
ZU064-05-FPR unification-journal 22 January 2016 14:8

Under consideration for publication in J. Functional Programming 1

A Comprehensible Guide to a New Unifier for
CIC Including Universe Polymorphism and

Overloading

BETA ZILIANI
FAMAF, Universidad Nacional de Córdoba (Argentina), CONICET (Argentina)

bziliani@famaf.unc.edu.ar

and
MATTHIEU SOZEAU

Inria & PPS (France), Université Paris Diderot (France)
matthieu.sozeau@inria.fr

Abstract

Unification is a core component of every proof assistant or programming language featuring dependent
types. In many cases, it must deal with higher-order problems up to conversion. Since unification
in such conditions is undecidable, unification algorithms may include several heuristics to solve
common problems. However, when the stack of heuristics grows large, the result and complexity of
the algorithm can become unpredictable.

Our contributions are twofold: (1) We present a full description of a new unification algorithm for
the Calculus of Inductive Constructions (CIC, the base logic of COQ), building it up from a basic
calculus to the full CIC as it is implemented in COQ, including universe polymorphism, canonical
structures (the overloading mechanism baked into COQ’s unification), and a small set of useful
heuristics. (2) We implemented our algorithm, and tested it on several libraries, providing evidence
that the selected set of heuristics suffices for large developments.

1 Introduction

In the last decade proof assistants have become more sophisticated and, as a consequence,
increasingly adopted by computer scientists and mathematicians. In particular, they are
being adopted to help dealing with very complex proofs, proofs that are hard to grasp—and
more importantly, to trust—for a human. For example, in the area of algebra, the Feit-
Thompson Theorem was recently formalized (Gonthier et al., 2013b) in the proof assistant
COQ (The Coq Development Team, 2012). To provide a sense of the accomplishment of
Gonthier and his team, the original proof of this theorem was published in two volumes,
totaling an astounding 250 pages. The team formalized it entirely in COQ, together with
several books of algebra required as background material.

In order to make proofs manageable, this project relies heavily on the ability of COQ’s
unification algorithm to infer implicit arguments and expand heavily overloaded functions.
This goes to the point that it is not rare to find in the source files a short definition that
is expanded, by the unification algorithm, into several lines of code in the Calculus of

ZU064-05-FPR unification-journal 22 January 2016 14:8

2 B. Ziliani, M. Sozeau

Inductive Constructions (CIC), the base logic of COQ. This expansion is possible thanks to
the use of the overloading mechanism in COQ called canonical structures (Saïbi, 1999). This
mechanism, similar in spirit to Haskell’s type classes, is baked into the unification algorithm.
By being part of unification, this mechanism has a unique opportunity to drive unification
to solve particular unification problems in a similar fashion to Matita’s hints (Asperti et al.,
2009). It is so powerful, in fact, that it enables the development of dependently-typed logic
meta-programs (Gonthier et al., 2013a).

Another important aspect of the algorithm is that it must deal with higher-order problems,
which are inherently undecidable, up-to a subtyping relation on universes. For this reason,
the current implementation of the unification algorithm has grown with several heuristics,
yielding acceptable solutions to common problems in practice. Unfortunately, the algorithm
is unpredictable and hard to reason about: given a unification problem, it is hard to predict
the substitution the algorithm will return, and the time complexity for the task. This
unpredictability of the current implemented algorithm has two main reasons: (i) it lacks
a specification, and (ii) it incorporates a number of heuristics that obfuscate the order in
which unification subproblems are considered.

While the algorithm being unpredictable is bad on its own, the problem gets exacerbated
when combined with canonical structures, since their resolution may depend on the solutions
obtained in previous unification problems. To somehow accomodate for this unfortunate
situation, several works in the literature explain canonical structures by example (Mahboubi
& Tassi, 2013; Garillot et al., 2009; Garillot, 2011; Gonthier et al., 2013a), providing some
intuition on how canonical structures work, in some cases even detailing certain necessary
aspects of the unification process. However, they fall short of explaining the complex process
of unification as a whole.

This paper presents our remedy to the current situation. More precisely, our main
contributions are:

1. An original, full-fledged description of a unification algorithm for CIC, incorporating
canonical structures and universe polymorphism (Sozeau & Tabareau, 2014).

2. The first formal description, to the best of our knowledge, of an extremely useful
heuristic implemented in the unification algorithm of COQ, controlled backtracking.

3. A corresponding pluggable implementation, incorporating only a restricted set of
heuristics, such as controlled backtracking. Most notably, we purposely left out a
technique known as constraint postponement, present in many systems and in the
current implementation in Coq, which may reorder unification subproblems. This
reordering prevents us from knowing exactly when equations are being solved.

4. Evidence that such principled heuristics suffice to solve 99.9% of the unification prob-
lems that arise in libraries such as the Mathematical Components library (Gonthier
et al., 2008) and CPDT (Chlipala, 2011).

It is interesting to note that during this work we found two bugs in the logic of the original
unification algorithm of COQ. While this work focuses on the COQ proof assistant, the
problems and solutions presented may be of interest to other type theory based assistants
and programming languages, such as Agda (Norell, 2009), Matita (Asperti et al., 2006), or
Idris (Brady, 2013). Developers of such systems, or new systems to come, may find the
discussions in this work about incorporating or removing certain heuristics inspiring.

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 3

in_head : ∀ (x : A) (l : list A), x ∈ (x :: l)
in_tail : ∀ (x : A) (y : A) (l : list A), x ∈ l → x ∈ (y :: l)

Lemma inL : ∀ (x : A) (l r : list A), x ∈ l → x ∈ (l ++ r)
Lemma inR : ∀ (x : A) (l r : list A), x ∈ r → x ∈ (l ++ r)

Fig. 1. List membership axioms and lemmas.

This work is an extended version—and a total restructuring—of Ziliani & Sozeau
(2015). In this new version we split different features of the algorithm in different sections,
building from the basic Calculus of Constructions up to the full Calculus of Inductive
Constructions implemented by COQ, making the presentation much more palatable. We have
also incorporated several real or realistic examples and fixed some bugs and inconsistencies
in notation.

In the rest of the paper, we start introducing with examples some features and heuristics
included in COQ’s unification algorithm (§2). Then, we present the Calculus of Construc-
tions (CC) together with a simple minded unification algorithm for it (§3). We extend the
algorithm to include β -reduction and η-expansion (§4), local and global definitions (§5),
universes (§6), inductive types (§7), and overloading (§8). We also incorporate controlled
backtracking in §9 and several heuristics for meta-variable instantiation in §10. The last
addition to the algorithm is universe polymorphism (§11), and once every rule is given we
specify the priority of the rules (§12). We discuss why we did not incorporate the technique
known as Constraint Postponement in §13, and we show it is not that important in real
developments (§14). We discuss what would be a correctness criterion for the algorithm
in §15. We show in detail an example inspired by Gonthier et al. (2011) in §16. Related
work is discussed in §17, and conclusion are drawn in §18.

2 COQ’s Unification at a Glance

We start by showing little examples highlighting some of the particularities of COQ’s
unification algorithm.

Term unification: The unification algorithm of COQ must deal with unification of terms
and not only types. In fact, in the Calculus of Inductive Constructions (CIC), the base logic
of COQ, there is no syntactical distinction between types and terms.

First-order approximation: In many cases, a unification problem may have several
incomparable solutions. Consider for instance the following definition in a context where y1

and y2 are defined:

De�nition ex0 : y1 ∈ ([y1] ++ [y2]) := inL _ _ _ (in_head _ _)

We assume the definitions and lemmas for list membership listed in Figure 1, and note
(x :: s) for the consing of x to list s, [] for the empty list, and l ++ r for the concatenation of
lists l and r. We also denote [a1; . . . ;an] a list with elements a1 to an.

This definition is a proof that the element y1 is in the list resulting from concatenating the
singleton lists [y1] and [y2]. The proof in itself provides evidence that the element is in the

ZU064-05-FPR unification-journal 22 January 2016 14:8

4 B. Ziliani, M. Sozeau

head (in_head) of the list on the left (inL). As customary in COQ code, the type annotation
shows what the definition is proving (note how the type here is a predicates over lists, i.e.,
terms). The proof omits the information that can be inferred, replacing each argument to inL

and in_head with holes (_). The elaboration mechanism of COQ, that is, the algorithm in
charge of filling up these holes, calls the unification algorithm with the following unification
problem, where the left-hand side corresponds to what the body of the definition proves,
and the right-hand side to what it is expected to prove:1

?z1 ∈ ((?z1 :: ?z2) ++ ?z3) ≈ y1 ∈ ([y1] ++ [y2])

where ?z1,?z2 and ?z3 are fresh meta-variables. In turn, after assigning y1 to ?z1, the
unification algorithm has to solve the following problem:

(y1 :: ?z2) ++ ?z3 ≈ [y1] ++ [y2]

One possible solution to this equation is to assign [] to ?z2, and [y2] to ?z3, which corresponds
to equate each argument of the concatenation, similar to what we did before with the ∈
predicate. However, since concatenation is a function, i.e., it computes the concatenation
of the two lists, there are other possible solutions that makes both terms convertible (i.e.,
having the same normal form). One such solution, for instance, is to assign [y2] to ?z2, and
[] to ?z3.

Many works in the literature (e.g., Miller, 1991; Reed, 2009; Abel & Pientka, 2011;
Peyton Jones et al., 2006) are devoted to the creation of unification algorithms returning a
Most General Unifier (MGU), that is, a unique solution that serves as a representative for
all convertible solutions. Agda (Norell, 2009), for instance, which incorporates such type of
unification algorithm, fails to compile Example ex0 above, since no such MGU exists. This
forces the proof developer to manually fill-in the holes.

Despite the equation having multiple solutions, however, not every solution is equally
“good”. For ex0, the first solution is the most natural one, meaning the one expected by the
proof developer. For this reason, instead of failing, COQ favors syntactic equality by trying
first-order unification. Formally, when faced with a problem of the form

t t1 . . . tn ≈ u u1 . . . un

the algorithm decomposes the problem into n+1 subproblems, first equating t ≈ u, and
then ti ≈ ui, for 0 < i≤ n.

Controlled backtracking: In (Sacerdoti Coen, 2004, chp. 10), a unification algorithm for
CIC is presented, performing only first-order unification. In COQ, instead, when first-order
approximation fails, in an effort to find a solution to the equation, the algorithm reduces
the terms carefully. For instance, consider the following variation of the previous example,

1 How elaboration works will not be discussed in this work. The interested reader is invited to
read (Asperti et al., 2012), which provides details on bi-directional elaboration in the Matita proof
assistant, also based on CIC.

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 5

where the list on the left of the concatenation is let-bound:

De�nition ex1 : y1 ∈ (let l := [y1] in (l ++ [y2]))

:= inL _ _ _ (in_head _ _)

The main equation to solve now is

(y1 :: ?z2) ++ ?z3 ≈ let l := [y1] in (l ++ [y2])

Since both terms do not share the same head (the concatenation operator on the left and the
let-binding on the right), the algorithm reduces the let-binding, obtaining the same problem
as in ex0. Note that it has to be careful: it should not reduce the concatenation operator,
otherwise the problem will become unsolvable. To see this, let’s the result of reducing both
sides:

y1 :: (?z2 ++ ?z3) ≈ [y1;y2]

While the head of both lists is the same, the tail [y2] cannot be matched with the concatenation
of two unknown lists. For this reason, the algorithm delays the unfolding of constants, such
as ++, and, in the case of having constants on both sides of the equation, it takes special
care of which one to unfold. This heuristic enables fine control over the instance resolution
mechanism of canonical structures (Gonthier et al., 2013a).

Interactivity: COQ is an interactive theorem prover, meaning that the user writes her proof
interactively, step by step. This has the consequence that the user will likely see the result
of the algorithm, so it is not the same if terms are reduced or not—not only for coverability,
as seen in the previous example, but also for visibility.

Canonical structures: Canonical structures (CS) is a powerful overloading mechanism,
baked into the unification algorithm. We demonstrate this mechanism with a typical
example from overloading: the equality operator. Similar to how type classes are used
in Haskell (Wadler & Blott, 1989), we define a class or, in CS terminology, a structure:2

Structure eqType := EqType { sort : Type;
equal : sort→ sort→ bool}

eqType is a record type with two fields: a type sort, and a boolean binary operation equal

on sort. These fields can be accessed using projectors:

sort : eqType→ Type

equal : ∀e:eqType. sort e→ sort e→ bool

To construct an element of the type, the constructor EqType is provided, which takes the
values for the two fields as arguments. For example, one possible eqType instance for bool

is:

De�nition eqType_bool := EqType bool eq_bool

where eq_bool x y := (x && y) || (!x && !y). (We denote boolean conjunction, disjunction
and negation as &&,|| and !.)

2 This example is a significant simplification of one taken from (Gonthier et al., 2013a, 2008).

ZU064-05-FPR unification-journal 22 January 2016 14:8

6 B. Ziliani, M. Sozeau

Similarly, it is possible to declare recursive instances. For example, consider the instance
for the pair type A×B, where A and B are themselves instances of eqType:

De�nition eqType_pair (A B : eqType) :=

EqType (sort A× sort B) (eq_pair A B)

where

eq_pair (A B : eqType) (u v : sort A× sort B) :=

(equal A (π1 u) (π1 v)) && (equal B (π2 u) (π2 v))

In order to use instances eq_bool and eq_pair for overloading, we need to declare them as
Canonical. After they have been declared canonical, whenever the elaboration mechanism
is asked to elaborate a term like equal _ (b1,b2) (c1,c2), for booleans b1,b2,c1 and c2, it
will generate a unification problem matching the expected and inferred type of the second
argument of equal, that is,

sort ?e ≈ bool×bool

for some meta-variable ?e elaborated from the hole (_).
To solve the equation above, COQ’s unification will try instantiating ?e using the

canonical instance eqType_pair, resulting in two new unification subproblems, for fresh
meta-variables ?A and ?B:

sort ?A ≈ bool sort ?B ≈ bool

Next, it will choose ?A := eqType_bool and ?B := eqType_bool, resulting in that equal ?e (b1,b2) (c1,c2)

reduces, as expected, to eq_bool b1 c1 && eq_bool b2 c2.
We can declare a number of canonical eqType instances for our types equipped with

decidable equality. Then, we can uniformly write equal _ t u, and let unification compute
the corresponding instance for the hole, according to the type of t and u.

Polymorphic universes and subtyping: Unification in CIC is not a simple equational
theory, in the sense that it must deal with the subtyping relation generated by the cumulative
universe hierarchy (Type(i) ≤ Type(j) ⇐⇒ i ≤ j). To our knowledge, we present the
first algorithm dealing with this relation properly. In COQ, previous algorithms relied on
the kernel to check the proper use of universes, resulting in particular in non-local error
reporting and the inability to backtrack on these errors, which becomes crucial in presence
of universe polymorphism and first-order approximation.

3 Structural Unification for CC

In this section we start developing an intuitive, simple-minded, algorithm for the Calculus
of Constructions (CC), the basic theory behind the Calculus of Inductive Constructions
(CIC). The presentation here is inspired by Pfenning (1991) and Sacerdoti Coen (2004).

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 7

CC is a λ -calculus with dependent types defined as:

s = Prop | Type sorts

t,u,T,U = x | c | s | ?x | ∀x : T. U | λx : T. t | t u terms and types

Sorts, also called kinds, include the set of propositions Prop, and its kind Type. In CC,
terms and types live in the same syntactic class, although we will differentiate a term from
a type by writing the former in lowercase, as in t and u, and the latter in uppercase, as in
T and U . Terms and types are constructed with variables x ∈ V , constants c ∈ C , sorts
s, meta-variables ?x, dependent products ∀x : T. U , function abstractions λx : T. t, and
applications. A meta-variable represents a hole, that is, a missing piece of the term (or
proof). For applications we borrow the spine notation from Cervesato & Pfenning (2003),
and note t u to represent the application of a list of terms u to term t. We call t the head
of the term, which cannot be itself an application. If we need to specify the number n of
arguments, we extend the notation as un.

In order to typecheck and reduce terms, several contexts are needed, each handling
different types of knowledge:

• Meta-context containing meta-variable declarations and definitions.
• Local context for bound variables.
• A global environment E, containing the types for constants.

Formally,

Σ = · | ?x : T,Σ | ?x := t : T,Σ meta-contexts

Γ = · | x : T,Γ local contexts

E = · | c : T,E global environment

Meta-variables are declared (or defined) in the set Σ. We emphasize the word set because
the type T of a meta-variable defined in Σ may contain a meta-variables in it, and no ordering
is required between them. This is in contrast with the other two contexts Γ and E. We write
?x := t : T to indicate that ?x is defined, that is, should be substituted by t. In this way, our
meta-context also serves the purpose of representing a substitution. For the moment we
will not consider meta-variables having free variables in its type T (or defining term t).
It is common to consider meta-variables with closed types, although we will later show
why this is not good for our purposes and change to a richer definition of meta-variables in
Section 10.

The local context is a list associating variables with types, where each type might include
free variables previously declared, and meta-variables.

The global environment is another list associating constants c with a type T . No meta-
variable nor variable is allowed to occur free in T .

3.1 Reduction rules

Reduction of CC terms is performed through a set of rules listed in Figure 2. We have
the standard β reduction rule, where we note t{u/x} as the standard capture-avoiding

ZU064-05-FPR unification-journal 22 January 2016 14:8

8 B. Ziliani, M. Sozeau

(λx : T. t) u β t{u/x}
?x := t : T ∈ Σ

?x δΣ t

t r t ′

t w
 r t ′

t w
 r t ′

t u w
 r t ′ u

Fig. 2. Reduction rules in CC.

substitution of x by u in t. More interestingly, the δΣ reduction rule takes a meta-variable
?x defined in Σ, and replaces it by its definition t. The relation t w

 r u states the one-step
weak-head reduction of t into u using the relation stated in r (r ∈ {β ,δΣ} for the moment).

Conversion (≡) is defined as the congruent closure of these reduction rules, plus η-
conversion: u≡ λx : T.u x iff x /∈ FV(u).

3.2 Structurally unifying CC terms

We show an algorithm to structurally unify two CC terms. That is, similarly to Sacerdoti
Coen (2004, chp. 10), our algorithm will not reduce terms, so it will preserve the original
structure of terms. Therefore, an equation like (λx. ?y) c ≈ d, where c and d are constants,
will not have a solution, although a β -convertible solution exists; one that assigns d to ?y.
In following sections we will enrich our algorithm to allow such solutions.

