
ARC: Warp-level Adaptive Atomic Reduction in GPUs
to Accelerate Differentiable Rendering

Sankeerth Durvasula
∗

University of Toronto

Vector Institute

Toronto, Canada

Adrian Zhao
∗

University of Toronto

Vector Institute

Toronto, Canada

Fan Chen

University of Toronto

Toronto, Canada

Ruofan Liang

University of Toronto

Vector Institute

Toronto, Canada

Pawan Kumar Sanjaya

University of Toronto

Vector Institute

Toronto, Canada

Yushi Guan

University of Toronto

Vector Institute

Toronto, Canada

Christina Giannoula

University of Toronto

Vector Institute

Toronto, Canada

Nandita Vijaykumar

University of Toronto

Vector Institute

Toronto, Canada

Abstract
Differentiable rendering is widely used in emerging applica-

tions that represent any 3D scene as a model trained using

gradient descent from 2D images. Recent works (e.g., 3D

Gaussian Splatting) use rasterization to enable rendering

photo-realistic imagery at high speeds from these learned

3D models. These rasterization-based differentiable render-

ing methods have been demonstrated to be very promising,

providing state-of-art quality for various important tasks.

However, training a model to represent a scene is still time-

consuming even on powerful GPUs. In this work, we observe

that the gradient computation step during model training is

a significant bottleneck due to the large number of atomic
operations. These atomics overwhelm the atomic units in the

L2 cache of GPUs, causing long stalls.

To address this, we leverage the observations that dur-

ing gradient computation: (1) for most warps, all threads

atomically update the same memory locations; and (2) warps

generate varying amount of atomic traffic. We propose ARC,

a primitive that accelerates atomic operations based on two

key ideas: First, we enable warp-level reduction at the GPU

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0698-1/25/03

https://doi.org/10.1145/3669940.3707238

cores using registers to leverage the locality in intra-warp

atomic updates. Second, we distribute atomic computation

between the cores and the L2 atomic units to increase the

throughput of atomic computation. We propose two imple-

mentations of ARC: ARC-HW, a hardware-based approach

and ARC-SW, a software-only approach. We demonstrate

significant speedups with ARC of 2.6× on average (up to

5.7×) for widely used differentiable rendering workloads.

CCS Concepts: • Computer systems organization→ Ar-
chitectures; • Computing methodologies→ Rendering;
Machine learning.

Keywords: Differentiable Rendering, Atomics, Gaussian Splat-

ting, Machine Learning, Graphics Processing Unit

ACM Reference Format:
Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan Liang, Pawan

Kumar Sanjaya, Yushi Guan, Christina Giannoula, and Nandita

Vijaykumar. 2025. ARC: Warp-level Adaptive Atomic Reduction

in GPUs to Accelerate Differentiable Rendering. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands.ACM, New York,

NY, USA, 20 pages. https://doi.org/10.1145/3669940.3707238

1 Introduction
Learned 3D scene representations have been a fast-advancing

field in recent years. For example, Neural Radiance Fields

(NeRFs) [22, 23, 28, 43, 50, 73, 76, 79, 93, 95, 110] and 3D

Gaussian Splatting (3DGS) [26, 36, 46, 54–57, 71, 72, 74, 90,

96, 100, 101, 103, 105–107, 109, 114, 115] have demonstrated

new capabilities with applications in many domains includ-

ing entertainment, health care, robotics, and AR/VR. These

3D scene representations comprise learned parameters and
provide state-of-art quality in scene reconstruction, among

https://orcid.org/0000-0002-4899-4994
https://orcid.org/0009-0002-9907-6314
https://orcid.org/0009-0001-5244-1364
https://orcid.org/0009-0005-7667-1809
https://orcid.org/0009-0002-2122-1032
https://orcid.org/0009-0009-8701-0992
https://orcid.org/0000-0003-0162-4547
https://orcid.org/0000-0003-3315-9336
https://doi.org/10.1145/3669940.3707238
https://doi.org/10.1145/3669940.3707238

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

many other advantages, compared to traditional explicit rep-

resentations (e.g., meshes and point clouds). They have thus

emerged as a transformative representation of 3D visual

data, leading to high interest in the computer graphics and

robotics communities.

Differentiable rendering is a key technique in 3D scene

representations that leverages machine learning to solve

fundamental tasks in computer graphics, such as scene re-

construction [55, 76] (deriving a 3D scene representation),

and inverse rendering [80, 81] (estimating the shape, texture,

lighting, and material of 3D objects) from a set of captured

reference images. These tasks are fundamental to many im-

portant applications [97], such as photogrammetry, 3D mod-

eling and scanning, 3D model creation tools, game engines,

and AR/VR applications. With differentiable rendering, these

tasks are formulated as a learning problem that can be solved

using gradient descent-based optimization techniques.

NeRF [22, 23, 28, 43, 50, 73, 76, 79, 93, 95, 110] is a popu-

lar differentiable rendering technique where each scene is

represented as a set of learned parameters/neural networks.

These neural parameters are trained with gradient-based op-

timization to minimize the difference between ground truth

images and rendered images from the NeRF model. The suc-

cess of this approach has led to the development of several

specialized frameworks/libraries for differentiable render-

ing [52, 63, 81, 83], native support for differentiable rendering

in GPUs [21, 49], and accelerators for NeRF-based rendering

and training [66, 67, 69, 77, 102]. NeRFs, however, use ray

marching, which can be inefficient in rendering images.

More recent advancements in differentiable rendering

over NeRFs are approaches such as 3DGS [26, 36, 46, 54–

57, 71, 72, 74, 90, 96, 100, 101, 103, 105–107, 109, 114, 115]

that leverage the high-speed rasterization pipeline [20] in-

stead of ray marching. Rasterization requires the scene to

be represented as a set of geometric primitives (i.e., meshes,

triangles, points) in 3D space which can be rendered as 2D

images at high speeds. Differentiable rendering with rasteri-

zation involves learning these primitives using similar gradi-

ent descent-based training. This approach [41, 55, 64, 80, 87]

has demonstrated state-of-the-art capability in producing

high-quality scene reconstructions at high speeds. 3DGS rep-

resents the scene with 3D Gaussian densities as its primitives

and uses an efficient rasterizer [55] to render images.

The raster-based pipeline enables high-speed rendering

(i.e. the forward pass). However, training raster-based mod-

els is still much slower compared to rendering. Training

involves a forward pass (rendering an image), loss computa-

tion, gradient computation, and applying gradient updates

to these learned parameters. A new model has to be trained

for each individual scene. We perform a detailed performance

analysis of training and find that the gradient computation

step of the backward pass is a significant bottleneck. For

example, in 3DGS workloads (see §6 for details), the gradient

computation kernel takes on average 51.9% (up to 65.8%) of

the overall training time on the NVIDIA RTX 4090 GPU (§3).

Our analysis shows that this bottleneck is primarily caused

by a large number of atomic operations that accumulate gra-

dients for the trained parameters. During gradient computa-

tion, each thread is associated with one pixel. The gradients

for all primitives associated with the pixel are computed and

accumulated. These gradient updates are performed using

atomic operations, since multiple threads may update the

same parameters. This leads to a massive number of atomic

operations launched by each thread. These atomic opera-

tions cause significant contention at the atomic units in the

L2 memory subpartitions (ROP units), causing long stalls at

the streaming multiprocessors (SMs) (§3.2).

Our goal in this work is to accelerate raster-based dif-

ferentiable rendering applications by accelerating atomic

operations that constitute a significant bottleneck during

gradient computation. From our analysis of atomic opera-

tions in gradient computation, wemake two observations: (1)
Locality in intra-warp atomic updates: Threads within
a warp typically update the same parameters and thus the

same memory location. We find that over 99% of warps have

all their threads update the same memory location (§3.1).

(2) Only a subset of threads in a warp perform atomic
updates: There is significant variation in the number of

threads within each warp that make gradient updates during

gradient computation (§3.1) as some threads are made inac-

tive due to failing condition checks in the code (i.e., control

divergence). The number of threads executing atomics deter-

mines the atomic request traffic generated by the warp and

varies across warps. Prior GPU approaches [19, 30, 32, 78]

that aim to address bottlenecks due to atomic requests buffer

and aggregate atomic updates in the L1 cache/scratchpad

memory/local SRAM to reduce traffic in the interconnect

and L2 atomic units (ROP units). While these approaches

can partially alleviate atomic overheads, they do not fully

leverage the intra-warp locality in atomic updates seen in

differentiable rendering. Thus, the sheer number of atomic

requests overwhelm the load-store units before the atomics

can be aggregated at L1, making this approach less effective

for differentiable rendering workloads (See §7.1 and §8).

In this work, we introduce Adaptive Atomic ReduCtion

(ARC), a primitive that accelerates atomic updates in ap-

plications that (1) generate significantly large amounts of

atomic requests and (2) typically have most threads within

an warp performing atomic updates to the same memory

locations. ARC is based on two key ideas: (1) We leverage

intra-warp locality in atomic updates (Observation 1) to per-

form warp-level reduction at the core itself using registers.

This significantly reduces the number of atomic operations

that need to be sent to the L2 atomic units to update global

memory. (2) We dynamically distribute the atomic computa-

tion between the cores and L2 atomic units to enable high

throughput atomic updates by employing all atomic units.

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Leveraging Observation 2, warps that only generate a few

atomic updates are handled at the L2 atomic units. Warps,

where most/all threads generate atomic updates, are first

reduced at the SM using the proposed warp-level reduction.

Implementing ARC requires addressing important design

challenges (§4.1). We propose two ARC implementations:

ARC-HW. We propose a hardware-software primitive that

uses a low-overhead hardware module in the SMs to per-

form warp-level reduction using registers and leveraging the

address coalescing unit. To distribute atomic computation

between the SM and ROP units, we dynamically schedule the

atomic computations based on their utilization. ARC-HW is

exposed to the programmer using a new ISA instruction.

ARC-SW†
. This software-only approach leverages exist-

ing warp-level primitives (such as shfl) to implement warp-

level reduction at each SM sub-core. All atomic updates to

any memory location involving more than a predefined num-

ber of threads in a warp are performed at the SM, and the

others are performed at the ROP units. This predefined num-

ber is a tunable hyperparameter (the balancing threshold).
ARC-SW can be directly used in many modern GPUs, but

ARC-HW is more efficient as there are no overheads from

additional instructions, redundant computation, or control

flow; it requires less programmer intervention; and does not

rely on instructions specific to some GPUs (§4.3).

We evaluate ARC across recent widely used differentiable

rendering applications (3D Gaussian Splatting [55], NVD-

iffRec [80], Pulsar [64, 83]). With ARC-HW, we demonstrate

an average speedup of 2.1× (up to 8.6×) for gradient compu-

tation using GPGPU-SimGPU simulator [58].With ARC-SW,

we demonstrate a speedup of 1.8× on average (up to 7.2×)
for gradient computation on the simulator. On a real NVIDIA

RTX 4090 GPU, we demonstrate a speedup of 2.6× on aver-

age (up to 5.7×) on gradient computation, and an average

end-to-end speedup of 1.4× (up to 2.4×). Our contributions
are summarized as follows:

• This is the first work to perform a performance charac-

terization of an important workload, rasterization-based

differential rendering for 3D visual data including Gaussian

Splatting, and identify atomic updates as a key bottleneck.

• We introduce ARC, a primitive to accelerate atomic compu-

tations in GPUs for raster-based differentiable rendering.

• Wepropose two implementations: ARC-HW, a low-overhead

hardware atomic reduction framework, and ARC-SW, a

SW-only implementation. We open source ARC-SW [12],

which can be directly used to obtain significant speedups

in raster-based differentiable rendering workloads.

• We evaluate ARC on both real hardware and using a simula-

tor and demonstrate significant speedups for widely-used

differentiable rendering applications.

†
The open-source code repository for ARC-SW is publicly available at

https://github.com/Accelsnow/gaussian-splatting-distwar, along with the

extended original technical report [37].

