSD-Resnet34 [58] COCO Object Detection int8 IntelAI 00:34:38 8.8% N/A 4.9% N/A
Wide Deep [15] Kaggle Disp. Adv. [1] Recommendation int8 IntelAI 00:01:07 9.1% N/A 5.1% N/A
Q8BERT [4, 23] MRPC [91] NLP int8 IntelLabs 00:25:36 12.5% 24.6% 8.7% 21.4%
NCF [33, 102] ml-20m [31] Recommendation int8 IntelLabs+PL 00:05:22 7.8% 39.6% 3.7% 37.0%

ResNet18-PACT [16] ImageNet Classification int4/int8 IntelLabs+PL 00:34:00 49.1% 27.9% 46.9% 24.7%
SSD-MobileNet [55, 76] COCO Object Detection int8 MLPerf+PL 00:21:41 44.8% 23.6% 42.4% 20.2%

MobileNet [36, 76] ImageNet Classification int8 MLPerf 00:11:31 35.2% 18.5% 32.4% 15.0%
bilstm [92] Flickr8k [75] Captioning int8 per-layer 00:10:27 13.1% 14.8% 9.3% 11.1%
SegNet [9] CamVid [11] Segmentation int8 per layer 00:08:31 20.7% 21.7% 17.2% 18.3%

ResNet18-Q [32, 67] ImageNet Classification int8 per-layer 00:26:21 13.2% 30.8% 9.4% 27.7%
AlexNet-Eyeriss [97] ImageNet Classification int8/Pruned per-layer 00:07:36 67.6% 16.8% 66.1% 13.1%

GoogLeNet-Eyeriss [97] ImageNet Classification int8/Pruned per layer 00:50:02 44.2% 30.5% 41.7% 27.4%
Mean 20.5% 27.1% 16.8% 24.0%

BERT-wnli [23] GLUE WNLI [91] NLP int8 Linear 00:00:28 (*)
EfficientNet V2 [89] ImageNet Classification int8 Neuralmagic [5] 00:00:43 (*)

GPT2 [73] Wikitext2[61] NLP int8 per-layer 00:00:37 (*)
Llama2 7B [6, 90] Meta Research[90] NLP int8 GPTQ [26] 00:01:02 (*)
Yolo V8 [7, 41] COCO Object Detection int8/pruned Neuralmagic 00:00:42 (*)

required. PyTorch and TensorFlow layer hooks dump layer
input weights and activations into numpy files. Up to 9 input
activation samples per layer are used to generate the proba-
bility tables for activations. The IntelAI models, as provided,
use floating-point activations. Hence, we limit attention only
to weights. For models obtained from the SparseZoo [5, 7]
we load and execute the ONNX models in PyTorch.
Area and Energy Modeling: We attach 64 Atalanta en-
coders and decoders to a dual-channel 8GB DDR4-3200
memory interface. The energy consumption of off-die mem-
ory accesses was modeled using Micron’s DRAM power
model [62]. For Atalanta, the data was compressed using the
profiling-based probability tables, then passed through the
same DRAM power model while taking the overhead power
consumption of Atalanta engines into account. To model the
area and power consumption of Atalanta, the encoder/de-
coders were implemented in Verilog, synthesized via the
Synopsys Design Compiler and layout was produced via Ca-
dence Innovus and for a 65nm TSMC technology which is
the best that is available to us due to licensing restrictions.
The power consumption overhead of the encoding/decoding
engines was estimated by capturing circuit activity using
Mentor Graphics’ ModelSim which was then passed on to
Innovus for post-layout simulation. We model a ShapeShifter
configuration optimized for 8-bit models with a single Level-
1 unit along with eight Level-2 units per off-die DRAM chan-
nel and its encoders/decoders using the same technology
node and design flow [48].

