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Abstract
The Coq proof assistant ships with Ltac, a powerful language
for custom proof automation. Unfortunately, large verifica-
tion projects developed in Coq frequently have to employ
plugins and libraries to work around Ltac’s widely-known
limitations. Indeed, Ltac is incomplete, has awkward and ob-
scure semantics, and provides almost no typing information
to prevent errors before they occur at runtime.

We present MetaCoq, a new tactic language for Coq. At
its core lies Mtac2, an extended and significantly improved
version of Mtac. Mtac2 provides the primitives required for
tactic development. These primitives have formal semantics
and are given a type in Coq, allowing for the construction
of safe tactics: A tactic that passes Coq’s typechecker either
succeeds or raises a meaningful exception.

At its surface, MetaCoq provides a set of tactics to per-
form basic proof steps, and a collection of tactic combina-
tors to effectively write proofs. MetaCoq’s tactics are con-
cise and arguably easy to read and write. With examples we
show that MetaCoq is an effective tool for proof developers
to create tactics and combinators fitting their needs.

Keywords Interactive theorem proving; custom proof au-
tomation; Coq; monads; typed meta-programming; tactics.

1. Introduction
Interactive proof assistants like Coq are now common tools
employed by researchers worldwide to inspire confidence in
their results. Noteworthy examples include major milestones
in the verification of large algebraic proofs (Gonthier et al.
2013a; Hales et al. 2015), and in the verification of large
software systems (Klein et al. 2010; Leroy 2009).

These assistants owe their success partially to the rich
higher-order logics they encode, which allow for the spec-

[Copyright notice will appear here once ’preprint’ option is removed.]

ification and verification of sophisticated theorems such as
the ones listed above. However, what is their gain is also
their curse: such highly undecidable logics do not allow for
the same level of automation SMT solvers provide for frag-
ments of first-order logic. As a consequence, the proof devel-
oper must often write several lines of proofs to solve goals,
even trivial ones that do not appear in their traditional pen-
and-paper counterparts.

To accommodate for this, proof assistants are equipped
with languages to build tactics: programs that decompose
a given goal into smaller subgoals until their truth is self-
evident. Coq, in particular, includes two languages: OCaml
and Ltac. The former is the language used to implement Coq
itself. Tactics written in OCaml are compiled and can make
use of imperative data structures—making them very effi-
cient. At the same time, developers are exposed the low level
details of Coq’s internals, including potentially unsafe oper-
ations. Moreover, the tactic development process is slow. For
one, the proof developer must reason at the level of de Bruijn
indices, carefully making sure that such indices refers to the
right binders. In addition, OCaml tactics must be compiled
and linked to Coq every time the tactic is modified.

Ltac, on the other hand, is a dynamic language that allows
for a rapid high-level development of tactics, directly within
the Coq environment and without requiring compilation and
linking. Moreover, it provides a convenient representation
of proof terms using the concrete syntax of Coq: it frees the
developer to think to the level of de Bruijn indices. However,
this language grew “one hack at a time”, and despite its
many years in the wild, it still lacks many basic language
constructs required for proper tactic development—a fact
reflected by a growing number of domain-specific tactic
languages that are written either as plugins in OCaml (e.g.,
Gonthier and Mahboubi 2010), or in sophisticated patterns
using Coq’s overloading mechanisms (e.g., Krebbers et al.
2017).

Another issue with languages like OCaml and Ltac is that
they offer almost no static guarantees: a tactic that is suc-
cessfully defined—that is, accepted by the OCaml compiler
or Ltac’s interpreter—may construct an ill-typed term that
is only rejected when it is too late to understand where the
problem originated from.
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Recently, Ziliani et al. (2015) devised Mtac, a new lan-
guage providing the static guarantees tactic languages are
currently missing. Mtac is based on the key realization that a
tactic language is just a functional language with certain ef-
fects, like non-termination and syntax manipulation. These
effects can be typed in Gallina, the language in which def-
initions are written in Coq, by means of a monad—not un-
like Haskell’s IOMonad. As a result, a program of type M τ ,
where M is the monad and τ is any type in Gallina, has the
guarantee that, if it terminates, the resulting term will have
type τ .

