
A Unification Algorithm for COQ Featuring
Universe Polymorphism and Overloading

Beta Ziliani
MPI-SWS (Germany)
beta@mpi-sws.org

Matthieu Sozeau
Inria & PPS (France),

Université Paris Diderot (France)
matthieu.sozeau@inria.fr

Abstract
Unification is a core component of every proof assistant or program-
ming language featuring dependent types. In many cases, it must
deal with higher-order problems up to conversion. Since unification
in such conditions is undecidable, unification algorithms may in-
clude several heuristics to solve common problems. However, when
the stack of heuristics grows large, the result and complexity of the
algorithm can become unpredictable.

Our contributions are twofold: (1) We present a full descrip-
tion of a new unification algorithm for the Calculus of Inductive
Constructions (the base logic of COQ), including universe poly-
morphism, canonical structures (the overloading mechanism baked
into COQ’s unification), and a small set of useful heuristics. (2)
We implemented our algorithm, and tested it on several libraries,
providing evidence that the selected set of heuristics suffices for
large developments.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.4.1 [Mathe-
matical Logic And Formal Languages]: Mathematical Logic—
Mechanical theorem proving

Keywords Interactive theorem proving; unification; Coq; universe
polymorphism; overloading.

1. Introduction
In the last decade proof assistants have become more sophisticated
and, as a consequence, increasingly adopted by computer scientists
and mathematicians. In particular, they are being adopted to help
dealing with very complex proofs, proofs that are hard to grasp—
and more importantly, to trust—for a human. For example, in
the area of algebra, the Feit-Thompson Theorem was recently
formalized [10] in the proof assistant COQ [22]. To provide a sense
of the accomplishment of Gonthier and his team, the original proof
of this theorem was published in two volumes, totaling an astounding
250 pages. The team formalized it entirely in COQ, together with
several books of algebra required as background material.

In order to make proofs manageable, this project relies heavily on
the ability of COQ’s unification algorithm to infer implicit arguments

and expand heavily overloaded functions. This goes to the point
that it is not rare to find in the source files a short definition that is
expanded, by the unification algorithm, into several lines of code
in the Calculus of (co-)Inductive Constructions (CIC), the base
logic of COQ. This expansion is possible thanks to the use of the
overloading mechanism in COQ called canonical structures [20].
This mechanism, similar in spirit to Haskell’s type classes, is baked
into the unification algorithm. By being part of unification, this
mechanism has a unique opportunity to drive unification to solve
particular unification problems in a similar fashion to Matita’s
hints [3]. It is so powerful, in fact, that it enables the development
of dependently-typed logic meta-programs [12].

Another important aspect of the algorithm is that it must deal
with higher-order problems, which are inherently undecidable, up-
to a subtyping relation on universes. For this reason, the current
implementation of the unification algorithm has grown with several
heuristics, yielding acceptable solutions to common problems in
practice. Unfortunately, the algorithm is unpredictable and hard
to reason about: given a unification problem, it is hard to predict
the substitution the algorithm will return, and the time complexity
for the task. This unpredictability of the current implemented
algorithm has two main reasons: (i) it lacks a specification, and
(ii) it incorporates a number of heuristics that obfuscate the order in
which unification subproblems are considered.

While the algorithm being unpredictable is bad on its own, the
problem gets exacerbated when combined with canonical struc-
tures, since their resolution may depend on the solutions obtained
in previous unification problems. To somehow accomodate for this
unfortunate situation, several works in the literature explain canoni-
cal structures by example [8, 9, 12, 13], providing some intuition on
how canonical structures work, in some cases even detailing certain
necessary aspects of the unification process. However, they fall short
of explaining the complex process of unification as a whole.

This paper presents our remedy to the current situation. More
precisely, our four main contributions are:

1. An original, full-fledged description of a unification algorithm
for CIC, incorporating canonical structures and universe poly-
morphism [21].

2. The first formal description, to the best of our knowledge, of
an extremely useful heuristic implemented in the unification
algorithm of COQ, controlled backtracking.

3. A corresponding pluggable implementation, incorporating only
a restricted set of heuristics, such as controlled backtracking.
Most notably, we purposely left out a technique known as
constraint postponement, present in many systems and in the
current implementation in Coq, which may reorder unification
subproblems. This reordering prevents us from knowing exactly
when equations are being solved.

in_head : ∀ (x : A) (l : list A), x ∈ (x :: l)
in_tail : ∀ (x : A) (y : A) (l : list A), x ∈ l → x ∈ (y :: l)

Lemma inL : ∀ (x : A) (l r : list A), x ∈ l → x ∈ (l ++ r)
Lemma inR : ∀ (x : A) (l r : list A), x ∈ r → x ∈ (l ++ r)

Figure 1. List membership axioms and lemmas.

4. Evidence that such principled heuristics suffice to solve 99.9%
of the unification problems that arise in libraries such as the
Mathematical Components library [11] and CPDT [7].

It is interesting to note that during this work we found two bugs in
the logic of the original unification algorithm of COQ. While this
work focuses on the COQ proof assistant, the problems and solutions
presented may be of interest to other type theory based assistants and
programming languages, such as Agda [16], Matita [2], or Idris [5].

In the rest of the paper, we start introducing with examples some
features and heuristics included in COQ’s unification algorithm (§2).
Then, we present the language used in the paper (§3), necessary
to understand the core contribution of this work, a new unification
algorithm (§4). We evaluate the algorithm (§5) and conclude (§6).

2. COQ’s Unification at a Glance
We start by showing little examples highlighting some of the partic-
ularities of COQ’s unification algorithm.

First-order approximation: In many cases, a unification problem
may have several incomparable solutions. Consider for instance the
following definition in a context where y1 and y2 are defined:

Definition ex0 : y1 ∈ ([y1] ++ [y2]) := inL _ _ _ (in_head _ _)

We assume the definitions and lemmas for list membership listed in
Figure 1, and note (x :: s) for the consing of x to list s, [] for the
empty list, and l ++ r for the concatenation of lists l and r. We also
denote [a1; . . . ; an] a list with elements a1 to an.

This definition is a proof that the element y1 is in the list resulting
from concatenating the singleton lists [y1] and [y2]. The proof in
itself provides evidence that the element is in the head (in_head)
of the list on the left (inL). As customary in COQ code, the type
annotation shows what the definition is proving, and the proof omits
the information that can be inferred, replacing each argument to inL
and in_head with holes (_). The elaboration mechanism of COQ,
that is, the algorithm in charge of filling up these holes, calls the
unification algorithm with the following unification problem, where
the left-hand side corresponds to what the body of the definition
proves, and the right-hand side to what it is expected to prove:1

?z1 ∈ ((?z1 :: ?z2) ++ ?z3) ≈ y1 ∈ ([y1] ++ [y2])

where ?z1, ?z2 and ?z3 are fresh meta-variables. In turn, after
assigning y1 to ?z1, the unification algorithm has to solve the
following problem:

(y1 :: ?z2) ++ ?z3 ≈ [y1] ++ [y2]

One possible solution to this equation is to assign [] to ?z2, and
[y2] to ?z3, which corresponds to equate each argument of the
concatenation, similar to what we did before with the ∈ predicate.
However, since concatenation is a function, i.e., it computes the
concatenation of the two lists, there are other possible solutions that
makes both terms convertible (i.e., having the same normal form).
One such solution, for instance, is to assign [y2] to ?z2, and [] to
?z3.

1 How elaboration works will not be discussed in this work. The interested
reader is invited to read [4], which provides details on bi-directional
elaboration in the Matita proof assistant, also based on CIC.

Many works in the literature [e.g.,1, 14, 17, 18] are devoted to the
creation of unification algorithms returning a Most General Unifier
(MGU), that is, a unique solution that serves as a representative for
all convertible solutions. Agda [16], for instance, which incorporates
such type of unification algorithm, fails to compile Example ex0
above, since no such MGU exists. This forces the proof developer
to manually fill-in the holes.

Despite the equation having multiple solutions, however, not
every solution is equally “good”. For ex0, the first solution is the
most natural one, meaning the one expected by the proof developer.
For this reason, instead of failing, COQ favors syntactic equality by
trying first-order unification. Formally, when faced with a problem
of the form

t t1 . . . tn ≈ u u1 . . . un

the algorithm decomposes the problem into n+ 1 subproblems, first
equating t ≈ u, and then ti ≈ ui, for 0 < i ≤ n.

Controlled backtracking: In [19, chp. 10], a unification algorithm
for CIC is presented, performing only first-order unification. In
COQ, instead, when first-order approximation fails, in an effort to
find a solution to the equation, the algorithm reduces the terms
carefully. For instance, consider the following variation of the
previous example, where the list on the left of the concatenation is
let-bound:

Definition ex1 : y1 ∈ (let l := [y1] in (l ++ [y2]))

:= inL _ _ _ (in_head _ _)

The main equation to solve now is

(y1 :: ?z2) ++ ?z3 ≈ let l := [y1] in (l ++ [y2])

Since both terms do not share the same head (the concatenation
operator on the left and the let-binding on the right), the algorithm
reduces the let-binding, obtaining the same problem as in ex0. Note
that it has to be careful: it should not reduce the concatenation oper-
ator, otherwise the problem will become unsolvable. For this reason,
it delays the unfolding of constants, such as ++, and, in the case of
having constants on both sides of the equation, it takes special care
of which one to unfold. This heuristic enables fine control over the
instance resolution mechanism of canonical structures [12].