5.1 Off-Die Memory Traffic
This section reports the change in off-die memory traf-
fic relative to the baseline (no compression) for Atalanta,
Shapeshifter [48], RLE, RLEZ [14, 29, 54] and Arithmetic
Coding (AC) (no offsets, 256-entry encoding/decoding ta-
bles). Figure 3 reports the relative reduction in off-die traffic
for activations and weights, respectively. Atalanta is robust.
It always significantly reduces traffic and outperforms the
other methods. The traffic reduction is higher for activations
than for weights, except for when the models are pruned.
Torchvision Models: For weights, Atalanta reduces traf-
fic to as much 0.65 of the baseline for MobileNet_v3 and
to as little as 0.88 for ShuffleNet_v2. Much higher reduc-
tions are observed with Atalanta for activations: as much
as 0.41 of the baseline for ResNext101 and as “little” as 0.55
for MobileNet_v3. There are two reasons for the higher com-
pression of activations: High sparsity and a more skewed
distribution.
While most weight values do cluster near zero or near

the maximum, many of the intermediate values are also
present.When compared to theweight distribution ofmodels
that were quantized with different methods, this suggests
that the lower bits tend to be noisy, a tell-tale sign that the
quantization method used by TorchVision uses the full value
range regardless of whether it is needed. Shapeshifter and the
run-length-based methods have a harder time coping with
this noisy distribution. Atalanta outperforms Shapeshifter
and the other methods for both weights and even more for
activations. Shapeshifter groups values (we used a group of 8
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Baseline ShapeShifter APack RLE RLEZ ACFigure 3. Normalized off-die traffic for the activations (left) and weights (right).
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Figure 4. Normalized off-die energy consumption for activations (left) and weights (right).

values as in the original study which we verified that works
best for these models) and uses a container that is as larger
as necessary to accommodate the largest magnitude value
within the group. Encoding efficiency is lost for all other
values having a lower magnitude. Instead, Atalanta treats
each value independently and effectively uses as many bits,
even a fractional number, to encode it.
IntelAI Models: These models demonstrate that having a
noisy weight distribution is not inherently necessary. Com-
pared to TorchVision, IntelAI’s quantization method yields
more skewed distributions, a property that Atalanta rewards
resulting in pronounced compression benefits compared to
TorchVision. Atalanta reduces traffic to as little as 0.59 of the
baseline for SSD-Resnet34 and in the worst case to 0.86 for
MobileNet_v1 with most of the models observing a reduction
to 0.6. Compared to ShapeShifter, Atalanta reduces traffic
by 11% on average. Atalanta produces considerable benefits
for all models, even when Shapeshifter fails to do so (e.g.,
ssd-mobilenet and resnet18_PACT). The run-length-based
methods still fail to improve.
Remaining Models: For the remaining models and relative
to ShapeShifter, Atalanta compresses activations andweights
by 1.34× and 1.51×, respectively. The reduction is higher

for weights thanks to their sparse and skewed distribution.
Atalanta benefits all quantization methods, e.g., it reduces
traffic even for the 4b ResNet18_PACT, and much more than
ShapeShifter. The run-length-based methods perform best
for the pruned models. Atalanta is nearly twice as effective.

5.2 Area, Power, and Energy
We model the power consumption of off-die memory via
Micron’s DRAM power model [62] and use 64 Atalanta en-
coders/decoders. Layout-based measurements are that the
64 Atalanta encoders/decoders need a total area of 1.14𝑚𝑚2

and consume a total power of 179.2 𝑚𝑊 when operating
at 680MHz. This power constitutes a 4.7% overhead vs. the
power consumed by a dual-channel DDR4-3200 memory
system when operating at 90% of its peak bandwidth.

Figure 4 displays energy savings achieved by various com-
pression schemes, normalized to the baseline with no com-
pression. These measurements assume that weights and in-
put activations per layer are read only once from off-die
memory [85]. Energy savings vary across models in propor-
tion to the compression ratio, with activation distributions
playing a significant role. Despite ShapeShifter’s lower hard-
ware and power costs, Atalanta exhibits superior energy
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efficiency due to its higher compression and the significant
cost of off-die accesses compared to encoders/decoders.

5.3 Performance and Energy Efficiency in
Tensorcore

We assess the end-to-end energy efficiency and speedup of
integrating Atalanta with a Tensorcore-based accelerator,
configured as specified in Table 5. We compare Atalanta and
ShapeShifter for off-die compression to a baseline accelera-
tor that doesn’t employ any off-die compression technique.
Our evaluation focuses on model traces compatible with the
Shapeshifter simulator. While Atalanta achieves higher com-
pression ratios compared to ShapeShifter, the advantage of
Atalanta is less pronounced for these models compared to
the remaining models. Therefore, the performance and en-
ergy advantages of Atalanta over ShapeShifter would have
been more significant if we could evaluate all models.