2 Background
2.1 Atomic Processing in GPUs
Figure 1 shows a Streaming Multiprocessor (SM) of a GPU [3,

5, 6]. Each SM consists of multiple sub-cores 1 with its own

warp scheduler, register file, and execution units. Each sub-

core sends local, global, and atomic memory requests to the

MIO (Memory I/O Unit), which interfaces with the caches

and memory subsystem through a queue [13] (sometimes

called L1 instruction queue 2). In this work, we refer to the

unit that dispatches requests from the sub-cores to the caches

and memory subsystem as the Load-Store Unit (LSU) (con-

sistent with NVIDIA’s NSIGHT terminology [13]). Atomic

operations sent to the LSU are issued to the memory sub-

partition 3 via the interconnect. The memory subpartition

contains compute units (known as ROP units) [5, 6, 17] that

process the atomic requests in the L2 cache. The L2 cache

is shared across all SMs [47, 89]. A large number of atomic

requests may lead to contention at the ROP units.

L1 Inst. Queue

Sub-Core

ROPs
L2 Memory

Subpartition

SM

Sub-CoreSub-Core

MIO

L1 / Texture / Scratchpad

LSU
ICNT ROPs

L2 Memory
Subpartition

ROPs
L2 Memory

Subpartition

Sub-Core 1

1

1

1

2

3

3

3

Figure 1. Atomic processing in a GPU.

2.2 Differentiable Rendering for 3D Scene
Reconstruction

Differentiable rendering is the backbone of important ap-

plications, including 3D modeling/reconstruction [48, 108],

perception in autonomous driving [104, 112], SLAM [75, 103],

AI-generated content [96], and medical imaging [70], and

provides a powerful fundamental representation for 3D data.

We describe differentiable rendering using a classic problem

in graphics: 3D scene reconstruction, which involves creating

a 3D scene representation from 2D images. 3D reconstruction

has important applications in novel view synthesis, 3D scan-

ning/modeling, and photogrammetry. With differentiable

rendering, the scene is represented using a set of parameters

(i.e., model) that are learned using gradient descent, similar

to standard deep learning training. This process of training

a model to represent a 3D scene is depicted in Figure 2.

Differentiable
Renderer

Reference
Images

Scene (Model)
With Learnable

Parameters
Loss

Forward
Backward

Figure 2. A generalized differentiable rendering training

pipeline to train a model to learn a 3D scene.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

The differentiable renderer produces 2D images of the

represented 3D scene at different viewpoints during the for-

ward pass (Figure 2). The difference between a rendered

image and its corresponding reference/ground truth image

(i.e., loss) is obtained by subtracting their RGB values. This

loss is backpropagated to calculate gradients for all model

parameters that minimize the loss using gradient descent-

based optimization (the backward pass in Figure 2). This pro-

cess is repeated for images from all viewpoints. Examples,

also referred to as implicit representations, include neural

radiance fields (NeRFs) [76] and 3D Gaussians [55]. These

models represent scenes with differentiable, compact rep-

resentations and achieve the state-of-art performance in

novel-view synthesis. The high-quality model reconstruc-

tion and rendering, even from few input images, has spurred

tremendous interest in vision and graphics communities and

these learned models have emerged as a transformative rep-

resentation for 3D scenes. These representations do have

shortcomings compared to traditional representations (e.g.,

meshes, point clouds) as they are difficult to edit, can be

computationally expensive, and learn surfaces inaccurately.

Addressing these challenges is a very active area of ongoing

research [23, 25, 39, 42, 65, 82, 100, 106].

2.3 Differentiable Rendering with Rasterization
NeRFs (neural radiance fields) are a differentiable rendering-

based representation, but use ray marching to render im-

ages in the scene. More recent advances in differentiable

rendering [55, 63, 64, 83, 87] propose to use rasterization
instead of ray marching, enabling the rendering of images

at much higher speeds. Rasterization requires the scene to

be composed of several discrete 3D geometric elements, or

primitives (e.g., triangles, points, ellipsoids). Each of these

primitives is associated with shading information (e.g., color,

opacity) and a position in space. Figure 3 depicts how these

primitives 1 (ellipsoids in this example) are rendered into

2D images 2 . Each pixel of the rendered image is thus in-

fluenced by a subset of the primitives in the scene. With

differentiable rendering, all primitives are associated with a

set of learnable parameters 3 that are trained using gradi-

ent descent. For each training iteration (i.e., one image), the

loss 4 is backpropagated 5 to compute the gradients for all

the parameters associated with each primitive 6 (only prim-

itives that influence the current image). These parameters

are updated with the computed gradients 7 , and the train-

ing iterations continue until convergence is achieved (i.e.,

the primitives are able to accurately represent the scene from

all angles). 3D Gaussian Splatting [55], a state-of-art raster-

based differentiable rendering method, models scenes with

3D Gaussians (seen as ellipsoids) as the geometric primitives.

3 Motivation
In this section, we profile important raster-based differen-

tiable rendering workloads on the NVIDIA RTX 4090 GPU

Camera & Scene

Rasterize
Shading+
Blending

Fragments Rendered Image

Loss
Primitive Parameters:

𝑷 = ቐ
 𝝁, 𝜮

𝜶
𝒄

Gradients
𝒅𝑷

Forward
Backward

3
4

1
Backprop

2

Gradient
Descent Step:
𝑷 ← 𝑷 − 𝒅𝑷

Gradient
Computation

5

7

6
:3D Gaussian
: Opacity
: Color

Primitive

Figure 3. Differentiable rendering flow with rasterization.

(methodology is described in §6). Figure 4 depicts the break-

down of training time, including the forward pass (during

which an image is rendered from the model), loss calculation

(which involves computing the difference between ground

truth and rendered image), and the gradient computation

(which involves computing and updating the loss gradient

with respect to model parameters). We make the following

observations. First, we observe that on RTX 4090 on aver-

age 44% (up to 66%) of the total execution time is spent on

the gradient computation step and is thus a significant bot-

tleneck in most workloads. Second, this bottleneck is most

pronounced for workloads such as 3D-DR and 3D-PL (see §6),
taking up 65.8% and 62% of the overall runtime, respectively.

This is because DR and PL are real-world scenes that require

a large number of primitives (i.e., a large model) for accuracy.

There is a larger increase in gradient computation time with

scene size and complexity compared to the forward pass.

This is because the forward pass has more parallelism that is

extracted as the number of primitives increases, but gradient

computation is limited by atomic operations, thus becoming

a bigger bottleneck in more complex scenes.

0%

25%

50%

75%

100%

Tr
ai

ni
ng

 ti
m

e

gradient computation forward pass
loss calculation others

Figure 4. Training time breakdown on 4090 (left) and 3060

(right)

Figure 5 depicts the algorithm for the gradient computa-

tion step of differentiable rendering workloads. The input to

the gradient computation kernel is a per-pixel list of prim-

itives, where each list contains the IDs of primitives that

influence the color of the corresponding pixel (discussed

in §2.3). Each thread (one per pixel) iterates through a list

of its associated primitives (line 2, 3). Several intermediate

conditions (like 𝑐𝑜𝑛𝑑1, 𝑐𝑜𝑛𝑑2 in lines 5 and 9) determine if

the current thread contributes to each primitive’s gradients.

Each thread then computes the gradient contribution of the

primitive’s parameters (𝑔𝑟𝑎𝑑𝑡𝑥1, 𝑔𝑟𝑎𝑑𝑡𝑥2, ...). Finally, each

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

thread atomically adds its gradient contributions to the prim-

itive’s parameters (shown in lines 12-14).

1: function GradComputation(prims_per_thread)

2: 𝑡𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑𝑥 ⊲ Thread corr. to pixel

3: for 𝑝 : 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 [𝑡𝑖𝑑] do ⊲ Iterate

4: if cond1 then
5: continue; ⊲ thread doesn’t participate

6: end if
7: ...

8: if cond2 then
9: continue; ⊲ thread doesn’t participate

10: end if
11: ... ⊲ Gradient computation is done here

12: AtomicAdd(𝑝.𝑔𝑟𝑎𝑑_𝑥1, 𝑔𝑟𝑎𝑑𝑡𝑥1)

13: AtomicAdd(𝑝.𝑔𝑟𝑎𝑑_𝑥2, 𝑔𝑟𝑎𝑑𝑡𝑥2)

14: AtomicAdd(𝑝.𝑔𝑟𝑎𝑑_𝑥3, 𝑔𝑟𝑎𝑑𝑡𝑥3)

15: end for
16: end function

Figure 5. Execution flow of the gradient computation step

3.1 Characteristics of Gradient Computation Step
We analyze the characteristics of the gradient computation

step using real differentiable rendering workloads (See §6).

We make two key observations from profiling the atomic

operations in the gradient computation step:

Observation 1: Threads within a warp are likely to
update the same parameters. Each primitive affects a

region of pixels on the screen, called a “fragment” (§2.3). As

a result, close-by pixels that belong to the same fragment up-

date the same primitive. Figure 6 shows how adjacent/close-

by pixels are part of the same fragment during rasterization.

Figure 6a shows a primitive 1 rasterized onto a screen 2 as

seen from the camera indicated by the blue pixels during ren-

dering. In the gradient computation step, each of these blue

pixels affected will update the primitive’s gradient. Figure 6b

shows a zoomed-in version of the captured image.

Geometric Primitive
in Space

1

2

(a) Close-by pixels likely to be

influenced by same primitive.

All pixels
update primitive 1

(b) Gradients of affected pixels

are atomically aggregated.

Figure 6. Close-by threads (corresponding to pixels) update

the parameters of the same primitive.

Thus, threads within a warp (where each thread corre-

sponds to one pixel and each warp corresponds to a local

region of pixels) often compute the gradients for the pa-

rameters associated with the same primitive. This explains

why these gradients must be atomically summed up across

threads to update each parameter (Figure 5 line 12-14). We

perform an experiment to determine the number of threads

in each active warp that updates the same parameters and

thus, the samememory locations. For 3D-PL (see §6 for work-
load details), we find that over 99% of warps have all their

threads update the same memory location.

Observation 2: Only a fraction of threads within a
warp perform atomic updates at any given time. From

Figure 5, we see that the gradient computation step has cer-

tain dynamic conditions (𝑐𝑜𝑛𝑑1, 𝑐𝑜𝑛𝑑2, ...) that cause some

threads to skip the current iteration of gradient updates.

Thus, only a fraction of all threads within a warp sends out

atomic requests in one iteration. We measure the number of

threads that typically participate in the atomic reduction in

Figure 7 for two different workloads 3D-PR and NV-LG (see §6
for workload details). We observe that there is significant

variation in the number of threads in a warp that participate

in one reduction. Thus, each warp contributes a different

amount of traffic to the LSU and the ROP units.

10^4

10^5

10^6

1 5 9 13 17 21 25 29G
ra

d
ie

n
t

U
p

d
at

e
s

Par�cipa�ng Threads

Firefox file:///C:/Users/sanke/Pictures/pt1.svg

1 of 1 2024-12-15, 12:51 a.m.

(a) 3D-PR workload

10^4

10^5

10^6

10^7

1 5 9 13 17 21 25 29

G
ra

d
ie

n
t

U
p

d
at

e
s

Par�cipa�ng Threads

Firefox file:///C:/Users/sanke/Pictures/pt2.svg

1 of 1 2024-12-15, 12:52 a.m.

(b) NV-LG workload

Figure 7. Log-scale histograms of average number of active

threads per warp that participate in gradient updates.

3.2 Atomic Bottleneck in the Gradient Computation
Given that each thread updates a number of primitives, each

of which has many learned parameters, a massive number

of atomic operations is generated. To evaluate the impact of

this, we analyze the cycles during the gradient computation

step when instructions are stalled from executing. Figure 8

depicts the breakdown of the number of cycles a warp is

stalled per instruction using NVIDIA Nsight profiler [13] on

two GPUs. We make two key observations: First, the LSU

(load-store unit) stalls contribute over 60% of all stalls on

average. The LSU stalls are caused due to the large number

of memory requests (primarily atomic operations) to global

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

memory from each sub-core (§2.1). These workloads also

have high cache hit rates (97% L2 hit rate on average on both

RTX 4090 and RTX 3060 across all workloads), indicating

that the memory stalls are not caused by cache misses, but

atomic operations. Second, the RTX 4090 GPU has more

stalls in issuing instructions to the LSU compared to the RTX

3060. This is because more recent GPUs have a higher SM to

ROP unit ratio. In our experimental setup, the RTX 4090 has

4.57× more SMs than the RTX 3060 (128 SMs and 28 SMs,

respectively). However, the RTX 4090 only has about 3.6×
more ROP units (176 ROP units versus 48 ROP units).