While Mtac was shown to be superior to Ltac in some
aspects, it still suffers from a problem shared with Ltac: it
does not include enough language constructs to enable the
construction of realistic tactics.

Contributions In this work we present MetaCoq, a new
framework based on Mtac for writing typed tactics and tactic
combinators. Tactics in MetaCoq are easy to write, to com-
bine, and to modularize. MetaCoq consists of:

1. Mtac2, a new version of Mtac with a richer set of lan-
guage constructs and revised semantics.

2. A novel extendable interface for manipulating goals.

3. Several basic tactics (proving MetaCoq’s versatility).

4. A new proof mode to write scripts directly in MetaCoq.

MetaCoq is a plugin for Coq downloadable from:

http://github.com/MetaCoq/MetaCoq

Roadmap In Section 2 we show two examples to quickly
highlight some of MetaCoq’s key aspects. In Section 3 we
provide the basics from the type of tactics to building and
executing a few simple tactics. In Section 4 we present sev-
eral tactics that allows basic bookkeeping, i.e., manipulation
of hypotheses. In Section 5 we show how to sequence the
execution of MetaCoq tactics, and several useful goal com-
binators. In Section 6 we present some tactics manipulating
inductive types. In Section 7 we show new reduction prim-
itives. In Section 8 we discuss some key changes in Mtac2
semantics with respect to Mtac. Finally, in Section 9 we con-
sider the corpus of related work.

2. MetaCoq by example
The cut tactic Our first example is one of the simplest
tactics one can think of: the cut tactic. It implements plain
modus ponens: given a proposition U , it solves goal T by
creating subgoals U → T and U . We choose this particular
tactic because—despite the triviality of the task at hand—we
were not able to write it as an Ltac tactic. The OCaml version
of this tactic shipped with Coq is several times longer than
ours: of the total 25 long lines of its implementation, 4 are
dedicated to setting up the tactic, 10 to check that the type
of U is a proposition, and 6 to actually create the proof,

including adjusting several de Bruijn indices. In MetaCoq,
cut is as simple as can be:

01 Definition cut U : tactic := λ g ⇒
02 T ← goal type g ;
03 ut ← evar (U → T );
04 u ← evar U ;
05 exact (ut u) g ;;
06 ret [Goal ut ; Goal u].

This tactic works as follows: it takes a type U and a
goal g. A goal has a type representing what has to be
proven. After extracting the type of the goal, T , it creates
two meta-variables (evars, short for existential variables).
Meta-variables represent missing parts of a proof. The first
one, ut , has type U → T , while the second one, u, has type
U . The notation · ← ·; · is customary monadic binding.

The goal g is solved by applying u to ut using another
tactic, exact, and the tactic returns the meta-variables as new
subgoals. The double semicolon is notation for binding when
the variable is not used.

There are several things to note in this short code. Firstly,
it is a standard Coq Definition. Indeed, the constructors of
the Mtac2 abstract syntax trees are part of an inductive type
defined within Gallina. Secondly, cut has type tactic—a new
type defined entirely in Gallina. Thirdly, since it is typed
in Gallina, U must be a Type, since it is part of the non-
dependent product U → T . In the same vein, we can rest
assured that we did not introduce any bug when building
the proof (ut u): the typechecker of Coq guarantees that this
term has weak type1 T .

The select tactical The following example shows how
MetaCoq’s programming model, extended from Gallina, al-
lows to easily compose tactics in interesting ways, leading
to short, readable, and maintainable code.

The scenario is as follows: we want to prove a simple
tautology manually, i.e., without calling the tactic tauto. The
tautology is (P → Q) → P → Q, for propositions P and
Q. Since we care about maintainability of the proof, the idea
is to provide a robust proof script—one that will not break
if names or a positions of hypotheses are modified in the
future.