Throughout this paper we will represent the algorithm using the following judgment:

Σ;Γ ` t1 ≈ t2 B Σ
′

It unifies well typed terms t1 and t2, given meta-context Σ and a local context Γ, and an
implicit global environment E. The algorithm returns a new meta-context Σ′, which is an
extension of Σ, perhaps with new meta-variables or definitions of existing meta-variables in
Σ. If the algorithm succeeds, terms t1 and t2 are convertible under the returned context Σ′.

Figure 3 shows the rules of the algorithm. Rules TYPE-SAME, VAR-SAME, and RIGID-SAME

apply when both terms are the same sort, variable, or constant, respectively. The reason to
split them in three different rules is because we are going to change some of them in the
coming sections. For products (PROD-SAME) and abstractions (LAM-SAME), we first unify
the types of the arguments, and then the body of the binder, with the local context extended
with the bound variable.

We consider the application of a function to multiple arguments in the rule APP-FO. The
rule first compares functions t and u, and then proceeds to unify point-wise each of the
arguments. The remaining rules consider meta-variables in the head position of a term.
Rules META-δ R and META-δ L expand the definition of the meta-variable on the r.h.s. and
l.h.s. respectively—a one-step δΣ reduction. In the following we will write META-δ (without
R or L) to mean both rules.

If the meta-variable has no definition we have to define (instantiate) the meta-variable. In
Section 10 we will incorporate several useful heuristics to the algorithm for this particular
case, but for the moment we restrict the algorithm to a subclass of equations known as
higher-order pattern unification (HOPU) (Miller, 1991). Equations in this class, in which
the meta-variable is applied to a spine of (distinct) variables, possess a Most General Unifier
(MGU), that is, a unique solution that represents all possible solutions. We have two cases:
either both sides of the equation have the same meta-variable at its head position (META-

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 9

TYPE-SAME
s ∈ {Prop,Type}
Σ;Γ ` s≈ sB Σ

VAR-SAME
x ∈ V

Σ;Γ ` x≈ xB Σ

RIGID-SAME
c ∈ C

Σ;Γ ` c≈ cB Σ

PROD-SAME
Σ0;Γ ` T1 ≈ U1 B Σ1 Σ1;Γ,x : T1 ` T2 ≈ U2 B Σ2

Σ0;Γ ` ∀x : T1. T2 ≈ ∀x : U1. U2 B Σ2

LAM-SAME
Σ0;Γ ` T ≈ U B Σ1 Σ1;Γ,x : T ` t ≈ uB Σ2

Σ0;Γ ` λx : T. t ≈ λx : U. uB Σ2

APP-FO
Σ0;Γ ` t ≈ uB Σ1 n > 0 Σ1;Γ ` tn ≈ un B Σ2

Σ0;Γ ` t tn ≈ u un B Σ2

META-δ R
Σ;Γ ` u w

 δΣ u′

Σ;Γ ` t ≈ u′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

META-δ L
Σ;Γ ` t w

 δΣ t ′

Σ;Γ ` t ′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

META-SAME
?x : U ∈ Σ U ≡ ∀Γ0. T Γ0 ` y∩ zB Γ1

· ` sanitize(Γ1)B Γ2 FV(T)⊆ dom(Γ2) ?y fresh Σ
′ = Σ∪{?y : ∀Γ2. T,?x := ?y Γ̂2}

Σ;Γ ` ?x y≈ ?x zB Σ
′

META-INSTR
?x : U ∈ Σ0 U ≡ ∀Γ0. T

t ′ = (λΓ0. t){y/Γ̂0}−1
Σ0;Γ0 ` t ′ : T ′ Σ0;Γ0 ` T ′ ≈ T B Σ1 ?x 6∈ FMV(t ′)

Σ0;Γ ` t ≈ ?x yB Σ1∪{?x := t ′}

META-INSTL
?x : U ∈ Σ0 U ≡ ∀Γ0. T

t ′ = (λΓ0. t){y/Γ̂0}−1
Σ0;Γ0 ` t ′ : T ′ Σ0;Γ0 ` T ′ ≈ T B Σ1 ?x 6∈ FMV(t ′)

Σ0;Γ ` ?x y≈ t B Σ1∪{?x := t ′}

Fig. 3. Unification algorithm for CC.

INTERSEC-NIL

· ` ·∩ ·B ·

INTERSEC-KEEP
Γ ` y∩ zB Γ

′

Γ,x : A ` y,x′∩ z,x′ B Γ
′,x : A

INTERSEC-REMOVE
Γ ` y∩ zB Γ

′ y′ 6= z′

Γ,x : T ` y,y′∩ z,z′ B Γ
′

Fig. 4. Intersection judgment.

SAME), or we have a meta-variable in the head position on one side, and a term on the other
(META-INSTR and META-INSTL). In the following paragraphs we explain each.

Same Meta-Variable: The rule META-SAME is used when we have the same meta-variable
?x in the head position of both terms in an equation. To better understand this rule, let us
look at an example.

ZU064-05-FPR unification-journal 22 January 2016 14:8

10 B. Ziliani, M. Sozeau

SANITIZE-NIL

ξ ` sanitize(·)B ·

SANITIZE-KEEP
FV(T)⊆ x y,x ` sanitize(Γ)B Γ

′

x ` sanitize(y : T,Γ)B y : T,Γ′

SANITIZE-REMOVE
FV(T) 6⊆ x x ` sanitize(Γ)B Γ

′

x ` sanitize(y : T,Γ)B Γ
′

Fig. 5. Sanitization of contexts.

Example 1. Suppose meta-variable ?z with type ∀x1 : nat. ∀x2 : nat. T , and the following
equation

?z y1 y2 ≈ ?z y1 y3

where y1,y2 and y3 are all distinct variables.

From this equation we cannot know yet what value ?z will be substituted with, but at least
we know it cannot be a function using its second argument, x2. If, for instance, later on ?z is
instantiated with a term like (λx1. λx2. x2), applying the substitution and β -reducing both
terms of the equation we obtain terms y2 and y3 respectively, which are not convertible. So
we need to restrict the set of possible solutions to replace ?z such that they do not refer to x2.
This is achieved by creating a fresh meta-variable ?z′ as a function of x1 and instantiate ?z
with it. The resulting substitution is:

Σ = {?z′ : (∀x1 : nat. T),?z := (λx1. λx2. ?z′ x1) : (∀x1 : nat. ∀x2 : nat. T)}

Rule META-SAME allows for the construction of such solution. It equates the application
of a meta-variable ?x to two spines of variables y and z, on the l.h.s. and on the r.h.s.
respectively. First, we have that ?x has type U , and that U is convertible to a product type
∀Γ0. T , where we implicitly assume that the size of Γ0 is equal to the size of the spines
(note that, since terms are assumed to be well typed, U must be convertible to such product
type). Then, we filter all variables in Γ0 where y and z disagree, obtaining a new context Γ1.
This is reflected in the hypothesis

Γ0 ` y∩ zB Γ1

The intersection judgment is shown in Figure 4. This judgment performs an intersection of
the spines, filtering out those positions from the context Γ1 where the substitutions disagree,
resulting in Γ2. Continuing with Example 1, Γ0 is x1 : nat,x2 : nat, y is y1,y2, and z is y1,y3.
Since y2 and y3 are different variables, the resulting context is Γ1 = x1 : nat.

Fast-forwarding a bit, the last two hypotheses of the rule create a fresh meta-variable ?y
with a product type using the previously generated context (after being sanitized, as we are
going to see next), and substitutes ?x with ?y, applying the spine of variables taken from the
new context using the type-eraser function ·̂, defined as:

̂x1 : T1, . . . ,xn : Tn = x1, . . . ,xn

.
This would be all for the equation of the same meta-variable if it were not for the fact

that the types of products might weakly depend on previous variables, and those variables

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 11

might be eliminated by the intersection judgment. Let us illustrate with an example, where
we assume the existence of constants for the theory of natural numbers (0,≥, etc), with
standard arity.

Example 2. Let Σ = {?x : ∀z : nat. (λw. 0) z≥ 0} and Γ = y : nat,v : nat and equation

?x y ≈ ?x v

Note that the type of ?x is not β -normal, and that z is not really used in the co-domain,
which can be normalized to 0≥ 0. But since in the equation z is being replaced with distinct
variables y and v, then the intersection judgment will remove z from the type of ?x, obtaining
the ill-typed type:

(λw. 0) z≥ 0

where z is not bound anywhere.
One option to solve this kind of issues is to normalize terms in each context, but that can

be rather expensive. Instead, we take a different approach and restrict the set of solutions
to not include such cases. That is, instead of making an effort to find a solution (for
instance, by β -reducing the type of ?x) we fail to find a solution. Formally, we make sure
every variable whose type depends on a removed variable is also removed (hypothesis
· ` sanitize(Γ1) B Γ2), and then we check that the type has all free variables in the new
context (hypothesis FV(T)⊆ dom(Γ2)). The sanitization judgment is defined in Figure 5.

Meta-Variable Instantiation: The META-INST rules instantiate a meta-variable ?x with a
term t, if such instantiation can be performed. As required by HOPU, the meta-variable is
applied to a spine of variables y. As with the META-SAME rule, we can assume ?x has type
(convertible to) ∀Γ0. T , where Γ0 has the same size as y. This rule must find a term t ′ to
substitute ?x with such that

t ≡ t ′ y

t ′ must be a closed term; a function abstracting every variable in Γ0 that, when applied to y,
returns t. We construct such term by “inverting” the substitution mapping variables from Γ0

to variables in y. The inverse substitution is defined in Figure 6. The only interesting case is
when the term is a variable, in which there are two possible scenarios:

1. If the variable yi is in the image of the substitution yn, and it appears only once in the
image, then it is substituted with the variable at the same location in the domain xi.

2. If the variable is not in the image, or it appears more than once, the substitution gets
undefined.

The type of t ′, which now only depends on the context Γ0, is computed as T ′, and unified
with the type of ?x, obtaining a new meta-context Σ1. Finally, an occurs check is performed
to prevent illegal solutions, making sure ?x does not occur in t ′. The algorithm outputs Σ1

plus the instantiation of ?x with t ′.
The last two hypotheses are shown in gray because they are not needed if the type of the

terms are unified prior to unifying the terms.
The rules listed in Figure 3 are overlapping. APP-FO overlaps with all of the META- rules,

and these overlap with themselves. An actual algorithm will break the overlap between APP-
FO and the rest of the rules by forbidding t and u’s heads to be a meta-variable. Similarly,

ZU064-05-FPR unification-journal 22 January 2016 14:8

12 B. Ziliani, M. Sozeau

yi{yn/xn}−1 = xi yi 6∈ {y1, . . .yi−1,yi+1, . . .yn}

h{y/x}−1 = h h ∈ C ∪{Prop,Type}

?x{y/x}−1 = ?x

(∀x : T. U){y/x}−1 = ∀x : T{y/x}−1. U{y/x}−1

(λx : T. t){y/x}−1 = λx : T{y/x}−1. t{y/x}−1

(t u){y/x}−1 = t{y/x}−1 u{y/x}−1

Fig. 6. Inverse substitution

the overlap between META-SAME and the other two META-INST rules is avoided by requiring
that t’s head is not the same meta-variable ?y in the META-INST rules.

But what about the overlap between META-INSTR and META-INSTL? When both terms
are different meta-variables applied to spines of variables, one can choose which rule to use.
But note that the inversion of the substitution will not always be defined. The following
example illustrates this case:

Example 3. Assume Σ = {?x : ∀v : nat. ∀w : nat. nat,?y : ∀u : nat. nat}. In the following
equation META-INSTL finds the solution while META-INSTR does not, assuming variable z is
defined in the local context with the right type.

?y z ≈ ?x z z

In the r.h.s. the duplication of z makes the inversion of the substitution undefined, but
on the l.h.s. it only occurs once so the substitution is perfectly well defined. A unification
algorithm should try both cases in order to ensure no solution is missed.

Before moving to the next section we show the derivation tree from the example in the
introduction.

Example 4 (Unification in a problem about list membership). Consider the COQ definition

De�nition ex0 : y1 ∈ ([y1] ++ [y2]) := inL _ _ _ (in_head _ _)

Containing the main unification problem:

?z1 y1 y2 ∈ ((?z1 y1 y2 :: ?z2 y1 y2) ++ ?z3 y1 y2) ≈ y1 ∈ ([y1] ++ [y2])

Each meta-variable is defined as a function from the context, in this case containing
variables y1 and y2.

We have to be honest here and say upfront that COQ has a more sophisticated representa-
tion for meta-variables, using what is called “Contextual Types”. For the moment, we will
stick to the current representation of meta-variables, until Section 10 in which we introduce
heuristics requiring contextual types.

Figure 7 shows the derivation tree from the example. It is interesting to note that this is a
slightly beautified version of the actual derivation tree our algorithm outputs when put in
debug mode. For this reason there are a few differences in the notation shown above and the
one in the figures. Functions are written using standard COQ notation: fun x => t instead
of λx. t. If necessary, the type of x is added using the traditional x : T notation. Also, the
∈-operator is noted In in the figure, and cons and app are the names for the consing and

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 13

APP-FO

RIGID-SAME
In ≈ In

META-INST

REDUCE-SAME
nat ≈ nat

?z1 y1 y2 ≈ y1

APP-FO

RIGID-SAME
app ≈ app

APP-FO

RIGID-SAME
cons ≈ cons

REDUCE-SAME
(fun x1 x2=>x1) y1 ≈ y1

META-INST

REDUCE-SAME
list nat ≈ list nat

?z2 y1 y2 ≈ []

?z1 y1 y2 :: ?z2 y1 y2 ≈ [y1]

META-INST

REDUCE-SAME
list nat ≈ list nat

?z3 y1 y2 ≈ [y2]

?z0 y1 y2 ++ ?z3 y1 y2 ≈ [y1] ++ [y2]

In (?z1 y1 y2) (?z0 y1 y2 ++ ?z3 y1 y2) ≈ In y1 ([y1] ++ [y2])

Fig. 7. Derivation tree of the unification problem.

appending list operations, respectively. We will often switch from the mathematical notation
we used so far to COQ’s own and vice versa, assuming they are equivalent to the reader. In
both notations we take the convention of collapsing several abstractions into one, and write
λx1 x2. t for λx1. λx2. t (similarly for ∀s).

The rule REDUCE-SAME is a little optimization that compares two meta-closed terms (i.e.,
with no meta-variables) for convertibility:

REDUCE-SAME

FMV(t) = FMV(u) = /0 t ≡ u

Σ;Γ ` t ≈ uB Σ

In the figure there is a meta-variable ?z0 that is not present in the equation shown above.
This meta-variable is defined as ?z1 y1 y2 :: ?z2 y1 y2. The derivation is self-explanatory:
At the top level the APP-FO rule is applied, comparing first the head on both sides of the
equation (In in both cases), and then compares the arguments. For the first argument we
have ?z1 y1 y2 ≈ y1, which by the META-INST rule instantiates ?z1 with λx1 x2. x1, after
checking that the type of both sides of the equation coincides (nat and nat). For the second
argument we have ?z0 y1 y2 ++ ?z3 y1 y2 ≈ [y1] ++ [y2]. After comparing the heads, it is
left with equations ?z0 y1 y2 ≈ [y1] and ?z3 y1 y2 ≈ [y2]. The first one, after an implicit
META-δΣ step, is ?z1 y1 y2 :: ?z2 y1 y2 ≈ [y1]. In this case, ?z1 definition is expanded,
leading to the convertible equation (λx1 x2. x1) y1 ≈ y1. ?z2 is instantiated with a function
returning the empty list. Similarly, for the second equation, ?z3 is instantiated with a function
λx1 x2. [x2].

ZU064-05-FPR unification-journal 22 January 2016 14:8

14 B. Ziliani, M. Sozeau

LAM-β R
Σ;Γ ` u w

 β u′ Σ;Γ ` t ≈ u′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

LAM-β L
Σ;Γ ` t w

 β t ′ Σ;Γ ` t ′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

LAM-ηR
u’s head is not an abstraction

Σ0;Γ ` u : U ensure_product(Σ0;Γ;T ;U) = Σ1 Σ1;Γ,x : T ` u x≈ t B Σ2

Σ0;Γ ` u≈ λx : T. t B Σ2

LAM-ηL
u’s head is not an abstraction

Σ0;Γ ` u : U ensure_product(Σ0;Γ;T ;U) = Σ1 Σ1;Γ,x : T ` t ≈ u xB Σ2

Σ0;Γ ` λx : T. t ≈ uB Σ2

Fig. 8. β -reduction and η-expansion.

4 Unification modulo β -reduction and η-expansion

The first extension we do to the algorithm presented in Section 3 is to allow for β -reductions
and η-expansions. We will use the exact same calculus as in Section 3, so we do not need
to present it here.

The new rules are listed in Figure 8. The first two rules, LAM-β , apply one-step β -
reduction to each side of the equation. Following, we have η-expansion (LAM-η rules).
These two rules unify a function λx : T. t with a term u. The first premise ensures that u’s
head is not an abstraction to avoid overlapping with the LAM-SAME rules, otherwise it is
possible to build an infinite loop, together with rules LAM-β . The following two hypotheses
ensure that u has product type with T as domain. First, the type of u is computed as U , and
then we ensure U is a product with domain T by calling the following function:

ensure_product(Σ0;Γ;T ;U) = Σ2

where Σ1 = Σ0,?v : ∀Γ. ∀y : T. Type for fresh ?v

and Σ1;Γ `U ≈ ∀y : T. ?v Γ̂ yB Σ2

This function returns the result of unifying U with a product type with domain T and
unknown range ?v. For this, the meta-context Σ0 is extended with ?v having type Type and
context Γ extended with y : T .

The LAM-β rules introduce a new overlap with the rule APP-FO. The algorithm first tries
APP-FO, and if it fails then it tries the LAM-β rules. There is also a new overlap among the
LAM-β and the LAM-η rules, when having a β -redex on one side and an abstraction on the
other. In this case the wise thing to do is to assign a priority to the rules. Our algorithm
performs η-expansion last in the hope that β -reducing first will reveal the abstraction
that will match that of the other side. But, ultimately, the set of solutions is the same if
η-expansion is attempted first.

We show an example from the Ssreflect library featuring β -reductions.

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 15

Example 5 (Unification problems featuring β -reductions). The example comes from proving
that subtracting n to m is odd iif XORing the oddity of m and the oddity of n is true:

odd (m−n) = odd m⊕ odd n (1)

for any to natural numbers m and n.