0
20
40
60
80

100
120

W
ar

p
St

al
l C

yc
le

s LSU Stall
Scoreboard Stall
Other

Figure 8. Breakdown of warp stalls on 4090 (left) and 3060

(right).

To this end, our goal is to enable faster raster-based dif-

ferentiable rendering methods by accelerating atomic opera-

tions that constitute a significant bottleneck.

4 Approach
We introduce ARC, a primitive that enables fast atomic re-

duction in applications that (1) generate a large number of

atomic requests, thus overwhelming the hardware queues

and compute units that process atomics, and (2) typically
have most threads within an warp performing atomic up-

dates to the same memory locations.

Thekey ideas behind ARC is to (i) leverage the intra-warp

locality in atomic updates to perform warp-level reduction

in the SM itself using registers, and (ii) distribute atomic

computation between the SM and L2 ROP units to enable

high throughput atomic reduction. A high-level overview of

ARC is shown in Figure 9. At each sub-core, ARC’s sched-

uler 1 determines whether each atomic update should be

performed locally as warp-level reduction in the core (3

and 4) or using the atomic units at the L2 ROPs. 2 .

We propose two implementations of ARC: (i) ARC-HW,

a hardware-software cooperative approach that efficiently

implements warp-level reduction at each sub-core and au-

tomatically distributes reduction computation between the

core and L2 ROP units, and (ii) ARC-SW, a software-only ap-

proach that leverages existing warp-level primitives in some

GPUs to implement the ideas in ARC. ARC-SW can be used

directly in many existing GPUs using our open-source im-

plementation. However, ARC-HW is more efficient because

it eliminates additional instruction overheads from handling

divergence and control flow in software, can be implemented

FUs

Sub-Core

+

ARC Scheduler 1

3

…

Warp Scheduler

Dispatch Unit

Register File

Atomic Ops

LDST

Reduce

… …

To
LSU

2
4

Figure 9. High-level overview of ARC. FUs refers to func-

tional units (e.g., IADD, FFMA), and LDST refers to memory

units within each sub-core that handles and forwards mem-

ory requests to the LSU.

flexibly in GPUs that do not support these primitives (e.g.,

Intel GPUs), and requires less programmer effort (See §4.5).

4.1 Design Challenges of ARC
ARC addresses two design challenges:

Challenge 1 : All threads in warp may not generate
atomic updates. Only a subset of threads in a warp typi-

cally generate atomic updates at any given time (as discussed

in §3.1). Existing warp-level instructions thus cannot be di-

rectly used to performwarp-level reduction for differentiable

rendering workloads. This irregularity poses challenges in

developing an efficient implementation of warp-level reduc-

tion at the core level.

Challenge 2 : Dynamic scheduling of atomic computa-
tion between the core and L2.Tomeet the high throughput

requirements for atomic computations in differentiable ren-

dering, it is critical to effectively use both existing ROP units

at the L2 as well as the proposed warp-level reduction at the

sub-cores. Thus, ARC must schedule the atomic operations

efficiently at runtime based on the utilization of the atomic

units at the sub-cores and the L2.

4.2 Warp-Level Reduction with Primitives and
Software Libraries

Existing shuffle primitives do not take predicate registers

and do not have logic masks for filtering active threads. The

mask argument in shfl_sync primitive [11] is a synchro-

nization mask; it does not prevent fetching from or saving

to inactive threads, thus causing undefined behavior. An "if"

condition does not solve the problem, as the inactive threads

have already diverged due to earlier condition checks. CUDA

software libraries such as CCCL [14] and CUB [15] provide

highly optimized implementations for warp-level reduction

using existing instructions, but these libraries assume that all

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

threads within a warp are active. For differentiable rendering

workloads, all threads often do not participate in reduction.

These approaches do not address either Challenge 1 or 2 .

We quantitatively compare ARC with warp-level reduction

of the CCCL library in §7.2.

4.3 Key Components of ARC-HW
ARC-HW uses hardware support to perform warp-level re-

duction and automatically distributes atomic computation

between the SMs and ROP units. ARC-HW is exposed to the

programmer with a new instruction, named atomred. We

next describe the workflow of ARC-HW:

Identifying Active Threads. To address Challenge 1 ,

ARC-HW identifies sets of threads within a warp that update

the same parameter (and thus memory location). This is done

by leveraging the address coalescing module that is used to

coalesce common memory addresses of threads perform-

ing a load operation. In this step, for each memory location

being updated atomically in the warp, the corresponding ac-

tive threads are identified (generating an atomic transaction).
Only these threads participate in the subsequent reduction

steps since other threads are not eligible for a warp-level

reduction (because they are either inactive or do not update

the same memory location).

Warp-level Reduction. In order to perform the warp-

level reduction at the sub-core, ARC-HW introduces addi-

tional logic per sub-core, which is referred to as the reduction
unit. The reduction unit contains a single floating point unit

which serially sums the gradients. The result of the reduction

is then sent to the LSU to atomically update the parameter

in global memory with the reduced gradients.

Scheduling Atomic Updates Between Core and L2
ROP. To address Challenge 2 , ARC employs a greedy sched-

uling algorithm and schedules the atomic transaction either

at the SM reduction unit or the LSU (for computation at the

ROPs) depending on which queue is free. When the rate of

atomic requests overwhelms the available atomic through-

put of the ROP units, the requests get stalled at the LSU

queue. Such atomic stalls propagate the memory pipeline

and eventually lead to stalls within the sub-core at the LDST

units (Figure fig. 9). ARC scheduler leverages this behavior

and observes the atomic stalls at the LDST units to determine

the availability of the ROP units. When an atomic memory

transaction is generated, if the ROP units are not stalled,

the ARC scheduler schedules the atomic update instructions

directly to the ROP units. Otherwise, the atomic updates

are reduced using ARC-HW’s reduction unit in the sub-core.

The scheduling algorithm may benefit from additional infor-

mation such as the number of concurrent requests and future

request predictions; however, acquiring such information

requires additional logic and hardware overhead, which adds

to the overall design complexity. Thus, we choose the greedy

algorithm that achieves high performance with negligible

hardware modifications.

4.4 Key Components of ARC-SW
ARC-SW is implemented and exposed to the programmer as a

function call that can be inserted into GPU code. We describe

how we implement ARC-SW using existing instructions and

warp-level primitives.

L2 ROP
……..

t0 t1 t2 t31t3

+

+

+....

ti = ith Thread

(a) Serialized reduction.

L2 ROP
……..

t0 t16 t1 t31t17

+ ++

+

+....

ti = ith Thread

(b) Butterfly reduction.

Figure 10. Overview of reduction algorithms of ARC.

Warp-level Reduction (Challenge 1).We propose two

approaches to perform warp-level reduction that addresses

Challenge 1 , each of which has different tradeoffs. These

approaches are outlined below:

(1) Serialized Reduction: Within each warp, we first

determine a set of threads that atomically update the same

parameter (and thus memory location). One thread out of

this group then iterates through all the gradients (one from

each thread), as shown in Figure 10a. The accumulated re-

sult is then added to the parameter using a regular atomic

add operation. The serial nature of this scheme is inefficient.

However, when the warp has threads updating multiple pa-

rameters, the reductions can be parallelized.

(2) Butterfly Reduction: Figure 10b shows how butter-

fly reduction is performed for threads in a warp. We first

check whether all the threads in a warp update the same

primitive. If so, we use a reduction tree to sum the gradients.

For this implementation to work, it requires all threads to

be active, or for threads that are inactive, we must add a

zero value. This introduces some redundant computation.

Thus, the programmer has to ensure there is no control flow

divergence and all threads are active and assign zero-value

updates to threads that were originally inactive. Butterfly

reduction is the most efficient, when only one parameter is

being updated by the warp and most threads are active (less

redundant updates).

Scheduling Atomic Updates Between Core and L2
ROP (Challenge 2). As discussed in §3.1, the amount of

contention at the LSU that is contributed to by each warp

depends on the number of active threads producing atomic

requests. Additionally, the active thread count also reflects

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

the amount of reduction “work” to be done in the SM (if

the atomic update is scheduled for warp-level reduction).

To address Challenge 2 , we determine whether the atomic

updates should be performed using a warp-level reduction

at the core or at the L2 ROPs, by comparing the number of

threads in the warp that actively update one parameter over

a predefined threshold. We call this the balancing threshold,

as it balances the atomic computation between ROP units

and the SMs. This scheduling is performed for each set of

threads in a warp that updates one parameter. The optimal

balancing threshold depends on the amount of contention in

atomic units, which depends on the following:

• Dataset and workload: The number of atomic updates

depends on factors such as the camera resolution, model

architecture, and the complexity of the scene being learned.

• GPU architecture: The ratio of SMs to ROP units impacts

the contention at cores and ROP units.

• Reduction method: The choice of using the butterfly or

serial reduction method also affects the contention at the

atomic units.

Due to the complexity in determining the threshold analyti-

cally, we treat the balancing threshold as a hyperparameter

that needs to be tuned for each workload. We discuss in de-

tail how we use the balancing threshold in §5 and evaluate

the impact of this hyperparameter in §7.2.

4.5 Advantages of ARC-HW over ARC-SW
ARC-HW addresses five limitations of ARC-SW. (i) ARC-SW

incurs additional overhead in performing redundant compu-

tations during warp-level reduction, because not all threads

produce gradient updates in every iteration (when doing

butterfly reduction). (ii) ARC-SW introduces overhead with

control flow instructions when performing warp-level reduc-

tion. (iii) Programmer intervention is required to integrate

ARC-SW (code must be converted as in §5.5). (iv) ARC-SW

requires tuning the balancing threshold hyperparameter to

get the best possible speedup. (v) Not all GPUs currently

support the instructions used in ARC-SW (e.g., Intel GPUs).

5 Detailed Design
5.1 Design of ARC-HW
Programmer Interface. ARC is exposed to the programmer

as a new instruction atomred:
atomred [%addr], %f

%addr is the memory location of the parameter that needs

to be atomically updated and %f is the floating point value to
be added. This instruction is similar to the baseline atomic

instruction, except that there is no return value.

ARC comprises two key components:

ARC Scheduler. atomred instructions are first dispatched

to this unit (shown in Figure 11), which decides whether a

warp-level reduction should be performed for the current

atomred instruction 1 . The scheduler leverages the execu-

tion status of previous atomic instructions to determine the

Contention Determination

Coalesce
Common

Addresses

atomred Dispatch

Memory
Addresses

ARC
Scheduler

TM1 TM2

Atomic Ops
to ROP

TM ≡ Thread Mask
1

Reduction
Unit

2

3

Figure 11. ARC scheduler module.

Register File

Accumulator

+

Atomic Op

1

Reduction
Unit

2

3
4

From ARC
Scheduler

Thread
Mask

+ ≡ FP Unit

Figure 12. ARC’s reduction computation unit

ROP utilization. If the ROP units are free, the scheduler sends

the atomred instruction as a normal atomic instruction to the

address coalescing unit to generate regular atomic requests

that are sent to the ROP units. If the ROP units are busy,

the atomred instruction is scheduled for warp-level reduc-

tion. To perform warp-level reduction, we must first identify

which threads update the same parameter (i.e., memory lo-

cation). To do this, we leverage the same address coalescing

unit for generating coalesced addresses for memory transac-

tions to generate a thread mask. Threads marked in the mask

are threads that update the same parameter. This threadmask

and memory addresses generated by the coalescing unit are

sent to the reduction unit to perform warp-level reduction.

ARC Reduction Unit. The reduction unit performs warp-

level reductions by serially aggregating atomic add instruc-

tions from each transaction and then issuing a single atomic

add request to the memory interface (shown in Figure 12).

The thread masks and memory addresses sent by the ARC

scheduler are used to serially fetch values 1 to be reduced

from the register file and accumulate the result 2 3 . Fi-

nally, the sum and the thread mask are used to generate a

new atomic transaction, which is issued as a normal atomic

update 4 to be processed by the L2 ROP units. We add a

dedicated FPU per sub-core in the reduction unit to per-

form the warp-level reduction. Existing FPUs could be used;

however, it might be challenging to re-design the 32-lane-

wide pipeline to perform serial reduction. Instead, dedicated

per-sub-core FPUs have low area overheads (§5.4).