We first present the proof in Ltac, and then show how
we can improve it using MetaCoq. The Ltac proof, shown
in Figure 1, starts by introducing all the variables, purposely
without providing names for them. Naming hypotheses leads
to fragile proof scripts, since any change in the order of the
hypotheses changes the meaning of those names. Next, the
tactic selects the hypothesis with product type (P → Q in
this case) by using Ltac’s goal pattern matching facility. The
hypothesis is then provided to the apply tactic. We are left
with goal P—and P in our assumptions. The goal is solved
by calling the assumption tactic. �
1 In this context weak means that the term is incomplete (has unresolved
meta-variables).
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Goal ∀ P Q , (P → Q) → P → Q .
Proof.
intros.
match goal with
| [ H : → � ] ⇒ apply H
end.
assumption.

Qed.

Figure 1. Proving a tautology using vanilla Coq.

Goal ∀ P Q , (P → Q) → P → Q .
MProof.
intros.
select ( → ) apply.
assumption.

Qed.

Figure 2. Proving a tautology using MetaCoq.

This proof has two issues: it is rather long for such a
trivial task, and it is not modular. Indeed, if we want to
generalize the concept of selecting a hypothesis and pass it
on to a tactic, as far as we know, it is not doable in Coq today.

Figure 2 shows the proof in MetaCoq’s way. In essence
it is the same as with the previous proof, but modular.
MProof introduces MetaCoq’s proof environment. It is fol-
lowed by a call to the intros tactic. Then, in order to select
the hypothesis with product type, it calls the select tactical.
A tactical is just a tactic that takes another tactic as parame-
ter, and we provide apply as such tactic. As with the previous
proof, it also concludes by calling assumption. �

Similarly to the code in Figure 1, the select tactical selects
the hypothesis using goal pattern matching:2

Definition select T (f : T → tactic) : tactic := λ g ⇒
G ← goal type g ;
match goal (� (x : T ) � G � ⇒ f x ) g .

In our example, we look for the hypothesis of type P →
Q (without mentioning P or Q directly), and then pass it on
to the apply tactic, which in MetaCoq has the following type:

apply : ∀{T : Type}, T → tactic.

The curly braces around T signify that this argument is
implicit, i.e., it will be guessed from the following argument.
It is interesting to note that this implicit type is equated by
the type inference mechanism to the type used by select to
perform the search.

2 For Ltac’s connaisseurs, MetaCoq’s match goal differs from Ltac’s
mainly in that it does not perform backtracking, and in the case of several
hypotheses matching it takes the first one. But it is encodable in MetaCoq,
so if a different behavior is intended, the proof developer can always code a
new version!

3. MetaCoq’s basics
In this section, we present some of the basic building blocks
of MetaCoq. We start with the type for tactics. In essence,
we use the conventional definition from LCF-like systems
(Harper et al. 1993): a tactic is a program that takes a goal
and generates a list of subgoals. This definition gives rise to
two questions: (i) What is a program? (ii) What is a goal?

As will become clear below, we need our programs to
have access to certain operations that are not encodable in
CIC, the pure calculus of Coq. In Krebbers et al. (2017) and
Gonthier et al. (2013b), it was shown how to write tactics
using Gallina alone by coercing the overloading mechanism
of Coq. However, this style of developing tactics is not as di-
rect and simple as one would like. Therefore, in MetaCoq we
decided in favor of Mtac (Ziliani et al. 2015). This language
provides several operations for meta-programming inside a
monad with a type in CIC. For MetaCoq we had to intro-
duce several modifications and new features to it, effectively
building a new language: Mtac2. We will inform the reader
of the differences between Mtac2 and Mtac when suitable.
Appendix A shows the Mtac2 language and its semantics.

Considering the definition of tactics given above, our
tactics are Mtac2 programs with the following type:

Definition tactic := goal → M (list goal)

The type predicate M in the co-domain indicates that a tactic
is an Mtac2 program that potentially generates a list of
goals. We say “potentially” because it might also fail or
loop forever. But if it terminates, then it will return what it
promises.

With programs defined, we turn our attention towards
goals. A goal consists of a type, the proposition we need to
prove, and a meta-variable of that type. A meta-variable of
type T is a placeholder for a proof term of type T which may
or may not be filled depending on the success of the proof
search.