We are interested only in the first step of the proof, in which the second argument of ⊕ is
“moved” to the left:

odd (m−n)⊕ odd n = odd m (2)

This step is performed by the (partial) application of lemma canRL

canRL _ _ (odd (m−n)) (odd m) (addbK _) _ (3)

where

canRL : ∀(f g : bool→ bool) (x y : bool). cancel f g→ f x = y→ x = g y

addbK : ∀b : bool. cancel (λx : bool. x⊕ b) (λx : bool. x⊕ b)

With these ingredients we show two unification problems that arise from (3). In this work
we will not explain in detail how the type inference algorithm of COQ works, and only
provide the basics required to understand the examples. When COQ applies a term like (3)
to the goal (1) it proceeds as follows:

1. It computes the type of the head element. In this case the head element is canRL and
its type is

∀(f g : bool→ bool) (x y : bool). cancel f g→ f x = y→ x = g y

2. For each argument,

• if it is a hole (_), it generates a fresh meta-variable with the right type, as a function
of the local context. For instance, the first two arguments generate meta-variables
? f and ?g with type

∀m n : bool. bool→ bool

(Equivalent to bool→ bool→ bool→ bool.)
• if it is a term, it unifies its type with the type corresponding to the argument’s

position. For instance, the type of odd (m−n) and odd m is unified with the type
of x and y respectively (both of type bool).

3. Once every argument is processed, the type of the whole term is unified with the goal.

The two interesting bits are the unification of the type of addbK _ with the first unnamed
argument and the unification of the whole term with the goal. The first one is:

cancel (λx : bool. x⊕ (?b m n)) (λx : bool. x⊕ (?b m n)) ≈ cancel (? f m n) (?g m n) (4)

where ?b comes from the hole in (addbK _), and has type ∀m n : bool. bool. The derivation
tree resulting from solving this equation can be seen in Figure 9. In the figure non-dependent
products T →U are written ∀_ : T. U . Subtraction is noted subn, equality eq (parametrized
over the type of the arguments), and the XOR operator is addb (for boolean addition). As

ZU064-05-FPR unification-journal 22 January 2016 14:8

16 B. Ziliani, M. Sozeau

APP-FO

RIGID-SAME
cancel ≈ cancel

META-INST

REDUCE-SAME
forall _ : bool , bool ≈ forall _ : bool , bool

?f m n ≈ fun x => addb x (?b m n)

META-INST

REDUCE-SAME
forall _ : bool , bool ≈ forall _ : bool , bool

?g m n ≈ fun x => addb x ((fun y => y) (?b m n))

cancel (fun x => addb x (?b m n)) (fun x => addb x ((fun y => y) (?b m n)))
≈ cancel (? f m n) (?g m n)

Fig. 9. Derivation of unifying the type addbK _ with the type of the argument in canRL.

can be seen in Figure 9, this problem is merely a structural matching between the two terms,
in which ? f and ?g are instantiated with the same term

fun m n x => addb x ((fun y => y) (?b m n)).

Now for the second equation, remember that we have to unify x = g y with the goal, where x,
y, and g are odd (m−n), odd m, and ?g m n, respectively. The unification problem becomes

odd (m−n) = ?g m n (odd m) ≈ odd (m−n) = odd m⊕ odd n

The derivation tree is shown in Figure 10. The left-hand sides of the equalities are exactly
the same (odd (m− n)). In the right-hand sides is where we see some action: the meta-
variable ?g is (implicitly) δΣ-reduced in the l.h.s. to expose the function (λm n x. x ⊕
(λy. y) (?b m n)) applied to m, n, and (odd m). At this point the l.h.s. is β -reduced three
times, until the constant addb occurs on both sides of the equation. Via APP-FO and another
β -reduction, we arrive at the point in which ?b is instantiated as λm n. odd n.

5 Adding local and global definitions

In this section we will add an important feature to our language: local and global definitions.
The terms of the language are extended with let− ins:

t,u,T,U = . . . | let x := t : T in u terms and types

The definitions are “stored” in the local and global context:

Γ = . . . | x := t : T,Γ local contexts

E = . . . | c := t : T,E global environment

We add three reduction rules, one to substitute the local definition in the body of the term
(ζ -reduction), and two to expand local and global definitions:

let x := u : T in t ζ t{u/x}
(x := t : T) ∈ Γ

x δΓ t

(c := t : T) ∈ E

c δE t

Figure 11 shows the new unification rules. They reduce terms according to the aforemen-
tioned reduction rules, with the sole exception of the LET-SAME rule: instead of ζ -reducing

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 17

APP-FO

RIGID-SAME
eq ≈ eq

REDUCE-SAME
bool ≈ bool

REDUCE-SAME
odd (subn m n) ≈ odd (subn m n)

3 × LAM-β L

APP-FO

RIGID-SAME
addb ≈ addb

REDUCE-SAME
odd m ≈ odd m

LAM-β L

META-INST

REDUCE-SAME
bool ≈ bool

?b m n ≈ odd n

(fun x => x) (?b m n) ≈ odd n

addb (odd m) ((fun x => x) (?b m n))
≈ addb (odd m) (odd n)

(fun m n x => addb x ((fun y => y) (?b m n))) m n (odd m)
≈ addb (odd m) (odd n)

eq bool (odd (subn m n)) (?g m n (odd m))
≈ eq bool (odd (subn m n)) (addb (odd m) (odd n))

Fig. 10. Derivation of a simple unification problem featuring β -reduction.

LET-SAME
Σ0;Γ ` T ≈ U B Σ1 Σ1;Γ ` t2 ≈ u2 B Σ2

Σ2;Γ,x := t2 ` t1 ≈ u1 B Σ3

Σ0;Γ ` let x := t2 : T in t1 ≈ let x := u2 : U in u1 B Σ3

LET-ζ R
Σ;Γ ` u w

 ζ u′

Σ;Γ ` t ≈ u′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

LET-ζ L
Σ;Γ ` t w

 ζ t ′

Σ;Γ ` t ′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

VAR-δΓR
Σ;Γ ` u w

 δΓ u′

Σ;Γ ` t ≈ u′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

VAR-δΓL
Σ;Γ ` t w

 δΓ t ′

Σ;Γ ` t ′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

CONS-δER
Σ;Γ ` u w

 δE u′

Σ;Γ ` t ≈ u′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

CONS-δEL
Σ;Γ ` t w

 δE t ′

Σ;Γ ` t ′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

Fig. 11. Unification rules for local and global definitions.

two let-ins, it tries to unify the definitions and then the bodies in a context augmented with
one of the definitions (it takes the one from the right). In this way, if the definition is used
many times in the body, it will only be unified once. If the two let-ins fail to unify, the
algorithm proceeds to reduce each side with the LET-ζ rules. Rules VAR-δΓ and CONST-δE
expand local and global definitions respectively. As we will see in Section 9, expanding
definitions blindly is not a good idea, so we will present a heuristic that will improve the
performance and coverability of the algorithm.

ZU064-05-FPR unification-journal 22 January 2016 14:8

18 B. Ziliani, M. Sozeau

Additions to intersection and sanitization judgments: The intersection judgment should
consider definitions in the local context:

INTERSEC-KEEP-DEF

Γ ` y∩ zB Γ
′

Γ,x := u : A ` y,x′∩ z,x′ B Γ
′,x := u : A

INTERSEC-REMOVE-DEF

Γ ` y∩ zB Γ
′ y′ 6= z′

Γ,x := u : T ` y,y′∩ z,z′ B Γ
′

Similarly, we extend the sanitization judgment with the following rules:

SANITIZE-KEEP-DEF

FV(T)⊆ x FV(u)⊆ x y,x ` sanitize(Γ)B Γ
′

x ` sanitize(y := u : T,Γ)B y := u : T,Γ′

SANITIZE-REMOVE-DEF

FV(T) 6⊆ x ∨ FV(u) 6⊆ x x ` sanitize(Γ)B Γ
′

x ` sanitize(y := u : T,Γ)B Γ
′

6 CCω : the Type hierarchy

The Calculus of Constructions as presented so far only admits impredicative constructions,
which is fine if one does not care about identifying different objects of the same type. If
we want to extend our calculus with predicative constructions, then we need to consider
the Type hierarchy if we do not want to get caught by Girard’s Paradox. The sorts of our
language are replaced with:

s = Type(K+
) sorts

K = ` | K +1

`,κ, i, j ∈ N universe levels

Sorts now include algebraic universes, which represent least upper bounds of a (non-
empty) set of levels or successors of levels. They are used notably to sort products, e.g.
(∀A : Type(i),Type(j)) : Type(i+1, j), meaning that the type of ∀A : Type(i),Type(j) is a
Type with a level expected to be the greatest among i+1 and j. The special sort Prop is
encoded as Type(0−), where the negative sign indicates its impredicative nature. For the
purpose of unification, it is equivalent to Type(0).

The unification algorithm must check that universes are treated properly, so we need to
extend it with a new context Φ to handle universe constraints.

Φ = ` � C universe contexts

C = · | C ∧ ` O `′ where O ∈ {=,≤,<} constraints

A universe context is basically a set of constraints C on universe levels `. In Section 11
we will extend universe contexts to support polymorphic levels. Each constraint restricts a
universe level to be equal, less than or equal, or less than another level.

The unification judgment is extended to receive and return universe contexts:

Φ;Σ;Γ ` t1 ≈R t2 BΦ
′,Σ′

Where the relation

R = ≡ | ≤

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 19

indicates if were are trying to derive conversion of the two terms or cumulativity, the
subtyping relation on universes.

The new definition for the unification judgment forces us to rewrite the entirety of the
rules we presented in previous sections. However, in order to ease the presentation, we will
only focus on the main changes, and leave the rest of the rules untouched. The algorithm in
full is shown in Appendix A.

TYPE-SAME

Φ
′ = ` � C ∧u R κ Φ

′ �

` � C ;Σ;Γ ` Type(u)≈R Type(κ)BΦ
′;Σ

APP-FO
Φ0;Σ0;Γ ` t ≈R uBΦ1;Σ1 n > 0 Φ1;Σ1;Γ ` tn ≈≡ un BΦ2;Σ2

Φ0;Σ0;Γ ` t tn ≈R u un BΦ2;Σ2

LAM-SAME

Φ0;Σ0;Γ ` T ≈≡ U BΦ1;Σ1 Φ1;Σ1;Γ,x : T ` t ≈R uBΦ2;Σ2

Φ0;Σ0;Γ ` λx : T. t ≈R λx : U. uBΦ2;Σ2

The rule TYPE-SAME unifies two sorts, according to the relation R. By an invariant on
typing derivations, we know that the right-hand side universe can only be a single level
while the l.h.s. can be the least upper bound of a set of universe levels or successors iff the
relation is cumulativity, and any such ≤ constraints can be translated to a set of atomic ≤
or < constraints (see Sozeau & Tabareau (2014) for details). The predicate Φ � denotes
satisfiability of the set of constraints in Φ.

For the rest of the rules, the universe context is just threaded along, as can be seen in the
new version of rules APP-FO and LAM-SAME. More interestingly, the relation R is treated as
follow: For APP-FO, the head elements are unified respecting R, while the arguments must
respect strict conversion (≡). For LAM-SAME the type of the arguments are unified using ≡
while the body respects the given relation. The rest of the rules are modified accordingly.

7 CIC: Extending CCω with inductive types

In this section we arrive at the full calculus in which Coq is based on: the Calculus of
Inductive Constructions (CIC) (The Coq Development Team, 2012, chap. 4). In essence it is
CCω extended with inductive types. It also includes co-inductive types, but their formulation
is not important for this work, so it will be omitted.

We show an example of a mutually inductive datatype in Figure 12. It is inspired from
The Coq Development Team (2012, chap. 4). It consist of a tree, which is a node containing
an element and finitely many branch es. Each branch consists of a leaf or the consing of
a tree to a branch. Leafs are allowed to have objects of different type (B) than objects in
trees (A). As an example of a mutually recursive fixpoint, we show in the same figure how
to compute the size of the tree.

ZU064-05-FPR unification-journal 22 January 2016 14:8

20 B. Ziliani, M. Sozeau

Inductive tree (A B : Set) : Set :=
node : A → branch A B → tree A B

with branch (A B : Set) : Set :=
| leaf : B → branch A B
| cons : tree A B → branch A B → branch A B.

Fixpoint tree_size (t : tree) : nat :=
match t with
| node a f ⇒ S (branch_size f)
end

with branch_size (b : branch) : nat :=
match b with

| leaf _ ⇒ 1
| cons t b' ⇒ (tree_size t + branch_size b')
end.

Fig. 12. A mutually inductive type: a tree.

The terms (and types) of the language are extended with the following definitions:

t,u,T,U = . . . | i | k |matchT t with k1 x1⇒ t1 | . . . |kn xn⇒ tn end terms and types

| �x j { f1/n1 : T1 := t1; . . . ; fm/nm : Tm := tm}

Terms include inductive type constructors i ∈ I and constructors k ∈K . In order to
destruct an element of an inductive type, CIC provides regular pattern matching and
mutually recursive �xpoints. Their notation is slightly different from, but easily related to,
the actual notation from COQ. match is annotated with the return predicate T , meaning that
the type of the whole match expression may depend on the element being pattern matched
(as . . . in . . . in standard COQ notation). In the �x expression, f/n : T := t means that f is a
function of type T , with at least n arguments, and the n-th variable is the decreasing one in
the body t (struct in COQ notation). The subscript j of �x selects the j-th function as the
main entry point of the mutually recursive fixpoints.

The global environment E is extended to allow inductive types:

E = . . . | I,E global environment

I = ∀Γ. { i : ∀y : Th. s := {k1 : U1; . . . ;kn : Un} } inductive types

A set of mutually recursive inductive types I is prepended with a list of parameters Γ.
Every inductive type i defined in the set has sort s, with parameters y : Th. It has a possibly
empty list of constructors k1, . . . ,kn. For every j, each type U j of constructor k j has shape
∀z : U ′. i t1 . . . th. The representation of the example in Figure 12 in our internal language
is presented in Figure 13.

Inductive definitions are restricted to avoid circularity, meaning that every type constructor
i can only appear in a strictly positive position in the type of every constructor. For the
purpose of this work, understanding this restriction is not crucial, and we refer the interested
reader to (The Coq Development Team, 2012, chap. 4). Additionally, fixpoints on inductive

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 21

{ tree : Set→ Set→ Set := {node : ∀A B. A→ branch A B→ tree A B};
branch : Set→ Set→ Set :=

{leaf : ∀A B. B→ branch A B;

cons : ∀A B. tree A B→ branch A B→ branch A B} }

�x0 { tree_size/0 : tree→ nat :=

λ t : tree. matchnat t with

node a f ⇒ S (forest_size f)

end;

branch_size/0 : branch→ nat :=

λb : branch. matchnat b with

leaf l⇒ 1

cons t b′⇒ (tree_size t +branch_size b′)

end }

Fig. 13. Representation of the tree type in CIC.

RIGID-SAME
h ∈ C ∪I ∪K

Σ;Γ ` h≈ hB Σ

CASE-SAME
Σ0;Γ ` T ≈ U B Σ1 Σ1;Γ ` t ≈ uB Σ2 Σ2;Γ ` b≈ b′ B Σ3

Σ0;Γ `matchT t with b end≈ matchU u with b′ endB Σ3

FIX-SAME
Σ0;Γ ` T ≈ U B Σ1 Σ1;Γ ` t ≈ uB Σ2

Σ0;Γ ` �x j {x/n : T := t} ≈ �x j {x/n : U := u}B Σ2

CASE-ιR
Σ;Γ ` u w

 ι u′

Σ;Γ ` t ≈ u′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

CASE-ιL
Σ;Γ ` t w

 ι t ′

Σ;Γ ` t ′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

Fig. 14. Unifying terms sharing the same head constructor.

types must pass the guard condition (ibid., §4.5.5) to be accepted by the kernel, a syntactic
criterion ensuring termination. We will come back to this point in Section 15.

Reduction of �xpoints and matches is performed with the ι-reduction:

matchT k j t with k x⇒ u end ι u j{t/x j}
F = f/n : T := t an = k j t

�x j {F} a ι t j{�xm {F}/ fm} a

When the scrutinee of the match is constructor k j applied to terms t, the corresponding
branch u j is returned, replacing every variable in the pattern with t. For �xpoints, the body
t j of the j-th function defined in F is returned, substituting each occurrence of recursive
calls fm with the fixpoint definition for that m.

As for unification, we extend the rule RIGID-SAME to also consider inductive types and
constructors. Additionally, we have new rules CASE-SAME and FIX-SAME which unify
matches and �xpoints, respectively, by unifying pointwise every component of the term

ZU064-05-FPR unification-journal 22 January 2016 14:8

22 B. Ziliani, M. Sozeau

LOOKUP-CS
(p j,h,cι) ∈ ∆db ι δE λx : T . k p′ v Σ1 = Σ0,?y : T Σ1;Γ ` p≈ p′{?y/x}B Σ2

Σ0 ` (p j; p;h) ∈? ∆db B Σ2; ι ?y,v j{?y/x}

CS-CONSTR
Σ0 ` (p j; p;c) ∈? ∆db B Σ1; ι ;c u′

Σ1;Γ ` u≈ u′ B Σ2 Σ2;Γ ` i≈ ι B Σ3 Σ4;Γ ` t ′ ≈ t B Σ4

Σ0;Γ ` c u t ′ ≈ p j p i t B Σ4

CS-PRODR
Σ0 ` (p j; p;→) ∈? ∆db B Σ1; ι ;u→ u′

Σ1;Γ ` t ≈ uB Σ2 Σ2;Γ ` t ′ ≈ u′ B Σ3 Σ3;Γ ` i≈ ι B Σ4

Σ0;Γ ` t→ t ′ ≈ p j p iB Σ4

CS-SORTR
Σ0 ` (p j; p;s) ∈? ∆db B Σ1; ι ;v j Σ1;Γ ` s≈ v j B Σ2 Σ2;Γ ` i≈ ι B Σ3

Σ0;Γ ` s≈ p j p iB Σ3

CS-DEFAULTR
Σ0 ` (p j; p;_) ∈? ∆db B Σ1; ι ;v j Σ2;Γ ` t ≈ v j B Σ3 Σ3;Γ ` i≈ ι B Σ4

Σ0;Γ ` t ≈ p j p iB Σ4

Fig. 15. Canonical structures resolution.

constructors. Finally, we have two rules to perform ι-reductions, one on each side of the
equation (CASE-ι).

8 Canonical Structures Resolution

We mentioned in the introduction the overloading mechanism known as Canonical Struc-
tures (CS). The example, which we revisit here, was the typical overloading of the (decid-
able) equality operator.

Example 6 (Overloading of equality operator).