5.2 Atomic Additions and Commutativity
ARC-HW assumes that the atomic add operations are com-

mutative, i.e., the order with which the addition operations

to the same memory location are performed does not affect

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

the result. Thus, the proposed atomred instruction does not

provide any ordering guarantees and should only be used for

commutative atomic additions. For the differentiable render-

ing workloads, we find that all atomic operations are com-

mutative. We note that floating point additions may produce

slightly different results based on the order of operations, but

differential rendering workloads, similar to machine learn-

ing workloads [84], are resilient to these small errors. Thus,

the baseline differentiable rendering applications are also

written without imposing any order in the atomic additions.

5.3 Coherence and Consistency Considerations
ARC does not locally buffer any memory locations, but

only partially aggregates atomic updates at the SM registers.

These updates are not buffered —once the additions across

the threads in a warp are reduced, the aggregated atomic

update is sent to the L2 ROP units to update the memory

location. For the locally aggregated values in the ARC reduc-

tion units to be visible to the rest of the GPU, GPU coherence

protocols (e.g., [62, 86, 91]) must be updated to include ARC

reduction units. In differentiable rendering workloads, the

same data is never read and updated across multiple SMs

concurrently. Thus, it will not add significant overhead. How-

ever, for other GPU workloads with different access patterns,

the coherence protocols may incur additional overheads.

We assume that all code is data race-free with the SC-for-

HRF [51] consistency model (similar to prior works [30, 32]).

We assume all uses of the proposed atomred instruction are

commutative and relaxed, and the output is not being used

to influence the control flow of the program. Additionally,

we assume that if any kernel leverages ARC, the memory ad-

dresses accessed atomically are always accessed atomically

within the same kernel (i.e. respects strong atomicity [24, 30]

within a kernel). Differentiable rendering workloads respect

strong atomicity in the gradient computation kernel, as all

gradient updates are atomic and there are no accesses to the

gradients that are non-atomic within the gradient computa-

tion kernel. If a kernel that leverages ARC violates strong

atomicity, no guarantee is provided by ARC regarding the

ordering between atomred and non-atomic requests.

5.4 Area Overhead
ARC introduces control logic in the frontend to process the

atomred instruction, and control logic in the scheduler to

determine the stall status of the LSU. In the reduction unit,

ARC only introduces a floating-point unit (FPU) per sub-

core for the reduction computation, and a few registers to

store inputs and accumulate results. We use Yosys [16] to

evaluate this area overhead, which is estimated under 70𝐾

transistors per FPU. In a GPU with 128 SMs and 4 sub-cores

per SM (as in NVIDIA RTX 4090), ARC introduces 128 ×
4 × 70𝐾 = 35840𝐾 additional transistors. Since ARC does

not require any additional SRAM buffer, the area overhead

is small compared to the total transistor count of modern

GPUs: RTX 4090 includes 76 billion transistors, thus ARC

would incur a very modest area overhead of ∼ 0.047%.

5.5 Design of ARC-SW
ARC-SW is exposed to the programmer as a function call

that is invoked during gradient computation, directly replac-

ing the atomic instructions in Figure 5 (lines 12-14) and is

called by all threads. The function’s prototype is provided in

Figure 13. It takes as input the primitive to be updated by the

thread, the primitive’s parameters, and the gradients gener-

ated by the calling thread for all the primitive’s parameters.

1 // Input: primitive index, pointers to parameter
2 // gradients, values to be accumulated,
3 // balancing threshold
4 template<typename ATOM_T>
5 void reduce_arc(int idx, ATOM_T** ptr,
6 ATOM_T *val, int num_params,int balance_thr){
7 ... <balanced reduction implementation>
8 }

Figure 13. Function prototype of ARC-SW.

1 /* balanced reduction implementation */
2 // when num. of active threads exceeds threshold,
3 // do butterfly or serialized reduction
4 int num_active_threads = __popc(__match(idx));
5 if (num_active_threads >= balance_thr){
6 ... <serialized OR butterfly implementation>
7 } else {
8 ... <perform baseline atomic add>
9 }

Figure 14.Dynamically determining whether to send atomic

requests to ROP units or performwarp-level reduction (§4.4).

Figure 14 shows the implementation of the balanced re-

duction. Each thread determines how many other threads

in the warp are updating the same primitive (done using

__match instruction [10]). If this thread count is less than

the balancing threshold, the function simply sends the base-

line CUDA atomicAdd [9] (line 8), which leverages the ROP

units and does not perform warp-level reduction. Otherwise,

it performs warp reduction using either serialized reduction

(§5.5.1) or butterfly reduction (§5.5.2).

5.5.1 ARC-SW with Serialized Reduction (SW-S) If ex-
ecution enters the warp reduction branch (line 6 Figure 14),

as discussed in §4.4, the warp-level reduction is performed

serially (Figure 15). For each primitive, a leader thread is

identified (active thread in the warp with the lowest lane ID,

that updates the same primitive, line 6). This thread serially

accumulates gradients across all active threads in a warp for

all the parameters (lines 10-15).

Limitations: The primary limitation is the inefficient

serial reduction with execution time proportional to the

number of active threads per primitive. This also involves

additional control flow overheads (lines 10, 12, 13, 17, 18).

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

1 /* serialized reduction implementation */
2 // a mask of warp threads updating the same primitive.
3 int prim_mask = __match(idx);
4 // thread within a warp with lowest lane id
5 // with the same primitive is the leader
6 int leader = <lowestLaneIdUpdatingSamePrimitive>
7

8 /* leader accumulates parameters from threads updating
9 the same primitive (threads with same prim_mask) */
10 for src_lane <- next_lane_id(prim_mask){
11 // get data from next active lane
12 if (laneId==leader || laneId==src_lane)
13 for (int i = 0; i < len; ++i)
14 val[i] += __shfl(val[i], src_lane);
15 }
16 // leader sends an atomicAdd per parameter
17 if (laneId == leader)
18 for (int i = 0; i < num_params; ++i)
19 atomicAdd(ptr[i], val[i]);

Figure 15. Serialized reduction in SMs (SW-S).

1 /* butterfly reduction implementation */
2 // reduction only performed when all threads
3 // are updating the same primitive
4 bool all_same = __match(idx) == 0xffffffff;
5 if (all_same) {
6 // parallel butterfly reduction tree
7 for(int offs = 16; offs >= 1; offs /= 2)
8 val[i] += __shfl(val[i], offset);
9 // thread 0 sends an atomicAdd per reduced gradient
10 if (laneId == 0)
11 atomicAdd(ptr[i], val[i]);
12 } else if (was_active) {
13 /* if balance threshold not met or bfly reduction
14 ineligible, do baseline atomicadd */
15 for (int i = 0; i < num_params; ++i)
16 atomicAdd(ptr[i], val[i]);
17 }

Figure 16. Butterfly reduction in SMs (SW-B).

5.5.2 ARC-SW with Butterfly Reduction (SW-B) As
discussed in §3.1, over 99% of warps in many workloads have

all active threads update the same primitive’s parameters. In

these cases, a parallelized reduction tree can be used for fast

warp-level reduction. Figure 16 presents our implementation.

We propose an efficient implementation that requires (1) all

threads in a warp update the same primitive (line 4), and

(2) all threads actively participate in the reduction. The pro-

grammer can use SW-B only if the first condition is met. To

ensure all threads participate in the reduction, the previously

inactive threads must now be made to generate zero value

gradient updates. A was_active flag is set to false for these

updates. If condition (1) is not met, atomic add operations

are used for reduction (line 16-17). Otherwise, a butterfly

reduction is performed using shfl instructions (line 8-9).

Limitations: SW-B adds redundant computation by mak-

ing inactive threads perform zero value gradient updates,

making reduction for warps with many inactive threads in-

efficient. Using SW-B also requires changes to the kernel

code shown with an example in Figure 17, where the code is

transformed to ensure all threads participate in the reduction.

This transformation can be non-trivial in some applications.

1: function GradComputeBFLY(prims_per_thread)

2: tid = thread_idx

3: prims_per_thread = primitives[tid]

4: for p in prims_per_thread do
5: was_active = true; ⊲ active by default

6: if cond1 then
7: was_active = false; ⊲ Don’t skip, mark inactive

8: end if
9: ...

10: if cond2 then
11: was_active = false; ⊲ Don’t skip, mark inactive

12: end if
13: ...

14: if not was_active then
15: grad𝑥1,...𝑥𝑁 = 0 ⊲ Inactive, assign zero gradients

16: end if
17: grad_ptrs = array[p.grad𝑥1,...𝑥𝑁]

18: grad_vals = array[grad𝑥1,...𝑥𝑁]

19: REDUCE_ARC _BFLY(p, g_ptrs, g_vals, N, was_active)
20: end for
21: end function

Figure 17. Outline of a modified gradient computation ker-

nel (Figure 5) that integrates the SW-B primitive.

5.5.3 Determining Balancing Threshold The balancing

threshold significantly impacts speedups (evaluated in §7.2)

and needs to be tuned for best results. The balancing thresh-

old has only 32 possible values (0 − 31), and the gradient

compute kernel is called 100000s of times during training.

Thus, we present a simple method to tune the threshold

automatically: We execute one iteration of the gradient com-

putation kernel using all 32 values of the threshold and select

the value that provides the largest speedup. We repeat this

profiling every 𝑁 iteration (2000 in our evaluation). This

profiling step adds a negligible amount of overhead, as the

number of profiling iterations is significantly fewer than the

number of training iterations.

5.6 Applicability to Other Workloads
Important deep learning and graph analytics applications are

also bottlenecked by a large number of atomic requests [32].

Unlike differentiable rendering workloads, however, these

workloads have more irregular memory accesses, and thus

exhibit a low degree of intra-warp locality between the ad-

dresses updated atomically by threads of a warp. For example,

we profile the pagerank workload from the Pannotia GPGPU

benchmark [27], implemented as a strongly atomic kernel.

We find that although 89.2% of global memory accesses that

reach the L2 are global atomics, fewer than 0.1% of warps

have all active threads atomically updating the same address

(i.e., low intra-warp locality). Compared to this, differentiable

rendering workloads have a very high intra-warp locality

that we primarily leverage with ARC (§3.1 Observation 1),

where on average 99% of the warps have all active threads

atomically updating the same memory location. Thus, ARC

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

cannot provide performance benefits to these workloads.

When ARC is not used, there are no performance overheads

for those workloads as the ARC reduction unit is bypassed.

6 Methodology
Evaluation Platform. We implement and evaluate ARC-

SW on a x86_64 Linux system with an Intel Core i9-13900KF

CPU and the NVIDIA RTX4090 and RTX3060 GPUs. We

model and evaluate ARC-HW using the GPGPU-Sim simula-

tor [58] with the RTX4090 and RTX3060 GPU configurations

(shown in Table 1). We measure the energy consumption

using pyNVML [1, 4] and pyRAPL [8].

Table 1. Simulated GPU configurations

4090-Sim

SM Resources 128 SMs, 32768 Registers, 176 ROPs

Shader Core 2.24GHz; 4 sub-cores per SM

Cache Model 128KB L1 per SM, 72MB L2

DRAM 12-channel; 16-bank; 24GB GDDR5

3060-Sim

SM Resources 28 SMs, 32768 Registers, 48 ROPs

Shader Core 1.32GHz; 4 sub-cores per SM

Cache Model 128KB L1 per SM, 3MB L2

DRAM 12-channel; 16-bank; 12GB GDDR5

Table 2. Workloads and datasets.

Workloads Dataset Identifier (Dataset Name)

3DGS (3D)
LE, SH (NerfSynthetic - Lego, Ship [76]),

PR, DR (DB COLMAP - Playroom, DrJohnson [18]),

TK, TA (Tanks&Temples - Truck, Train [61]),

NvDiff (NV)
BB, SP (Keenan Crane - Bob, Spot [31]),

LE, SH (NerfSynthetic - Lego, Ship [76])

pulsar (PS) SS, SL (Synthetic Spheres - Small, Large)

Workloads. We evaluate ARC using 3 widely used raster-

based differentiable rendering applications: (i) 3DGS [55] rep-
resents scenes with a set of 3D Gaussians; (ii) NvDiffRec
[80] includes various differentiable rendering tasks, and we

use differentiable rendering to learn the parameters of spec-

ular cubemap texture from a set of mesh images, and (iii)

Pulsar [64] represents the scene with a set of spheres and

an efficient sphere rasterizer with a widely-used implementa-

tion in Pytorch3D [83]. We use the datasets listed in Table 2.

For pulsar, we use two synthesized datasets comprising 3D

spheres (PS-SS and PS-SL).