On the OCaml side, a specific data constructor classifies
terms which are meta-variables. On the MetaCoq side, there
is no such data constructor: hence, a meta-variable of type T
cannot be distinguished from another term t of the same type
by a syntactic check. Actually, such an equality check would
unify the meta-variable and the term, i.e., it would assign the
term t to the placeholder of the meta-variable. To remedy
this lack of expressiveness, MetaCoq offers (like Ltac) a
special primitive is evar to determine if a given term is a
meta-variable or not.

There is another significant difference between the repre-
sentation of meta-variables in OCaml and their representa-
tion in MetaCoq: meta-variables are typed in MetaCoq while
they are untyped in OCaml. Therefore, in MetaCoq, it is im-
possible to ignore that the type of a meta-variable can con-
tain free variables, referring to objects introduced earlier in
the proof. To stay meaningful under every typing context, the
type of a meta-variable must come with its own typing con-
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Definition idtac : tactic := λ g ⇒ ret [g ].

Definition fail (e : Exception) : tactic := λ g ⇒ raise e.

Definition try (t : tactic) : tactic := λ g ⇒
mtry t g with ⇒ ret [g ] end.

Definition or (t u : tactic) : tactic := λ g ⇒
mtry t g with ⇒ u g end.

Definition exact {A} (x : A) : tactic := λ g ⇒
match g with
| Goal e ⇒
b ← munify cumul x e UniCoq;
if b then ret nil
else raise (NotCumul x e)

| ⇒ raise NotAGoal
end.

Figure 3. Basic MetaCoq tactics.

text, represented using a telescope. A telescope introduces
variables and their types one-by-one in the order of their rel-
ative dependencies so that the typing context at the end of
the telescope is sufficiently rich to type the goal, i.e.

Inductive goal : Type :=
| Goal : ∀ {A: Type}, A → goal
| AHyp : ∀ {A: Type}, option A → (A → goal) → goal.

Goal holds the proposition and its proof while AHyp adds
a hypothesis to a goal, optionally giving it a definition.

3.1 Basic tactics
We have enough prerequisites now to understand the tactics
of Figure 3. The no-op tactic idtac takes a goal g and returns
it in the singleton list [g]; fail receives an exception and
a goal and raises the exception; try silently ignores any
exception from tactic t by catching it with the mtry-with-
end construct; or first tries t, then u if t fails.

More interestingly, exact solves a goal by instantiating
its meta-variable with a given term. First, it takes the meta-
variable e from Goal, and then it unifies it with the argu-
ment x by calling munify cumul. This Mtac2 primitive, dis-
cussed in Section 8, unifies two terms using cumulativity of
universes: an element of certain type is allowed to be coerced
into one of a higher type (e.g., Ziliani and Sozeau 2015).
If the unification succeeds, the meta-variable is instantiated
with x and the goal is solved. Therefore, exact returns the
empty list. Otherwise, if the goal has introduced hypotheses
or unification failed, it raises meaningful exceptions. Here,
we assume that e is a meta-variable, although that invariant
must be manually maintained. If the invariant does not hold
and e is not a meta-variable (i.e., is a proof), then the tactic
will only succeed in case e is unifiable with the new proof x.

01 Definition apply {T} (c : T ) : tactic := λ g ⇒
02 (mfix1 app (d : dyn) : M (list goal) :=
03 mtry exact (elem d) g
04 with ⇒
05 mmatch d return M (list goal) with
06 | [? T1 T2 f ] @Dyn (∀ x :T1, T2 x ) f ⇒
07 e ← evar T1;
08 r ← app (Dyn (f e));
09 ret (Goal e :: r)
10 | ⇒ gT ← goal type g ;
11 raise (CantApply c gT )
12 end
13 end) (Dyn c)

Figure 4. The apply tactic.