Canonical structures: Canonical structures (CS) is a powerful
overloading mechanism, baked into the unification algorithm. We
demonstrate this mechanism with a typical example from overload-
ing: the equality operator. Similar to how type classes are used in
Haskell [23], we define a class or, in CS terminology, a structure:2

Structure eqType := EqType { sort : Type;
equal : sort→ sort→ bool }

eqType is a record type with two fields: a type sort, and a boolean
binary operation equal on sort. These fields can be accessed using
projectors:

sort : eqType→ Type
equal : ∀e:eqType. sort e→ sort e→ bool

To construct an element of the type, the constructor EqType is
provided, which takes the values for the two fields as arguments.
For example, one possible eqType instance for bool is:

Definition eqType_bool := EqType bool eq_bool

where eq_bool x y := (x && y) || (!x && !y). (We denote
boolean conjunction, disjunction and negation as &&, ||and !.)

Similarly, it is possible to declare recursive instances. For
example, consider the instance for the pair type A × B, where

2 This example is a significant simplification of one taken from [11, 12].

A and B are themselves instances of eqType:

Definition eqType_pair (A B : eqType) :=

EqType (sort A× sort B) (eq_pair A B)

where

eq_pair (A B : eqType) (u v : sort A× sort B) :=

(equal A (π1 u) (π1 v)) && (equal B (π2 u) (π2 v))

In order to use instances eq_bool and eq_pair for overloading,
we need to declare them as Canonical. After they have been
declared canonical, whenever the elaboration mechanism is asked to
elaborate a term like equal _ (b1, b2) (c1, c2), for booleans b1, b2, c1
and c2, it will generate a unification problem matching the expected
and inferred type of the second argument of equal, that is,

sort ?e ≈ bool× bool

for some meta-variable ?e elaborated from the hole (_).
To solve the equation above, COQ’s unification will try instanti-

ating ?e using the canonical instance eqType_pair, resulting in two
new unification subproblems, for fresh meta-variables ?A and ?B:

sort ?A ≈ bool sort ?B ≈ bool

Next, it will choose ?A := eqType_bool and ?B := eqType_bool,
resulting in that equal ?e (b1, b2) (c1, c2) reduces, as expected, to
eq_bool b1 c1 && eq_bool b2 c2.

We can declare a number of canonical eqType instances for our
types equipped with decidable equality. Then, we can uniformly
write equal _ t u, and let unification compute the corresponding
instance for the hole, according to the type of t and u.

Polymorphic universes and subtyping: Unification in CIC is not
a simple equational theory, in the sense that it must deal with the
subtyping relation generated by the cumulative universe hierarchy
(Type(i) ≤ Type(j) ⇐⇒ i ≤ j). To our knowledge, we
present the first algorithm dealing with this relation properly. In
COQ, previous algorithms relied on the kernel to check the proper
use of universes, resulting in particular in non-local error reporting
and the inability to backtrack on these errors, which becomes crucial
in presence of universe polymorphism and first-order approximation.

3. The Language: CIC with Open Terms
Before presenting the algorithm, we need to present the base lan-
guage of COQ, the Calculus of Inductive Constructions (CIC) [22,
chap. 4]. It is a dependently typed λ-calculus extended with induc-
tive types. It also includes co-inductive types, but their formulation
is not important for this work, so it will be omitted.

The terms (and types) of the language are defined as

t, u, T, U = x | c[`] | i[`] | k[`] | s | ?x[σ]

| ∀x : T. U | λx : T. t | t u | let x := t : T in u

|matchT t with k1 x1 ⇒ t1 | . . . | kn xn ⇒ tn end

| fixj {x1/n1 : T1 := t1; . . . ;xm/nm : Tm := tm}
σ = t

`, κ ∈ L ∪ 0−

K = κ |K + 1

s = Type(K
+

)

Terms include variables x ∈ V , constants c ∈ C, inductive
type constructors i ∈ I and constructors k ∈ K, these last three
being applied to universe instances ` built from universe levels ` ∈
L∪0−. Terms also includes sorts s, representing algebraic universes.
Algebraic universes represent least upper bounds of a (non-empty)
set of levels or successors of levels. They are used notably to

sort products, e.g. (∀A : Type(i),Type(j)) : Type(i+1, j). The
impredicative sort Prop, the type of propositions, is represented as
Type(0−). Terms may contain a hole, representing a missing piece
of the term (or proof). Holes are represented with meta-variables,
a variable prepended with a question mark, as in ?x. For reasons
that will become apparent soon, meta-variables are applied to a
suspended substitution [σ], which is nothing more than a list of
terms.

In order to destruct an element of an inductive type, CIC provides
regular pattern matching and mutually recursive fixpoints. Their
notation is slightly different from, but easily related to, the actual
notation from COQ. match is annotated with the return predicate T ,
meaning that the type of the whole match expression may depend
on the element being pattern matched (as . . . in . . . in standard COQ
notation). In the fix expression, x/n : T := t means that T is a
type starting with at least n product types, and the n-th variable is
the decreasing one in t (struct in COQ notation). The subscript j of
fix selects the j-th function as the main entry point of the mutually
recursive fixpoints.

In order to typecheck and reduce terms, COQ uses several
contexts, each handling different types of knowledge:

1. Universe contexts Φ declaring universe level names and associ-
ated constraints ((in-)equalities on levels);

2. Local contexts Γ, including bound variables and let-bound
expressions;

3. Meta-contexts Σ, containing meta-variable declarations and
definitions; and

4. A global environment E, containing the global knowledge; that
is, axioms, theorems, and inductive definitions, along with a
global universe context that can be incrementally enriched.

Formally, they are defined as follows:

Φ = ` � C C = · | C ∧ ` O `′ where O ∈ {=,≤, <}
Γ,Ψ = · | x : T,Γ | x := t : T,Γ

Σ = · | ?x : T [Ψ],Σ | ?x := t : T [Ψ],Σ

E = · | c[Φ] : T,E | c[Φ] := t : T,E | I, E | Φ, E

I = ∀Φ,Γ. { i : ∀y : Th. s := {k1 : U1; . . . ; kn : Un} }

A universe context consists of a list of levels ` and a set of constraints
C on those levels. The local context is standard, and requires no
further explanation. Meta-variables have contextual types, meaning
that the type T of a meta-variable must have all of its free variables
bound within the local context Ψ. In this work we borrow the
notation T [Ψ] from Contextual Modal Type Theory [15]. A meta-
variable can be instantiated with a term t, noted ?x := t : T [Ψ]. In
this case, t should also contain only free variables occurring in Ψ.

The global environment associates a constant c with a local uni-
verse context (usually omitted), a type and, optionally, a definition.
In the first case, c is an axiom, while in the second c is a theorem
proved by term t. Additionally, this environment may also con-
tain (mutually recursive) inductive types and global universe and
constraint declarations.

A set of mutually recursive inductive types I is prepended with
a universe context Φ and a list of parameters Γ. Every inductive
type i defined in the set has sort s, with parameters y : Th. It has
a possibly empty list of constructors k1, . . . , kn. For every j, each
type Uj of constructor kj has shape ∀z : U ′. i t1 . . . th.

Inductive definitions are restricted to avoid circularity, meaning
that every type constructor i can only appear in a strictly positive
position in the type of every constructor. For the purpose of this
work, understanding this restriction is not crucial, and we refer the
interested reader to [22, chap. 4]. Additionally, fixpoints on inductive

types must pass the guard condition (ibid., §4.5.5) to be accepted by
the kernel, a syntactic criterion ensuring termination. We will come
back to this point in §4.7. It is interesting to note that a Structure,
like the one shown in the previous section, is syntactic sugar for
an inductive type with only one constructor, and with projections
generated for each argument of the constructor.

3.1 Meta-Variables and Contextual Types
At a high-level, meta-variables are holes in a term, which are
expected to be filled out at a later point in time. For instance, when
a lemma is applied to solve some goal, COQ internally creates fresh
meta-variables for all the formal parameters of the lemma, and
proceeds to unify the goal with the conclusion of the lemma. During
unification, meta-variables are instantiated so that both terms (the
goal and the conclusion of the lemma) become convertible (equal
modulo reduction rules, see §3.2).

In the simple examples shown so far, contextual types played no
role but, as we are going to see in the next example, they prevent
illegal instantiations of meta-variables. For instance, such illegal
instantiations could potentially happen if the same meta-variable
occurs at different locations in a term, with different variables in the
scope of each occurrence. We illustrate this point with an example
taken from [24]. Suppose function f defined locally as follows:

f := λw : nat. (_ : nat)

where the hole (_) is an indication to COQ’s elaboration mechanism
to “fill in this hole with a meta-variable”. The accessory typing an-
notation provides the expected type for the meta-variable. Assuming
no other variables occur in scope, after elaboration f becomes:

f := λw : nat. ?v[w] (1)

for some fresh meta-variable ?v. Since any instantiation of ?v may
only refer to w, its type becomes nat[w : nat]. This contextual type
specifies precisely that ?v may only be instantiated with a term of
type nat containing at most a single free variable w of type nat. In
the elaborated term (1), [w] stands for the suspended substitution
specifying how to transform such instantiation into one that is well-
typed under the current context. In this case, this substitution is the
identity, because the current context and the context under which ?v
was created are identical (in fact, the latter is a copy of the former).

Now suppose that we define functions g and h referring to f :

g := λx y : nat. f x h := λz : nat. f z

and proceed to unify g with a function projecting the first argument:

g ≈ λx y : nat. x

In order to solve this equation, COQ proceeds to unfold the definition
of g and to push x and y in the local context. The new equation to
solve becomes:

f x ≈ x

After unfolding f and β-reducing the left-hand side, it amounts to
solving the following equation:

?v[x] ≈ x

At this point is where the contextual type of ?v comes into play. If
meta-variables were created with a normal type, that is, not having
contextual type (and suspended substitution), it would seem that the
only solution for ?v is x. However, that solution would break the
definition of h since x is not in scope there. Given the contextual
information, however, COQ will correctly realize that ?v should be
instantiated with w, not x. Under that instantiation, g will normalize
to λx y : nat. x, and h will normalize to λz : nat. z.