7 Evaluation
We evaluate both the software implementation (ARC-SW)

and the hardware implementation (ARC-HW). The baseline

configuration sends all atomic requests to the ROP units

using the atomicAdd primitive [9]. For ARC-SW, we evalu-

ate two different configurations: (i) SW-B-X: an implementa-

tion of ARC-SW using butterfly reduction, with balancing

threshold 𝑋 . (ii) SW-S-X: an implementation of ARC-SW us-

ing serialized reduction, with balancing threshold 𝑋 . We

refer to the configurations of SW-B-X and SW-S-X with the

best-performing balancing threshold as SW-B and SW-S, re-
spectively. We compare both configurations against CCCL,
which uses the NVIDIA CCCL library [14, 15] to perform

warp-level reduction. We test software approaches on real

hardware: (i) 4090: NVIDIA RTX 4090 GPU and (ii) 3060:
NVIDIA RTX 3060 GPU. Each result is the arithmetic mean

of 10 runs of the same configuration to ensure speedups are

statistically significant. For ARC-HW, we compare ARC-HW
against LAB [32], the closest prior work that dynamically

partitions the local L1/shared memory SRAM to buffer and

aggregate atomic requests. We use two LAB configurations:

(i) LAB-ideal: an idealized implementation of LAB. We ded-

icate an additional and separate SRAM buffer with the same

capacity as the L1/shared memory SRAM that does not in-

cur contention in the LSU, and we assume no tag lookup

overheads, MSHR queuing delays, etc. Commutative atomic

requests are sent to LAB-ideal’s dedicated SRAM buffer, and

other requests are sent to L1/shared memory. (ii) LAB: an
implementation of LAB where the L1/shared memory SRAM

is partitioned between atomic and non-atomic requests (no

additional SRAM). Differentiable rendering workloads use

some shared memory, thus there is less available L1/shared

memory SRAM that can be allocated to LAB. The partition

size for LAB was chosen to be the empirically best perform-

ing for each workload. Additionally, we compare against

PHI [78], which buffers and aggregates atomic updates in

the L1 caches. We evaluate ARC-HW, LAB-ideal, LAB and PHI
on both simulator configurations: 4090-Sim and 3060-Sim.

7.1 Performance analysis of ARC-HW.
Figures 18 and 19 depict the speedup achieved by ARC-HW,
LAB, LAB-ideal and PHI on 4090-Sim and 3060-Sim, nor-
malized to the baseline. Figures 20 and 21 depict the reduction

in shader stalls due to atomic operations over ARC-HW, LAB
and LAB-ideal on 4090-Sim and 3060-Sim, normalized to

the baseline. We make four observations:

0.0
1.0
2.0
3.0
4.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH gmean

Sp
ee

du
p PHI LAB LAB-ideal ARC-HW

Figure 18. Gradient computation speedup of ARC-HW, PHI,
LAB and LAB-ideal on 3060-Sim, normalized to baseline.

0.0
1.0
2.0
3.0
4.0
5.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH gmean

Sp
ee

du
p

PHI LAB LAB-ideal ARC-HW8.59

Figure 19. Gradient computation speedup of ARC-HW, PHI,
LAB and LAB-ideal on 4090-Sim, normalized to baseline.

First, ARC-HW demonstrates significant performance im-

provements, achieving 2.06× speedup on average (up to

8.59×) on 4090-Sim and 1.73× speedup on average (up to

3.77×) on 3060-Sim. Figures 20 and 21 demonstrate 2.43×
and 2.28× average reduction in shader atomic stalls on 4090-Sim

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

0.0
1.0
2.0
3.0
4.0
5.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH gmean

At
om

ic
 S

ta
ll

Re
du

ct
io

n LAB LAB-ideal ARC-HW5.66

Figure 20. Reduction in shader atomic stalls on 3060-Sim,
normalized to baseline.

0.0
1.0
2.0
3.0
4.0
5.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH gmean

At
om

ic
 S

ta
ll

Re
du

ct
io

n

LAB LAB-ideal ARC-HW10.34 9.91

Figure 21. Reduction in shader atomic stalls on 4090-Sim,
normalized to baseline.

and 3060-Sim, respectively, as a result of ARC-HW signifi-

cantly reducing the atomic memory transactions. Second,

LAB-ideal achieves an average speedup of 1.40× and 1.20×
on average (up to 3.05× and 1.56×) on 4090-Sim and 3060-Sim,
respectively, which are lower compared to the speedups

achieved by ARC-HW. ARC-HW’s performance benefits over

LAB come from (a) higher atomic processing throughput as

ARC performs reduction at each of the 4 sub-cores, rather

than just the overall core, (b) there is no eviction/capacity

issue in buffers since the reduction is only intra-warp and

happens directly in the registers, and (c) further improved

throughput by distributing atomic computation between the

ROP units and the sub-cores. Thus, ARC-HW is more effective

in reducing the atomic stalls as demonstrated in Figures 20

and 21, where LAB-ideal achieves 1.43× and 1.19× average

reduction in shader atomic stalls on 4090-Sim and 3060-Sim,
respectively. Third, LAB-ideal marginally outperforms LAB
by 1.05× on average on both 4090-Sim and 3060-Sim. This
is because of the smaller space available for atomic buffer-

ing and the slightly higher L1 miss rate from the reduced

capacity for the non-atomic requests. Fourth, PHI provides

only small performance improvements (1.01× and 1.03× on

average on 4090-Sim and 3060-Sim) over the baseline. This
approach buffers atomic updates at L1 caches and does not

perform warp-level reduction at the sub-cores. Thus, a large

number of atomic updates overwhelms the LSU when buffer-

ing updates, and does not alleviate the atomic stalls in these

workloads. Moreover, PHI performs L1 address lookups for

each atomic operation, which incurs additional overheads

and also impacts the performance of non-atomic operations.

We conclude that ARC-HW is an efficient approach to accel-

erate differentiable rendering applications by alleviating the

overheads of atomic operations in gradient computations.

7.2 Software-only Approaches
Performance Analysis. Figure 22 shows the speedup of

ARC-SW for end-to-end runtime (including the forward pass)

and for gradient computation alone on real hardware, nor-

malized to the baseline. We make two observations.

0.5
1.0
1.5
2.0
2.5

En
d-

to
-e

nd
Sp

ee
du

p 4090 3060

0.0
1.0
2.0
3.0
4.0
5.0
6.0

G
ra

di
en

t
Sp

ee
du

p 4090 3060

Figure 22. End-to-end and gradient computation speedup

on 4090 and 3060 with ARC-SW, normalized to baseline.

First, both SW techniques, SW-B and SW-S, significantly
outperform the baseline on average on both GPUs. For the

gradient computation, ARC-SW achieves an average speedup

of 2.44× (up to 5.7×) on 4090, and 1.74× (up to 3.27×) on
3060. For the entire differentiable rendering pipeline, ARC-SW
achieves an average speedup of 1.41× on 4090 (up to 2.4×),
and 1.21× (up to 1.71×) on 3060.
Second, we observe higher speedups on 4090, compared

to that of 3060, because the atomic processing bottleneck

is more pronounced in 4090 which has a lower ROP to SM

ratio (128 SMs and 176 ROP units in 4090 versus 28 SMs

and 48 ROPs in 3060). Third, SW-B performs as well as or

much better than SW-S, which performs the reduction seri-

ally. However, there are some workloads (PS-SS and PS-SL)
that cannot use SW-B, because it was difficult to eliminate

thread divergence, the key requirement for butterfly reduc-

tion (§5.5.2). Fourth, we observe significant performance

speedups on 3D-PR and 3D-DR, because the datasets PR, DR
are large-scale, photorealistic scenes that require many more

geometric primitives (Gaussians for 3DGS) for accurate scene
representation compared to smaller scenes. Therefore, a

larger number of parameters needs to be atomically updated

during gradient computation, making the atomic bottleneck

more pronounced. Finally, we observe smaller end-to-end

speedups in NV and PS. NV has much fewer warp stalls com-

pared to 3D in the baseline application (Figure 8). This leads

to a less contended LSU, which diminishes the speedups

achieved by ARC-SW. In PS, although the LSU is heavily con-

tended in gradient computation (Figure 8), the gradient com-

putation is not the main bottleneck (Figure 4).

0.0
1.0
2.0
3.0
4.0
5.0
6.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH PS-SS PS-SL gmean

Sp
ee

du
p

SW-S-0 SW-S-8 SW-S-16 SW-S-24
SW-B-0 SW-B-8 SW-B-16 SW-B-24

Figure 23. Sensitivity of SW-S and SW-B to balancing thresh-
old 𝑋 . SW-B cannot be used for PS-SS and PS-SL.

Impact of the Balancing Threshold. In Figure 23, we

depict the sensitivity of SW-S and SW-B to the balancing

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0
2
4
6
8

10
12
14

 3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH PS-SS PS-SL gmean

W
ar

p
St

al
l C

yc
le LSU Stall Scoreboard Stall Other

Figure 24. Breakdown of warp stall cycles during gradient

computation using ARC-SW on 4090 (left) and 3060 (right).

threshold𝑋 for gradient computation on 4090. We make two

observations. First, the best-performing balancing threshold

varies across workloads/datasets. For most workloads, we

achieve the highest speedup when 𝑋 is set to a value that

ensures that the atomic updates are distributed between the

ROP units and the SMs for both SW-S and SW-B. Setting 𝑋 to

be 0 or 24 leads to contention in either the sub-core reduction

unit or the ROP units, respectively. Second, in NV and PS
workloads, choosing sub-optimal balancing thresholds can

result in slowdowns: in some compute-bound workloads,

the additional instructions required can incur significant

overheads. In these cases, balancing thresholds that favor

the ROP unit should be chosen.

Elimination of LSU Stalls. To better understand the ob-

served performance benefits, we measure the number of

stall cycles per instruction in Figure 24 using the NVIDIA

NSIGHT Compute [7] profiler. We find significantly fewer

mean stalls per instruction across all workloads compared to

baseline (Figure 8): 10.3 cycles versus 38.3 cycles on average

thanks to significantly fewer stalls in atomics (LSU stalls).

Comparing ARC-SW to ARC-HW. We evaluate ARC-SW

in the simulator to compare it against ARC-HW. Figure 25

depicts the speedup of ARC-HW normalized to ARC-SW. We

find that ARC-HW consistently outperforms ARC-SW by

1.13× on average (up to 1.29×) on 4090-Sim, and 1.14× on
average (up to 1.26×) on 3060-Sim. ARC-HW is more effi-

cient since it does not incur the overhead of many additional

instructions, control flow, and redundant computation.

0.8

1.0

1.2

1.4

1.6

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH gmean

Sp
ee

du
p

4090-Sim ARC-SW 4090-Sim ARC-HW
3060-Sim ARC-SW 3060-Sim ARC-HW

Figure 25. Gradient computation speedup of ARC-HW and

ARC-SW in the simulator, normalized to ARC-SW.

Comparing Against Software Warp-level Reduction.
Figure 26 compares ARC-SWoverNVIDIACCCL library [14],

the state-of-art library for software warp-level reduction. We

note that significant engineering efforts were needed tomake

CCCL work correctly for these workloads. We present the

gradient computation speedup of ARC-SW and CCCL normal-

ized to the atomicAdd baseline on 4090.
We make two observations: (1) ARC-SW outperforms CCCL

significantly, achieving 1.58× higher speedup on average

0.0
1.0
2.0
3.0
4.0
5.0
6.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH PS-SS PS-SL gmean

Sp
ee

du
p ARC-SW CCCL

Figure 26. Gradient computation speedup of ARC-SW over
CCCL on 4090, normalized to the baseline.

(up to 1.78×) across all workloads. CCCL requires all threads

in the same warp to be active (§4.2), but the gradient com-

putation steps of raster-based differentiable methods have

dynamic conditions that often do not satisfy this requirement

(§3.1). Moreover, ARC-SW effectively distributes reduction be-

tween SMs and ROP units (§4.4). (2) CCCL yields marginal

performance improvements on NvDiff workloads because
NvDiff has many inactive threads in the most warps. Thus,

CCCL fails to capture most reduction opportunities.

7.3 Energy analysis
We evaluate energy efficiency of ARC-SW and ARC-HW. For
ARC-SW, we measure energy consumption on real GPUs, de-

picted in Figure 27 and normalized to baseline. We observe

that ARC-SW reduces energy consumption by 2.8× on average
on 4090 and by 1.7× on average on 3060. This is due to the

significantly faster execution as well as the fewer memory

requests (atomic requests) from the SMs to the ROP units

which leads to less energy consumption at the interconnect.