3.2 The apply tactic
A bit more sophisticated than exact is the tactic apply listed
in Figure 4. This tactic solves the current goal with the pro-
vided proof c (usually a lemma or a hypothesis), as long as
the conclusion of c matches the goal. Taking the example
from Figure 2, the hypothesis H , with type P → Q, can
be applied to the goal Q since the conclusion of H is ex-
actly Q. To do so, apply must provide a proof p for H’s
antecedent (P ), and instantiate the goal with H p. Instead of
doing a proof search for P , apply delays the problem by in-
serting fresh meta-variables to every antecedent of c. These
meta-variables are the subgoals of the tactic.

apply works by iterating over the constructed proof until
no more meta-variables can be inserted. At each iteration it
tries to solve the goal with the proof constructed so far, and
if it fails it tries inserting a new meta-variable. For instance,
in the running example it will first consider H as the proof
and fail, since the type P → Q is not unifiable with the
goal Q, then insert a new meta-variable ?p for P , obtaining
proof H ?p, finally succeeding to solve the goal.

Note that the constructed proof has different types at each
cycle (e.g., P → Q and Q). Therefore, we pack the proof in a
weak σ-type representing an element (the constructed proof)
along with its type:

Record dyn := Dyn { type : Type; elem : type }

In Coq’s vernacular, Dyn is the constructor of the record dyn,
and it takes two arguments, one for each field (type and
elem). However, we make the type implicit and simply
write Dyn e for packing element e of some type, as we did
with Goal. type and elem are functions that, when given a
dyn, returns the first and the second value of the record,
respectively.

We can now have a detailed look into the code of Figure 4.
In line 2, we construct a fixpoint app using Mtac2’s fixpoint
combinator, mfix1, allowing potentially diverging compu-
tations. In contrast, Coq’s fixpoint combinator only allows
terminating recursion on structurally decreasing arguments.
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The argument of the fixpoint is the proof d constructed at
each iteration, wrapped in a dyn. In line 3, we try to solve
goal g with the proof in d using the tactic exact.

If the goal is not solved, an exception is raised and caught
in line 4, as part of the standard exception handler “mtry ...
with”. In lines 5 and 6, we inspect d to find out if it has
product type. The keyword mmatch introduces a higher-
order pattern matching to introspect Coq terms using higher-
order unification. As with Coq dependent pattern matching,
a return clause helps the typechecker to refine the type of
the scrutinee by introducing type equalities in the context.
The patterns used in the branch must introduce unification
variables explicitly using the syntax [? X Y . . . ].

As customary in Coq, we use the @ symbol to provide
all the arguments of a constructor, even the implicit ones
like the type argument of Dyn. If d indeed has function type
∀x : T1, T2, we create a meta-variable e with type T1 (line
7), and we recursively call app with f , the proof, applied to
e (line 8). At line 9, we return the list of goals r with the new
goal e pushed in front of it. If d does not contain an element
of product type, it must be because it is fully applied, but it
does not have the right type to solve the goal, so we raise a
meaningful exception (line 11). The tactic packs the term c
in a dyn and feeds it to the fixpoint (line 13).

3.3 Executing tactics
MetaCoq provides several ways for executing tactics, ac-
cording to the user’s need.

The MProof environment. The new MProof proof envi-
ronment, already mentioned in the introduction, is the main
option to execute tactics. It also supports the execution of
any Mtac2 term producing an element of the expected type.
For instance, the following are two (rather trivial) proofs of
n + 0 = n for some n in the context. The first one uses the
exact tactic with the existing lemma add 0 r, and the second
one directly returns the lemma.

Goal n + 0 = n.
MProof. exact (add 0 r ). Qed.

Goal n + 0 = n.
MProof. ret (add 0 r ). Qed.

Note that in both cases the argument of the lemma is
obtained from the type of the goal.

The mrun tactic. Alternatively, we provide a new OCaml
tactic called mrun. This tactic enables the execution of Meta-
Coq code (a tactic or an Mtac2 program) in existing proofs.

Goal n + 0 = n.
Proof. mrun (exact (add 0 r )). Qed.