The suspended substitution and the contextual type are the tools
that the unification algorithm uses to know how to instantiate the
meta-variable. The decision to solve ?v[x] ≈ x by instantiating

(λx : T. t) u β t{u/x} let x := u : T in t ζ t{u/x}

(x := t : T) ∈ Γ

x δΓ t

?x := t : T [Ψ] ∈ Σ

?x[σ] δΣ t{σ/Ψ̂}

(c[` � C] := t : T) ∈ E
c[κ] δE t[κ/`]

matchT kj [κ] t with k x⇒ u end ι uj{t/xj}

F = x/n : T := t an = kj [κ] t

fixj {F} a ι tj{fixm {F}/xm} a

Figure 2. Reduction rules in CIC.

?v : nat[w : nat] with w is due to the problem falling in the pattern
unification subset [14]. When COQ faces a problem of the form

?u[y1, . . . , yn] ≈ e

where the y1, . . . , yn are all distinct variables, then the most general
solution to the problem is to invert the substitution and apply it on
the right-hand side of the equation, in other words instantiating ?u
with e{x1/y1, . . . , xn/yn}, where x1, . . . , xn are the variables in
the local context of ?u (and assuming the free variables of e are in
{y1, . . . , yn}).

In the example above, at the point where COQ tries to unify
?u[x] ≈ x, the solution (through inversion) is to instantiate ?u
with x{w/x}, that is, w.

3.2 Semantics
Reduction of CIC terms is performed through a set of rules listed in
Figure 2. Besides the standard β rule, CIC provides six more rules to
destruct the different term constructions: the ζ rule, which expands
let-definitions, three δ rules, which expand definitions from each of
the contexts, and two ι rules, which evaluate pattern matchings and
fixpoints.

Most of the rules are self explanatory, with the sole exception
of the δΣ rule. It takes a meta-variable ?x, applied to suspended
substitution σ, and replaces it by its definition t, replacing each
variable from its local context Ψ by the corresponding term from
substitution σ. For this we use the multi-substitution of terms,
mapping the variables coming from the domain of Ψ with terms
in σ. To obtain the domain of Ψ, we use the type-eraser function ·̂,
defined as:

̂x1 : T1, . . . , xn : Tn = x1, . . . , xn

The unfolding rules (δΓ, δΣ, δE), of course, depend on the
contexts. As customary, we will always consider the environment
E implicit. We will also omit Γ and Σ when there is no room for
ambiguity.

Conversion (≡) is defined as the congruent closure of these
reduction rules, plus η-conversion: u ≡ λx : T.u x iff x /∈ FV(u).

4. The Algorithm
We proceed to describe our proposal in the following pages, under-
lining every non-standard design decision. We emphasize that this
is not a faithful description of the current unification algorithm in
COQ, but a new one that is, however, close enough. In particular,
we purposely left out a technique known as constraint postpone-
ment (§4.6), as well as other heuristics hard to grasp. At the same

time, we introduced our own set of heuristics, based on practical
examples (§5) and on previous work by Abel and Pientka (§4.3).

The unification judgment is of the form:

Φ; Σ; Γ ` t1 ≈R t2 B Φ′,Σ′

It unifies terms t1 and t2, given a universe context Φ, meta-context
Σ and a local context Γ. There is an implicit global environment
E. The universe context carries additional information for each
universe variable introduced: they are either flexible (`f) or rigid (`r).
This information is used when unifying two instances of the same
constant to avoid forcing universe constraints that would not appear
if the bodies of the instantiations were unified instead, respecting
transparency of the constants. Flexible variables are generated
when taking a fresh instance of a polymorphic constant, inductive
or constructor during elaboration, while rigid ones correspond to
user-specified levels or Type annotations. The relation R (≡ or
≤) indicates if were are trying to derive conversion of the two
terms or cumulativity, the subtyping relation on universes. The rules
decomposing constructions switch to conversion in their premises
except for sorts and dependent function spaces, otherwise the
relation is preserved when reducing one side or the other. The
algorithm returns a new universe context Φ′ and meta-context Σ′,
which are extensions of Φ and Σ, respectively, perhaps with new
universes constraints in Φ′, and new meta-variables or instantiations
of existing meta-variables in Σ. The algorithm ensures that terms
t1 and t2 are convertible (or in the cumulativity relation) in the
returned contexts.

In the presentation of the algorithm we will often omit the
universe context Φ, since it is, in most of the cases, simply threaded
along. The unification algorithm is quite involved, so to help
readability we split the rules across four different subsections.
Roughly, in §4.1 we consider the case when the two terms being
unified have no arguments, and share the same head constructor; in
§4.2 we consider terms having arguments; in §4.3 we consider meta-
variable unification; and in §4.4 we consider canonical structures
resolution. The algorithm’s strategy, which backtracks in some
particular cases, cannot be understood by the ordering of the rules, so
we devote §4.5 to explain in detail the algorithm’s strategy. In §4.6
we explain the technique of constraint postponement, and the reason
for its omission in our algorithm. Finally, in §4.7 we comment on
the correctness of the algorithm.

4.1 Same Constructor
Figure 3 shows the rules that apply when both terms share the
same head constructor. We need to distinguish this set of rules from
the other rules in the algorithm, so we annotate them with a 0 as
subscript of the turnstile (`0). The reasons will become evident
when we look at the rules in the next subsection.

The rule TYPE-SAME unifies two sorts, according to the relation
R. By invariant, we know that the right-hand side universe can only
be a single level while the l.h.s. can be the least upper bound of a
set of universe levels or successors iff the relation is cumulativity,
and any such ≤ constraints can be translated to a set of atomic
≤ or < constraints (see [21] for details). The predicate C �
denotes satisfiability of set of constraints C and naturally extends to
consistency of universe contexts (φ �).

For abstractions (LAM-SAME) and products (PROD-SAME), we
first unify the types of the arguments, and then the body of the
binder, with the local context extended with the bound variable.
(The universe context is omitted, as in some of the following rules,
since it is just threaded along.) When unifying two lets, the rule LET-
SAME compares first the type of the definitions, then the definitions
themselves, and finally the body. In the last case, it augments the
local context with the definition on the left (choosing the one on the

TYPE-SAME
C′ = C ∧ u R κ C′ �

` � C; Σ; Γ `0 Type(u) ≈R Type(κ) B ` � C′; Σ

PROD-SAME, LAM-SAME

Π ∈ {λ,∀}
Σ0; Γ ` T1 ≈≡ U1 B Σ1 Σ1; Γ, x : T1 ` T2 ≈R U2 B Σ2

Σ0; Γ `0 Πx : T1. T2 ≈R Πx : U1. U2 B Σ2

LET-SAME
Σ0; Γ ` T ≈≡ U B Σ1 Σ1; Γ ` t2 ≈≡ u2 B Σ2

Σ2; Γ, x := t2 ` t1 ≈R u1 B Σ3

Σ0; Γ `0 let x := t2 : T in t1 ≈R let x := u2 : U in u1 B Σ3

RIGID-SAME

h ∈ V ∪ I ∪ K C1 = C0 ∧ κ = κ′ C1 |=
(` � C0); Σ; Γ `0 h[κ] ≈R h[κ′] B (` � C1),Σ

FLEXIBLE-SAME

h ∈ C Φ0 |= ` = κ B Φ1

Φ0; Σ; Γ `0 h[`] ≈R h[κ] B Φ1,Σ

UNIV-EQ

Φ |= i = j

Φ |= i = j B Φ

UNIV-FLEXIBLE

if ∨ jf ∈ ` C ∧ i = j |=
(` � C) |= i = j B (` � C ∧ i = j)

CASE-SAME
Σ0; Γ ` T ≈≡ U B Σ1

Σ1; Γ ` t ≈≡ u B Σ2 Σ2; Γ ` b ≈≡ b′ B Σ3

Σ0; Γ `0 matchT t with b end ≈R matchU u with b′ end B Σ3

FIX-SAME

Σ0; Γ ` T ≈≡ U B Σ1 Σ1; Γ ` t ≈≡ u B Σ2

Σ0; Γ `0 fixj {x/n : T := t} ≈R fixj {x/n : U := u} B Σ2

Figure 3. Unifying terms sharing the same head constructor.

left is an arbitrary choice, but after unification both definitions are
convertible, i.e., indistinguishable).

RIGID-SAME equates the same variable, inductive type or con-
structor, enforcing that their universe instances are equal (note that
the application of the rule will fail if these new constraints are incon-
sistent). The FLEXIBLE-SAME rule unifies two instances of the same
constant using a stronger condition on universe instances: they must
unify according to the current constraints and by equating rigid uni-
verse variables with flexible variables only (Φ |= i = j checks if the
constraint is already derivable). Otherwise we will backtrack on this
rule to unfold the constant and unify the bodies (§4.2), which will
generaly result in weaker, more general constraints to be enforced.
The last two rules (CASE-SAME and FIX-SAME) unify matches and
fixpoints, respectively. In both cases we just unify pointwise every
component of the term constructors.