Table 5. Tensorcore-based accelerator configuration.

TensorCore-based Accelerator
# of TCs 64 Activations Buff. 256𝐾𝐵×16 Banks
TC core 4 × 4 PEs Weights Buff 256𝐾𝐵×16 Banks
PE MACs/Cycle 4 Output Buff. 256𝐾𝐵×16 Banks
Tech Node 65nm Frequency 1 GHz

off-die Memory 8GB 2-channel DDR4-3200
Peak TOPS 8.2 TOPS (int8)

Figure 5 presents the speedup achieved (represented by
bars) when Atalanta enhances the baseline Tensorcore-
based accelerator, and it also compares this speedup to
that achieved when ShapeShifter enhances the same base-
line accelerator. On average, Atalanta accelerates execution
by a factor of 1.44×, while ShapeShifter achieves a 1.3×
speedup over the baseline. Both methods effectively elimi-
nate stalls during off-die transfers, leading to improved uti-
lization of the accelerator’s compute units, particularly for
models with low compute per byte ratios that tend to be
memory-bound. Across all models, Atalanta consistently
outperforms ShapeShifter. However, for models like BERT,
pruned Alexnet, and GoogleNet, which become completely
compute-bound, the execution time advantage of Atalanta
is minimal. Nevertheless, when considering overall energy
efficiency, Atalanta surpasses ShapeShifter for all models
due to its higher reduction in off-die traffic.

Figure 5 shows (markers) the energy efficiency when Ata-
lanta enhances the baseline Tensorcore-based accelerator
and compares it with that of when ShapeShifter enhances
the baseline Tensorcore-based accelerator Atalanta boosts
energy efficiency for all models. Improvements vary per
model according to the relative importance of the off-die
transfer vs. the on-chip compute energy costs. The higher
the fraction due to the former the higher the potential and the
benefits from Atalanta. On average, Atalanta boosts energy
efficiency by 1.37× outperforming the 1.23× improvement of
ShapeShifter. Not only Atalanta improves upon ShapeShifter

Figure 5. Overall speedup and energy efficiency.

across the board, but more importantly, Atalanta delivers
benefits even for models that benefit little from ShapeShifter
such as ssd-mobilenet, and models with “extreme” quantiza-
tion such as resnet18_PACT.

5.4 Encoding Table Generation Time
Table 4 reports the total time in HH:MM:SS taken per model
to generate the per tensor Atalanta encoding tables. Times
were measured on a i9-11900K, 64GB DDR4-3200, Ubuntu
20.04.1, Python v3.8.10 system while processing all tensors
sequentially. No attempt was made to optimize the proof-
of-concept implementation of Listing 3. By comparison a C
implementation of the algorithm when used for the mod-
els marked with (*) took at most 62 seconds to derive the
probability tables for Llama2 7B.

5.5 Memory Bandwidth Analysis
Atalanta significantly reduces memory pressure and allows
systems to saturate compute units with less capable memory
nodes. Figure 6 shows speedup with Atalanta compared to
without it, using memory speeds from DDR3-1600 to DDR5-
7200 and various models. A speedup of 1.0 indicates suffi-
cient memory bandwidth for compute-bound models like
resnet18_PACT. For these models, Atalanta improves en-
ergy efficiency only. For others like Mobilenet, Atalanta re-
duces bandwidth demands and enables maximum compute
resource utilization even with slower memories.

5.6 Encoding Table Entries
Figure 7 presents the relative memory footprint with Ata-
lanta as the number of encoding table entries varies from 16
(preferred configuration) to 256 (one entry per possible value
as in pure AC). We focus on the IntelAI models for brevity.
Using 16 entries has a negligible impact on compression
effectiveness. As shown in Section 5.2, with 16 entries, 64
Atalanta encoders/decoders introduce a power overhead of
just 4.7% compared to DRAM. In contrast, the 32, 64, 128, and
256 configurations result in power overheads of 8.6%, 16.3%,
45.1%, and 93.6%, respectively. These findings highlight that
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Figure 6. Speedup with Atalanta vs. without it for memory
speeds ranging from DDR3-1600 up to DDR5-7200 using
various models.

pure AC is excessively costly and unsuitable for our needs.
Instead, our preferred configuration offers nearly identical
compression, while keeping power and area overheads low.