We define the eqType structure, similar to the Eq typeclass in Haskell:

Structure eqType := EqType { sort : Type;
equal : sort→ sort→ bool}

A Structure in COQ is just syntactic sugar for an inductive type with only one constructor,
and with projections generated for each argument of the constructor. If we print the generated
projector equal, for instance, we obtain:

equal = λe : eqType.match e with | EqType _ eq⇒ eq end

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 23

We instantiate the structure with equality for booleans and pairs, and made them canonical:

De�nition eqType_bool := EqType bool eq_bool

Canonical eqType_bool

De�nition eqType_pair (A B : eqType) :=

EqType (sort A× sort B) (eq_pair A B)

Canonical eqType_pair

The expected behavior of declaring a definition as canonical is to let the unification algorithm
know that, when the sort of an unknown instance is being matched with a constant, it should
instantiate the unknown with the canonical instance declared with that same constant. For
instance, the declarations above defines instances eq_bool and eq_pair as the canonical
instances for bool and the × operator, respectively. With these definitions, the unification
algorithm is able to find the missing bit in the expression equal _ (b1,b2) (c1,c2), where
each variable is of type bool.

Technically, when an instance i of a structure is declared Canonical, COQ will add, for
each projector, a record in the canonical structures database (∆db). Each record registers a
key consisting of the projector p and the head constructor h of the value for that projector in
the instance, and a value, the instance i itself. Then, at high level, when the algorithm has
to solve an equation of the form h t ≈ p ?x, it searches for the key (p,h) in the database,
finding that ?x should be instantiated with i. Besides constants, COQ allows three other types
of keys: sorts, non-dependent products, and variables (which turn into default instances
matching anything).

The process is formally described in Figure 15. We always start from an equation of the
form:

t ′′ ≈ p j p i t

where p j is a projector of a structure, p are the parameters of the structure, i is the instance
(usually a meta-variable), and t are the arguments of the projected value, in the case when it
has product type. In order to solve this equation the algorithm proceeds as follows:

1. First, a constant cι is selected from ∆db, keying on the projector p j and the head
element h of t ′′. Its body is a function taking arguments x : T and returning the term
k p′ v, with k the constructor of the structure, p′ the parameters of the structure, and v
the values for each of the fields of the structure.

2. Then, the expected and inferred universe instances and parameters of the instance are
unified, after replacing every argument x with a corresponding fresh meta-variable ?y.

3. According to the class of h, the algorithm considers different rules:

(a) CS-CONST if h is a constant c.
(b) CS-PROD if h is a non-dependent product t→ t ′.
(c) CS-SORT if h is a sort s.

If these do not apply, then it tries CS-DEFAULT.
4. Next, the term t ′′ is unified with the corresponding projected term in the value of the

instance for the j-th field. If t ′′ is a constant c applied to arguments u, and the value
v j of the j-th field of ι is c applied to u′, then arguments u and u′ are unified. If t ′′ is

ZU064-05-FPR unification-journal 22 January 2016 14:8

24 B. Ziliani, M. Sozeau

CS

CS

META-INST

REDUCE-SAME
eqType ≈ eqType

?X70 ≈ eqType_bool

sort ?X70 ≈ bool

CS

META-INST

REDUCE-SAME
eqType ≈ eqType

?X71 ≈ eqType_bool

sort ?X71 ≈ bool

META-INST

REDUCE-SAME
eqType ≈ eqType

?X67 ≈ eqType_pair ?X70 ?X71

sort ?X67 ≈ (?X68 * ?X69)

Fig. 16. Example of CS resolution for equality.

a product with premise t and conclusion t ′, they are unified with the corresponding
terms (u and u′) in v j.

5. The instance of the structure i is unified with the instance found in the database, ι ,
applied to the meta-variables ?y. Typically, i is a meta-variable, and this step results
in instantiating the meta-variable with the constructed instance.

6. Finally, for CS-CONST only, if the j-th field of the structure has product type, and is
applied to t ′ arguments, then these arguments are unified with the arguments t of the
projector.

We only show the rules in one direction, with the projector on the right-hand side, but the
algorithm also includes the rules in the opposite direction.

Figure 16 shows the derivation tree for the example posed at the beginning of the section.
For readability we left out the spine of variables applied to each meta-variable. They play
no role in this derivation.

9 Controlled backtracking

In Section 5, and Section 7 we incorporated several reduction strategies (δΓ,δΣ, ι), without
any consideration of the performance penalty that this process may incur. However, if at
every unfolding of a constant, fixpoint evaluation, or case analysis, we consider again the
whole set of rules, backtracking at every mismatch, it is quite easy to trash the performance
of the algorithm. Therefore, a heuristic to reduce terms after a δΓ,δΣ, ι step is needed,
taking into account that we might miss solutions if we reduce them too much, as already
pointed out when introducing controlled backtracking in Section 1.

In this section we introduce changes to the rules CASE-ι and CONS-δ . The high level idea
will be to stop reducing when the algorithm finds a constant (or defined variable). More
precisely, for CASE-ι we want to be able to reduce the scrutinee of a case, or the argument of
a fixpoint, using all reduction rules, including δE and δΓ, and then (if applicable), continue

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 25

t ↓w
βζ δι

k j a

matchT t with k x⇒ t ′ end θ matchT k j a with k x⇒ t ′ end

an j ↓w
βζ δι

k b

�x j {F} a1 . . . an j θ �x j {F} a1 . . . an j−1 (k b)

Fig. 17. The θ -reduction strategy.

reducing the corresponding branch of the match or the body of the �x, but avoiding δE
and δΓ.

We illustrate this desired behavior with a simple example using canonical structures.
Consider the environment E = d := 0;c := d, where there is also a structure with projector
proj. Suppose further that there is a canonical instance i registered for proj and d. Then, the
algorithm should succeed finding a solution for the following equation:

match c with 0⇒ d | _⇒ 1 end ≈ proj ? f (5)

where ? f is an unknown instance of the structure. More precisely, we expect the left-hand
side to be reduced as

d ≈ proj ? f

therefore enabling the use of the canonical instance i to solve ? f .
This is done in the new CASE-ι rules shown in Figure 18 by weak-head normalizing

the l.h.s. using the standard βζ δΣι reduction rules plus a new reduction rule, θ , which
weak-head normalizes scrutinees (Figure 17). Note that we really need this new reduction
rule: we cannot consider weak-head reducing the term using δE, as it will destroy the
constant d in the example above, nor restrict reduction of the scrutinee to not include δE, as
it will be too restrictive (disallowing δE in the reduction on the l.h.s. makes Equation 5 not
unifiable).

In Equation 5 we have a match on the l.h.s., and a constant on the r.h.s. (the projector).
By giving priority to the ι reduction strategy over the δE one we can be sure that the
projector will not get unfolded beforehand, and therefore the canonical instance resolution
mechanism will work as expected. Different is the situation when we have constants on
both sides of the equation. For instance, consider the following equation:

c ≈ proj ? f (6)

in the same context as before. Since there is no instance defined for c, we expect the
algorithm to unfold it, uncovering the constant d. Then, it should solve the equation, as
before, by instantiating ? f with i. If the projector is unfolded first instead, then the algorithm
will not find the solution. The reason is that the projector unfolds to a case on the unknown
? f :

c ≈ match ? f with Constr a1 . . . an⇒ a j end

(Assuming the projector proj corresponds to the j-th field in the structure, and Constr is the
constructor of the structure.) Now the canonical instance resolution will fail to see that the
right-hand side is (was) a projector, so after unfolding c and d on the left, the algorithm will
give up and fail.

ZU064-05-FPR unification-journal 22 January 2016 14:8

26 B. Ziliani, M. Sozeau

CASE-ιR
u is �x or match Σ;Γ ` u↓w

βζ δΣιθ
u′

u 6= u′ Σ;Γ ` t ≈ u′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

CASE-ιL
t is �x or match Σ;Γ ` t ↓w

βζ δΣιθ
t ′

t 6= t ′ Σ;Γ ` t ′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

CONS-δ NOTSTUCKR
not Σ;Γ ` is_stuck u u w

 δE,δΓ u′

Σ;Γ ` u′ ↓w
βζ δΣιθ

u′′ Σ;Γ ` t ≈ u′′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

CONS-δ STUCKL
Σ;Γ ` is_stuck u t w

 δE,δΓ t ′

Σ;Γ ` t ′ ↓w
βζ δΣιθ

t ′′ Σ;Γ ` t ′′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

CONS-δ R
not t w

 δE,δΓ t ′ u w
 δE,δΓ u′

Σ;Γ ` u′ ↓w
βζ δΣιθ

u′′ Σ;Γ ` t ≈ u′′ B Σ
′

Σ;Γ ` t ≈ uB Σ
′

CONS-δ L
not u w

 δE,δΓ u′ t w
 δE,δΓ t ′

Σ;Γ ` t ′ ↓w
βζ δΣιθ

t ′′ Σ;Γ ` t ′′ ≈ uB Σ
′

Σ;Γ ` t ≈ uB Σ
′

Fig. 18. New unification rules for reduction.

In this case we cannot just simply rely on the ordering of rules, since that would make
the algorithm sensitive to the position of the terms. In order to solve Equation 6 above, for
instance, we need to prioritize reduction on the l.h.s. over the r.h.s., but this prioritization
will have a negative impact on equations having the projector on the left instead of the right.
The solution is to unfold a constant on the r.h.s. only if the term does not “get stuck”, that is,
does not evaluate to certain values, like an irreducible match. More precisely, we define
the concept of “being stuck” as

is_stuck t = ∃t ′ t ′′. t 0..1
δE,δΓ

t ′∧ t ′ ↓w
βζ ιθ

t ′′ and the head
of t ′′ is a variable, case, fix, or abstraction

That is, after performing an (optional) δE or δΓ step and βζ ιθ -weak-head reducing
the definition, the head element of the result is tested to be a match, �x, variable, or a
λ -abstraction. Note that the reduction will effectively stop at the first head constant, without
unfolding it further. This is important, for instance, when having a definition that reduces to
a projector of a structure. If the projector is not exposed, and is instead reduced, then some
canonical solution may be lost.

The rule CONS-δ NOTSTUCKR unfolds the right-hand side constant only if it will not
get stuck. If it is stuck, then the rule CONS-δ STUCKL triggers and unfolds the left-hand
side, which is precisely what happened in the example above. The rules CONS-δ are
triggered as a last resort. This controlled unfolding of constants, together with canonical
structures resolution, is what allows the encoding of sophisticated meta-programming
idioms in Gonthier et al. (2013a). In Section 16 we show in detail an example of this type
of meta-programming.

10 Heuristics for Meta-variable instantiation

We mentioned in Section 3 that meta-variables can only be instantiated with closed terms,
which forces the creation of meta-variables having product type abstracting every variable
from the local context. This treatment of meta-variables is easy to understand and implement,
but very inefficient and leading to unnecessarily large terms. For instance, remember

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 27

Example 4. The equation to solve there was:

?z1 y1 y2 ∈ ((?z1 y1 y2 :: ?z2 y1 y2) ++ ?z3 y1 y2) ≈ y1 ∈ ([y1] ++ [y2])

And the solution generated by the algorithm was:

?z1 := λx1 x2. x1

?z2 := λx1 x2. []

?z3 := λx1 x2. [x2]

Substituting these meta-variables in the term on the left of the original equation, we obtain
the fairly unreadable term (remember, the user might stumble across this term!):

(λx1 x2. x1) y1 y2 ∈ (((λx1 x2. x1) y1 y2 :: (λx1 x2. []) y1 y2) ++ (λx1 x2. [x2]) y1 y2)

Instead, we would like our term to look like the original one:

y1 ∈ ((y1 :: []) ++ ([y2])

Not only because it is cleaner to read; also because it avoids unnecessary β -reduction, like
two of the three reductions in Figure 10.

One option is to force β -reduction when δΣ-expanding a meta-variable. But that does
not solve the performance problem, and might reduce a function where it should not. After
all, which abstractions should be considered part of the “local context” of the meta-variable,
and be reduced to obtain a more “natural-looking” term? COQ solves this issue by encoding
meta-variables with contextual types.

The definition of the meta-context changes to:

Σ = · | ?x : T [Ψ],Σ | ?x := t : T [Ψ],Σ

Ψ = Γ

Where type T and term t must have all of their free variables bound within the local context
Ψ. In this work we borrow the notation T [Ψ] from Contextual Modal Type Theory (Nanevski
et al., 2008).

The definition of terms also has to change to accommodate for the new definition. Since
meta-variables are no longer defined as abstractions of the local context, we have to somehow
specify what is the relation between the local context and the meta-variable context. This
is done with what is called a suspended substitution, which is nothing more than a list of
terms.

t,u,T,U = . . . | ?x[σ] terms and types

σ = t

The expansion of the definition of a meta-variable in a term changes to:

?x[σ] δΣ t{σ/Ψ̂} if ?x := t : T [Ψ] ∈ Σ

That is, every variable in the domain of Ψ is replaced with the terms from σ .

ZU064-05-FPR unification-journal 22 January 2016 14:8

28 B. Ziliani, M. Sozeau

In the simple examples shown so far, the local context of meta-variables played no
role but, as we are going to see in the next example, they prevent illegal instantiations of
meta-variables. For instance, such illegal instantiations could potentially happen if the same
meta-variable occurs at different locations in a term, with different variables in the scope of
each occurrence. We illustrate this point with an example taken from Ziliani et al. (2015).
Suppose function f defined locally as follows:

f := λw : nat. (_ : nat)

The accessory typing annotation provides the expected type for the meta-variable. Assuming
no other variables occur in scope, after elaboration f becomes:

f := λw : nat. ?v[w] (7)

for some fresh meta-variable ?v. Since any instantiation of ?v may only refer to w, its
type becomes nat[w : nat]. This contextual type specifies precisely that ?v may only be
instantiated with a term of type nat containing at most a single free variable w of type
nat. In the elaborated term (7), [w] stands for the suspended substitution specifying how to
transform such instantiation into one that is well-typed under the current context. In this
case, this substitution is the identity, because the current context and the context under
which ?v was created are identical (in fact, the latter is a copy of the former).

Now suppose that we define functions g and h referring to f :

g := λx y : nat. f x h := λ z : nat. f z

and proceed to unify g with a function projecting the first argument:

g ≈ λx y : nat. x

After unfolding the definition of g (CONS-δ L) it compares the two lambda abstractions
(LAM-SAME twice), pushing x and y in the local context. The new equation to solve becomes:

f x ≈ x

After unfolding f and β -reducing the left-hand side (CONS-δ L and LAM-β L), we are left
with the following equation:

?v[x] ≈ x

At this point is where the contextual type of ?v comes into play. If meta-variables were
created with a normal type, that is, not having contextual type (and suspended substitution),
and were allowed to be defined with an open term, it would seem that the only solution for
?v is x. However, that solution would break the definition of h since x is not in scope there.
Given the contextual information, however, COQ will correctly realize that ?v should be
instantiated with w, not x. Under that instantiation, g will normalize to λx y : nat. x, and h
will normalize to λ z : nat. z.

The suspended substitution and the contextual type are the tools that the unification
algorithm uses to know how to instantiate the meta-variable. The decision to solve ?v[x] ≈ x
by instantiating ?v : nat[w : nat] with w is due to the problem falling in the pattern unification
subset (c.f., Section 3). When COQ faces a problem of the form

?u[y1, . . . ,yn] ≈ e

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 29

META-SAME-SAME
Σ;Γ ` t ≈≡ uB Σ

′

Σ;Γ ` ?x[σ] t ≈R ?x[σ] uB Σ
′

META-SAME
?x : T [Ψ1] ∈ Σ Ψ1 ` σ ∩σ

′ BΨ2 · ` sanitize(Ψ2)BΨ3

FV(T)⊆Ψ3 Σ∪{?y : T [Ψ3],?x := ?y[Ψ̂3]};Γ ` t ≈≡ uB Σ
′

Σ;Γ ` ?x[σ] t ≈R ?x[σ ′] uB Σ
′

INTERSEC-NIL

· ` ·∩ ·B ·

INTERSEC-KEEP
Γ ` σ ∩σ

′ B Γ
′

Γ,x : A ` σ , t ∩σ
′, t B Γ

′,x : A

INTERSEC-REMOVE
Γ ` σ ∩σ

′ B Γ
′ y 6= z

Γ,x : T ` σ ,y∩σ
′,zB Γ

′

INTERSEC-KEEP-DEF
Γ ` σ ∩σ

′ B Γ
′

Γ,x := u : A ` σ , t ∩σ
′, t B Γ

′,x := u : A

INTERSEC-REMOVE-DEF
Γ ` σ ∩σ

′ B Γ
′ y 6= z

Γ,x := u : T ` σ ,y∩σ
′,zB Γ

′

Fig. 19. Unification of the same meta-variable.

where the y1, . . . ,yn are all distinct variables, then the most general solution to the problem
is to invert the substitution and apply it on the right-hand side of the equation, in other
words instantiating ?u with e{x1/y1, . . . ,xn/yn}, where x1, . . . ,xn are the variables in the
local context of ?u (and assuming the free variables of e are in {y1, . . . ,yn}).

In the example above, at the point where COQ tries to unify ?u[x] ≈ x, the solution
(through inversion) is to instantiate ?u with x{w/x}, that is, w.

In the following subsections we introduce different modifications and additions to the
algorithm in order to deal with contextual types, at the same time enhancing the algorithm
to solve a broader set of equations. For brevity we will only provide rules where the
meta-variable is on the r.h.s. (rules ending with R).

10.1 Improving META-SAME

The first rule we consider is META-SAME. When the algorithm is faced with the following
equation:

?x[σ] t ≈ ?x[σ ′] u

unlike in Section 3, only the suspended substitutions are intersected. Additionally, we
broaden the intersection judgment to consider general terms and not only variables. In order
to compensate for not intersecting the arguments, we allow for solvable differences (that is,
arguments that are convertible or unifiable).

The new definitions are given in Figure 19. We include a little optimization: if both
substitutions have the same terms, no intersection (and therefore no new meta-variable) is
generated (rule META-SAME-SAME).

10.2 Improving the META-INST rules

We do several enhancement to the instantiation rule, trying to maintain the “spirit” of the
rule: only find a solution when there is not (much) place for ambiguities.