4.2 Reduction
The previous subsection considered only the cases when both terms
have no arguments and share the same constructor. If that is not
the case, the algorithm first tries first-order approximation (rule
APP-FO in Figure 4). This rule, when considering two applications
with the same number of arguments (n), compares the head element
(t and t′, using only the rules in Figure 3), and then proceeds to
unify each of the arguments. As customary, we denote multiple

APP-FO
Σ0; Γ `0 t ≈R u B Σ1

n ≥ 0 Σ1; Γ ` tn ≈≡ un B Σ2

Σ0; Γ ` t tn ≈R u un B Σ2

META-δR, LAM-βR, LET-ζR

Σ; Γ ` u w
 δΣ,β,ζ u

′

Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

META-δL, LAM-βL, LET-ζL

Σ; Γ ` t w
 δΣ,β,ζ t

′

Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

CASE-ιR
u is fix or match Σ; Γ ` u ↓wβζδΣιθ u′

u 6= u′ Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

CASE-ιL
t is fix or match Σ; Γ ` t ↓wβζδΣιθ t′

t 6= t′ Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δNOTSTUCKR
not Σ; Γ ` is_stuck u

u
w
 δE,δΓ u′

Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δSTUCKL
Σ; Γ ` is_stuck u
t

w
 δE,δΓ t′

Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δR
Σ; Γ ` u w

 δE,δΓ u′

Σ; Γ ` t ≈R u′ B Σ′

Σ; Γ ` t ≈R u B Σ′

CONS-δL
Σ; Γ ` t w

 δE,δΓ t′

Σ; Γ ` t′ ≈R u B Σ′

Σ; Γ ` t ≈R u B Σ′

LAM-ηR
u’s head is not an abstraction Σ0; Γ ` u : U
ensure_product(φ0; Σ0; Γ;T ;U) = (φ1; Σ1)

φ1; Σ1; Γ, x : T ` u x ≈≡ t B φ2; Σ2

φ0; Σ0; Γ ` u ≈R λx : T. t B φ2; Σ2

LAM-ηL
u’s head is not an abstraction Σ0; Γ ` u : U
ensure_product(φ0; Σ0; Γ;T ;U) = (φ1; Σ1)

φ1; Σ1; Γ, x : T ` t ≈≡ u x B φ2; Σ2

φ0; Σ0; Γ ` λx : T. t ≈R u B φ2; Σ2

Figure 4. Reduction steps attempted during unification.

applications as a spine [6], using the form t un to represent the term
(. . . (t u1) . . . un). We call t the head of the term.

If the rules in Figure 3 plus APP-FO fail to apply, then the algo-
rithm tries different reduction strategies. Except in some particular
cases, the algorithm first tries reducing the right-hand side (rules
ending with R) and then the left-hand side (rules ending with L).
Except where noted, every L rule is just the mirror of the correspond-
ing R rule, swapping the terms being unified in the conclusion and
applications of unification in the premises. We will often omit the
last letter (R or L), and simply write e.g., META-δ when referring to
both rules.

The algorithm first tries one step of either weak-head expansion
of meta-variables (δΣ), weak-head β reduction, or weak-head let-
expansion (ζ). These steps are described in rules META-δ, LAM-β,
and LET-ζ. (Actually, as we are going to see in §4.5, the order of

t ↓wβζδι kj a
matchT t with k x⇒ t′ end

 θ matchT kj [κ] a with k x⇒ t′ end

anj ↓
w
βζδι k b

fixj {F} a1 . . . anj θ fixj {F} a1 . . . anj−1 (k b)

Figure 5. The θ-reduction strategy.

the rules is slightly different, although for the moment the implicit
ordering obtained from the figure suffices.)

More interesting are the cases for δE, δΓ and ι reductions. The
high level idea is that special care should be taken when unfolding
defined constants and variables. One reason is efficiency: we hope
that, before performing the unfolding of a constant or variable, we
will find the same constant or variable on the other side of the
equation. The second reason is to avoid missing potential solutions,
as already mentioned when introducing controlled backtracking in
§2.

In the case of a match or a fix (rules CASE-ι), we want to be able
to reduce the scrutinee using all reduction rules, including δE and
δΓ, and then (if applicable), continue reducing the corresponding
branch of the match or the body of the fix, but avoiding δE and
δΓ. We illustrate this desired behavior with a simple example using
canonical structures. Consider the environmentE = d := 0; c := d,
where there is also a structure with projector proj. Suppose further
that there is a canonical instance i registered for proj and d. Then,
the algorithm should succeed finding a solution for the following
equation:

match c with 0⇒ d | _⇒ 1 end ≈ proj ?f (2)

where ?f is an unknown instance of the structure. More precisely,
we expect the left-hand side to be reduced as

d ≈ proj ?f

therefore enabling the use of the canonical instance i to solve ?f .
This is done in the rule CASE-ιL by weak-head normalizing the

left-hand side using the standard βζδΣι reduction rules plus a new
reduction rule, θ, which weak-head normalizes scrutinees (Figure 5).
Note that we really need this new reduction rule: we cannot consider
weak-head reducing the term using δE, as it will destroy the constant
d in the example above, nor restrict reduction of the scrutinee to
not include δE, as it will be too restrictive (disallowing δE in the
reduction on the l.h.s. makes Equation 2 not unifiable).

In Equation 2 we have a match on the l.h.s., and a constant
on the r.h.s. (the projector). By giving priority to the ι reduction
strategy over the δE one we can be sure that the projector will not get
unfolded beforehand, and therefore the canonical instance resolution
mechanism will work as expected. Different is the situation when we
have constants on both sides of the equation. For instance, consider
the following equation:

c ≈ proj ?f (3)

in the same context as before. Since there is no instance defined for
c, we expect the algorithm to unfold it, uncovering the constant d.
Then, it should solve the equation, as before, by instantiating ?f
with i. If the projector is unfolded first instead, then the algorithm
will not find the solution. The reason is that the projector unfolds to
a case on the unknown ?f :

c ≈ match ?f with Constr a1 . . . an ⇒ aj end

(Assuming the projector proj corresponds to the j-th field in the
structure, and Constr is the constructor of the structure.) Now the

canonical instance resolution will fail to see that the right-hand
side is (was) a projector, so after unfolding c and d on the left, the
algorithm will give up and fail.

In this case we cannot just simply rely on the ordering of rules,
since that would make the algorithm sensitive to the position of the
terms. In order to solve Equation 3 above, for instance, we need to
prioritize reduction on the l.h.s. over the r.h.s., but this prioritization
will have a negative impact on equations having the projector on the
left instead of the right. The solution is to unfold a constant on the
r.h.s. only if the term does not “get stuck”, that is, does not evaluate
to certain values, like an irreducible match. More precisely, we
define the concept of “being stuck” as

is_stuck t = ∃t′ t′′. t 0..1
δE,δΓ t

′ ∧ t′ ↓wβζιθ t′′ and the head
of t′′ is a variable, case, fix, or abstraction

That is, after performing an (optional) δE or δΓ step and βζιθ-
weak-head reducing the definition, the head element of the result
is tested to be a match, fix, variable, or a λ-abstraction. Note that
the reduction will effectively stop at the first head constant, without
unfolding it further. This is important, for instance, when having a
definition that reduces to a projector of a structure. If the projector
is not exposed, and is instead reduced, then some canonical solution
may be lost.

The rule CONS-δNOTSTUCKR unfolds the right-hand side constant
only if it will not get stuck. If it is stuck, then the rule CONS-δSTUCKL
triggers and unfolds the left-hand side, which is precisely what
happened in the example above. The rules CONS-δ are triggered
as a last resort. This controlled unfolding of constants, together
with canonical structures resolution, is what allows the encoding of
sophisticated meta-programming idioms in [12].

When none of the rules above applies, the algorithm tries η-
expansion (LAM-η rules). These rules unifies a function λx : T. t
with a term u. The first premise ensures that u’s head is not
an abstraction to avoid overlapping with the LAM-SAME rules,
otherwise it is possible to build an infinite loop together with
the rules LAM-β. The following two hypotheses ensure that u has
product type with T as domain. First, the type of u is computed as
U , and then we ensure U is a product with domain T calling the
following function:

ensure_product(` � C; Σ0; Γ;T ;U) = (φ2; Σ2)

where φ1 = `, i � C for fresh universe level i
and Σ1 = Σ0, ?v : Type(i)[Γ, y : T] for fresh ?v

and φ1; Σ1; Γ ` U ≈≡ ∀y : T. ?v[Γ̂, y] B φ2; Σ2

This function returns the result of unifying U with a product type
with domain T and unknown range ?v. For this, the meta-context
Σ0 is extended with ?v having type Type(i), for fresh universe level
i, and context Γ extended with y : T .

We consider η-expansion as a last resort in the hope of obtaining
a function beforehand, after expanding some definition.

4.3 Meta-Variable Instantiation
The rules for meta-variable instantiation are considered in Figure 6,
most of which are inspired by Abel & Pientka [1]. There are,
however, several differences between their work and ours, since
we have a different base logic (CIC instead of LF), and a different
assumption on the types of the terms: they require the terms being
unified to have the same (known) type, while we do not (types play
no directing role in our unification judgment).

For presentation purposes, we only present the rules having
a meta-variable on the right-hand side of the equation, but the
algorithm also includes the rules with the terms swapped.