8 16 32 64 128 256
mobilenetv1 0.87 0.86 0.86 0.86 0.85 0.84
wide_deep 0.79 0.78 0.78 0.78 0.77 0.77
ssd_resnet34 0.6 0.59 0.59 0.59 0.57 0.57
rfcn_resnet101 0.62 0.62 0.61 0.61 0.6 0.59
rersnet101 0.62 0.62 0.61 0.61 0.6 0.6
inceptionv4 0.66 0.65 0.64 0.64 0.63 0.63
shufflenet 0.83 0.83 0.83 0.83 0.82

8 16 32 64 128 256
mobilenetv1 0.03 0.02 0.02 0.02 0.01 0
wide_deep 0.02 0.01 0.01 0.01 0 0
ssd_resnet34 0.03 0.02 0.02 0.02 0 0
rfcn_resnet101 0.03 0.03 0.02 0.02 0.01 0
rersnet101 0.02 0.02 0.01 0.01 0 0
inceptionv4 0.03 0.02 0.01 0.01 0 0
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Figure 7. Relative memory footprint reduction with Ata-
lanta, when varying the number of encoding table entries.

5.7 Atalanta and Language Models
Figure 8 reports the reduction in footprint with Atalanta on
recent transformer-based language models all quantized to
int8 as detailed in Table 4. The resulting relative footprints
range from 59% to 65%. The highest compression Atalanta
achieves for the activations of Llama2-7B whose footprint is
reduced to 59%. The lowest compression is observed for the
activations of GPT2 whose footprint is reduced to 65%.

5.8 Atalanta and Compression
This section compares Atalanta with the following widely
used or purpose-built for DL model compression methods:
Variants of Deflate [22] and LZMA [2], and Bit Plane Com-
pression (BPC) [18, 44]. We first overview the methods.
Deflate and LZMA: Deflate is a highly-effective compres-
sion algorithm widely used where reducing storage foot-
print overwhelms other considerations (e.g., in data storage).

Deflate combines LZ77 compression [101] with, preferably
dynamic, Huffman Coding [64]. Informally, in the LZ77 step,
a sliding window (typically holding 32KB) stores incom-
ing values and previously seen sequences. When the next
sequence matches one in the dictionary, LZ77 encodes it
with the dictionary position and length. Hashing is often
used to expedite searching [81], but it remains an iterative
process. Dynamic Huffman coding improves compression
effectiveness by tracking and updating the frequency and
mapping of symbols on-the-fly. Deflate implementations dif-
fer by how large a sliding window they use, how aggressively
they search for pattern matches, and how or if they update
the Huffman coding. Lempel-Ziv-Markov (LZMA) is a more
aggressive compressor where the dictionary is dynamically
sized (up to 4GB) and where pattern searching works at the
bit-level [2, 94]. It is considerably more expensive to imple-
ment than Deflate.
FPGA-based and ASIC hardware implementations