ZU064-05-FPR unification-journal 22 January 2016 14:8

30 B. Ziliani, M. Sozeau

META-INSTR
?x : T [Ψ] ∈ Σ0 t ′,z′ = remove_tail(t;z) t ′ ↓w

β
t ′′

Σ0 ` prune(?x;y,z′; t ′′)B Σ1 Σ1;Γ ` z′ : U t ′′′ = (λw : U . Σ1(t ′′)){y,z′/Ψ̂,w}−1

Σ1;Ψ ` t ′′′ : T ′ Σ1;Ψ ` T ′ ≈≤ T B Σ2 ?x 6∈ FMV(t ′′′)

Σ0;Γ ` t ≈R ?x[y] zB Σ2∪{?x := t ′′′}

Remember from Section 3 that the META-INST rules instantiate a meta-variable applying
a variation of higher-order pattern unification (HOPU). They unify a meta-variable ?x with
some term t, obtaining a most general unifier (MGU). (With the salvation that, in this
section, we will get almost a MGU). As required by HOPU, the meta-variable is applied
to a suspended substitution mapping variables to variables, y, and a spine of arguments z,
of variables only. Assuming ?x has (contextual) type T [Ψ], this rule must find a term t ′′′ to
instantiate ?x such that

t ≈ ?x[y] z

that is, after performing the suspended substitution y and applying arguments z (formally,
t ′′′{y/Ψ̂} z), results in a term convertible to t.

Having contexts Σ0 and Γ, the new term t ′′′ is crafted from t following these steps:

1. To avoid unnecessarily η-expanded solutions, the term t and arguments z are decom-
posed using the function remove_tail(·; ·):

remove_tail(t x;z,x) = remove_tail(t;z) if x 6∈ FV(t)∧ x 6∈ z

remove_tail(t;z) = (t,z) in any other case

This function, applied to t and z, returns a new term t ′ and a list of variables z′, where
there exists z′′ such that t = t ′ z′′ and z = z′,z′′, and z′′ is the longest such list. For
instance, in the following example

? f [] x y ≈ addn x y

where addn is the addition operation on natural numbers, we want to remove “the
tail” on both sides of the equation, leading to the natural solution ? f [] := addn. In
this example, z′ is the empty list, z′′ is [x,y], and t ′ is addn.
The check that x 6∈ FV(t) and x 6∈ z in the first case above ensures that no solutions
are erroneously discarded. Consider the following equation:

? f [] x ≈ addn0 x x

If we remove the argument of the meta-variable, we will end up with the unsolvable
equation ? f [] ≈ addn0 x .

2. The term obtained in the previous step is weak head β normalized, noted t ′ ↓w
β

t ′′. This
is performed in order to remove false dependencies, like variable x in (λy. 0) x.

3. The meta-variables in t ′′ are pruned. This process is quite involved, and detailed
examples can be found in Abel & Pientka (2011). The formal description will be
discussed below.
At high level, the pruning judgment ensures that the term t ′′ has no “offending vari-
ables”, that is, free variables outside of those occurring in the substitution y,z′. It does

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 31

so by removing elements from the suspended substitutions occurring in t ′′, containing
variables outside of y,z′. For instance, in the example ? f [] x ≈ addn0 ?u[x,y], the
variable y has to be removed from the substitution on the r.h.s. since it does not
occur in the l.h.s.. Similarly, if the meta-variable being instantiated occurs inside a
suspended substitution, it has to be removed from the substitution to avoid a circularity
in the instantiation. The output of this judgment is a new meta-context Σ1.

4. The final term t ′′′ is constructed as

(λw : U . Σ1(t ′′)){y,z′/Ψ̂,w}−1

First, note that t ′′′ has to be a function taking n arguments w, where n = |z′|. The list
of types of w comes from the types of variables z′ (noted Σ1;Γ ` z′ : U). The body
of this function is the term obtained from the second step, t ′′, after its defined meta-
variables are normalized with respect to the meta-context obtained in the previous
step, noted Σ1(t ′′), in order to replace the meta-variables with the pruned ones. This
step effectively removes false dependencies on variables not occurring in y,z′. The
final term is obtained applying the inverse substitution (defined in Section 3), in
which each variable in y,z′ are replaced with variables in the local context of the
meta-variable Ψ̂ and the (freshly introduced) variables w.

5. The type of t ′′′, which now only depends on the context Ψ, is computed as T ′, and
unified with the type of ?x, obtaining a new meta-context Σ2.
In the special case where t ′′′ is itself a meta-variable of type an arity (an n-ary
dependent product whose codomain is a sort), we do not directly force the type of
the instance T ′ to be smaller than T , which would unnecessarily restrict the universe
graph. Instead, we downcast T and T ′ to a smaller type according to the cumulativity
relation before converting them. The idea is that, if we are unifying meta-variables ?x
and ?y, with ?x : Type(i)[Γ] and ?y : Type(j)[Γ′], the body of ?x and ?y just has to be
of type Type(k) for some k ≤ i, j.

6. Finally, an occurs check is performed to prevent illegal solutions, making sure ?x does
not occur in t ′′′.

The algorithm outputs Σ2 plus the instantiation of ?x with t ′′′.

Pruning: Figure 20 shows the actual process of pruning. The pruning judgment is noted

Σ ` prune(?x;y; t)B Σ
′

It takes a meta-context Σ, a meta-variable ?x, a list of variables y, the term to be pruned t,
and returns a new meta-context Σ′, which is an extension of Σ where all the meta-variables
with offending variables in their suspended substitution are instantiated with pruned ones.

For brevity, we only show rules for the Calculus of Constructions, i.e., without considering
pattern matching and fixpoints. The missing rules are easy to extrapolate from the given
ones. The only interesting case is when the term t is a meta-variable ?z applied to the
suspended substitution σ . We have two possibilities: either every variable from every term
in σ is included in y, in which case we do not need to prune (PRUNE-META-NOPRUNE), or
there exists some terms which have to be removed (pruned) from σ (PRUNE-META).

ZU064-05-FPR unification-journal 22 January 2016 14:8

32 B. Ziliani, M. Sozeau

PRUNE-RIGID
h ∈ s∪C

Σ ` prune(?x;y;h)B Σ

PRUNE-VAR
x ∈ y

Σ ` prune(?x;y;x)B Σ

PRUNE-LAM, PRUNE-PROD
Π ∈ {λ ,∀} Σ ` prune(?x;y,z; t)B Σ

′

Σ ` prune(?x;y;Πz. t)B Σ
′

PRUNE-LET
Σ0 ` prune(?x;y; t2)B Σ1

Σ1 ` prune(?x;y,z; t1)B Σ2

Σ0 ` prune(?x;y; let z := t2 in t1)B Σ2

PRUNE-APP
Σ0 ` prune(?x;y; t)B Σ1

Σi ` prune(?x;y; ti)B Σi+1 i ∈ [1,n]
Σ0 ` prune(?x;y; t tn)B Σn+1

PRUNE-META-NOPRUNE
?z : T [Ψ0] ∈ Σ ?x 6= ?z

Ψ0 ` prune_ctx(?x;y;σ)BΨ0

Σ ` prune(?x;y; ?z[σ])B Σ

PRUNE-META
?u : T [Ψ0] ∈ Σ ?x 6= ?z Ψ0 ` prune_ctx(?x;y;σ)BΨ1

· ` sanitize(Ψ1)BΨ2 Σ ` prune(?x;Ψ̂2;T)B Σ
′

Σ ` prune(?x;y; ?z[σ])B Σ
′,?u : T [Ψ2]∪{?z := ?u[Ψ̂2]}

PRUNECTX-NIL

· ` prune_ctx(?x;y; ·)B ·

PRUNECTX-NOPRUNE
FV(t)⊆ y ?x 6∈ FMV(t) Ψ ` prune_ctx(?x;y;σ)BΨ

′

Ψ,z : A ` prune_ctx(?x;y;σ , t)BΨ
′,z : A

PRUNECTX-PRUNE
FV(t) 6⊆ y∨ ?x ∈ FMV(t) Ψ ` prune_ctx(?x;y;σ)BΨ

′

Ψ,x : A ` prune_ctx(?x;y;σ , t)BΨ
′

Fig. 20. Pruning of meta-variables.

These two rules use an auxiliary judgment to prune the local context of the meta-variable
Ψ0. This judgment has the form

Ψ ` prune_ctx(?x;y;σ)BΨ
′

Basically, it filters out every variable in Ψ where σ has an offending term, that is, a term
with a free variable not in y, or having ?x in the set of free meta-variables. Ψ′ is the result of
this process.

Coming back to the rules in Figure 20, in PRUNE-META-NOPRUNE we have the condition
that the pruning of context Ψ0 resulted in the same context (no need for a change). More
interestingly, when the pruning of Ψ0 results in a new context Ψ1, PRUNE-META does the
actual pruning of ?z. Similarly to the rule META-SAME, it first sanitizes the new context
Ψ1, obtaining a new context Ψ2, then it ensures that the type T is valid in Ψ2, by pruning
variables outside Ψ2, and finally instantiates the meta-variable ?z with a fresh meta-variable
?u, having contextual type T [Ψ2].

It is important to note that, due to conversion, the process of pruning may loose solutions.
For instance, consider the following equation:

π1(0,?x[n]) ≈ ?y[]

The pruning algorithm will remove n from ?x, although another solution exists by reducing
the l.h.s., assigning 0 to ?y.

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 33

10.3 First-Order approximation

The rules META-INST only applies if the spine of arguments of the meta-variable only have
variables. This can be quite restrictive. Consider for instance the following equation that tries
to unify an unknown function, applied to an unknown argument, with the term 1 (expanded
to S 0):

S 0 ≈ ? f [] ?y[]

As usual, such equations have multiple solutions, but there is one that is “more natural”:
assign S to ? f and 0 to ?y. However, since the argument to the meta-variable is not a variable,
it does not comply with HOPU, and therefore is not considered by the META-INST rules. In
an scenario like this, the META-FO rules perform a first-order approximation:

META-FOR
?x : T [Ψ] ∈ Σ0 0 < n Σ0;Γ ` u u′m ≈R ?x[σ]B Σ1 Σ1;Γ ` u′′n ≈≡ tn B Σ2

Σ0;Γ ` u u′mu′′n ≈R ?x[σ] tn B Σ2

It unifies the meta-variable (? f in the equation above) with the term on the l.h.s. without
the last n arguments (S), which are in turn unified pointwise with the n arguments in the
spine of the meta-variable (0 and ?y[], respectively). Note that the rule APP-FO does not
subsume this rule, as APP-FO requires both terms being equated to have the same number
of arguments.

10.4 Meta-Variable Dependencies Erasure

If META-INST and META-FO do not apply, the algorithm makes a somewhat brutal attempt.
The rule META-DELDEPSR shown below chops off every element in the substitution that
is not a variable, or that is a duplicated variable. Therefore, problems not complying with
HOPU can be reconsidered. Like META-FO, this rule fixes an arbitrary solution where many
solutions may exist, which might not be the one expected by the user. But, as we are going
to see in Section 14, the solution selected works more often than not.

META-DELDEPSR
?x : T [Ψ] ∈ Σ

l = [i|σi is variable and @ j > i. σi = (σ ,u) j] · ` sanitize(Ψl)BΨ
′

FV(T)⊆Ψ
′

Σ∪{?y : T [Ψ′],?x := ?y[Ψ̂′]};Γ ` t ≈ ?y[σl] uB Σ
′

Σ;Γ ` t ≈ ?x[σ] uB Σ
′

Formally, this rule first takes each position i in σ such that σi is a variable with no
duplicated occurrence in σ ,u. The resulting list l containing those positions is used to filter
out the local context of the meta-variable, obtaining the new context Ψ′. After sanitizing
this context, a fresh meta-variable ?y is created in this restricted local context, and ?x is
instantiated with this meta-variable. The new meta-context obtained after this instantiation
is used to recursively call the unification algorithm to solve the problem t ≈ ?y[σl] u.

Following we analyze, for the Mathematical Components library (version 1.4), different
cases where this rule is effectively used (totaling +300 lines of the library), and study
alternatives to avoid it if one wishes for a more “principled” algorithm.

ZU064-05-FPR unification-journal 22 January 2016 14:8

34 B. Ziliani, M. Sozeau

Non-dependent if−then−elses: Most notably, two thirds of the cases in which rules
META-DELDEPS are required are Ssreflect’s if−then−elses. In Ssreflect, the type of the
branches of an if are assumed to depend on the conditional. For instance, the example
if b then 0 else 1 fails to compile if the Ssreflect library is imported and the rule is
switched off. With Ssreflect, a fresh meta-variable ?T is created for the type of the branches,
with contextual type Type[b : true]. When unifying it with the actual type of each branch,
b is substituted by the corresponding boolean constructor. This results in the following
equations:

?T [true] ≈ nat ?T [false] ≈ nat

Since they are not of the form required by HOPU, our algorithm (without the META-DELDEPS

rules) fails.

False dependency in the in modifier: A less common issue comes from the in modifier
in Ssreflect’s rewrite tactic. This modifier allows the selection of a portion of the goal
to perform the rewrite. For instance, if the goal is 1+ x = x+ 1 and we want to apply
commutativity of addition on the term on the right, we can perform the following rewrite:

rewrite [in X in _ = X]addnC

With the rule, our algorithm instantiates X with the r.h.s. of the equation, and rewrite applies
commutativity only to that portion of the goal. Without it, however, rewrite fails. In this
case, the hole (_) is replaced by a meta-variable ?y, which is assumed to depend on X . But
X is also replaced by a meta-variable, ?z, therefore the unification problem becomes

?y[x,?z[x]] = ?z[x] ≈ 1+ x = x+1

that, in turn, poses the equation ?y[x,?z[x]] ≈ 1+ x, which does not have an MGU.

Non-dependent products: If the rule is switched off, about 30 lines required a simple
typing annotation to remove dependencies in products. Consider the following COQ term:

∀P x. (P (S x) = True)

When COQ elaborates this term, it first assigns P and x two unknown types, ?T and ?U
respectively, the latter depending on P. Then, it elaborates the term on the left of the equal
sign, obtaining further information about the type ?T of P: it has to be a (possibly dependent)
function ∀y : nat. ?T ′[y]. The type of the term on the left is the type of P applied to S x, that
is, ?T ′[S x]. After elaborating the term on the right and finding out it is a Prop, it unifies the
types of the two terms, obtaining the equation

?T ′[S x] ≈ Prop

Since, again, this equation does not comply with HOPU, it needs META-DELDEPS to succeed.

Explicit duplicated dependencies: There are 15 occurrences where the proof developer
wrote explicitly a dependency that duplicates an existing one. Consider for instance the
following rewrite statement:

rewrite [_+_ w]addnC

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 35

Here, the proof developer intends to rewrite using commutativity on a fragment of the
goal matching the pattern _+_ w. Let’s assume that in the goal there is one occurrence of
addition having w occurring in the right, say t +(w+u), for some terms t and u. Since the
holes (_) are elaborated as a meta-variable depending on the entire local context, in this case
it will include w. Therefore, the pattern will be elaborated as ?y[w]+(?z[w] w) (assuming
no other variables appear in the local context). When unifying the pattern with the desired
occurrence we obtain the problem:

?z[w] w ≈ w+u

This equation does not have a MGU, since either w on the l.h.s. can be used as a representa-
tive for the w on the r.h.s.. The rules META-DELDEPS remove the inner w.

Looking closely into these issues, it seems as if the dependencies were incorrectly
introduced in the first place. It would be interesting to study if such dependencies can
be avoided with little changes to elaboration and the tactics, in order to avoid relying on
META-DELDEPS to do the “dirty job”.

10.5 Eliminating Dependencies via Reduction

Sometimes the term being assigned to the meta-variable has variables not occurring in
the substitution, but that can be eliminated via reduction. For instance, take the following
equation

π1(0,x) ≈ ?g[]

It has a solution, after reducing the term on the l.h.s., obtaining the easily solvable equation
0 ≈ ?g[]. This is precisely what rules META-REDUCE do, as a last attempt to make progress.

META-REDUCER

?u : T [Ψ] ∈ Σ0 t w

0..1
δ t ′ t ′ ↓w

βζ ιθ
t ′′ Σ0;Γ ` t ′′ ≈ ?u[σ] tn B Σ1

Σ0;Γ ` t ≈ ?u[σ] tn B Σ1

11 Universe Polymorphism

In the previous sections we explained a new unification algorithm that can be used for
COQ version 8.4. But we aim at more; we want to tackle the recently released 8.5 version,
and for that we need to take into account one if its major improvements: universe poly-
morphism. We use the example in Chapter 29 of COQ’s Reference Manual3 to understand
the limitations of the monomorphic universes presented in Section 6, and the idea behind
universe polymorphism. The polymorphic identity function, in its traditional, non-universe
polymorphic form, is defined as:

De�nition id := λT (x : T). x

3 Available online at http://coq.inria.fr/distrib/V8.5rc1/refman/
Reference-Manual032.html

ZU064-05-FPR unification-journal 22 January 2016 14:8

36 B. Ziliani, M. Sozeau

Implicitly, T has type Type(i) for some universally quantified level i. If we apply this
definition to a kind, say Prop:

De�nition idProp := id _ Prop

COQ creates a new level j for the implicit Type, with the following universe constraints:

Prop < j∧ j < i

That is, the level of the implicit Type must be greater than Prop (since we have Prop :
Type(j)), but since it is being the argument of id, it has to be lower than i, the level coming
from id.

But what if we try to apply id to itself? The following definition, although perfectly valid
from a theoretical point of view, is ill-typed:

De�nition idid := id _ id

The reason should be self-evident now: we are asking the implicit type to be greater than
the type of id, which should be at the same time smaller than the type of id! If we call the
implicit type level j′, COQ is faced with the following, unsolvable, constraints:

i < j′∧ j′ < i

The problem comes from using the same level i in the two occurrences of id in the definition.
In COQ, universe polymorphism allows us to instantiate each occurrence of a polymorphic

universe level with a universally quantified one (implicitly, i.e., without user interaction).
So, for instance, the universe polymorphic identity is declared as:

Polymorphic De�nition pid := λT (x : T). x

(Note that the only difference with id is the declaration Polymorphic.) Now COQ allows
the application of pid to itself:

De�nition pidpid := pid _ pid

Behind the scenes, the universe level in the definition of pid is what we call a flexible
universe `, and is instantiated with different levels in each occurrence of pid. The unsugared
form of pidpid is:

pidpid = pid[`] _ pid[κ]

with the universe context containing the following restriction:

κ < `

That is, without knowing what ` and κ will be, we know the former has to be larger than the
latter.