4. Tactics manipulating variables and binders
In this section, we target one of the most important processes
in proof writing: bookkeeping. Indeed, according to Ssre-
flect’s creators (Gonthier and Mahboubi 2010), a substantial

01 Definition intro0 (var : string) : tactic := λ g ⇒
02 mmatch g return M list goal with
03 | [? A P e] @Goal (∀ x : A, P x ) e ⇒
04 nu var None (λ x : A ⇒
05 e’ ← evar (P x );
06 fe’ ← abs fun (P := P) x e’;
07 exact fe’ g)
08 | ⇒ raise NotAProduct
09 end.

Figure 5. The intro0 tactic.

amount of lines of code involve moving hypotheses from the
goal to the context and back. Bookkeeping requires careful
manipulation of variables and binders, and we show with
examples an original and unified set of operators devised to
that end.

More concretely, this section presents: a simple tactic to
introduce a variable in the context (§4.1); a tactic to intro-
duce a definition in the context (§4.2); an improvement to
these tactics so they can be composed with other tactics
(§4.3) (the composition operator will be presented in Sec-
tion 5); a tactic to generalize a variable from the goal (§4.4);
a tactic to create a fixpoint (§4.5); and a tactic to clear a vari-
able from the context (§4.6).

4.1 Introducing a variable in the context
Let us assume we want to solve a very simple goal:

∀P : Prop, P → P

The first tactic we can employ to make progress in a proof is
the intros tactic.

intros P p

This tactic introduces a variable P of type Prop and a vari-
able p of type P in our context. Mathematically, this step of
the proofs corresponds to a “let P be a proposition and let p
be a proof of that proposition. . . ”. Operationally, this tactic
must create a function abstraction for each product, with the
new goal having a context extended with the freshly intro-
duced variable. Following the running example, the original
goal is partially solved by the term

λP ⇒ λp ⇒ ?e

where ?e is the new goal; a fresh meta-variable having access
to P and p. The interested reader is invited to read (Ziliani
et al. 2015, Section 4.2) for details on how meta-variables
track their context.

The intros tactic in its full form allows for the introduc-
tion of several variables and definitions (let-bindings). In this
section, we consider only one variable, and in the coming
section we consider only one let-binding. For the actual tac-
tic shipped with MetaCoq the reader is invited to read the
source files.
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The code listed in Figure 5 shows tactic intro0. This
tactic mostly works, but has an issue that we will solve in
Section 4.3. intro0 works as follows: It pattern matches the
goal to see if it has a product type (∀x :A,P x), for some
A and P . As we did with the apply tactic before, we use the
@ symbol to provide all the arguments of Goal. If the goal is
not a product, or it is not a goal, it raises an exception (line
8).

If it is a product, it introduces a variable having the name
provided (var, a string), and executes the code inside the
closure. This is performed via the nu operator. This operator
has the following type:

nu : ∀{A B}, string → option A → (A → M B) → M B

It takes the name n of the variable, a definition d (option-
ally), and a closure f , and it executes the code in the clo-
sure under the local context extended with a variable named
after n. It has a necessary restriction: the variable n must
not appear free in the return value of f , otherwise the result
would become ill-typed outside of the scope of n.

The closure creates a meta-variable (line 5) having type
P x, where x will be replaced by the variable introduced, and
P represents the co-domain of the product. Then, in line 6, x
is abstracted from the just created meta-variable. The opera-
tor abs fun, created to that effect, has the following type:

abs fun : ∀{A}{P :A → Type}(x : A), P x → M (∀x, P x)

It takes a variable x and an expression e of type P x, and
creates a λ-abstraction λx ⇒ e “closing” e w.r.t. x. In this
case, the expression e is the meta-variable.

Finally, in line 7, the goal g is solved using the result fe �

of the previous line.
For readers already familiar with Mtac, we have imple-

mented two changes in these operators:

1. The nu operator takes a name, which must be unique, and
an optional definition. Previously, the name was given by
the name of the variable in the closure, and it was not
restricted to be unique. But this created several naming
issues. It was also not possible to introduce a definition,
a crucial requirement for the tactic in the coming section.