of Deflate that maximize both compression ratio and
throughput incur considerable resource overheads, e.g.,
[12, 28, 49, 50, 83]. Indicatively, a recently reported FPGA
implementation requires 69114 LookUp Tables (LUTs),
49779 Flip Flops (FFs) and 521 Block RAMs (BRAMs) of
18Kb each (which are used for the dictionary table in LZ77
compression) [49]. The goal of this work is to reduce the
off-die access costs in modern commodity systems while
achieving high bandwidth and improving overall energy
efficiency.The target solution in our context needs to have
low area and energy costs. The high resource and operation
costs of hardware-based Deflate implementations do not
constitute a good fit for the problem that we tackle. As
we demonstrate experimentally below, Atalanta rivals and
often exceeds the compression possible even with aggressive
Deflate configurations.
Bit Plane Compression (BPC): is representative of re-
cently proposed graphics processor unit (GPU) compression
methods. It targets a broader class of applications including
DL models. It is the underlying compression method used in
Buddy Compression [18], which is a technique that amplifies
the capacity of GPUmemory in two ways: 1) by compressing
the data thus requiring less space, and 2) by allowing data to
overflow seamlessly from/to CPU memory.
Configurations: Figure 8 reports the relative reduction in
off-die traffic by the following methods, normalized to the
baseline without any compression: 1) Atalanta, 2) two vari-
ants of Deflate [57],𝑤9𝑙1 and𝑤1𝑙8, 3) two configurations of
LZMA, LZMA-l0 and LZMA-l6 corresponding to the least ag-
gressive and the default presets respectively [2], and 4) BPC.
We include a few representative Torchvision models, the
more recent EfficientNet V2 and Yolo V8 vision models, and
the BERT, GPT2 and Llama2 7B transformer-based language
models. The buffer costs of Deflate are 2𝑤𝑖𝑛𝑆𝑖𝑧𝑒+2+2𝑀𝑒𝑚𝐿𝑒𝑣𝑒𝑙+9
bytes. We configure𝑤9𝑙1 and𝑤9𝑙8 with𝑊𝑖𝑛𝑆𝑖𝑧𝑒 = 9 and 1
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Figure 8. Normalized off-die traffic for activations (left) and weights (right).

and 8𝑀𝑒𝑚𝐿𝑒𝑣𝑒𝑙 resulting in memory requirements of 3𝐾𝐵
and 129𝐾𝐵, respectively. Configuration𝑤9𝑙1 is the least ex-
pensive supported by the deflate implementation. We found
that increasing𝑊𝑖𝑛𝑆𝑖𝑧𝑒 or 𝑀𝑒𝑚𝐿𝑒𝑣𝑒𝑙 further did not im-
prove compression by more than 2% compared to𝑤9𝑙8. Both
configurations use dynamic Huffman coding.
Weights: Atalanta rivals or outperforms all other methods
except for LZMA-l6 which outperforms Atalanta only for
resnet18 and resnet50 reducing footprint by an additional
2.4% and 1.2% respectively. Atalanta edges out even LZMA-l6
for several models, with the highest differences observed in
BERT-wnli, and GPT2 respectively at 20% and 25%. Except for
Yolo V8, BPC falls between𝑤9𝑙1 and𝑤1𝑙8 often being closer
to𝑤9𝑙1. For Yolo v8, it under-performs yielding almost twice
the footprint compared to𝑤9𝑙8. Atalanta consistently out-
performs BPC with the differences being noticeably higher
for the transformers and Yolo V8.
Activations: Atalanta rivals or outperforms the less aggres-
sive configurations of Deflate and LZMA, while it matches
themost aggressive LZMA-l6 for Llamma2.Atalantamatches
or outperforms𝑤9𝑙1 except for the resnets and Efficientnet
V2 with the highest difference observed for BERT-wnli and
Llama2 at 15.2% and 15.6% respectively. BPC matches or out-
performs Atalanta for the earlier vision models (Mobilenet
v3 and the resnets) but, for the more recent models, Atalanta
reduces footprint more with the difference being as high as
12.0% for BERT-wnli and 15.0% for Llama2.

The results demonstrate that Atalanta is robust, reducing
memory footprint and traffic consistently, and rivaling or
outperforming the much more expensive Deflate and LZMA
methods. It is more effective than BPC for weights and for
the activations of recent CNNs and transformer models.

5.9 Bit Breakdown and Subrange Optimization
Most bits in Atalanta-encoded tensors are allocated for
offsets, as shown in the breakdown in Figure 9 (left y-
axis/stacked bars). The figure also illustrates (right y-axis/×
marks) the relative improvement in footprint reduction

Figure 9. Allocation of Bits in Atalanta-encoded streams
and improvement with subrange optimization.

achieved by the sub-range selection method of Listing 3
(𝑆𝑂 ) compared to uniform sub-range selection (𝑆𝑈 ), where,
for example, 16 consecutive sub-ranges of 16 values each are
used for int8. The metric is defined as (𝑆𝑈 − 𝑆𝑂 )/𝑆𝑈 , where
𝑆𝑥 represents the relative footprint with each method com-
pared to the uncompressed tensor. All models benefit from
sub-range optimization with Yolo V8 benefiting the most
with its weight footprint reduced from 0.52x with uniform
sub-ranges to just 0.19x. Future work may explore elimi-
nating some of the offset bits as long as some loss in value
fidelity is tolerable.