COQ also allows inductive types to be universe polymorphic. We have to perform two
changes in the language: extend constants, type constructors, and constructors with a
substitution for universe levels (like [`] above), and to extend the universe context to
distinguish flexible levels from rigid ones. Each universe polymorphic constant and inductive

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 37

TYPE-SAME
C ′ = C ∧u R κ C ′ �

` � C ;Σ;Γ ` Type(u)≈R Type(κ)B ` � C ′;Σ

RIGID-SAME
h ∈I ∪K C1 = C0∧κ = κ ′ C1 |=
(` � C0);Σ;Γ ` h[κ]≈R h[κ ′]B (` � C1);Σ

FLEXIBLE-SAME
h ∈ C Φ0 |= `= κ BΦ1

Φ0;Σ;Γ ` h[`]≈R h[κ]BΦ1;Σ

UNIV-EQ
Φ |= i = j

Φ |= i = j BΦ

UNIV-FLEXIBLE
if∨ jf ∈ ` C ∧ i = j |=

(` � C) |= i = j B (` � C ∧ i = j)

Fig. 21. Unification of universe polymorphic terms.

type in the global environment is universally quantified with its universe context.

t,u,T,U = . . . | c[`] | i[`] | k[`] term and types

Φ = ` � C universe context

E = · | c : ∀Φ. T,E | c := t : ∀Φ. T,E | I,E | Φ,E global environment

I = ∀Φ,Γ. { i : ∀y : Th. s := {k1 : U1; . . . ;kn : Un} } inductive types

As before, a universe context consists of a list of levels ` and a set of constraints C on
levels. But now levels in ` are annotated as flexible (`f) or rigid (`r). This information is
used when unifying two instances of the same constant to avoid forcing universe constraints
that would not appear if the bodies of the instantiations were unified instead, respecting
transparency of the constants. Flexible variables are generated when taking a fresh instance
of a polymorphic constant, inductive or constructor during elaboration, like ` and κ in
pidpid above, while rigid ones correspond to user-specified levels or Type annotations.

The δE expansion rule must take into account universe levels, replacing those levels
defined in the environment with the ones applied to the constant:

(c := t : ∀` � C . T) ∈ E

c[κ] δE t{κ/`}

Reduction of pattern-matching and fixpoint constructs is easily extended:

matchT k j[κ] t with k x⇒ u end ι u j{t/x j}
F = x/n : T := t an = k j[κ] t

�x j {F} a ι t j{�xm {F}/xm} a

As binding of universes happens only at the global level (constants or inductives), local
reduction rules do not need to substitute universes.

We extend the algorithm to consider universe polymorphic terms. Figure 21 shows the
new and updated rules. Rule TYPE-SAME is equal to the one in Section 6, but considering the
new form of universe contexts. RIGID-SAME equates the same inductive type or constructor,
enforcing that their universe instances are equal (note that the application of the rule will fail
if these new constraints are inconsistent). The FLEXIBLE-SAME rule unifies two instances
of the same constant using a stronger condition on universe instances: they must unify
according to the current constraints and by equating rigid universe variables with flexible
variables only (Φ |= i = j checks if the constraint is already derivable). Otherwise we will
backtrack on this rule to unfold the constant and unify the bodies (Section 5), which will
generaly result in weaker, more general constraints to be enforced.

ZU064-05-FPR unification-journal 22 January 2016 14:8

38 B. Ziliani, M. Sozeau

Following is a simple example showing how backtracking ensures weaker constraints
when universes cannot be matched:

Example 7 (Unfolding ensures weaker constraints).

De�nition weaker : id _ T := (nat : id _ Set).

where T : Type(i) for i > 0, and Set is in COQ the name for (predicative) Type(0).

This definition requires the solution to the following equation:

id Type(`) Set≈≤ id Type(κ) T

where ` and κ are universe levels introduced at elaboration for the two _ in the definition.
The rule APP-FO (c.f., Section 6) compares the heads using cumulativity, and the

arguments using conversion:

id≈≤ id (1)

Type(`)≈≡ Type(κ) (2)

Set≈≡ T (3)

The first one is solved immediately. The second one forces ` to be equal to κ . But in the third
one the algorithm fails, because it cannot ensure that Set and T are equal. Backtracking and
unfolding both sides of the equation we obtain the weaker equation:

Set≈≤ T

which is now solvable.
To conclude this section, note that this example was about the monomorphic id function.

What would be different if instead we use the polymorphic pid function? In essence, the
algorithm does the same unfoldings as with id to solve the problem, although it does so
without comparing the arguments. When comparing the head constants, which are now
applied to different flexible variables j and j′, rule FLEXIBLE-SAME cannot enforce the
equality of j and j′ because that requires Set and T being equal. Therefore, it immediately
backtracks and unfolds, as before.

12 Rule Priorities and Backtracking

The rules shown across the different sections does not precisely nail the priority of the rules,
nor when the algorithm backtracks. Below we show the precise order of application of the
rules, where the rules in the same line are tried in the given order without backtracking (the
first one matching the conclusion and whose side-conditions are satisfied is used). Rules
in different lines or in the same line separated by | are tried with backtracking (if one fails
to apply, the next one is attempted). Note that if at any point the environment and the two
terms to be unified are ground (they do not contain meta-variables), unification is skipped
entirely and a call to COQ’s efficient conversion algorithm is made instead (REDUCE-SAME).

1. If a term has a defined meta-variable in its head position:

(a) META-δ R, META-δ L

2. If the heads of both terms are the same (undefined) meta-variable:

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 39

(a) META-SAME-SAME, META-SAME

3. If the heads of both terms are different (undefined) meta-variables:

(a) If the suspended substitution of the meta-variable on the left is larger than the one
on the right:
META-INSTL | META-INSTR | META-FOL | META-FOR |
META-DELDEPSL | META-DELDEPSR

(b) Otherwise:
META-INSTR | META-INSTL | META-FOR | META-FOL |
META-DELDEPSR | META-DELDEPSL

4. If one term has an undefined meta-variable, and the other term does not have a
meta-variable in its head position:
META-INSTR | META-FOR | META-DELDEPSR | META-REDUCER |
LAM-ηR | META-INSTL | META-FOL | META-REDUCEL |
META-DELDEPSL | LAM-ηL

5. Else:

(a) If the two terms have different head constants:

i (CS-CONSTR,CS-PRODR,CS-SORTR) | CS-DEFAULTR

ii (CS-CONSTL,CS-PRODL,CS-SORTL) | CS-DEFAULTL

(b) APP-FO
(c) The remaining rules in the following order, backtracking only if the hypotheses

that are not recursive calls to the algorithm fail to apply:
LAM-β R | LET-ζ R | CASE-ιR | LAM-β L | LET-ζ L | CASE-ιL |
CONS-δ NOTSTUCKR | CONS-δ STUCKL | CONS-δ R | CONS-δ L |
LAM-ηR | LAM-ηL

13 A Deliberate Omission: Constraint Postponement

The technique of constraint postponement (Dowek et al., 1996; Reed, 2009) is widely
adopted in unification algorithms, including the current algorithm of COQ. It has however
some negative impact in COQ, and, as it turns out, it is not as crucial as generally believed.

First, let us show why this technique is incorporated into proof assistants. Sometimes
the unification algorithm is faced with an equation that has multiple solutions, in a context
where there should only be one possible candidate. For instance, consider the following
term witnessing an existential quantification:

exist _ 0 (le_n 0) : ∃x. x≤ x

where exist is the constructor of the type ∃x. P x, with P a predicate over the (implicit) type
of x. More precisely, exist takes a predicate P, an element x, and a proof that P holds for x,
that is, P x. In the example above we are providing an underscore in place of P, since we
want COQ to find out the predicate, and we annotate the term with a typing constraint (after
the colon) to specify that the whole term is a proof of existence of a number lesser or equal
to itself. In this case, we provide 0 as such number, and the proof le_n 0, which has type
0≤ 0.

ZU064-05-FPR unification-journal 22 January 2016 14:8

40 B. Ziliani, M. Sozeau

During typechecking, COQ first infers the type of the term on the left of the colon, and
only then it verifies that this type is compatible (i.e., unifiable) with the typing constraint.
When inferring the type for the term on the left, COQ will create a fresh meta-variable
for the predicate P, let’s call it ?P, and unify ?P 0 with 0≤ 0, the type of le_n 0. Without
any further information, COQ has four different (incomparable) solutions for P: λx. 0≤
0,λx. x≤ 0,λx. 0≤ x,λx. x≤ x.

When faced with such an ambiguity, COQ postpones the equation in the hope that further
information will help disambiguate the problem. In this case, the necessary information is
given later on through the typing constraint, which narrows the set of solutions to a unique
solution.

Constraint postponment has its consequences, though: On one hand, the algorithm can
solve more unification problems and hence fewer typing annotations are required (e.g., we
do not need to specify P). On the other hand, since constraints are delayed, the algorithm
becomes hard to debug and, at times, slow. The reason for these assertions comes from the
realisation that the algorithm will continue to (try to) unify the terms, piling up constraints
on the way, perhaps to later on find out that, after all, the terms are not unifiable (or are
unifiable only if some decision is taken on the delayed equations).

When combined with canonical structures resolution, or any other form of proof automa-
tion, this technique is particularly bad, as it may break the assumption that certain value
has been previously assigned. The motivation to omit this technique came from experience
in projects on proof automation by the first author (Gonthier et al., 2013a; Ziliani et al.,
2015), and on bi-directional elaboration by the second author (in the above example, a
bi-directional elaboration algorithm will unify the type returned by exist with the expected
type, and only then unify the type of its arguments, thereby posing the unification problems
in the right order).

Our results (Section 14) show that this technique is not crucial.

14 Evaluation of the Algorithm

Since, as we saw in Section 13, our algorithm does not incorporate certain heuristics, it
is reasonable to expect that it will fail to solve several unification problems appearing in
existing libraries. To test our algorithm “in the wild” we developed a plugin called UniCoq4,
which, when requested, changes the current unification algorithm of COQ with ours. With
this plugin, we compiled four different libraries, and evaluated the number of lines that
required changes. These changes may be necessary either because UniCoq found a different
solution from the expected one, or because it found no solution at all. As it turns out, UniCoq

solved most of the problems it encountered.
The first set of files we considered is the standard library of COQ. With UniCoq, it

compiles almost out of the box, with only a few lines requiring extra typing annotations. We
believe the reason for such success is that most of the files in the library are several years
old, and were conceived in older versions of COQ, when it had a much simpler unification
algorithm.

4 Sources can be downloaded from http://github.com/unicoq .

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 41

The second set of files come from Adam Chlipala’s book “Certified Programming with
Dependent Types” (CPDT) (Chlipala, 2011). This book provides several examples of
functional programming with dependent types, including several non-trivial unification
patterns coming from dependent matches. As a result, from a total of 6,200 lines, only 14
required extra typing annotations. It is interesting to note that 8 of those lines are solved
with the use of a bi-directional elaboration algorithm (e.g., Asperti et al., 2012) enabled
by COQ’s Program keyword. For instance, some lines construct witnesses for existential
quantification, similar to the example shown in Section 13.

The third one is the Mathematical Components library (Gonthier et al., 2008), version
1.6. This library presents several challenges, making it appealing for our purpose: (1) It is a
huge development, with a total of 87 theory files. (2) It uses canonical structures heavily,
providing us with several examples of canonical structures idioms that UniCoq should
support. (3) It uses its own set of tactics uniformly calling the same unification algorithm
used for elaboration. This last point is extremely important, although a bit technical. Truth
be told, COQ has actually two different unification algorithms. One of these algorithms is
mainly used by elaboration, and it outputs a sound substitution (up to bugs). This is the one
mentioned in this paper as “the original unification algorithm of COQ”. The other algorithm
is used by most of COQ’s original tactics (like apply or rewrite), but it is unsound (in COQ

8.4, it may return ill-typed solutions). Ssreflect’s tactics use the former algorithm which is
the one being replaced by our plugin. From almost 85,000 lines in the library, less than 30
lines required changes.5

The last set of files also focuses in different canonical structures idioms: the files from
Lemma Overloading (Gonthier et al., 2013a). It compiles almost as-is, with only one line
requiring an extra annotation.

The little extra annotations required in these libraries allow us to conclude that our set of
heuristics is a reasonable one.

15 Correctness of the algorithm

In the literature there are usually two things to say about the correctness of a unification
algorithm. The first one is to characterize the set of solutions, which usually involves proving
that the algorithm generates Most General Unifiers (MGUs). However, as we mentioned
throughout this work, in COQ we do not care about MGUs, since that will render the
algorithm pretty much useless. Several useful heuristics presented here pick arbitrary yet
sensible solutions.

The second thing one might want to prove is the following correctness criterion:

Conjecture 1 (Correctness criterion for unification). Let Φ,Σ, and Γ be a universe context,
a meta-context, and a local context, and let t1 and t2 be two well-typed terms and T1 and T2

its types, i.e.,

Φ;Σ;Γ ` ti : Ti for i ∈ [1,2]

5 The modified files of the library can be downloaded from
https://github.com/unicoq/math-comp/tree/unicoq

ZU064-05-FPR unification-journal 22 January 2016 14:8

42 B. Ziliani, M. Sozeau

APP-FO

RIGID-SAME
@eq ≈ @eq

META-INST

RED-SAME
Prop ≈ Type

?X3 ≈ (nat−>False)−>nat−>False

META-INST

RED-SAME
(nat−>False)−>nat−>False
≈ (nat−>False)−>nat−>False

?X4 ≈ h

CONS-δ STUCKL

META-INST

RED-SAME
(nat−> False)−>nat−>False
≈ (nat−>False)−>nat−>False

?X1 ≈ @id nat−>False

h ≈ @id (nat−>False)

?X4 = ?X4 ≈ h = @id (nat−>False)

Fig. 22. Instantiation of the body of a fixpoint with a non-structurally-recursive term.

and such that they unify under relation R:

Φ;Σ;Γ ` t1 ≈R t2 BΦ
′;Σ
′

then t1 and t2 are well-typed in the new contexts

Φ
′;Σ
′;Γ ` ti : Ti for i ∈ [1,2]

and are convertible under relation R.

However, this is false—for both the current algorithm implemented in COQ, and the
one described here. The culprit is the syntactic check required at typechecking to ensure
termination of fixpoints, the guard condition. Indeed, it is easy to make unification instantiate
a meta-variable with a term containing a non-structurally-recursive call to a recursive
function, resulting in an ill-typed term correctly rejected by the kernel typechecker.

The following example illustrates this point. It is real COQ code annotated with the names
of the meta-variables used in the derivation tree shown in Figure 22.

Example 8 (Proof of False—rejected by the kernel).

De�nition False_proof : False :=
let h : (nat → False) → nat → False := _ (*?X1*) in

let T := �x f (x:nat):False := h f x in

let _ : h = id (nat → False) := eq_re� _ (*?X4*) in

T 0.

It creates a fixpoint f with a meta-variable h (?X1) applied to f . Later on h is instantiated
with the identity function, therefore tying the knot. (eq_refl is the proof of reflexivity.)

Hence, we must weaken this conjecture to use a weaker notion of typing, as in Coen’s
thesis (Sacerdoti Coen, 2004).

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 43

For the moment we lack a correctness proof, which we are attempting directly in COQ.
This work sets the first stone presenting a specification faithful to an implementation that
performs well on a variety of large examples (Section 14). We anticipate that, once the basic
theory is set, the proof will be simpler than for existing algorithms, notably due to the lack
of postponement which usually complicates the argument of type preservation.

16 Lemma Overloading: proof search during unification

In different examples we saw how unification was in charge of “filling in” missing bits of
(proof) terms. For instance, in Example 4 the algorithm completed the missing lists in the
proof of list membership. We also saw in Example 6 how the algorithm is capable of finding
the missing code for the equality function, based on the type of its operands. It was just a
matter of time to realize that it is also possible to find a proof for a lemma based on the
terms (or types) of its arguments, thanks to the proof-as-programs concept in which CIC
is based, together with the lack of distinction between the syntactical classes of terms and
types.

Gonthier et al. (2011, 2013a) developed this concept, which they called Lemma Over-
loading. In particular, they showed how to tackle certain limitations of canonical structures
to transform the unification algorithm into an ad-hoc proof search engine. In this section
we show some of the main ideas in Gonthier et al. (2013a), focusing on the aspects of
unification that makes Lemma Overloading possible.

We develop an example, again from list membership. Although not a very interesting
problem on its own, it already allows us to present Lemma Overloading without needing new
concepts. For more engaging and realistic problems, we invite the reader to read Gonthier
et al. (2013a).

Let us look again at Example 4. There we were proving that

y1 ∈ ([y1] ++ [y2])

by providing the proof term

inL _ _ _ (in_head _ _)

We relied on unification to instantiate all the meta-variables produced by the different holes
(_) in the term. Now, would it be too much to ask for to also get the whole proof? This is
what Lemma Overloading is about.

We will proceed to explain this technique writing the necessary COQ code to solve this
problem. At high level, we will create structures and canonical instances to build a search
procedure that will look for an element x in a list s, on the way computing the proof of x ∈ s.
(As it turns out, it will be a dependently-typed logic program.) This program will do casing
on the list: if it is a concatenation of two lists l and r, it will first search for x on r, and if
it is not there, in l. If the list is the consing of element y and list l, it will first check if x is
equal to y and, if not, look for x in l. Note that this corresponds precisely to each of the list
axioms presented in Figure 1.

The code will look confusing at first, but it should become clear once we tight these ideas
with the heuristics shown in previous sections. We start introducing a tagging structure
(Figure 23), crucial to distinguish the different cases of the algorithm. It consists of a

ZU064-05-FPR unification-journal 22 January 2016 14:8

44 B. Ziliani, M. Sozeau

Structure listTag := ListTag { luntag : list nat }.
De�nition tailTag := ListTag.
De�nition foundTag := tailTag.
De�nition leftTag := foundTag.
Canonical rightTag l := leftTag l.

Fig. 23. A tagging structure for lists.

Structure search x := Search {
list_of : listTag;
proof : In x (luntag list_of)

}.

Canonical tail_proof x y (f : search x) :=
Search x (tailTag (y :: luntag (list_of f))) (in_tail _ _ _ (proof f)).

Canonical found_proof x s :=
Search x (foundTag (x :: s)) (in_head _ _).

Canonical left_proof x r (f : search x) :=
Search x (leftTag (luntag (list_of f) ++ r)) (inL _ _ _ (proof f)).

Canonical right_proof x l (f : search x) :=
Search x (rightTag (l ++ luntag (list_of f))) (inR _ _ _ (proof f)).

Fig. 24. Structure to create the overloaded lemma for list membership.

structure listTag with only one field, in this case a list, named luntag. It is accompanied with
a chain of definitions: rightTag is defined as leftTag, which is itself defined as foundTag,
and so on, until we arrive at the constructor ListTag of the structure. The top-most definition,
rightTag is made Canonical, adding the triple (luntag,_, rightTag) to ∆db, the canonical
structures database.