2. The abs fun operator is less restrictive than the former
abs operator. In order to maintain soundness, this opera-
tor must check that the free variables of the term e does
not themselves depend on the variable x being abstracted.
In the former version, this check required that all vari-
ables in the context, and not only those occurring in e, do
not depend on x.

4.2 Introducing a let-binding
Consider the following goal stating that computing twice the
Fibonacci number of x is equal to multiplying it by 2:

∀x, let fx := fib x in fx + fx = 2 ∗ fx

01 Definition intro let0 (var : string) : tactic := λ g ⇒
02 mmatch g return M (list goal) with
03 | [? A (d :A) P e] @Goal (let x := d in P x ) e ⇒
04 nu var (Some d) (λ x : A ⇒
05 e’ ← evar (P x );
06 fe’ ← abs let (P := P) x d e’;
07 exact fe’ g)
08 | ⇒ raise NotAProduct
09 end.

Figure 6. The intro let0 tactic

If we have in our library a theorem stating ∀n, n + n =
2 ∗ n, it is not optimal to expand the definition of the let-
binding: we should instead push the definition in our list
of hypotheses to apply the general theorem to the goal. We
can do this again using the nu operator, and a new operator:
abs let.

Figure 6 shows an analogous tactic to intro0, but for
introducing let-bindings. It differs in three aspects: it pattern
matches a let (line 3), it introduces the definition with the
nu operator (with the argument (Some d) in line 4), and
it abstracts the variable using abs let (line 6). This new
operator has the following type:

abs let : ∀{A P}(x:A)(t:A), P x → M (let x := t in P x)

In the running example, assuming variable x was introduced
previously, the partial term fe � used by intro let0 to solve the
goal is

let fx := fib x in ?e�

with ?e� having type fx + fx = 2 ∗ fx.

4.3 Returning a new goal
The tactics from sections 4.1 and 4.2 have a problem: they
return an empty list of goals. (Remember from Figure 3 that
exact, the tactic called at the end of intro0 and intro let0,
returns no subgoal.) Hence, the freshly created metavariable
?e� has not been registered as a goal by the proof engine. If
we want to compose these tactics with any other tactic, as
custom in Coq scripts, and as we will see in Section 5, it just
would not work.

This is the motivation behind the AHyp constructor in
the goal type. The general idea will be to create a Goal
containing the freshly generated meta-variable, and seal it
in a similar fashion as we did before using the abs fun
operator.

We explain the additional lines required in intro0, and let
the reader figure out the necessary changes to intro let0. The
call to the exact tactic in line 7 of Figure 5 must be replaced
with:

exact fe’ g ;;
nG ← abs fun x (Goal e’);
ret [AHyp None nG ]
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01 Definition generalize {A} (x :A) : tactic := λ g ⇒
02 gT ← goal type g ;
03 aT ← abs prod x gT ;
04 e ← evar aT ;
05 mmatch aT with
06 | [? Q : A → Type] (∀ z :A, Q z ) ⇒ [H ]
07 let e’ := match H in = T return T with
08 | eq refl ⇒ e
09 end in
10 exact (e’ x ) g ;;
11 ret [Goal e]
12 | ⇒ failwith ”generalize: should never happen”
13 end.

Figure 7. The generalize tactic

First, we have the same call to the exact tactic. But now it
is composed with the double-semicolon. The code continues
by packing e�, the new meta-variable, with Goal, and sealed
it inside a λ-abstraction using abs fun. Finally, we return
the singleton list containing a goal created with AHyp and
the new goal nG .

4.4 Generalizing a variable
The intros tactic moves a variable from the goal to the list of
hypothesis. When we want to do the opposite, we are gener-
alizing a variable from the goal, a situation that occurs, for
instance, when we need to weaken the induction predicate.

Figure 7 shows the tactic generalize created to that end.
It receives a variable x and a goal g, and abstracts x from
the goal’s type gT . abs prod is used to that effect. This new
operator has the following type:

abs prod : ∀{A:Type} (x:A),Type → M Type

Note a difference w.r.t. abs fun and abs let: instead of
taking a type predicate P and an element of P x, it only
takes a type. And the returning type is Type. This is because
the returning type cannot say anything interesting about the
returned value. If, for instance, the goal is x > 0 and we
abstract x from it, we obtain the type ∀x, x > 0 which has
type Type.