Same Meta-Variable: If both terms are the same meta-variable
?x, we have two distinct cases: if their substitution is exactly the
same, the rule META-SAME-SAME applies, in which the arguments of
the meta-variable are compared point-wise. Note that we require the
elements in the substitution to be the same, and not just convertible.
If, instead, their substitutions are different, the rule META-SAME is
attempted. To better understand this rule, let’s look at an example.
Suppose ?z has type T [x1 : nat, x2 : nat] and we have to solve the
equation

?z[y1, y2] ≈ ?z[y1, y3]

where y1, y2 and y3 are distinct variables. From this equation we
cannot know yet what value ?z will hold, but at least we know it
cannot refer (up to conversion) to the second parameter, x2, since
then the above equation would have no solution. This reasoning is
reflected in the rule META-SAME in the hypothesis

Ψ1 ` σ ∩ σ′ B Ψ2

This judgment performs an intersection of both substitutions, filter-
ing out those positions from the context of the meta-variable Ψ1

where the substitutions disagree, resulting in Ψ2.
The intersection judgment is defined in the INTERSEC-* rules

in the same figure. The text inside grey boxes defines a different
rule: it allows us to collapse a rule for declarations and a rule for
definitions into one only rule. The judgment is conservative: it only
filters out different variables. The judgment is undefined if the two
substitutions have different terms (not variables) in some position.
Of course, a more aggressive approach is possible, checking for
convertibility of the terms instead of just syntactic equality, but it is
not clear whether the few more cases covered compensates for the
potential loss in performance.

Coming back to the rule META-SAME, by filtering out the dis-
agreeing positions of the substitution, we obtain a new context Ψ2,
which is a subset of Ψ1. Since this smaller context may be ill-formed,
we sanitize it. The sanitization judgment is defined at the bottom of
the figure, and it simply removes every (possibly defined) variable
in the context whose free variables are not included in the context.
This process results in a new (possibly smaller) context Ψ3. After
making sure that the type T of ?x is still well-formed in this context,
we restrict ?x to only refer to the variables in Ψ3. We do this by
creating a new meta-variable ?y with the type of ?x, but in the con-
text Ψ3. We further instantiate ?x with ?y. Both the creation of ?y
and the instantiation of ?x in the meta-context Σ is expressed in the
fragment Σ ∪ {?y : T [Ψ3], ?x := ?y[Ψ̂3]} of the last hypothesis.
We use this new meta-context to compare point-wise the arguments
of the meta-variable.

Meta-Variable Instantiation: The META-INST rules instantiate a
meta-variable applying a variation of higher-order pattern unifica-
tion (HOPU) [14]. They unify a meta-variable ?x with some term
t, obtaining a MGU (actually, as we will see in §4.3.1, almost a
MGU). As required by HOPU, the meta-variable is applied to a sus-
pended substitution mapping variables to variables, ξ, and a spine
of arguments ξ′, of variables only. Assuming ?x has (contextual)
type T [Ψ], this rule must find a term t′′′ to instantiate ?x such that

t ≈ ?x[ξ] ξ′

that is, after performing the suspended substitution ξ and applying
arguments ξ′ (formally, t′′′{ξ/Ψ̂} ξ′), results in a term convertible
to t.

Having contexts Σ0 and Γ, the new term t′′′ is crafted from t
following these steps:

META-SAME-SAME
Σ; Γ ` t ≈≡ u B Σ′

Σ; Γ ` ?x[σ] t ≈R ?x[σ] u B Σ′

META-SAME
?x : T [Ψ1] ∈ Σ Ψ1 ` σ ∩ σ′ B Ψ2 · ` sanitize(Ψ2) B Ψ3

FV(T) ⊆ Ψ3 Σ ∪ {?y : T [Ψ3], ?x := ?y[Ψ̂3]}; Γ ` t ≈≡ u B Σ′

Σ; Γ ` ?x[σ] t ≈R ?x[σ′] u B Σ′

META-INSTR
?x : T [Ψ] ∈ Σ0 t′, ξ1 = remove_tail(t; ξ′) t′ ↓wβ t′′ Σ0 ` prune(?x; ξ, ξ1; t′′) B Σ1 Σ1; Γ ` ξ1 : U

t′′′ = λy : U{ξ, ξ1/Ψ̂, y}−1. Σ1(t′′){ξ, ξ1/Ψ̂, y}−1 Σ1; Ψ ` t′′′ : T ′ Σ1; Ψ ` T ′ ≈≤ T B Σ2 ?x 6∈ FMV(t′′′)

Σ0; Γ ` t ≈R ?x[ξ] ξ′ B Σ2 ∪ {?x := t′′′}

META-FOR
?x : T [Ψ] ∈ Σ0 0 < n Σ0; Γ ` u u′m ≈≡ ?x[σ] B Σ1 Σ1; Γ ` u′′n ≈≡ tn B Σ2

Σ0; Γ ` u u′mu′′n ≈R ?x[σ] tn B Σ2

META-DELDEPSR
?x : T [Ψ] ∈ Σ l = [i|σi is variable and @j > i. σi = (σ, u)j]

· ` sanitize(Ψl) B Ψ′ FV(T) ⊆ Ψ′ Σ ∪ {?y : T [Ψ′], ?x := ?y[Ψ̂′]}; Γ ` t ≈R ?y[σl] u B Σ′

Σ; Γ ` t ≈R ?x[σ] u B Σ′

META-REDUCER

?u : T [Ψ] ∈ Σ0 t
w

0..1

δ t′ t′ ↓wβζιθ t′′ Σ0; Γ ` t′′ ≈R ?u[σ] tn B Σ1

Σ0; Γ ` t ≈R ?u[σ] tn B Σ1

INTERSEC-NIL

· ` · ∩ · B ·

INTERSEC-KEEP
Ψ ` σ ∩ σ′ B Ψ′

Ψ, x := u : A ` σ, t ∩ σ′, t B Ψ′, x : A

INTERSEC-REMOVE
Ψ ` σ ∩ σ′ B Ψ′ y 6= z

Ψ, x := u : T ` σ, y ∩ σ′, z B Ψ′

SANITIZE-NIL

ξ ` sanitize(·) B ·

SANITIZE-KEEP

FV(T) ⊆ ξ FV(u) ⊆ ξ x, ξ ` sanitize(Ψ) B Ψ′

ξ ` sanitize(x := u : T,Ψ) B x : T,Ψ′

SANITIZE-REMOVE

FV(T) 6⊆ ξ ∨ FV(u) 6⊆ ξ ξ ` sanitize(Ψ) B Ψ′

ξ ` sanitize(x := u : T,Ψ) B Ψ′

Figure 6. Meta-variable instantiation.

1. To avoid unnecessarily η-expanded solutions, the term t and ar-
guments ξ′ are decomposed using the function remove_tail(·; ·):

remove_tail(t x; ξ, x) = remove_tail(t; ξ) if x 6∈ FV(t)

remove_tail(t; ξ) = (t, ξ) in any other case

This function, applied to t and ξ′, returns a new term t′ and a
list of variables ξ1, where there exists ξ2 such that t = t′ ξ2 and
ξ′ = ξ1, ξ2, and ξ2 is the longest such list. For instance, in the
following example

?f [] x y ≈ addn x y

where addn is the addition operation on natural numbers, we
want to remove “the tail” on both sides of the equation, leading
to the natural solution ?f [] := addn. In this example, ξ1 is the
empty list, ξ2 is [x, y], and t′ is addn.
The check that x 6∈ FV(t) in the first case above ensures that
no solutions are erroneously discarded. Consider the following
equation:

?f [] x ≈ addn0 x x

If we remove the argument of the meta-variable, we will end up
with the unsolvable equation ?f [] ≈ addn0 x .

2. The term obtained in the previous step is weak head β normal-
ized, noted t′ ↓wβ t′′. This is performed in order to remove false
dependencies, like variable x in (λy. 0) x.

3. The meta-variables in t′′ are pruned. This process is quite
involved, and detailed examples can be found in [1]. The formal
description will be discussed below in §4.3.1.
At high level, the pruning judgment ensures that the term t′′

has no “offending variables”, that is, free variables outside of
those occurring in the substitution ξ, ξ1. It does so by removing
elements from the suspended substitutions occurring in t′′,
containing variables outside of ξ, ξ1. For instance, in the example
?f [] x ≈ addn0 ?u[x, y], the variable y has to be removed
from the substitution on the r.h.s. since it does not occur in the
l.h.s.. Similarly, if the meta-variable being instantiated occurs
inside a suspended substitution, it has to be removed from the
substitution to avoid a circularity in the instantiation. The output
of this judgment is a new meta-context Σ1.

4. The final term t′′′ is constructed as

λy : U{ξ, ξ1/Ψ̂, y}−1. Σ1(t′′){ξ, ξ1/Ψ̂, y}−1

First, note that t′′′ has to be a function taking n arguments y,
where n = |ξ1|. For the moment, let’s forget about the types of
each yj .
The body of this function is the term obtained from the second
step, t′′, after performing a few changes. First, all of its defined
meta-variables are normalized with respect to the meta-context
obtained in the previous step, Σ1, in order to replace the meta-
variables with the pruned ones. This step effectively removes
false dependencies on variables not occurring in ξ, ξ1.

Then, the inversion of substitution ξ, ξ1/Ψ̂, y is performed. This
inversion ensures that all free variables in Σ1(t′′) are replaced
by variables in Ψ and y. More precisely, it replaces every
variable in Σ1(t′′) appearing only once in the image of the
substitution (ξ, ξ1) by the corresponding variable in the domain
of the substitution (Ψ̂, y). If a variable appears multiple times in
the image and occur in term t′′, then inversion fails.
The type of each argument yj of the function is the type Uj ,
obtained from the j-th element in ξ1, after performing the
inversion substitution (with the caveat that the substitution
includes only the j − 1 elements in y).

5. The type of t′′′, which now only depends on the context Ψ, is
computed as T ′, and unified with the type of ?x, obtaining a
new meta-context Σ2.
In the special case where t′′′ is itself a meta-variable of type an
arity (an n-ary dependent product whose codomain is a sort), we
do not directly force the type of the instance T ′ to be smaller
than T , which would unnecessarily restrict the universe graph.
Instead, we downcast T and T ′ to a smaller type according to the
cumulativity relation before converting them. The idea is that, if
we are unifying meta-variables ?x and ?y, with ?x : Type(i)[Γ]
and ?y : Type(j)[Γ′], the body of ?x and ?y just has to be of
type Type(k) for some k ≤ i, j.