5.10 Atalanta During Training
Atalanta can reduce data footprints when training for fixed-
point inference. Throughout training, weights and activa-
tions are kept in fixed-point (e.g., INT8) with only weight
updates accumulated in FP. The forward pass stashes ac-
tivations from all layers and across all samples in a batch
and backpropagation uses them. Typically, batches comprise
64-256 input samples. We traced the INT8 tensors generated
when ResNet18 was trained on ImageNet1K with BitPrun-
ing [67]. Training commences with no compression. We
generate probability tables at epochs 0, 35, and 65, and after
at least 1000 iterations (batch) in the epoch (each epoch has
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5005 iterations) using just a single batch. We measure com-
pression for iterations at epochs 1(0), 35(0), 36(35), 65(35),
and 66(65). To properly account for changes in the distri-
bution, the measurements are taken at the epochs listed in
parentheses, which are far after the table generation points
and naturally contain a different mix of input samples. The
total footprint per batch is 5GB and would not fit on-chip. AC
implementation of Listing 3 took at most 21.48s to generate
all tables at each point. Figure 10 shows the relative footprint
reduction achieved with Atalanta in total and for activations
only compared to baseline without any data compression,
when training ResNet18 model. Atalanta significantly re-
duces the memory footprint. The measurement at epoch 35
(E35) shows that even when using a table generated far in
the past at epoch 0, Atalanta still reduces footprint to 1/3.
Regenerating the tables boosts compression efficiency and
the footprint hovers around 40% from then on.

net_layer1_1_conv1_id 0.37 0.46 0.47
net_layer1_1_conv2_id 0.40 0.30 0.34
net_layer2_0_conv1_id 0.39 0.45 0.45
net_layer2_0_conv2_id 0.38 0.42 0.41
net_layer2_1_conv1_id 0.56 0.41 0.40
net_layer2_1_conv2_id 0.61 0.32 0.31
net_layer3_0_conv1_id 1.27 0.24 0.25
net_layer3_0_conv2_id 0.55 0.43 0.42
net_layer3_1_conv1_id 1.63 0.41 0.43
net_layer3_1_conv2_id 1.13 0.17 0.17
net_layer4_0_conv1_id 1.42 0.44 0.44
net_layer4_0_conv2_id 1.31 0.31 0.31
net_layer4_1_conv1_id 1.16 0.48 0.48
net_layer4_1_conv2_id 1.53 0.39 0.40
TOTAL 0.56 0.40 0.39

E3 E35 E65
Weights 0.55 0.50 0.52
Activations 0.56 0.39 0.39
Total 0.56 0.40 0.39

E3 E35 E36 E65 E66
Total 0.56 0.70 0.40 0.41 0.39
Activations 0.56 0.69 0.39 0.41 0.39

Uncompressed Footprint is 5GBytes
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Figure 10. Relative footprint of Atalanta when training
ResNet18.

5.11 Atalanta and BFloat16
Atalanta can compress the exponents during inference
with floating-point, since they exhibit very biased distri-
butions. We measure compression for BERT Base [23] (MNLI
task [95], GLUE dataset [91], 128 token sequence) and
Roberta Large [56] (Question Answering task, SQuADv1
dataset [74], 384 token sequence), when using BFloat16
weights and activations. Table 6 reports that Atalanta re-
duces the exponent footprint to nearly 1/3 of the original.
Exponents in BFloat16 represent 50% of the total footprint.
Training with a technique such as Quantum Mantissa can
trim the mantissas [69].

