
Towards a better-behaved unification algorithm

for Coq

Beta Ziliani
MPI-SWS

beta@mpi-sws.org

Matthieu Sozeau
Inria

matthieu.sozeau@inria.fr

June 3, 2014

The unification algorithm is at the heart of a proof assistant like Coq. In
particular, it is a key component in the refiner (the algorithm that has to
infer implicit terms and missing type annotations) and in the application of
lemmas. In the first case, unification is in charge of equating the type of function
arguments with the type of the elements to which the function is applied. In the
second case, for instance when using the apply tactic, it is in charge of unifying
the current goal with the conclusion of the lemma.

Despite playing a central role in proof development, there is no good source
of documentation to understand Coq’s unification algorithm. Moreover, in Coq
currently there exist two unification algorithms, with different behaviors, chal-
lenging the intuition of the proof developer who has to make sense of why some
examples work in certain scenarios, but not in others. For instance, the uni-
fication algorithm used by the refiner is different from the one used by the
apply tactic. The reason for such bifurcation is now merely historical, as both
algorithms have been converging in functionality over time.

Another thing to take into account is that Coq’s unification includes reso-
lution of Canonical Structures [4, 5], an overloading mechanism similar to type
classes. This key mechanism is extensively used in the Mathematical Com-
ponents library [3], on which the proofs of the four color and odd-order the-
orems [1, 2] depend. Supporting canonical structures resolution in unification
makes the algorithm extremely sensitive to heuristics, since instance resolution
depends heavily on the order in which unification problems are considered.

Unification is inherently undecidable in Coq, as it must deal with higher-
order problems up to conversion. Therefore, some form of heuristic is desirable
in order to solve problems that are trivial to the human eye. Otherwise, the
proof developer will get easily frustrated when it finds two apparently equal
terms not being unified. For instance, a desirable heuristic will equate the
terms ?x++ ?y ≈ [] ++ (1 :: []), assigning ?x to the empty list and ?y to the
singleton list (1 :: []), where ?x and ?y are meta-variables and ++ is the list
concatenation function. There exist other possible (convertible) solutions, like
for instance assigning (1 :: []) to ?x and [] to ?y, but in most of the cases

1



preserving the structures of terms gives reasonable solutions.
The current approach in the source code of Coq includes this heuristic but

also some harmful ones, like postponing equations. Indeed, in certain cases,
when an equation has multiple solutions it is delayed, waiting to have more
information to solve the ambiguity. Delaying equations is commonly used, and
gives in practice reasonably good results, but in combination with canonical
structures it can be catastrophic, as the search for instances may run on sup-
posedly equal terms that are actually not yet proved to be equal. Moreover,
most of the postponing can be avoided if the order in which the unification
problems are considered is properly controlled.

In this talk we are going to present a new unification algorithm, built from
scratch, which focuses on the following main properties:

Understandable: The algorithm can be described in full in a few pages, in-
cluding canonical structures instance resolution.

Sound: The algorithm, when it succeeds, provides a well-typed substitution
that equates both terms (up to conversion).

Simple: The algorithm does not include heuristics that are hard to reason
about.

Configurable: The algorithm adapts to different scenarios, therefore avoiding
the need for different unification algorithms.

In the talk we are going to present the benefits of such an algorithm, but
also what are the challenges that we face when considering “the big picture”:
the inclusion of our algorithm in the zoo of Coq’s tactics.

References

[1] Georges Gonthier. Formal proof — the four-color theorem. Notices of the
AMS, 55(11):1382–93, 2008.

[2] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev,
Enrico Tassi, and Laurent Théry. A machine-checked proof of the odd order
theorem. In ITP 2013, volume 7998 of LNCS. Springer, 2013.

[3] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale reflec-
tion extension for the Coq system. Technical report, INRIA, 2008.

[4] Amokrane Säıbi. Typing algorithm in type theory with inheritance. In Proc
of POPL’97, pages 292–301, 1997.

[5] Amokrane Säıbi. Outils Generiques de Modelisation et de Demonstration
pour la Formalisation des Mathematiques en Theorie des Types. Application
a la Theorie des Categories. PhD thesis, Université Paris 6, 1999.

2