6. Finally, an occurs check is performed to prevent illegal solutions,
making sure ?x does not occur in t′′′.

The algorithm outputs Σ2 plus the instantiation of ?x with t′′′.

First-Order Approximation: The rules META-INST only applies if
the spine of arguments of the meta-variable only have variables. This
can be quite restrictive. Consider for instance the following equation
that tries to unify an unknown function, applied to an unknown
argument, with the term 1 (expanded to S 0):

S 0 ≈ ?f [] ?y[]

As usual, such equations have multiple solutions, but there is one
that is “more natural”: assign S to ?f and 0 to ?y. However, since
the argument to the meta-variable is not a variable, it does not
comply with HOPU, and therefore is not considered by the META-
INST rules. In an scenario like this, the META-FO rules perform a first
order approximation, unifying the meta-variable (?f in the equation
above) with the term on the l.h.s. without the last n arguments (S),
which are in turn unified pointwise with the n arguments in the
spine of the meta-variable (0 and ?y, respectively). Note that the
rule APP-FO does not subsume this rule, as it requires both terms
being equated to have the same number of arguments.

Meta-Variable Dependencies Erasure: If none of the rules above
work, the algorithm makes a somewhat brutal attempt: the rule
META-DELDEPSR chops off every element in the substitution that is
not a variable, or that is a duplicated variable. Therefore, problems
not complying with HOPU can be reconsidered. One issue with
this rule is that it fixes a solution where many solutions may exist.
Although the selected solution works most of the time, as we are
going to see in §5, it might not be the one expected by the user.

Formally, this rule first takes each position i in σ such that σi is
a variable with no duplicated occurrence in σ, u. The resulting list l
containing those positions is used to filter out the local context of
the meta-variable, obtaining the new context Ψ′. After sanitizing
this context, a fresh meta-variable ?y is created in this restricted
local context, and ?x is instantiated with this meta-variable. The new
meta-context obtained after this instantiation is used to recursively
call the unification algorithm to solve the problem ?y[σl] u ≈ t.

Eliminating Dependencies via Reduction: Sometimes the term
being assigned to the meta-variable has variables not occurring in the

substitution, but that can be eliminated via reduction. For instance,
take the following equation

π1(0, x) ≈ ?g[]

It has a solution, after reducing the term on the l.h.s., obtaining the
easily solvable equation 0 ≈ ?g[]. This is precisely what rules
META-REDUCE do, as a last attempt to make progress.

4.3.1 Pruning
Figure 7 shows the actual process of pruning. The pruning judgment
is noted

Σ ` prune(?x; ξ; t) B Σ′

It takes a meta-context Σ, a meta-variable ?x, a list of variables ξ,
the term to be pruned t, and returns a new meta-context Σ′, which
is an extension of Σ where all the meta-variables with offending
variables in their suspended substitution are instantiated with pruned
ones.

For brevity, we only show rules for the Calculus of Constructions
fragment of CIC, i.e., without considering pattern matching and
fixpoints. The missing rules are easy to extrapolate from the given
ones. The only interesting case is when the term t is a meta-
variable ?y applied to the suspended substitution σ. We have two
possibilities: either every variable from every term in σ is included in
ξ, in which case we do not need to prune (PRUNE-META-NOPRUNE),
or there exists some terms which have to be removed (pruned) from
σ (PRUNE-META).

These two rules use an auxiliary judgment to prune the local
context of the meta-variable Ψ0. This judgment has the form

Ψ ` prune_ctx(?x; ξ;σ) B Ψ′

Basically, it filters out every variable in Ψ where σ has an offending
term, that is, a term with a free variable not in ξ, or having ?x in the
set of free meta-variables. Ψ′ is the result of this process.

Coming back to the rules in Figure 7, in PRUNE-META-NOPRUNE

we have the condition that the pruning of context Ψ0 resulted in
the same context (no need for a change). More interestingly, when
the pruning of Ψ0 results in a new context Ψ1, PRUNE-META does
the actual pruning of ?y. Similarly to the rule META-SAME, it first
sanitizes the new context Ψ1, obtaining a new context Ψ2, then it
ensures that the type T is valid in Ψ2, by pruning variables outside
Ψ2, and finally instantiates the meta-variable ?y with a fresh meta-
variable ?z, having contextual type T [Ψ2].

It is important to note that, due to conversion, the process of
pruning may loose solutions. For instance, consider the following
equation:

π1(0, ?x[n]) ≈ ?y[]

The pruning algorithm will remove n from ?x, although another
solution exists by reducing the l.h.s., assigning 0 to ?y.

4.4 Canonical Structures Resolution
When an instance i of a structure is declared Canonical, COQ will
add, for each projector, a record in the canonical structures database
(∆db). Each record registers a key consisting of the projector p and
the head constructor h of the value for that projector in the instance,
and a value, the instance i itself. Then, at high level, when the
algorithm has to solve an equation of the form h t ≈ p ?x, it
searches for the key (p, h) in the database, finding that ?x should
be instantiated with i.

The process is formally described in Figure 8. We always start
from an equation of the form:

t′′ ≈ pj [κ] p i t

where pj is a projector of a structure applied to some universe
instance κ, p are the parameters of the structure, i is the instance

PRUNE-CONSTANT
h ∈ S ∪ C

Σ ` prune(?x; ξ;h) B Σ

PRUNE-VAR
x ∈ ξ

Σ ` prune(?x; ξ;x) B Σ

PRUNE-LAM, PRUNE-PROD

Π ∈ {λ, ∀} Σ ` prune(?x; ξ, x; t) B Σ′

Σ ` prune(?x; ξ; Πx. t) B Σ′

PRUNE-LET
Σ0 ` prune(?x; ξ; t2) B Σ1

Σ1 ` prune(?x; ξ, x; t1) B Σ2

Σ0 ` prune(?x; ξ; let x := t2 in t1) B Σ2

PRUNE-APP
Σ0 ` prune(?x; ξ; t) B Σ1

Σi ` prune(?x; ξ; ti) B Σi+1 i ∈ [1, n]

Σ0 ` prune(?x; ξ; t tn) B Σn+1

PRUNE-META-NOPRUNE
?y : T [Ψ0] ∈ Σ ?x 6= ?y

Ψ0 ` prune_ctx(?x; ξ;σ) B Ψ0

Σ ` prune(?x; ξ; ?y[σ]) B Σ

PRUNE-META
?y : T [Ψ0] ∈ Σ ?x 6= ?y Ψ0 ` prune_ctx(?x; ξ;σ) B Ψ1

· ` sanitize(Ψ1) B Ψ2 Σ ` prune(?x; Ψ̂2;T) B Σ′

Σ ` prune(?x; ξ; ?y[σ]) B Σ′, ?z : T [Ψ2] ∪ {?y := ?z[Ψ̂2]}

PRUNECTX-NIL

· ` prune_ctx(?x; ξ; ·) B ·

PRUNECTX-NOPRUNE
FV(t) ⊆ ξ ?x 6∈ FMV(t) Ψ ` prune_ctx(?x; ξ;σ) B Ψ′

Ψ, z : A ` prune_ctx(?x; ξ;σ, t) B Ψ′, z : A

PRUNECTX-PRUNE
FV(t) 6⊆ ξ ∨ ?x ∈ FMV(t) Ψ ` prune_ctx(?x; ξ;σ) B Ψ′

Ψ, x : A ` prune_ctx(?x; ξ;σ, t) B Ψ′

Figure 7. Pruning of meta-variables.

LOOKUP-CS
(pj , h, cι) ∈ ∆db

Φ1, ι = fresh(Φ0, cι) ι δE λx : T . k[κ′] p′ v
Σ1 = Σ0, ?y : T Φ1 |= κ = κ′ B Φ2

Φ2; Σ1; Γ ` p ≈≡ p′{?y/x} B Φ3; Σ2

Φ0; Σ0 ` (pj , κ, p, h) ∈? ∆db B Φ3,Σ2, ι ?y, vj{?y/x}

CS-CONSTR
Φ0; Σ0 ` (pj , κ, p, c) ∈? ∆db B Φ1,Σ1, ι, c[`′] u′

Φ1 |= ` = `′ B Φ2 Φ2; Σ1; Γ ` u ≈≡ u′ B Φ3; Σ2

Φ3; Σ2; Γ ` i ≈≡ ι B Φ4; Σ3

Φ4; Σ4; Γ ` t′ ≈≡ t B Φ5; Σ4

Φ0; Σ0; Γ ` c[`] u t′ ≈R pj [κ] p i t B Φ5; Σ4

CS-PRODR
Φ0; Σ0 ` (pj , κ, p,→) ∈? ∆db B Φ1,Σ1, ι, u→ u′

Φ1; Σ1; Γ ` t ≈≡ u B Φ2; Σ2

Φ2; Σ2; Γ ` t′ ≈R u′ B Φ3; Σ3

Φ3; Σ3; Γ ` i ≈≡ ι B Φ4; Σ4

Φ0,Σ0; Γ ` t→ t′ ≈R pj [κ] p i B Φ4; Σ4

CS-SORTR
Φ0; Σ0 ` (pj , κ, p, s) ∈? ∆db B Φ1,Σ1, ι, vj

Φ1; Σ1; Γ ` s ≈R vj B Φ2; Σ2

Φ2; Σ2; Γ ` i ≈≡ ι B Φ3; Σ3

Φ0; Σ0; Γ ` s ≈R pj [κ] p i B Φ3; Σ3

CS-DEFAULTR
Φ0; Σ0 ` (pj , κ, p, _) ∈? ∆db B Φ1,Σ1, ι, vj

Φ3; Σ2; Γ ` t ≈R vj B Φ4; Σ3

Φ4; Σ3; Γ ` i ≈≡ ι B Φ5; Σ4

Φ0; Σ0; Γ ` t ≈R pj [κ] p i B Φ5; Σ4

Figure 8. Canonical structures resolution.