Table 6. Atalanta Footprints for BFloat16 Exponents

Model Activations Weights Overall
BERT Base 0.32 0.34 0.34
Roberta Large 0.39 0.34 0.36

5.12 Atalanta and Indirect Quantization
After examining models with direct quantization, we now
explore Atalanta’s interaction with indirect quantization.
Deep Compression (DC) [30] employs 16 centroid val-

ues and Huffman coding for dictionary indexes, focusing
on weights and 16-bit models. UNIQ [10] learns centroids
through network retraining, using signal processing theory

Table 7. Deep Compression Quantized Models: Additional
memory Footprint reduction with Atalanta over (enhanced)
Deep Compression: Whole Network, and Per Layer Maxi-
mum and Minimum

Activations Weights
Total Min Max Total Min Max

resnet50 19.12% 2.11% 68.77% 1.02% 0.12% 1.11%
mobilenet v3 7.35% 0.69% 2.70% 3.30% 0.89% 24.33%

to treat quantization effects as noise. Unlike DC, UNIQ’s dic-
tionary indexes vary from 4-bit to 32-bit, based on tolerable
accuracy loss.

To explore the interplay of Atalanta with dictionary meth-
ods, we simulate a DC++method that optimistically assumes:
1) DC can be used with 8b models, 2) DC can be used for ac-
tivations, and 3) there is no compromise in accuracy. Table 7
demonstrates the additional memory reduction (𝐷) achieved
byAtalanta on DC++-quantized ResNet50 andMobileNet_v3.
𝐷 is defined as 𝐷 = 𝑆w/oAtalanta − 𝑆w/Atalanta, where 𝑆𝑥 is rel-
ative to the base footprints (e.g., 0.75x). We report the rela-
tive memory footprint reduction for the entire network, the
maximum reduction at layer granularity, and the minimum
reduction at layer granularity. Atalanta outperforms DC++
for two reasons: a) Atalanta generates 16 ranges, each con-
taining a single centroid without requiring offset bits, and
b) Atalanta employs arithmetic coding, which is superior
to the Huffman coding used by DC when index frequencies
are not of the form 2−𝑘 . Since the centroids are 8b integers,
Atalanta can directly compress them, eliminating the need
for a dictionary.

GOBO [99] and Mokey [100] are post-training, dictionary-
based quantizers for the floating-point tensors of transform-
ers. Unlike DC, both segregate values into outliers and non-
outliers. GOBO focuses solely on weights, retaining out-
liers in floating-point. Mokey,quantizes all values into two
8-entry int16 dictionaries per tensor where the centroids fit
a 𝑎index + 𝑏 function. The closed-form relationship among
centroids allows Mokey to avoid implementing dictionaries
for converting indexes to centroid values. Instead, Mokey
can perform all computations directly on the indexes them-
selves. While both techniques induce some accuracy loss,
they outperform many methods that quantize to 8 bits. They
both utilize fixed-point indexes to represent values.
We applied GOBO and Mokey to quantize BERT-Base,

compressing 3b and 4b indexes with Atalanta. Table 8 shows
Atalanta’s additional footprint reduction 𝐷 over GOBO and
Mokey. The reductions, more significant for activations,
demonstrate Atalanta’s adaptability in minimizing footprint
across different quantization methods.

We conclude that Atalanta matched or exceeded benefits
when used over the dictionary-quantized models without fur-
ther effort. With Atalanta, designers can selectively deploy
quantization methods without being “locked” into them.

98



Atalanta: A Bit is Worth a “Thousand” Tensor Values ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 8. Atalanta over GOBO or Mokey on BERT-Base.

Weights Activations
min max Total min max Total

GOBO 2.3% 4.9% 3.0% N/A N/A N/A
Mokey 2.3% 5.0% 2.4% 2.1% 80.1% 26.2%

6 Other Related Work
The compression potential of entropy encoding for tensor val-
ues has been investigated using software-based adaptive AC
over recorded tensor traces ex post facto [93]. Prior works that
implement AC either maximize compression at the expense
of high cost and complexity [98], or improve implementa-
tion efficiency and practicality to some degree [37, 66]. In
contrast, Atalanta proposes an effective variation of AC that
can both be implemented in hardware at low cost (See Sec-
tion 5.2) and achieve near-optimal compression efficiency
(Figure 3).

7 Conclusion
Atalanta is a practical and lossless tensor compression
method that provides high system performance and energy-
efficiency in deep learning inference and training. It enables
transparent and highly-efficient encoding for weights and ac-
tivations, it is low-cost and can be seamlessly integrated with
state-of-the-art deep learning accelerators. It is general to
support a wide variety of DLmodels (both quantized and not)
and rewards further quantization and pruning without forc-
ing a particular quantization choice or pruning contraints
up-front.
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