For ARC-HW, we measure its energy reduction in the sim-

ulator with different configurations, depicted in Figure 28

and normalized to the simulator baseline. We observe that

ARC-HW significantly reduces energy consumption by 3.9×
on average on 4090-Sim and 2.55× on average on 3060-Sim.

0.0

3.0

6.0

9.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH gmean

N
or

m
al

ize
d

En
er

gy

Re
du

ct
io

n

ARC-SW 3060
ARC-SW 4090

Figure 27. Normalized energy reduction in gradient compu-

tation with ARC-SW on 4090 and 3060.

0.0

3.0

6.0

9.0

12.0

15.0

3D-LE 3D-SH 3D-PR 3D-DR 3D-TK 3D-TA NV-BB NV-SP NV-LE NV-SH gmean

N
or

m
al

ize
d

En
er

gy

Re
du

ct
io

n

ARC-HW 3060-Sim

ARC-HW 4090-Sim

Figure 28. Normalized energy reduction in gradient compu-

tation with ARC-HW on 4090-Sim and 3060-Sim.

8 Related Work
To our knowledge, this is the first work to (i) characterize
emerging differentiable rendering workloads and identify

atomic operations to be a key bottleneck; and (ii) propose
an efficient method to leverage warp-level reduction and

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

existing atomic units to accelerate atomic processing in GPUs

for raster-based differentiable rendering.

Differentiable Rendering Techniques. Prior works pro-
pose software techniques [29, 43, 68, 79, 93] or hardware

accelerators [44, 66, 69, 102] to accelerate training and/or

rendering for NeRFs [76, 79]. These works target one class of

differentiable rendering applications in which the primary

bottleneck is the large number of computations and memory

accesses performed. Instead, our work targets raster-based

differentiable rendering methods that significantly reduce

the number of computations needed, thus being a more effi-

cient approach than NeRFs. These methods are highly bot-

tlenecked by atomic operations during training, a problem

that is not addressed by prior work. Applying ARC in NeRFs

would not provide significant speedups, because (i) for NeRFs,

atomics operations only constitute a secondary bottleneck,

and (ii) NeRFs have low intra-warp locality in atomic up-

dates (the key insight that ARC leverages) as they typically

use hash tables/octtrees/etc. to store learned parameters that

lead to more irregular access patterns.

Efficient Atomic Operations in GPUs. Prior works [19,
40, 85, 91, 92, 94] propose cache coherence protocols that can

accelerate atomic requests in GPUs. However, they require

non-trivial changes to GPU cache coherence protocols at

the L1. Atomic operations can instead be implemented with

Remote Memory Operations (RMOs) [45, 47, 60, 88, 89, 98],

which is hardware support for atomic operations: this in-

volves using arithmetic logic near shared caches/main mem-

ory to perform efficient atomic operations without complex

changes to cache coherence protocols and is used in modern

GPUs [99]. However, as demonstrated in this work (§3.2),

this can lead to bottlenecks at the LSU and memory subsys-

tem due to high atomic traffic in workloads where a large

number of threads perform atomic operations. To address

this bottleneck, prior works propose to buffer atomic op-

erations in local SRAM in each SM and thus reduce the

contention near the L2 atomic units: LAB [32] dynamically

reserves a partition of the L1/shared memory SRAM in each

SM to aggregate the atomic requests. PHI [78] aggregates

commutative atomic requests at the L1 cache to reduce mem-

ory traffic. These works demonstrate significant speedups

in applications with a large amount of atomic traffic, such

as graph applications, histograms, and ML training. These

works, however, do not fully leverage the high intra-warp

atomic locality seen in differentiable rendering workloads.

We quantitatively compare against LAB [32] and PHI [78] in

§7.1 and demonstrate that ARC performs better by leveraging

intra-warp locality in atomic updates to enable warp-level

reduction using registers in the GPU sub-cores. ARC signif-

icantly reduces the number of atomic updates sent to the

LSU and memory hierarchy, and our dynamic scheduling

scheme (§4.3) leverages both the ROP units and the SMs to

enable high atomic processing throughput. DAB [30] aims

to achieve deterministic atomic execution by buffering and

fusing atomic requests in dedicated atomic buffers at each

SM. However, scheduling atomic operations with determin-

istic orderings (determinism-aware schedulers) introduces

additional overheads that can lead to > 20% slowdowns over

non-deterministic application baselines, as reported by DAB.

Software-based Warp-level Reduction. Software frame-

works and libraries [2, 14, 15, 34, 38] provide functions to per-

form warp-level and block-level reduction. These libraries

require all threads of the warp to be active for reduction

computation. ARC-SW efficiently performs updates to all

parameters associated with a primitive, even when a subset
of warp threads is active. These libraries also do not use both

the SM and L2 atomic units to increase atomic processing

throughput. We compare ARC with CCCL library in §7.2.

In-Register Parameter Caching. Prior works leverage
GPU register files as additional on-chip memory to cache

partial updates of model parameters and exploit data locality

[33, 35, 53, 59, 111, 113]. These works demonstrate speedups

from reducing off-chip memory accesses. ARC also uses reg-

ister files to temporarily store parameter updates. However,

unlike these works that primarily optimize for memory loads,

ARC is an atomic reduction technique that aims at allevi-

ating the significant memory traffic from atomic operations
which can constitute a significant bottleneck in differentiable

rendering workloads. ARC is designed to leverage any intra-

warp locality in atomic updates by using registers to perform

atomic reductions. Thus, instead of buffering for reuse, ARC

requires the addition of an FPU to perform the sub-core

reduction of atomic updates. This reduces the amount of

atomic contention at the L2 ROP units. The ARC scheduler

also dynamically detects threads eligible for reduction and

schedules atomic operations between the ARC reduction unit

and the ROP units to achieve optimal atomic throughput.

9 Conclusion
We introduce ARC, a novel primitive that enables fast pro-

cessing of atomic reduction operations in applications that

(1) generate a massive number of atomic requests and (2)
have many threads within each warp atomically updating a

common parameter. We demonstrate that both the hardware-

software primitive ARC-HWand the software-only primitive

ARC-SW can effectively alleviate the atomic processing bot-

tleneck and accelerate raster-based differentiable rendering

workloads, which is an important emerging class of applica-

tions in visual computing. ARC is a general atomic primitive

that can also be used to accelerate other workloads with

similar atomic characteristics.

Acknowledgments
We thank the reviewers for their valuable feedback and the

members of the embARC research group for all their help and

the stimulating research environment they provide. This re-

search was supported by the Sony Research Award program

and NSERC Alliance.

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract
This Artifact Appendix describes how to reproduce the ARC-

SW end-to-end speedup results in §7.2 (Fig. 22 and Fig. 26).

Since ARC-SW is a modular extension to the gradient compu-

tation kernel, it is integrated into the existing code bases of

the threedifferentiable rendering applications we use in the

paper (3DGS, NvDiff, pulsar). The 3 different applications
have different software dependencies, setup workflows and

execution environments and could not be condensed into

one set of instructions and submission, thus we present the

workflow and setup to reproduce the results for the 3DGS
workloads which includes the majority of the workloads in

our evaluation and the workloads which achieve the highest

speedups with our approach. 3DGS is one of the state-of-the-

art and widely-used raster-based differentiable rendering

methods (described in §2.3).

The code provided in the artifact is developed based on the

original 3DGS’s open-source implementation. The training

process contains model evaluation checkpoints for correct-

ness checks and end-to-end training time at the end as per-

formance measurement. A successful training process with

either ARC-SW variant (ARC-SW-B or ARC-SW-S) should

report similar Peak-Signal-to-Noise-Ratio (PSNR↑) and L1

loss (L1↓) values, while achieving similar speedups. Note

that since the training process is stochastic, both PSNR and

L1 values will have minor differences across runs even with

the same configuration.

To facilitate the AE process, we provide a tarball file, which

contains the ARC-SW source code, experiment datasets, and

the automated workflow scripts to execute the 3DGS training.

A.2 Artifact check-list (meta-information)
• Compilation: GCC 12.1.0, public, not included; NVIDIA CUDA

Compiler (NVCC) from CUDA Toolkit 12.2, public, not included.

• Data set: DB COLMAP, Tanks and Temples, NeRF Synthetic. All

are publicly available and included.

• Run-time environment: Linux x86_64. Requires CUDA 12.2,

Python 3.11 and Conda. Root access only required for CUDA

installation.

• Hardware: NVIDIA RTX 4090 and RTX 3060 GPUs to accurately

reproduce all results. NVIDIA GPUs with a minimum compute

capability of 8.6 and at least 8GB GPU memory may also be used

to validate the results.

• Run-time state:No other GPU-intensive task should be running
during the AE process.

• Metrics: Correctness metrics (model quality): Peak-Signal-to-

Noise-Ratio (PSNR↑), L1 loss (L1↓). Performance metric: end-to-

end runtime.

• Output:ACSV file containing all configurations and rawmetrics,

and a PNG figure that reconstructs Fig. 22 and Fig. 26 in the paper.

• Experiments: Install required run-time environment, fetch and

extract the provided tarball file

• Howmuch disk space required (approximately)?: 10GB disk

space required.

• How much time is needed to prepare workflow (approxi-
mately)?: About 10 minutes (download time excluded).

• How much time is needed to complete experiments (ap-
proximately)?: About 2 hours on a system with RTX 4090.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Gaussian-Splatting Li-

cense (the same license as the original 3DGS)
• Archived (provide DOI)?: 10.5281/zenodo.14053431

A.3 Description

A.3.1 How to access Download the tarball file scar_ae.tar.gz
from Zenodo: 10.5281/zenodo.14053431

A.3.2 Hardware dependencies AE should be run on a

host machine with NVIDIA RTX 4090 GPU and/or NVIDIA

RTX 3060 GPU. To reproduce all results, it is required to run

AE once on each GPU, as Fig. 22 contains results collected

from both RTX 4090 and RTX 3060. On a platform with

multiple GPUs installed, our script allows for the selection

of a specific CUDA device to run the AE on.

If RTX 4090 and RTX 3060 are unavailable on any AE

platform, ARC-SW may also be evaluated on a different

NVIDIA GPU with a minimum compute capability of 8.6

and at least 8GB GPU memory. In this case, the observed

speedups may show different trends compared to Fig. 22 and

Fig. 26.

A.3.3 Software dependencies The verified operating sys-

tems and dependencies are listed below:

• Ubuntu 22.04.3 LTS or Manjaro 24.1

• Python 3.11

• CUDA Toolkit 12.2

• GCC 12.1.0 or GCC 12.3.0

• Conda installation

A.3.4 Data sets We evaluate across three publicly avail-

able datasets, listed below:

• DB COLMAP - Playroom, DrJohnson

• Tanks and Temples - Truck, Train

• Nerf Synthetic - Lego, Ship

A.4 Installation
Assuming the provided tarball file scar_ae.tar.gz has been

downloaded and all software dependencies have been in-

stalled, please execute the following commands in sequence

to install the environment:

1 $ tar -zxvf scar_ae.tar.gz
2 $ cd scar_ae
3 $ conda env create --file environment.yml
4 $ conda activate scar_ae

A.5 Experiment workflow
We provide a single Python script that runs all AE experi-

ments and produces a single CSV file that contains the raw

data required to reproduce Fig. 22 and Fig. 26. To run this

https://zenodo.org/records/14053431
https://zenodo.org/records/14053431

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

script, execute the following command (continuing from

installation):

1 $ python run_ae.py 0

This script uses CUDA device 0 by default. If the AE plat-

form hasmore than oneNVIDIAGPU installed, the argument

0 may be changed to the target CUDA device ID to run the

AE on.