Then, we encode the search procedure in the structure search displayed in Figure 24. This
structure is parametrized over the element we are looking for, x, and contains two fields:
list_of, a listTag, and the proof of x being in the untagged list. This field is our overloaded
lemma.

This structure contains one canonical instance for each case of the procedure. Each
instance is constructed using one of the tags defined in Figure 23: the instance tail_proof,
which constructs a proof using axiom in_tail, is constructed using tag tailTag; the instance
found_proof, which constructs a proof using axiom in_head, uses foundTag; and so
on. This has the effect of inserting in the ∆db the triples (list_of, tailTag, tail_proof),
(list_of, foundTag, found_proof), etc. And this is the key to understand the idea behind
tagging the list: the database cannot be populated with the same key twice, and our example
requires two instances for consing and two for appending. With the tags, we managed to
create different keys, one for each of the instances.

With these definitions, we are now able to prove Example 4 simply writing:

Example 9 (Proving list membership using an overloaded lemma).

De�nition excs : y1 ∈ ([y1] ++ [y2]) := proof _.

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 45

We can provide an accurate description of what is going on under the hood to make this
proof possible, thanks to the rules provided in previous sections (most notably, sections
8, 9, and 12). We will omit the suspended substitutions in meta-variables, as they play no
role in the example (every meta-variable instantiation will follow the higher-order pattern
restriction).

The proof search starts when the type of proof _ gets equated with the type of the
example:

?x ∈ (luntag (list_of ? f)) ≈ y1 ∈ ([y1] ++ [y2]) (8)

where ? f is the implicit structure (_) that the canonical structures mechanism must instanti-
ate. After Equation 8, rule APP-FO is triggered, obtaining two sub-equations:

1. ?x ≈ y1

2. luntag (list_of ? f) ≈ [y1] ++ [y2]

The first one is solved immediately with META-INST, instantiating ?x with y1. For the
second one the algorithm must find a canonical instance to solve it. The algorithm first
tries CS-CONST but fails: there is no key pairing luntag with ++. Before giving up, it tries
CS-DEFAULT, which now finds that there is a default key (luntag,_, rightTag). This rule
equates the argument of luntag with the instance rightTag applied to the term on the r.h.s.
([y1] ++ [y2]):

list_of ? f ≈ rightTag ([y1] ++ [y2]) (9)

Now we have again a projector of a structure on the l.h.s. and a constant on the r.h.s.,
triggering rule CS-CONST. It finds key (list_of, rightTag, right_proof), and proceeds to
perform the following actions, in order:

1. Generates a fresh meta-variable for each argument of right_proof: ?x1,?l,? f1.
2. Equates the parameters of right_proof to the parameters of ? f :

?x1 ≈ y1

3. Equates the arguments of rightTag in right_proof with those in Equation 9:

?l ++ (luntag (list_of ? f1)) ≈ [y1] ++ [y2]

4. Equate the the argument of list_of in Equation 9 with the new instance:

? f ≈ right_proof ?x1 ?l ? f1

Step 2 is solved immediately with META-INST. Step 3, thanks to APP-FO, will first assign
[y1] to ?l, and then equate:

luntag (list_of ? f1) ≈ [y2]

Again, because of CS-DEFAULT we obtain the equation

list_of ? f1 ≈ rightTag [y2] (10)

Which, again using CS-CONST, generates equation

?l1 ++ luntag (list_of ? f2) ≈ [y2]

ZU064-05-FPR unification-journal 22 January 2016 14:8

46 B. Ziliani, M. Sozeau

for fresh ?l1 and ? f2 (Step 3 above). Now the algorithm tries APP-FO, but it fails when
comparing the heads (:: and ++). Before giving up, it unfolds the definition of ++ (CONS-
δ L6), only to find a pattern matching matching on the meta-variable ?l1.

Backtracking a bit, it considers again Equation 10 and notices it can δ -reduce the head
constants at either side of the equation. But which one? Here is where the hypothesis
of being stuck comes in handy: on the l.h.s. there is a projection of meta-variable ? f1,
which is therefore stuck. If it unfolds that definition, the algorithm will miss opportunities
for finding more plausible canonical instances. Instead, it proceeds to unfold the r.h.s.
(CONS-δ NOTSTUCKR), discovering a new constant:

list_of ? f1 ≈ leftTag [y2] (11)

At this point the algorithm tries again CS-CONST, finds triple (list_of, leftTag, left_proof),
repeating the steps mentioned above for right_proof. But it soon finds out that the head
constant is not a concatenation. Fast-forwarding a bit, it considers again Equation 11, unfolds
the r.h.s., obtaining equation

list_of ? f1 ≈ foundTag [y2] (12)

This time it will try to use instance found_proof, but since y2 is not the element we are
looking for (y1, the parameter of ? f1), it fails again. After unfolding the r.h.s. once more, we
get tailTag, and the process is repeated only to find out the element was not there after all.

Backtracking again, we arrive at Equation 9. Using CONS-δ NOTSTUCKR it unfolds
rightTag to get leftTag. The whole process is repeated, this time finding the element
on the list on the left. The whole successful derivation tree is shown in Figure 25 where, for
the sake of space, we removed the unification of types in the rule META-INST, trivial in this
example, and we renamed the rules: MI for META-INST, R-SAME for REDUCE-SAME, FO for
APP-FO, δ NS for CONS-δ NOTSTUCKR, and CS for any of the rules for canonical structures.

The final result can be traced following the names of the meta-variables:

In ?X1 (luntag (list_of ?X2))≈ In y1 ([y1] ++ [y2])

?X1≈ y1

?X2≈ left_proof ?X13 ?X14 ?X15

?X13≈ y1

?X14≈ [y2]

?X15≈ found_proof ?X32 ?X33

?X32≈ y1

?X33≈ []

The l.h.s. δΣ-normalizes to

In y1 (luntag (list_of (left_proof y1 [y2] (found_proof y1 []))))

The proof is therefore

proof (left_proof y1 [y2] (found_proof y1 []))

6 It is interesting to note that both sides of the equation are stuck.

ZU064-05-FPR unification-journal 22 January 2016 14:8

A Comprehensible Guide to a New Unifier for CIC. . . 47

FO

R-SAME
In ≈ In

MI
?X1 ≈ y1

CS

δ NS

CS

MI
?X13 ≈ y1

FO

R-SAME
app ≈ app

CS

δ NS

δ NS

CS

MI
?X32 ≈ y1

FO

R-SAME
cons ≈ cons

RED-S
y1 ≈ y1

MI
?X33 ≈ []

[y1] ≈ ?X32 :: ?X33

MI
?X15 ≈

found_proof ?X32 ?X33

list_of ?X15 ≈ foundTag [y1]

list_of ?X15 ≈ leftTag [y1]

list_of ?X15 ≈ rightTag [y1]

luntag (list_of ?X15) ≈ [y1]

MI
?X14 ≈ [y2]

[y1] ++ [y2] ≈ luntag (list_of ?X15) ++ ?X14

MI
?X2 ≈ left_proof ?X13 ?X14 ?X15

list_of ?X2 ≈ leftTag ([y1] ++ [y2])

list_of ?X2 ≈ rightTag ([y1] ++ [y2])

luntag (list_of ?X2) ≈ [y1] ++ [y2]

In ?X1 (luntag (list_of ?X2)) ≈ In y1 ([y1] ++ [y2])

Fig. 25. Derivation tree of an overloaded lemma in action.

which effectively normalizes to the proof the user wrote.

17 Related work

The first formal introduction of the problem of unification is due to Robinson (1965), 50
years ago, making the task of listing related work on the area a rather dull and daunting task.
Instead, we focus our attention on a set of works that inspired our work, in the narrower
area of higher-order unification, and refer the reader to different books and surveys (Knight,
1989; Baader & Siekmann, 1994; Baader & Nipkow, 1998; Huet, 2002).

ZU064-05-FPR unification-journal 22 January 2016 14:8

48 B. Ziliani, M. Sozeau

Most of the work in the literature focuses on obtaining Most General Unifiers, something
we purposely avoid for the sake of usability. That makes our work quite unique. Nevertheless,
we will list several works that are somehow related to ours.

We mentioned already Pfenning (1991). It presents a unification algorithm for the Calculus
of Constructions, but without introducing definitions (as in Section 5), and only unifying
β -normal terms. The unification of meta-variables presented in Section 3 is similar to the
one presented in this work.

Definitions were added to the aforementioned work in Pfenning & Schürmann (1998),
taking particular care of when to δ -unfold constants. More precisely, they consider a class of
definitions which are strict; a semantic subclass of terms in which injectivity is guaranteed,
that is, it is valid that

c t ≈ c u =⇒ t ≈ u

and therefore if t 6≈ u, then the algorithm fails without unfolding c. Our algorithm always
unfolds constants, therefore potentially considering again the unification of t and u, which
can be a major performance bottleneck. But it is not so easy to port the ideas from Pfenning
& Schürmann (1998) to our setting, most notably because of canonical structures resolution
(see e.g., Section 16). Ultimately, it might be just a case of narrowing the notion of strict
terms, although if it ends up being too narrow it might end up pretty much useless.

Some of the problems adapting Huet’s algorithm to a richer language with dependent
types where discussed in Elliott (1989).

Dowek et al. (1996) introduced constraint postponement, although with a subtle error
making the algorithm non-terminating. This work was fixed by Reed (2009). In a sense,
our work goes in the opposite direction, forbidding constraint postponement (Section 13)
and fixating solutions where multiple solutions exists (rule META-DELDEPS, Section 10).
We must note that our algorithm might non-terminate on certain inputs. Firstly, because
the language allows for fixpoints, which are hard to check for termination in the presence
of meta-variables (Section 15), and secondly because canonical structures incorporates a
turing complete machine to the unification algorithm (as a matter of fact, the first interpreter
of the language Mtac (Ziliani et al., 2013, 2015) was created using canonical structures!).

We took the pruning judgment and the inversion of substitution from Abel & Pientka
(2011). This work presents an algorithm for unification for λ ΠΣ, with the novelty of
performing η-expansion for Σ-types. We have not considered yet the inclusion of such rule.

Canonical structures were introduced in Saïbi (1999, chap. 4), although at a much higher
level and with a different order in which subproblems are considered. Matita’s hints are a
similar concept developed by Asperti et al. (2009).

The elaboration mechanism for the Lean theorem prover is presented in de Moura et al.
(2015), putting special emphasis on the different mechanisms, such as overloading and the
unification algorithm. With respect to unification, they restrict themselves to a somehow
naive, Huet-style algorithm. They claim they do not require the several heuristics presented
in our work, in particular stressing that the simple representation of meta-variables like the
one presented in Section 3 suffices for their needs. We think that the richer approach of
using contextual types for meta-variables, used in several of the aforementioned works and
in ours, allows for useful heuristics like META-DELDEPS (Section 10), but ultimately more
study on the trade-offs of each representation should be performed.

ZU064-05-FPR unification-journal 22 January 2016 14:8

* 49

For λProlog Dunchev et al. (2015) created recently a fast interpreter, which includes
a fast HO-unification algorithm. The key insight of this work is to note that there is a
large fraction of λProlog programs that admits linear time unification. An important design
decision when building the interpreter was to realize that de Bruijn levels (in opposition to
the commonly used de Bruijn indices) has better properties for a fast unification algorithm.
We based our work in the current implementation of COQ, and therefore we did not explored
different representation of terms (COQ’s internal representation of terms is using de Bruijn
indices). It might be worth the effort to study optimizations like the ones proposed in this
work.

18 Closing Remarks

We presented the first formalization of a realistic unification algorithm for COQ, featuring
overloading and universe polymorphism. Moreover, we give a precise characterization of
controlled backtracking (Section 9), which, together with overloading (Section 8), allow us
to explain the patterns introduced in Gonthier et al. (2013a) (Section 16). The algorithm
presented in this work is predictable, in the sense that the order in which subproblems are
evaluated can be deduced directly from the rules. In particular, we have not introduced the
technique of constraint postponement, which reorders unification subproblems (Section 13).
This omission, made in favor of predictability, has shown not to be problematic in practice
(Section 14).

The algorithm includes a heuristic, incarnated in the rules META-DELDEPS, that forces
a non-dependent solution where multiple solutions might exist. We have studied various
scenarios where it is being used, and shown that this heuristic can be replaced in most cases
by smarter tactics and elaboration algorithms (Section 10.4).

The ideas presented in this work were built from the ground up, starting from the basic
Calculus of Constructions (Section 3) up to the full Calculus of Inductive Constructions
implemented by COQ (sections 7, 8, 9, 10, and 11).

In the future we plan to prove soundness of the algorithm (see Section 15), and to improve
its performance to make it significantly faster than the current algorithm of COQ.

Acknowledgments

We are deeply grateful to Georges Gonthier for his suggestion on adding the META-DELDEPS

rules, Enrico Tassi for carefully explaining the θ reduction strategy and its use, and Andreas
Abel, Derek Dreyer, Hugo Herbelin, Aleksandar Nanevski, Scott Kilpatrick, Viktor Vafeiadis
for their important feedback on earlier versions of this work. We are also thankful to the
anonymous reviewers of the ICFP’15 paper for their input. This research was partially
supported by EU 7FP grant agreement 295261 (MEALS).

Bibliography

Abel, Andreas, & Pientka, Brigitte. (2011). Higher-order dynamic pattern unification for
dependent types and records. Tlca. Springer.

Asperti, Andrea, Coen, Claudio Sacerdoti, Tassi, Enrico, & Zacchiroli, Stefano. (2006).
Crafting a proof assistant. Types. Springer-Verlag.

ZU064-05-FPR unification-journal 22 January 2016 14:8

50 B. Ziliani, M. Sozeau

Asperti, Andrea, Ricciotti, Wilmer, Coen, Claudio Sacerdoti, & Tassi, Enrico. (2009). Hints
in unification. TPHOLs. LNCS, vol. 5674. Springer.

Asperti, Andrea, Ricciotti, Wilmer, Coen, Claudio Sacerdoti, & Tassi, Enrico. (2012). A
Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions.
Lmcs, 8(1).

Baader, Franz, & Nipkow, Tobias. (1998). Term rewriting and all that. New York, NY,
USA: Cambridge University Press.

Baader, Franz, & Siekmann, Jörg H. (1994). Handbook of logic in artificial intelligence and
logic programming. New York, NY, USA: Oxford University Press, Inc.

Brady, Edwin. (2013). Idris, a general-purpose dependently typed programming language:
Design and implementation. JFP, 23.

Cervesato, Iliano, & Pfenning, Frank. (2003). A linear spine calculus. Journal of logic and
computation, 13(5), 639–688.

Chlipala, Adam. (2011). Certified programming with dependent types. MIT Press. http:
//adam.chlipala.net/cpdt/.

de Moura, L., Avigad, J., Kong, S., & Roux, C. (2015). Elaboration in Dependent Type
Theory. Arxiv e-prints, May.

Dowek, Gilles, Hardin, Therese, Kirchner, Claude, & Pfenning, Frank. (1996). Unification
via explicit substitutions: The case of higher-order patterns. Pages 36637–4 of:
Proceedings of lics’95. IEEE Computer Society Press.

Dunchev, Cvetan, Guidi, Ferruccio, Sacerdoti Coen, Claudio, & Tassi, Enrico. (2015).
Elpi: Fast, embeddable, λprolog interpreter. Pages 460–468 of: Davis, Martin, Fehnker,
Ansgar, McIver, Annabelle, & Voronkov, Andrei (eds), Logic for programming, artificial
intelligence, and reasoning. Lecture Notes in Computer Science, vol. 9450. Springer
Berlin Heidelberg.

Elliott, Conal M. (1989). Higher-order unification with dependent function types. Pages
121–136 of: 3rd int. conf. rewriting techniques and applications, lncs 355. Springer-
Verlag.

Garillot, François. 2011 (Dec.). Generic Proof Tools and Finite Group Theory. Ph.D. thesis,
Ecole Polytechnique X.

Garillot, François, Gonthier, Georges, Mahboubi, Assia, & Rideau, Laurence. (2009).
Packaging Mathematical Structures. TPHOL. Springer.

Gonthier, Georges, Mahboubi, Assia, & Tassi, Enrico. (2008). A small scale reflection
extension for the Coq system. Tech. rept. INRIA.

Gonthier, Georges, Ziliani, Beta, Nanevski, Aleksandar, & Dreyer, Derek. (2011). How to
make ad hoc proof automation less ad hoc. ICFP.

Gonthier, Georges, Ziliani, Beta, Nanevski, Aleksandar, & Dreyer, Derek. (2013a). How to
make ad hoc proof automation less ad hoc. Jfp, 23(04), 357–401.

Gonthier, Georges, Asperti, Andrea, Avigad, Jeremy, Bertot, Yves, Cohen, Cyril, Garillot,
François, Le Roux, Stéphane, Mahboubi, Assia, O’Connor, Russell, Ould Biha, Sidi,
Pasca, Ioana, Rideau, Laurence, Solovyev, Alexey, Tassi, Enrico, & Théry, Laurent.
(2013b). A machine-checked proof of the odd order theorem. ITP. Springer.

Huet, Gérard P. (2002). Higher order unification 30 years later. Pages 3–12 of: Proceedings
of the 15th international conference on theorem proving in higher order logics. TPHOLs
’02. London, UK, UK: Springer-Verlag.

ZU064-05-FPR unification-journal 22 January 2016 14:8

* 51

Knight, Kevin. (1989). Unification: A multidisciplinary survey. Acm comput. surv., 21(1),
93–124.

Mahboubi, Assia, & Tassi, Enrico. (2013). Canonical Structures for the working Coq user.
ITP. Springer.

Miller, Dale. (1991). Unification of simply typed lamda-terms as logic programming. ICLP.
MIT Press.

Nanevski, Aleksandar, Pfenning, Frank, & Pientka, Brigitte. (2008). Contextual modal type
theory. ACM Trans. Comput. Logic, 9(3).

Norell, Ulf. (2009). Dependently Typed Programming in Agda. Tldi. ACM.
Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie, & Washburn, Geoffrey.

(2006). Simple unification-based type inference for gadts. Icfp. ACM.
Pfenning, Frank. (1991). Unification and anti-unification in the calculus of constructions.

Pages 74–85 of: In sixth annual ieee symposium on logic in computer science.
Pfenning, Frank, & Schürmann, Carsten. (1998). Algorithms for equality and unification

in the presence of notational definitions. Page 1657 of: Types for proofs and programs.
Springer-Verlag LNCS.