(usually a meta-variable), and t are the arguments of the projected
value, in the case when it has product type. In order to solve this
equation the algorithm proceeds as follows:

1. First, a constant cι is selected from ∆db, keying on the projector
pj and the head element h of t′′. The constant cι stored in the
database is a potentially polymorphic constant, so we build a
fresh instance of it (ι) and add the fresh universe levels and
constraints to the universe context. Its body is a function taking
arguments x : T and returning the term k[κ′] p′ v, with k the
constructor of the structure applied to a universe instance κ′, p′
the parameters of the structure, and v the values for each of the
fields of the structure.

2. Then, the expected and inferred universe instances and parame-
ters of the instance are unified, after replacing every argument x
with a corresponding fresh meta-variable ?y.

3. According to the class of h, the algorithm considers different
rules:

(a) CS-CONST if h is a constant c.

(b) CS-PROD if h is a non-dependent product t→ t′.

(c) CS-SORT if h is a sort s.

If these do not apply, then it tries CS-DEFAULT.

4. Next, the term t′′ is unified with the corresponding projected
term in the value of the instance for the j-th field. If t′′ is a
constant c applied to arguments u and the value vj of the j-
th field of ι is c applied to u′, then the universe instances and
arguments u and u′ are unified. If t′′ is a product with premise
t and conclusion t′, they are unified with the corresponding
terms (u and u′) in vj . Note that cumulativity is preserved in the
codomain of products and in the CS-SORT rule.

5. The instance of the structure i is unified with the instance found
in the database, ι, applied to the meta-variables y. Typically,
i is a meta-variable, and this step results in instantiating the
meta-variable with the constructed instance.

6. Finally, for CS-CONST only, if the j-th field of the structure
has product type, and is applied to t′ arguments, then these
arguments are unified with the arguments t of the projector.

As with the rules for meta-variable instantiation, we only show
the rules in one direction, with the projector on the right-hand side,
but the algorithm also includes the rules in the opposite direction.

4.5 Rule Priorities and Backtracking
The figures shown above does not precisely nail the priority of
the rules, nor when the algorithm backtracks. Below we show the
precise order of application of the rules, where the rules in the same
line are tried in the given order without backtracking (the first one
matching the conclusion and whose side-conditions are satisfied
is used). Rules in different lines or in the same line separated by |
are tried with backtracking (if one fails to apply, the next is tried).
Note that if at any point the environment and the two terms to be
unified are ground (they do not contain meta-variables), unification
is skipped entirely and a call to COQ’s efficient conversion algorithm
is made instead.

1. If a term has a defined meta-variable in its head position:

(a) META-δR, META-δL

2. If both terms heads are the same undefined meta-variable:

(a) META-SAME-SAME, META-SAME

3. If one term has an undefined meta-variable, and the other term
does not have the same meta-variable in its head position:
META-INSTR |META-FOR |META-REDUCER |META-DELDEPSR |
LAM-ηR | META-INSTL | META-FOL | META-REDUCEL |
META-DELDEPSL | LAM-ηL

4. Else:

(a) If the two terms have different head constants:

i. (CS-CONSTR, CS-PRODR, CS-SORTR) | CS-DEFAULTR

ii. (CS-CONSTL, CS-PRODL, CS-SORTL) | CS-DEFAULTL

(b) APP-FO

(c) The remaining rules from Figure 4 in the following order,
backtracking only if the hypotheses that are not recursive
calls to the algorithm fail to apply:
LAM-βR | LET-ζR | CASE-ιR | LAM-βL | LET-ζL | CASE-ιL |
CONS-δNOTSTUCKR | CONS-δSTUCKL | CONS-δR | CONS-δL |
LAM-ηR | LAM-ηL

4.6 A Deliberate Omission: Constraint Postponement
The technique of constraint postponement [18] is widely adopted in
unification algorithms, including the current algorithm of COQ. It
has however some negative impact in COQ, and, as it turns out, it is
not as crucial as generally believed.

First, let us show why this technique is incorporated into proof
assistants. Sometimes the unification algorithm is faced with an
equation that has multiple solutions, in a context where there should
only be one possible candidate. For instance, consider the following
term witnessing an existential quantification:

exist _ 0 (le_n 0) : ∃x. x ≤ x

where exist is the constructor of the type ∃x. P x, withP a predicate
over the (implicit) type of x. More precisely, exist takes a predicate
P , an element x, and a proof that P holds for x, that is, P x. In the
example above we are providing an underscore in place of P , since
we want COQ to find out the predicate, and we annotate the term
with a typing constraint (after the colon) to specify that the whole
term is a proof of existence of a number lesser or equal to itself. In
this case, we provide 0 as such number, and the proof le_n 0, which
has type 0 ≤ 0.

During typechecking, COQ first infers the type of the term on the
left of the colon, and only then it verifies that this type is compatible
(i.e., unifiable) with the typing constraint. When inferring the type
for the term on the left, COQ will create a fresh meta-variable for
the predicate P , let’s call it ?P , and unify ?P 0 with 0 ≤ 0, the type
of le_n 0. Without any further information, COQ has four different
(incomparable) solutions for P : λx. 0 ≤ 0, λx. x ≤ 0, λx. 0 ≤
x, λx. x ≤ x.

When faced with such an ambiguity, COQ postpones the equation
in the hope that further information will help disambiguate the
problem. In this case, the necessary information is given later on
through the typing constraint, which narrows the set of solutions to
a unique solution.

Constraint postponment has its consequences, though: On one
hand, the algorithm can solve more unification problems and hence
fewer typing annotations are required (e.g., we do not need to specify
P). On the other hand, since constraints are delayed, the algorithm
becomes hard to debug and, at times, slow. The reason for these
assertions comes from the realisation that the algorithm will continue
to (try to) unify the terms, piling up constraints on the way, perhaps
to later on find out that, after all, the terms are not unifiable (or are
unifiable only if some decision is taken on the delayed equations).

When combined with canonical structures resolution, or any
other form of proof automation, this technique is particularly bad, as
it may break the assumption that certain value has been previously
assigned. The motivation to omit this technique came from expe-
rience in projects on proof automation by the first author [12, 25],
and on bi-directional elaboration by the second author (in the above
example, a bi-directional elaboration algorithm will unify the type
returned by exist with the expected type, and only then unify the
type of its arguments, thereby posing the unification problems in the
right order).

Our results (§5) show that this technique is not crucial.

4.7 Correctness
Our algorithm should satisfy the following correctness criterion: if
two well-typed terms t1 and t2 unify under universe context Φ and
meta-context Σ, resulting in a new universe Φ′ and meta-context
Σ′, both terms should also be well typed under Σ′. Moreover, both
terms should be convertible (or in the cumulativity relation) under
Φ′,Σ′.

However, this is false—for both the current algorithm imple-
mented in COQ, and the one described here. The culprit is the
syntactic check required at typechecking to ensure termination of
fixpoints, the guard condition. Indeed, it is easy to make unification
instantiate a meta-variable with a term containing a non-structurally-
recursive call to a recursive function in its context, resulting in an
ill-typed term. Hence, we must weaken this conjecture to use a
weaker notion of typing, as in Coen’s thesis [19].

For the moment we lack a correctness proof. This work sets the
first stone presenting a specification faithful to an implementation
that performs well on a variety of large examples (§5). We anticipate
that the proof will be simpler than for existing algorithms, notably
due to the lack of postponment which usually complicates the
argument of type preservation.

5. Evaluation of the Algorithm
Since, as we saw in §4.6, our algorithm does not incorporate certain
heuristics, it is reasonable to expect that it will fail to solve several
unification problems appearing in existing libraries. To test our
algorithm “in the wild” we developed a plugin called UniCoq3,
which, when requested, changes the current unification algorithm
of COQ with ours. With this plugin, we compiled four different

3 Sources can be downloaded from http://github.com/unicoq .

http://github.com/unicoq

libraries, and evaluated the number of lines that required changes.
These changes may be necessary either because UniCoq found a
different solution from the expected one, or because it found no
solution at all. As it turns out, UniCoq solved most of the problems
it encountered.

The first set of files we considered is the standard library of COQ.
With UniCoq, it compiles almost out of the box, with only a few
lines requiring extra typing annotations. We believe the reason for
such success is that most of the files in the library are several years
old, and were conceived in older versions of COQ, when it had a
much simpler unification algorithm.

The second set of files come from Adam Chlipala’s book “Certi-
fied Programming with Dependent Types” (CPDT) [7]. This book
provides several examples of functional programming with depen-
dent types, including several non-trivial unification patterns coming
from dependent matches. As a result, from a total of 6,200 lines, only
14 required extra typing annotations. It is interesting to note that 8
of those lines are solved with the use of a bi-directional elaboration
algorithm [e.g., 4] enabled by COQ’s Program keyword. For in-
stance, some lines construct witnesses for existential quantification,
similar to the example shown in §4.6.