A.6 Evaluation and expected results
When run_ae.py finishes successfully, the output CSV file

ae_result.csv will contain raw experiment results from all

combinations of the three parameters:

4 backward (gradient computation) kernel implementations:

• The original 3DGS implementation (baseline)

• ARC-SW-S (§5.5.1)

• ARC-SW-B (§5.5.2)

• CCCL library implementation (§7.2)

6 workloads from 3 datasets:

• NeRF Synthetic Ship

• NeRF Synthetic Lego

• DB COLMAP Playroom

• DB COLMAP DrJohnson

• Tanks and Temples Truck

• Tanks and Temples Train

4 balancing_thresholds (§4.4): an integer selected among 0, 8,

16, 24, 32. ARC-SW warp reduction is performed if and only

if the number of active threads is greater than or equal to

balancing_threshold. balancing_threshold has no effect when

bw_implementation is set to org or CCCL.
There are 8 columns in the CSV file, listed below:

• BW Implementation

• Balance Threshold

• Dataset

• Train PSNR↑
• Train L1↓
• Test PSNR↑
• Test L1↓
• End-to-end Training Time

Each row in the CSV file corresponds to the results of

one specific experiment configuration. We expect the PSNR

and L1 values to be similar across all experiments on the

same dataset. We additionally provide a Python script to

automatically generate a figure that reconstructs both Fig. 22

and Fig. 26 from the CSV file, which can be run with the

following command after the CSV file has been successfully

generated:

1 $ python gen_ae_figs.py

We expect that the generated figure scar_ae_fig.png should

depict results similar to Fig. 22 and Fig. 26 with minor differ-

ences, primarily due to the stochastic nature of the applica-

tion, system noises and different testing platforms.

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

References
[1] 2012. PyNVML. https://pythonhosted.org/nvidia-ml-py/.
[2] 2014. Faster Parallel Reductions on Kepler. https://developer.nvidia.

com/blog/faster-parallel-reductions-kepler/.
[3] 2017. NVIDIA TESLA V100 GPU ARCHITECTURE.

https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf.

[4] 2017. NVML GPU Power Measurement. https://github.com/kajalv/
nvml-power.

[5] 2021. NVIDIA AMPERE GA102 GPU ARCHITECTURE

WHITEPAPER. https://images.nvidia.com/aem-dam/en-
zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-
Architecture-Whitepaper-V1.pdf.

[6] 2023. NVIDIA ADA GPU ARCHITECTURE. https:
//images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-
ada-gpu-architecture.pdf.

[7] 2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-
compute.

[8] 2023. PyRAPL. https://github.com/powerapi-ng/pyRAPL.
[9] 2024. CUDA C++ Programming Guide - 7.14. Atomic Func-

tions. https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#atomic-functions.

[10] 2024. CUDA C++ Programming Guide - 7.20. Warp Match Func-

tions. https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#warp-match-functions.

[11] 2024. CUDA C++ Programming Guide - 7.22 Warp Shuffle Func-

tions. https://docs.nvidia.com/cuda/cuda-c-programming-guide/
#warp-shuffle-functions.

[12] 2024. DISTWAR repository. https://github.com/Accelsnow/gaussian-
splatting-distwar.

[13] 2024. Nsight Compute Documentation. https://docs.nvidia.com/
nsight-compute/ProfilingGuide/index.html#metrics-guide.

[14] 2024. NVIDIA cccl library. https://github.com/NVIDIA/nccl.
[15] 2024. NVIDIA cub library. https://nvlabs.github.io/cub/.
[16] 2024. Yosys Open SYnthesis Suite :: About. https://yosyshq.net/

yosys/
[17] Tor M Aamodt, Wilson Wai Lun Fung, Timothy G Rogers, and Mar-

garet Martonosi. 2018. General-purpose graphics processor architec-
tures. Springer.

[18] Josh Abramson, Arun Ahuja, Iain Barr, Arthur Brussee, Federico

Carnevale, Mary Cassin, Rachita Chhaparia, Stephen Clark, Bogdan

Damoc, Andrew Dudzik, et al. 2020. Imitating interactive intelligence.

arXiv preprint arXiv:2012.05672 (2020).
[19] Johnathan Alsop, Marc S Orr, Bradford M Beckmann, and David A

Wood. 2016. Lazy release consistency for GPUs. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1–14.

[20] Edward Angel. 1996. Interactive Computer Graphics: A top-down
approach with OpenGL. Addison-Wesley Longman Publishing Co.,

Inc.

[21] Sai Praveen Bangaru, LifanWu, Tzu-Mao Li, Jacob Munkberg, Gilbert

Bernstein, Jonathan Ragan-Kelley, Frédo Durand, Aaron Lefohn, and

Yong He. 2023. Slang. d: Fast, modular and differentiable shader

programming. ACM Transactions on Graphics (TOG) 42, 6 (2023),

1–28.

[22] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan,

and Peter Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased

neural radiance fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5470–5479.

[23] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan,

and Peter Hedman. 2023. Zip-nerf: Anti-aliased grid-based neural

radiance fields. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 19697–19705.

[24] Colin Blundell, E Christopher Lewis, and Milo MK Martin. 2006. Sub-

tleties of transactional memory atomicity semantics. IEEE Computer
Architecture Letters 5, 2 (2006), 17–17.

[25] Ang Cao and Justin Johnson. 2023. Hexplane: A fast representation

for dynamic scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 130–141.

[26] David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent

Sitzmann. 2024. pixelsplat: 3d gaussian splats from image pairs

for scalable generalizable 3d reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
19457–19467.

[27] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin

Skadron. 2013. Pannotia: Understanding irregular GPGPU graph

applications. In 2013 IEEE International Symposium onWorkload Char-
acterization (IISWC). IEEE, 185–195.

[28] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su.

2022. Tensorf: Tensorial radiance fields. In European Conference on
Computer Vision. Springer, 333–350.

[29] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea

Tagliasacchi. 2023. Mobilenerf: Exploiting the polygon rasterization

pipeline for efficient neural field rendering on mobile architectures.

In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 16569–16578.

[30] Yuan Hsi Chou, Christopher Ng, Shaylin Cattell, Jeremy Intan,

Matthew D Sinclair, Joseph Devietti, Timothy G Rogers, and Tor M

Aamodt. 2020. Deterministic atomic buffering. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 981–995.

[31] Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust fairing

via conformal curvature flow. ACM Transactions on Graphics (TOG)
32, 4 (2013), 1–10.

[32] Preyesh Dalmia, Rohan Mahapatra, and Matthew D Sinclair. 2022.

Only buffer when you need to: Reducing on-chip gpu traffic with

reconfigurable local atomic buffers. In 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE,
676–691.

[33] Sina Darabi, Mohammad Sadrosadati, Negar Akbarzadeh, Joël Lin-

degger, Mohammad Hosseini, Jisung Park, Juan Gómez-Luna, Onur

Mutlu, and Hamid Sarbazi-Azad. 2022. Morpheus: Extending the last

level cache capacity in GPU systems using idle GPU core resources.

In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 228–244.

[34] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon

Hammond, Onur Mutlu, and Wen-mei Hwu. 2019. Automatic gener-

ation of warp-level primitives and atomic instructions for fast and

portable parallel reduction on GPUs. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 73–84.

[35] GregDiamos, Shubho Sengupta, BryanCatanzaro,Mike Chrzanowski,

Adam Coates, Erich Elsen, Jesse Engel, Awni Hannun, and Sanjeev

Satheesh. 2016. Persistent rnns: Stashing recurrent weights on-chip.

In International Conference on Machine Learning. PMLR, 2024–2033.

[36] Bardienus P Duisterhof, Zhao Mandi, Yunchao Yao, Jia-Wei Liu,

Mike Zheng Shou, Shuran Song, and Jeffrey Ichnowski. 2023. Md-

splatting: Learning metric deformation from 4d gaussians in highly

deformable scenes. arXiv preprint arXiv:2312.00583 (2023).
[37] Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan Liang,

Pawan Kumar Sanjaya, and Nandita Vijaykumar. 2023. DISTWAR:

Fast Differentiable Rendering on Raster-based Rendering Pipelines.

arXiv preprint arXiv:2401.05345 (2023).
[38] Ian J Egielski, Jesse Huang, and Eddy Z Zhang. 2014. Massive atomics

for massive parallelism on GPUs. ACM SIGPLAN Notices 49, 11 (2014),
93–103.

[39] Jiemin Fang, Taoran Yi, XinggangWang, Lingxi Xie, Xiaopeng Zhang,

Wenyu Liu, Matthias Nießner, and Qi Tian. 2022. Fast dynamic

radiance fields with time-aware neural voxels. In SIGGRAPH Asia
2022 Conference Papers. 1–9.

https://pythonhosted.org/nvidia-ml-py/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/kajalv/nvml-power
https://github.com/kajalv/nvml-power
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://github.com/powerapi-ng/pyRAPL
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-match-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-match-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#warp-shuffle-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#warp-shuffle-functions
https://github.com/Accelsnow/gaussian-splatting-distwar
https://github.com/Accelsnow/gaussian-splatting-distwar
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-guide
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-guide
https://github.com/NVIDIA/nccl
https://nvlabs.github.io/cub/
https://yosyshq.net/yosys/
https://yosyshq.net/yosys/

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

[40] Sean Franey and Mikko Lipasti. 2013. Accelerating atomic operations

on GPGPUs. In 2013 Seventh IEEE/ACM International Symposium on
Networks-on-Chip (NoCS). IEEE, 1–8.

[41] Linus Franke, Darius Rückert, Laura Fink, andMarc Stamminger. 2024.

TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Ren-

dering. In Computer Graphics Forum. Wiley Online Library, e15012.

[42] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg,

Benjamin Recht, and Angjoo Kanazawa. 2023. K-planes: Explicit

radiance fields in space, time, and appearance. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12479–12488.

[43] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Ben-

jamin Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance fields

without neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 5501–5510.

[44] Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran

You, and Yingyan Lin. 2023. Gen-NeRF: Efficient and Generalizable

Neural Radiance Fields via Algorithm-Hardware Co-Design. In Pro-
ceedings of the 50th Annual International Symposium on Computer
Architecture. 1–12.

[45] Masaaki Fushimi, Takahiro Kawashima, Takafumi Nose, Nobutaka

Ihara, Shinji Sumimoto, and Naoyuki Shida. 2019. A Memory Sav-

ing Communication Method Using Remote Atomic Operations. In

Proceedings of the International Conference on High Performance Com-
puting in Asia-Pacific Region. 36–42.

[46] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. 2023. Eagles:

Efficient accelerated 3d gaussians with lightweight encodings. arXiv
preprint arXiv:2312.04564 (2023).

[47] Gottlieb, Grishman, Kruskal, McAuliffe, Rudolph, and Snir. 1983. The

NYU ultracomputer—Designing an MIMD shared memory parallel

computer. IEEE Transactions on computers 100, 2 (1983), 175–189.
[48] Antoine Guédon and Vincent Lepetit. 2024. Sugar: Surface-aligned

gaussian splatting for efficient 3d mesh reconstruction and high-

quality mesh rendering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5354–5363.

[49] Yong He, Kayvon Fatahalian, and Tim Foley. 2018. Slang: language

mechanisms for extensible real-time shading systems. ACM Transac-
tions on Graphics (TOG) 37, 4 (2018), 1–13.

[50] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Bar-

ron, and Paul Debevec. 2021. Baking neural radiance fields for real-

time view synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 5875–5884.

[51] Lee Howes and Aaftab Munshi. 2015. The OpenCL specification,

version 2.0. Khronos Group (2015).

[52] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini.

2022. DR. JIT: a just-in-time compiler for differentiable rendering.

ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–19.
[53] Hyeran Jeon, Hodjat Asghari Esfeden, Nael B Abu-Ghazaleh, Daniel

Wong, and Sindhuja Elango. 2019. Locality-aware gpu register file.

IEEE Computer Architecture Letters 18, 2 (2019), 153–156.
[54] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Geng-

shan Yang, Sebastian Scherer, Deva Ramanan, and Jonathon Luiten.

2024. SplaTAM: Splat Track & Map 3D Gaussians for Dense RGB-D

SLAM. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 21357–21366.

[55] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George

Drettakis. 2023. 3d gaussian splatting for real-time radiance field

rendering. ACM Transactions on Graphics (ToG) 42, 4 (2023), 1–14.
[56] Leonid Keselman. 2023. Gaussian Representations for Differentiable

Rendering and Optimization. Ph. D. Dissertation. Carnegie Mellon

University.

[57] Leonid Keselman and Martial Hebert. 2023. Flexible Techniques

for Differentiable Rendering with 3D Gaussians. arXiv preprint
arXiv:2308.14737 (2023).

[58] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G

Rogers. 2020. Accel-Sim: An extensible simulation framework for

validated GPU modeling. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 473–486.