Pfenning, Frank, & Schürmann, Carsten. (1999). System description: Twelf - a meta-
logical framework for deductive systems. Pages 202–206 of: Proceedings of the 16th
international conference on automated deduction: Automated deduction. CADE-16.
London, UK, UK: Springer-Verlag.

Reed, Jason. (2009). Higher-order constraint simplification in dependent type theory. Lfmtp.
Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. J. acm,

12(1), 23–41.
Sacerdoti Coen, Claudio. (2004). Mathematical knowledge management and interactive

theorem proving. Ph.D. thesis, University of Bologna.
Saïbi, Amokrane. (1999). Outils generiques de modelisation et de demonstration pour

la formalisation des mathematiques en theorie des types. application a la theorie des
categories. Ph.D. thesis, University Paris 6.

Sozeau, Matthieu, & Tabareau, Nicolas. (2014). Universe Polymorphism in Coq. Itp.
Springer.

The Coq Development Team. (2012). The Coq Proof Assistant Reference Manual – Version
V8.4. See http://coq.inria.fr/V8.4/CREDITS.

Wadler, Philip, & Blott, Stephen. (1989). How to make ad-hoc polymorphism less ad hoc.
Pages 60–76 of: POPL.

Ziliani, Beta, & Sozeau, Matthieu. (2015). A unification algorithm for coq featuring universe
polymorphism and overloading. Pages 179–191 of: Proceedings of the 20th acm sigplan
international conference on functional programming. ICFP 2015. New York, NY, USA:
ACM.

Ziliani, Beta, Dreyer, Derek, Krishnaswami, Neelakantan R., Nanevski, Aleksandar, &
Vafeiadis, Viktor. (2013). Mtac: A monad for typed tactic programming in Coq. ICFP.

Ziliani, Beta, Dreyer, Derek, Krishnaswami, Neel, Nanevski, Aleksandar, & Vafeiadis,
Viktor. (2015). Mtac: A monad for typed tactic programming in coq. Journal of functional
programming, 25.

ZU064-05-FPR unification-journal 22 January 2016 14:8

52 B. Ziliani, M. Sozeau

A The full unification algorithm

A.1 The language

t,u,T,U = x | c[`] | i[`] | k[`] | s | ?x[σ] terms and types

| ∀x : T. U | λx : T. t | t u | let x := t : T in u

|matchT t with k1 x1⇒ t1 | . . . |kn xn⇒ tn end

| �x j {x1/n1 : T1 := t1; . . . ;xm/nm : Tm := tm}
σ = t suspended substitutions

s = Type(K+
) sorts

K = κ | K +1

`,κ ∈ N∪0− universe levels

Φ = ` � C universe contexts

C = · | C ∧ ` O `′ where O ∈ {=,≤,<} universe constraints

Γ,Ψ = · | x : T,Γ | x := t : T,Γ local contexts

Σ = · | ?x : T [Ψ],Σ | ?x := t : T [Ψ],Σ meta-contexts

E = · | c : ∀Φ. T,E | c := t : ∀Φ. T,E | I,E | Φ,E global environment

I = ∀Φ,Γ. { i : ∀y : Th. s := {k1 : U1; . . . ;kn : Un} } inductive types

A.2 Reduction rules

(λx : T. t) u β t{u/x} let x := u : T in t ζ t{u/x}
(x := t : T) ∈ Γ

x δΓ t

?x := t : T [Ψ] ∈ Σ

?x[σ] δΣ t{σ/Ψ̂}
(c := t : ∀` � C . T) ∈ E

c[κ] δE t[κ/`]

matchT k j[κ] t with k x⇒ u end ι u j{t/x j}
F = x/n : T := t an = k j[κ] t

�x j {F} a ι t j{�xm {F}/xm} a

t ↓w
βζ δι

k j a

matchT t with k x⇒ t ′ end θ matchT k j[κ] a with k x⇒ t ′ end

an j ↓
w
βζ δι

k b

�x j {F} a1 . . . an j θ �x j {F} a1 . . . an j−1 (k b)

ZU064-05-FPR unification-journal 22 January 2016 14:8

* 53

A.3 Unification algorithm

TYPE-SAME

C ′ = C ∧u R κ C ′ �

` � C ;Σ;Γ ` Type(u)≈R Type(κ)B ` � C ′;Σ

VAR-SAME

Φ;Σ;Γ ` x≈R xBΦ;Σ

RIGID-SAME

h ∈I ∪K C1 = C0∧κ = κ ′ C1 |=
(` � C0);Σ;Γ ` h[κ]≈R h[κ ′]B (` � C1);Σ

FLEXIBLE-SAME

h ∈ C Φ0 |= `= κ BΦ1

Φ0;Σ;Γ ` h[`]≈R h[κ]BΦ1;Σ

UNIV-EQ

Φ |= i = j

Φ |= i = j BΦ

UNIV-FLEXIBLE

if∨ jf ∈ ` C ∧ i = j |=
(` � C) |= i = j B (` � C ∧ i = j)

PROD-SAME, LAM-SAME

Π ∈ {λ ,∀}
Φ0;Σ0;Γ ` T1 ≈≡ U1 BΦ1;Σ1 Φ1;Σ1;Γ,x : T1 ` T2 ≈R U2 BΦ2;Σ2

Φ0;Σ0;Γ `Πx : T1. T2 ≈R Πx : U1. U2 BΦ2;Σ2

LET-SAME

Φ0;Σ0;Γ ` T ≈≡ U BΦ1;Σ1 Φ1;Σ1;Γ ` t2 ≈≡ u2 BΦ2;Σ2

Φ2;Σ2;Γ,x := t2 ` t1 ≈R u1 BΦ3;Σ3

Φ0;Σ0;Γ ` let x := t2 : T in t1 ≈R let x := u2 : U in u1 BΦ3;Σ3

CASE-SAME

Φ0;Σ0;Γ ` T ≈≡ U BΦ1;Σ1

Φ1;Σ1;Γ ` t ≈≡ uBΦ2;Σ2 Φ2;Σ2;Γ ` b≈≡ b′ BΦ3;Σ3

Φ0;Σ0;Γ `matchT t with b end≈R matchU u with b′ endBΦ3;Σ3

FIX-SAME

Φ0;Σ0;Γ ` T ≈≡ U BΦ1;Σ1 Φ0;Σ1;Γ ` t ≈≡ uBΦ2;Σ2

Φ0;Σ0;Γ ` �x j {x/n : T := t} ≈R �x j {x/n : U := u}BΦ2;Σ2

ZU064-05-FPR unification-journal 22 January 2016 14:8

54 B. Ziliani, M. Sozeau

APP-FO
Φ0;Σ0;Γ ` t ≈R uBΦ1;Σ1 n≥ 0 Φ1;Σ1;Γ ` tn ≈≡ un BΦ2;Σ2

Φ0;Σ0;Γ ` t tn ≈R u un BΦ2;Σ2

META-δ R, LAM-β R, LET-ζ R

Σ;Γ ` u w
 δΣ,β ,ζ u′

Φ;Σ;Γ ` t ≈R u′ BΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

META-δ L, LAM-β L, LET-ζ L

Σ;Γ ` t w
 δΣ,β ,ζ t ′

Φ;Σ;Γ ` t ′ ≈R uBΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

CASE-ιR
u is �x or match Σ;Γ ` u↓w

βζ δΣιθ
u′

u 6= u′ Φ;Σ;Γ ` t ≈R u′ BΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

CASE-ιL
t is �x or match Σ;Γ ` t ↓w

βζ δΣιθ
t ′

t 6= t ′ Φ;Σ;Γ ` t ′ ≈R uBΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

CONS-δ NOTSTUCKR
not Σ;Γ ` is_stuck u u w

 δE,δΓ u′

Σ;Γ ` u′ ↓w
βζ δΣιθ

u′′ Φ;Σ;Γ ` t ≈R u′′ BΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

CONS-δ STUCKL
Σ;Γ ` is_stuck u t w

 δE,δΓ t ′

Σ;Γ ` t ′ ↓w
βζ δΣιθ

t ′′ Φ;Σ;Γ ` t ′′ ≈R uBΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

CONS-δ R
not t w

 δE,δΓ t ′ u w
 δE,δΓ u′

Σ;Γ ` u′ ↓w
βζ δΣιθ

u′′ Φ;Σ;Γ ` t ≈R u′′ BΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

CONS-δ L
not u w

 δE,δΓ u′ t w
 δE,δΓ t ′

Σ;Γ ` t ′ ↓w
βζ δΣιθ

t ′′ Φ;Σ;Γ ` t ′′ ≈R uBΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R uBΦ
′;Σ
′

LAM-ηR
u’s head is not an abstraction Σ0;Γ ` u : U

ensure_product(φ0;Σ0;Γ;T ;U) = (φ1;Σ1) φ1;Σ1;Γ,x : T ` u x≈R t B φ2;Σ2

φ0;Σ0;Γ ` u≈R λx : T. t B φ2;Σ2

LAM-ηL
u’s head is not an abstraction Σ0;Γ ` u : U

ensure_product(φ0;Σ0;Γ;T ;U) = (φ1;Σ1) φ1;Σ1;Γ,x : T ` t ≈R u xB φ2;Σ2

φ0;Σ0;Γ ` λx : T. t ≈R uB φ2;Σ2

ZU064-05-FPR unification-journal 22 January 2016 14:8

* 55

ensure_product(` � C ;Σ0;Γ;T ;U) = (φ2;Σ2)

where φ1 = `, i � C for fresh universe level i

and Σ1 = Σ0,?v : Type(i)[Γ,y : T] for fresh ?v

and φ1;Σ1;Γ `U ≈≡ ∀y : T. ?v[Γ̂,y]B φ2;Σ2

META-SAME-SAME

Φ;Σ;Γ ` t ≈≡ uBΦ
′;Σ
′

Φ;Σ;Γ ` ?x[σ] t ≈R ?x[σ] uBΦ
′;Σ
′

META-SAME

?x : T [Ψ1] ∈ Σ Ψ1 ` σ ∩σ
′ BΨ2 · ` sanitize(Ψ2)BΨ3

FV(T)⊆Ψ3 Φ;Σ∪{?y : T [Ψ3],?x := ?y[Ψ̂3]};Γ ` t ≈≡ uBΦ
′;Σ
′

Φ;Σ;Γ ` ?x[σ] t ≈R ?x[σ ′] uBΦ
′;Σ
′

INTERSEC-NIL

· ` ·∩ ·B ·

INTERSEC-KEEP

Γ ` σ ∩σ
′ B Γ

′

Γ,x : A ` σ , t ∩σ
′, t B Γ

′,x : A

INTERSEC-REMOVE

Γ ` σ ∩σ
′ B Γ

′ y 6= z

Γ,x : T ` σ ,y∩σ
′,zB Γ

′

INTERSEC-KEEP-DEF

Γ ` σ ∩σ
′ B Γ

′

Γ,x := u : A ` σ , t ∩σ
′, t B Γ

′,x := u : A

INTERSEC-REMOVE-DEF

Γ ` σ ∩σ
′ B Γ

′ y 6= z

Γ,x := u : T ` σ ,y∩σ
′,zB Γ

′

META-INSTR
?x : T [Ψ] ∈ Σ0 t ′,z′ = remove_tail(t;z) t ′ ↓w

β
t ′′

Σ0 ` prune(?x;y,z′; t ′′)B Σ1 Σ1;Γ ` z′ : U t ′′′ = (λw : U . Σ1(t ′′)){y,z′/Ψ̂,w}−1

Σ1;Ψ ` t ′′′ : T ′ Φ;Σ1;Ψ ` T ′ ≈≤ T BΦ
′;Σ2 ?x 6∈ FMV(t ′′′)

Φ;Σ0;Γ ` t ≈R ?x[y] zBΦ
′
Σ2∪{?x := t ′′′}

META-FOR
?x : T [Ψ] ∈ Σ0

0 < n Φ0;Σ0;Γ ` u u′m ≈≡ ?x[σ]BΦ1;Σ1 Φ1;Σ1;Γ ` u′′n ≈≡ tn BΦ2;Σ2

Φ0;Σ0;Γ ` u u′mu′′n ≈R ?x[σ] tn BΦ2;Σ2

META-DELDEPSR
?x : T [Ψ] ∈ Σ

l = [i|σi is variable and @ j > i. σi = (σ ,u) j] · ` sanitize(Ψl)BΨ
′

FV(T)⊆Ψ
′

Φ;Σ∪{?y : T [Ψ′],?x := ?y[Ψ̂′]};Γ ` t ≈R ?y[σl] uBΦ
′;Σ
′

Φ;Σ;Γ ` t ≈R ?x[σ] uBΦ
′;Σ
′

META-REDUCER

?u : T [Ψ] ∈ Σ0 t w

0..1
δ t ′ t ′ ↓w

βζ ιθ
t ′′ Φ0;Σ0;Γ ` t ′′ ≈R ?u[σ] tn BΦ1;Σ1

Φ0;Σ0;Γ ` t ≈R ?u[σ] tn BΦ1;Σ1

ZU064-05-FPR unification-journal 22 January 2016 14:8

56 B. Ziliani, M. Sozeau

SANITIZE-NIL

ξ ` sanitize(·)B ·

SANITIZE-KEEP

FV(T)⊆ x y,x ` sanitize(Γ)B Γ
′

x ` sanitize(y : T,Γ)B y : T,Γ′

SANITIZE-REMOVE

FV(T) 6⊆ x x ` sanitize(Γ)B Γ
′

x ` sanitize(y : T,Γ)B Γ
′

SANITIZE-KEEP-DEF

FV(T)⊆ x FV(u)⊆ x y,x ` sanitize(Γ)B Γ
′

x ` sanitize(y := u : T,Γ)B y := u : T,Γ′

SANITIZE-REMOVE-DEF

FV(T) 6⊆ x ∨ FV(u) 6⊆ x x ` sanitize(Γ)B Γ
′

x ` sanitize(y := u : T,Γ)B Γ
′

PRUNE-RIGID

h ∈ s∪C

Σ ` prune(?x;y;h)B Σ

PRUNE-VAR

x ∈ y

Σ ` prune(?x;y;x)B Σ

PRUNE-LAM, PRUNE-PROD

Π ∈ {λ ,∀} Σ ` prune(?x;y,z; t)B Σ
′

Σ ` prune(?x;y;Πz. t)B Σ
′

PRUNE-LET

Σ0 ` prune(?x;y; t2)B Σ1

Σ1 ` prune(?x;y,z; t1)B Σ2

Σ0 ` prune(?x;y; let z := t2 in t1)B Σ2

PRUNE-APP

Σ0 ` prune(?x;y; t)B Σ1

Σi ` prune(?x;y; ti)B Σi+1 i ∈ [1,n]

Σ0 ` prune(?x;y; t tn)B Σn+1

PRUNE-META-NOPRUNE

?z : T [Ψ0] ∈ Σ ?x 6= ?z
Ψ0 ` prune_ctx(?x;y;σ)BΨ0

Σ ` prune(?x;y; ?z[σ])B Σ

PRUNE-META

?u : T [Ψ0] ∈ Σ ?x 6= ?z Ψ0 ` prune_ctx(?x;y;σ)BΨ1

· ` sanitize(Ψ1)BΨ2 Σ ` prune(?x;Ψ̂2;T)B Σ
′

Σ ` prune(?x;y; ?z[σ])B Σ
′,?u : T [Ψ2]∪{?z := ?u[Ψ̂2]}

PRUNECTX-NIL

· ` prune_ctx(?x;y; ·)B ·

PRUNECTX-NOPRUNE

FV(t)⊆ y ?x 6∈ FMV(t) Ψ ` prune_ctx(?x;y;σ)BΨ
′

Ψ,z : A ` prune_ctx(?x;y;σ , t)BΨ
′,z : A

PRUNECTX-PRUNE

FV(t) 6⊆ y∨ ?x ∈ FMV(t) Ψ ` prune_ctx(?x;y;σ)BΨ
′

Ψ,x : A ` prune_ctx(?x;y;σ , t)BΨ
′

ZU064-05-FPR unification-journal 22 January 2016 14:8

* 57

LOOKUP-CS
(p j,h,cι) ∈ ∆db Φ1, ι = fresh(Φ0,cι) ι δE λx : T . k[κ ′] p′ v

Σ1 = Σ0,?y : T Φ1 |= κ = κ ′ BΦ2 Φ2;Σ1;Γ ` p≈≡ p′{?y/x}BΦ3;Σ2

Φ0;Σ0 ` (p j,κ, p,h) ∈? ∆db BΦ3,Σ2, ι ?y,v j{?y/x}

CS-CONSTR
Φ0;Σ0 ` (p j,κ, p,c) ∈? ∆db BΦ1,Σ1, ι ,c[`′] u′

Φ1 |= `= `′ BΦ2 Φ2;Σ1;Γ ` u≈≡ u′ BΦ3;Σ2

Φ3;Σ2;Γ ` i≈≡ ι BΦ4;Σ3 Φ4;Σ4;Γ ` t ′ ≈≡ t BΦ5;Σ4

Φ0;Σ0;Γ ` c[`] u t ′ ≈R p j[κ] p i t BΦ5;Σ4

CS-PRODR
Φ0;Σ0 ` (p j,κ, p,→) ∈? ∆db BΦ1,Σ1, ι ,u→ u′ Φ1;Σ1;Γ ` t ≈≡ uBΦ2;Σ2

Φ2;Σ2;Γ ` t ′ ≈R u′ BΦ3;Σ3 Φ3;Σ3;Γ ` i≈≡ ι BΦ4;Σ4

Φ0,Σ0;Γ ` t→ t ′ ≈R p j[κ] p iBΦ4;Σ4

CS-SORTR
Φ0;Σ0 ` (p j,κ, p,s) ∈? ∆db BΦ1,Σ1, ι ,v j

Φ1;Σ1;Γ ` s≈R v j BΦ2;Σ2 Φ2;Σ2;Γ ` i≈≡ ι BΦ3;Σ3

Φ0;Σ0;Γ ` s≈R p j[κ] p iBΦ3;Σ3

CS-DEFAULTR
Φ0;Σ0 ` (p j,κ, p,_) ∈? ∆db BΦ1,Σ1, ι ,v j

Φ3;Σ2;Γ ` t ≈R v j BΦ4;Σ3 Φ4;Σ3;Γ ` i≈≡ ι BΦ5;Σ4

Φ0;Σ0;Γ ` t ≈R p j[κ] p iBΦ5;Σ4

ZU064-05-FPR unification-journal 22 January 2016 14:8