The third one is the Mathematical Components library [11],
version 1.5beta1. This library presents several challenges, making it
appealing for our purpose: (1) It is a huge development, with a total
of 78 theory files. (2) It uses canonical structures heavily, providing
us with several examples of canonical structures idioms that UniCoq
should support. (3) It uses its own set of tactics uniformly calling the
same unification algorithm used for elaboration. This last point
is extremely important, although a bit technical. Truth be told,
COQ has actually two different unification algorithms. One of these
algorithms is mainly used by elaboration, and it outputs a sound
substitution (up to bugs). This is the one mentioned in this paper
as “the original unification algorithm of COQ”. The other algorithm
is used by most of COQ’s original tactics (like apply or rewrite),
but it is unsound (in COQ 8.4, it may return ill-typed solutions).
Ssreflect’s tactics use the former algorithm which is the one being
replaced by our plugin. From the 82,000 lines in the library, only 40
lines required changes.

The last set of files also focuses in different canonical structures
idioms: the files from Lemma Overloading [12]. It compiles almost
as-is, with only one line requiring an extra annotation.

5.1 A Word on the META-DELDEPS Rules
In a sense, the rules META-DELDEPS are a bit brutal: they fix an
arbitrary solution from the set of possible ones, which might not be
the one expected. However, as the numbers above suggest, it works
most of the time. In this section we analyse, for the Mathematical
Components library, the origins of the unification problems that fail
when this rule is turned off (totaling +300 lines).

Non-dependent if−then−elses: Most notably, the culprit for
about two thirds of the failures are Ssreflect’s if−then−elses. In
Ssreflect, the type of the branches of an if are assumed to depend
on the conditional. For instance, the example if b then 0 else 1
fails to compile if the Ssreflect library is imported. With Ssreflect,
a fresh meta-variable ?T is created for the type of the branches, with
contextual type Type[b : true]. When unifying it with the actual
type of each branch, b is substituted by the corresponding boolean
constructor. This results in the following equations:

?T [true] ≈ nat ?T [false] ≈ nat

Since they are not of the form required by HOPU, UniCoq (without
the META-DELDEPS rules) fails.

False dependency in the in modifier: Another less common issue
comes from the in modifier in Ssreflect’s rewrite tactic. This

modifier allows the selection of a portion of the goal to perform the
rewrite. For instance, if the goal is 1 + x = x+ 1 and we want to
apply commutativity of addition on the term on the right, we can
perform the following rewrite:

rewrite [in X in _ = X]addnC

With the rule, UniCoq instantiates X with the r.h.s. of the equation,
and rewrite applies commutativity only to that portion of the goal.
Without it, however, rewrite fails. In this case, the hole (_) is
replaced by a meta-variable ?y, which is assumed to depend on
X . But X is also replaced by a meta-variable, ?z, therefore the
unification problem becomes

?y[x, ?z[x]] = ?z[x] ≈ 1 + x = x+ 1

that, in turn, poses the equation ?y[x, ?z[x]] ≈ 1 + x, which does
not have an MGU.

Non-dependent products: About 30 lines required a simple typ-
ing annotation to remove dependencies in products. Consider the
following COQ term:

∀P x. (P (S x) = True)

When COQ elaborates this term, it first assigns P and x two
unknown types, ?T and ?U respectively, the latter depending on P .
Then, it elaborates the term on the left of the equal sign, obtaining
further information about the type ?T of P : it has to be a (possibly
dependent) function ∀y : nat. ?T ′[y]. The type of the term on
the left is the type of P applied to S x, that is, ?T ′[S x]. After
elaborating the term on the right and finding out it is a Prop, it
unifies the types of the two terms, obtaining the equation

?T ′[S x] ≈ Prop

Since, again, this equation does not comply with HOPU, UniCoq
fails without META-DELDEPS.

Explicit duplicated dependencies: There are 15 occurrences
where the proof developer wrote explicitly a dependency that dupli-
cates an existing one. Consider for instance the following rewrite
statement:

rewrite [_ + _ w]addnC

Here, the proof developer intends to rewrite using commutativity
on a fragment of the goal matching the pattern _ + _ w. Let’s
assume that in the goal there is one occurrence of addition having
w occurring in the right, say t+ (w + u), for some terms t and u.
Since the holes (_) are elaborated as a meta-variable depending on
the entire local context, in this case it will include w. Therefore, the
pattern will be elaborated as ?y[w] + ?z[w] w (assuming no other
variables appear in the local context). When unifying the pattern
with the desired occurrence we obtain the problem:

?z[w] w ≈ w + u

This equation does not have a MGU, since either w on the l.h.s.
can be used as a representative for the w on the r.h.s.. The rules
META-DELDEPS remove the inner w.

Looking closely into these issues, it seems as if the dependencies
were incorrectly introduced in the first place. We plan to study
modifications to elaboration and tactics to avoid these dependencies,
and study the impact of such changes.

6. Closing remarks
We presented the first formalization of a realistic unification algo-
rithm for COQ, featuring overloading and universe polymorphism.
Moreover, we give a precise characterization of controlled backtrack-
ing (rules APP-FO plus CONS-*), which, together with the rules for
overloading (Figure 8), allow us to explain the patterns introduced

in [12]. The algorithm presented in this work is predictable, in the
sense that the order in which subproblems are evaluated can be de-
duced directly from the rules. In particular, we have not introduced
the technique of constraint postponement, which reorders unifica-
tion subproblems. This omission, made in favor of predictability,
has shown not to be problematic in practice (§5).

The algorithm includes a heuristic, incarnated in the rules META-
DELDEPS that forces a non-dependent solution where multiple
solutions might exist. We have studied various scenarios where
it is being used, and shown that this heuristic can be replaced in
most cases by smarter tactics and elaboration algorithms (§5.1).

In the future we plan to prove soundness of the algorithm (see
§4.7), and to improve its performance to make it significantly faster
than the current algorithm of COQ.

Acknowledgments
We are deeply grateful to Georges Gonthier for his suggestion on
adding the META-DELDEPS rules, Enrico Tassi for carefully explain-
ing the θ reduction strategy and its use, and Andreas Abel, Derek
Dreyer, Hugo Herbelin, Aleksandar Nanevski, Scott Kilpatrick, Vik-
tor Vafeiadis, and the anonymous reviewers for their important feed-
back on earlier versions of this work. This research was partially
supported by EU 7FP grant agreement 295261 (MEALS).

References
[1] A. Abel and B. Pientka. Higher-order dynamic pattern unification for

dependent types and records. In TLCA. Springer, 2011.

[2] A. Asperti, C. S. Coen, E. Tassi, and S. Zacchiroli. Crafting a proof
assistant. In TYPES. Springer-Verlag, 2006.

[3] A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. Hints in unification.
In TPHOLs, volume 5674 of LNCS. Springer, 2009.

[4] A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. A Bi-Directional
Refinement Algorithm for the Calculus of (Co)Inductive Constructions.
LMCS, 8(1), 2012.

[5] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. JFP, 23, 2013.

[6] I. Cervesato and F. Pfenning. A linear spine calculus. Journal of Logic
and Computation, 13(5):639–688, 2003.

[7] A. Chlipala. Certified Programming with Dependent Types. MIT Press,
2011. http://adam.chlipala.net/cpdt/.

[8] F. Garillot. Generic Proof Tools and Finite Group Theory. PhD thesis,
Ecole Polytechnique X, Dec. 2011.

[9] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging
Mathematical Structures. In TPHOL. Springer, 2009.

[10] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. Le Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca,
L. Rideau, A. Solovyev, E. Tassi, and L. Théry. A machine-checked
proof of the odd order theorem. In ITP. Springer, 2013.

[11] G. Gonthier, A. Mahboubi, and E. Tassi. A small scale reflection
extension for the Coq system. Technical report, INRIA, 2008.

[12] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad
hoc proof automation less ad hoc. JFP, 23(04):357–401, 2013.

[13] A. Mahboubi and E. Tassi. Canonical Structures for the working Coq
user. In ITP. Springer, 2013.

[14] D. Miller. Unification of simply typed lamda-terms as logic program-
ming. In ICLP. MIT Press, 1991.

[15] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory.
ACM Trans. Comput. Logic, 9(3), June 2008.

[16] U. Norell. Dependently Typed Programming in Agda. In TLDI. ACM,
2009.

[17] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for gadts. In ICFP. ACM, 2006.

[18] J. Reed. Higher-order constraint simplification in dependent type theory.
In LFMTP, 2009.

[19] C. Sacerdoti Coen. Mathematical Knowledge Management and Inter-
active Theorem Proving. PhD thesis, University of Bologna, 2004.

[20] A. Saïbi. Outils Generiques de Modelisation et de Demonstration pour
la Formalisation des Mathematiques en Theorie des Types. Application
a la Theorie des Categories. PhD thesis, University Paris 6, 1999.

[21] M. Sozeau and N. Tabareau. Universe Polymorphism in Coq. In ITP.
Springer, 2014.

[22] The Coq Development Team. The Coq Proof Assistant Reference
Manual – Version V8.4, 2012.

[23] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In POPL, pages 60–76, 1989.

[24] B. Ziliani, D. Dreyer, N. Krishnaswami, A. Nanevski, and V. Vafeiadis.
Mtac: A monad for typed tactic programming in coq. To appear in
JFP, ??(?):??–??, 2015.

[25] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis. Mtac: A monad for typed tactic programming in Coq. In
ICFP, 2013.

http://adam.chlipala.net/cpdt/

	Introduction
	Coq's Unification at a Glance
	The Language: CIC with Open Terms
	Meta-Variables and Contextual Types
	Semantics

	The Algorithm
	Same Constructor
	Reduction
	Meta-Variable Instantiation
	Pruning

	Canonical Structures Resolution
	Rule Priorities and Backtracking
	A Deliberate Omission: Constraint Postponement
	Correctness

	Evaluation of the Algorithm
	A Word on the Meta-DelDeps Rules

	Closing remarks