[59] Farzad Khorasani, Hodjat Asghari Esfeden, Nael Abu-Ghazaleh, and

Vivek Sarkar. 2018. In-register parameter caching for dynamic neu-

ral nets with virtual persistent processor specialization. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 377–389.

[60] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. 2020.

An in-network architecture for accelerating shared-memory multi-

processor collectives. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 996–1009.

[61] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017.

Tanks and temples: Benchmarking large-scale scene reconstruction.

ACM Transactions on Graphics (ToG) 36, 4 (2017), 1–13.
[62] Konstantinos Koukos, Alberto Ros, Erik Hagersten, and Stefanos

Kaxiras. 2016. Building heterogeneous unified virtual memories

(uvms) without the overhead. ACM Transactions on Architecture and
Code Optimization (TACO) 13, 1 (2016), 1–22.

[63] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehti-

nen, and Timo Aila. 2020. Modular Primitives for High-Performance

Differentiable Rendering. ACM Transactions on Graphics 39, 6 (2020).
[64] Christoph Lassner and Michael Zollhofer. 2021. Pulsar: Efficient

sphere-based neural rendering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 1440–1449.

[65] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey Tulyakov,

and Gerard Pons-Moll. 2023. Control-nerf: Editable feature volumes

for scene rendering and manipulation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 4340–4350.

[66] Junseo Lee, Kwanseok Choi, Jungi Lee, Seokwon Lee, Joonho

Whangbo, and Jaewoong Sim. 2023. NeuRex: A Case for Neural

Rendering Acceleration. In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture. 1–13.

[67] Chaojian Li, Sixu Li, Yang Zhao, Wenbo Zhu, and Yingyan Lin. 2022.

RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Im-

mersive AR/VR Rendering. In Proceedings of the 41st IEEE/ACM Inter-
national Conference on Computer-Aided Design. 1–9.

[68] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo Kanazawa. 2023.

Nerfacc: Efficient sampling accelerates nerfs. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 18537–18546.

[69] Sixu Li, Chaojian Li, Wenbo Zhu, Boyang Yu, Yang Zhao, Cheng

Wan, Haoran You, Huihong Shi, and Yingyan Lin. 2023. Instant-3D:

Instant Neural Radiance Field Training Towards On-Device AR/VR

3D Reconstruction. In Proceedings of the 50th Annual International
Symposium on Computer Architecture. 1–13.

[70] Yingtai Li, Xueming Fu, Shang Zhao, Ruiyang Jin, and S Kevin Zhou.

2023. Sparse-view ct reconstruction with 3d gaussian volumetric

representation. arXiv preprint arXiv:2312.15676 (2023).
[71] Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Dou-

glas Lanman, James Tompkin, and Lei Xiao. 2023. GauFRe: Gaussian

Deformation Fields for Real-time Dynamic Novel View Synthesis.

arXiv preprint arXiv:2312.11458 (2023).
[72] Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue

Liu, Yangdi Lu, Xiaofei Wu, Songcen Xu, Youliang Yan, et al. 2024.

Vastgaussian: Vast 3d gaussians for large scene reconstruction. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5166–5175.

[73] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Chris-

tian Theobalt. 2020. Neural sparse voxel fields. Advances in Neural
Information Processing Systems 33 (2020), 15651–15663.

[74] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ra-

manan. 2024. Dynamic 3d gaussians: Tracking by persistent dynamic

view synthesis. In 2024 International Conference on 3D Vision (3DV).
IEEE, 800–809.

ARC: Adaptive Atomic Reduction ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[75] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davi-

son. 2024. Gaussian splatting slam. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 18039–18048.

[76] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T

Barron, Ravi Ramamoorthi, and Ren Ng. 2021. Nerf: Representing

scenes as neural radiance fields for view synthesis. Commun. ACM
65, 1 (2021), 99–106.

[77] Muhammad Husnain Mubarik, Ramakrishna Kanungo, Tobias Zirr,

and Rakesh Kumar. 2023. Hardware Acceleration of Neural Graph-

ics. In Proceedings of the 50th Annual International Symposium on
Computer Architecture. 1–12.

[78] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI:

Architectural support for synchronization-and bandwidth-efficient

commutative scatter updates. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 1009–1022.

[79] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller.

2022. Instant neural graphics primitives with a multiresolution hash

encoding. ACM Transactions on Graphics (ToG) 41, 4 (2022), 1–15.
[80] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wen-

zheng Chen, Alex Evans, Thomas Müller, and Sanja Fidler. 2022.

Extracting Triangular 3D Models, Materials, and Lighting From Im-

ages. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 8280–8290.

[81] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob.

2019. Mitsuba 2: A retargetable forward and inverse renderer. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–17.

[82] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc

Moreno-Noguer. 2021. D-nerf: Neural radiance fields for dynamic

scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 10318–10327.

[83] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon,

Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. 2020. Accelerating

3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501
(2020).

[84] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough,

Sae Kyu Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei.

2018. Ares: A framework for quantifying the resilience of deep

neural networks. In Proceedings of the 55th Annual Design Automation
Conference. 1–6.

[85] Xiaowei Ren and Mieszko Lis. 2017. Efficient sequential consistency

in gpus via relativistic cache coherence. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
625–636.

[86] Xiaowei Ren, Daniel Lustig, Evgeny Bolotin, Aamer Jaleel, Oreste

Villa, and David Nellans. 2020. Hmg: Extending cache coherence

protocols across modern hierarchical multi-gpu systems. In 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 582–595.

[87] Darius Rückert, Linus Franke, and Marc Stamminger. 2022. Adop: Ap-

proximate differentiable one-pixel point rendering. ACM Transactions
on Graphics (ToG) 41, 4 (2022), 1–14.

[88] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Eval-

uating the cost of atomic operations on modern architectures. In

2015 International Conference on Parallel Architecture and Compilation
(PACT). IEEE, 445–456.

[89] Steven L Scott. 1996. Synchronization and communication in the T3E

multiprocessor. In Proceedings of the seventh international conference
on Architectural support for programming languages and operating
systems. 26–36.

[90] Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao,

Haocheng Feng, Jingtuo Liu, Liangjun Zhang, Jian Zhang, Bin Zhou,

et al. 2023. Gir: 3d gaussian inverse rendering for relightable scene

factorization. arXiv preprint arXiv:2312.05133 (2023).
[91] Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. 2015. Ef-

ficient GPU synchronization without scopes: Saying no to complex

consistency models. In Proceedings of the 48th International Sympo-
sium on Microarchitecture. 647–659.

[92] Inderpreet Singh, Arrvindh Shriraman, Wilson WL Fung, Mike

O’Connor, and Tor M Aamodt. 2013. Cache coherence for GPU

architectures. In 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 578–590.

[93] Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Improved direct

voxel grid optimization for radiance fields reconstruction. arXiv
preprint arXiv:2206.05085 (2022).

[94] Abdulaziz Tabbakh, Xuehai Qian, and Murali Annavaram. 2018. G-

tsc: Timestamp based coherence for gpus. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
403–415.

[95] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Ter-

rance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi,

Abhik Ahuja, et al. 2023. Nerfstudio: A modular framework for neu-

ral radiance field development. In ACM SIGGRAPH 2023 Conference
Proceedings. 1–12.

[96] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng.

2023. Dreamgaussian: Generative gaussian splatting for efficient 3d

content creation. arXiv preprint arXiv:2309.16653 (2023).
[97] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen

Lombardi, Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon,

Jason Saragih, Matthias Nießner, et al. 2020. State of the art on neural

rendering. In Computer Graphics Forum, Vol. 39. Wiley Online Library,

701–727.

[98] Xi Wang, Brody Williams, John D Leidel, Alan Ehret, Michel Kinsy,

and Yong Chen. 2020. Remote atomic extension (rae) for scalable high

performance computing. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[99] Craig M Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011.

Fermi GF100 GPU architecture. IEEE Micro 31, 2 (2011), 50–59.
[100] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang,

Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang. 2024. 4d gaussian

splatting for real-time dynamic scene rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
20310–20320.

[101] Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi

Gao, Daniel Watson, Pratul P Srinivasan, Dor Verbin, Jonathan T

Barron, Ben Poole, et al. 2024. Reconfusion: 3d reconstruction with

diffusion priors. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 21551–21561.

[102] Songm Xinkai, Yuanbo Wen, Xing Hu, Tianbo Liu, Haoxuan Zhou,

HushengHan, Tian Zhi, Zidong Du, LimWei, Rui Zhang, Chen Zhang,

Lin Gao, Qi Guo, and Tianshi Chen. 2023. ARTist: A Fully Fused Ac-

celerator for Real-Time Learning of Neural Scene Representation. In

Proceedings of the 56th International Symposium on Microarchitecture.
1–13.

[103] Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang Wang, Dong Wang,

and Xuelong Li. 2024. Gs-slam: Dense visual slam with 3d gaussian

splatting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 19595–19604.

[104] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang

Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou, and Sida Peng. 2024.

Street gaussians for modeling dynamic urban scenes. arXiv preprint
arXiv:2401.01339 (2024).

[105] Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi Xie, Xi-

aopeng Zhang, Wei Shen, and Qi Tian. 2024. GaussianObject: Just

Taking Four Images to Get A High-Quality 3D Object with Gaussian

Splatting. arXiv preprint arXiv:2402.10259 (2024).
[106] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and

Xiaogang Jin. 2024. Deformable 3d gaussians for high-fidelity monoc-

ular dynamic scene reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 20331–20341.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Sankeerth Durvasula et al.

[107] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. 2024. Real-time

Photorealistic Dynamic Scene Representation and Rendering with

4D Gaussian Splatting. International Conference on Learning Repre-
sentations (ICLR).

[108] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. 2023.

Real-time photorealistic dynamic scene representation and rendering

with 4d gaussian splatting. arXiv preprint arXiv:2310.10642 (2023).
[109] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang,

Wenyu Liu, Qi Tian, and Xinggang Wang. 2023. GaussianDreamer:

Fast Generation from Text to 3D Gaussian Splatting with Point Cloud

Priors. arXiv preprint arXiv:2310.08529 (2023).
[110] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo

Kanazawa. 2021. Plenoctrees for real-time rendering of neural radi-

ance fields. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 5752–5761.

[111] Lingqi Zhang, Mohamed Wahib, Peng Chen, Jintao Meng, Xiao

Wang, Toshio Endo, and Satoshi Matsuoka. 2023. PERKS: a Locality-

Optimized Execution Model for Iterative Memory-bound GPU Appli-

cations. In Proceedings of the 37th International Conference on Super-
computing. 167–179.

[112] Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun,

and Ming-Hsuan Yang. 2024. Drivinggaussian: Composite gaussian

splatting for surrounding dynamic autonomous driving scenes. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 21634–21643.

[113] Feiwen Zhu, Jeff Pool, Michael Andersch, Jeremy Appleyard, and

Fung Xie. 2018. Sparse persistent RNNs: Squeezing large recurrent

networks on-chip. arXiv preprint arXiv:1804.10223 (2018).
[114] Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zoll-

höfer, Justus Thies, and Javier Romero. 2023. Drivable 3D Gaussian

Avatars. arXiv preprint arXiv:2311.08581 (2023).
[115] Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang,

Yan-Pei Cao, and Song-Hai Zhang. 2024. Triplane meets gaussian

splatting: Fast and generalizable single-view 3d reconstruction with

transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 10324–10335.

	Abstract
	1 Introduction
	2 Background
	2.1 Atomic Processing in GPUs
	2.2 Differentiable Rendering for 3D Scene Reconstruction
	2.3 Differentiable Rendering with Rasterization

	3 Motivation
	3.1 Characteristics of Gradient Computation Step
	3.2 Atomic Bottleneck in the Gradient Computation

	4 Approach
	4.1 Design Challenges of ARC
	4.2 Warp-Level Reduction with Primitives and Software Libraries
	4.3 Key Components of ARC-HW
	4.4 Key Components of ARC-SW
	4.5 Advantages of ARC-HW over ARC-SW

	5 Detailed Design
	5.1 Design of ARC-HW
	5.2 Atomic Additions and Commutativity
	5.3 Coherence and Consistency Considerations
	5.4 Area Overhead
	5.5 Design of ARC-SW
	5.6 Applicability to Other Workloads

	6 Methodology
	7 Evaluation
	7.1 Performance analysis of ARC-HW.
	7.2 Software-only Approaches
	7.3 Energy analysis

	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