We use the resulting type aT to create a new meta-
variable e (line 4), which will become the new goal. Ideally,
we would like to solve the current goal g with e applied to
x. However, e’s type is aT : there is no information that it is
actually a product taking an element of the type of x.

Usually types help us construct concise and sound tactics,
like in the cut tactic from the introduction.There are cases,
luckily not too often, where they actually get on our way. We
hit one such unfortunate situation in our generalize tactic.
We have to cast e to have product type.

In lines 5 to 9 we pattern match aT to ensure it has type
∀z:A,Q z, for some Q. The details are unimportant, but
basically in lines 7 to 9 we are casting e, of type aT , to

01 Theorem plus n O : ∀ n:nat, n = n + 0.
02 MProof.
03 fix tac ”IH ” 1.
04 destructn 0.
05 - reflexivity.
06 - intro n’. simpl. rewrite ← IH . reflexivity.
07 Qed.

Figure 8. Using fix tac.

01 Definition fix tac f i : tactic := λ g ⇒
02 gT ← goal type g ;
03 r ← nu f None (λ f :gT⇒
04 new goal ← evar gT ;
05 fixp ← n etas i new goal ;
06 fixp ← abs fix f fixp i ;
07 new goal ← abs fun f (Goal new goal);
08 ret (fixp, AHyp None new goal) );
09 let (f , new goal) := r in
10 exact f g ;;
11 ret [new goal ].

Figure 9. The fix tac tactic to create a fixpoint.

have type ∀z:A,Q z. Then we can successfully apply x to
the resulting term e� and solve the goal in line 10.

4.5 Creating a fixpoint
Figure 9 shows the fix tac tactic. It takes a name f and a
number i and, similar to Coq’s fix, it allows for the construc-
tion of proofs involving recursion on the i-th argument of the
goal.

As an example, Figure 8 uses fix tac to prove by induc-
tion that 0 is an identity on the right. The proof starts by
calling fix tac with arguments IH and 1. IH will be the in-
ductive hypothesis, having exactly the same type as the goal.
The number 1 indicates that we are doing recursion on the
first product, that is, n. The proof is mostly uninteresting,
except for line 6 where the inductive hypothesis is used.

Coming back to Figure 9, the tactic works as follow, line
by line. On line 3, using nu we introduce a variable with
name f having the same type as the goal, gT . On line 4, a
new goal (meta-variable) is created, also having type gT . It
will have f in its context. On line 5, the goal is η-expanded
i-th times. For instance, for the running example fixp will
be (λn : nat ⇒ ?new goal n) (the function n etas can be
found in the accompanying code). Note that it will have the
same type as the goal, gT . On line 6, f is abstracted from
fixp using another new operator:

abs fix : ∀{A:Type}, A → A → nat → M A

When calling abs fix with arguments f , fixp and i it creates
a fixpoint f decreasing on the i-th argument of fixp (which
has to be a function with at least i binders). For the details on
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01 Definition clear {A} (x :A) : tactic := λ g ⇒
02 gT ← goal type g ;
03 e ← remove x (evar gT );
04 exact e g ;; ret [Goal e].

Figure 10. The clear tactic.

Coq’s fixpoints we refer the reader to the manual (The Coq
Development Team 2016).

The following lines follow a similar pattern to previous
tactics: the new goal is sealed with the hypothesis, and the
current goal is solved using the new goal.

4.6 Clearing a variable from the context
In order to remove clutter when working with several hy-
potheses, proof developers may “throw away” unnecessary
hypotheses by calling the clear tactic.

Figure 10 presents clear. In essence, clearing a variable
x from a goal essentially encompasses creating a new goal,
having access to the same list of hypotheses that the current
goal except x, and solving the current goal with it. Line
3 creates the new goal using evar, but inside another new
operator:

remove : ∀{A:Type}{B:Type}, A → M B → M B

This operator takes a variable z and a piece of code t,
and it executes t in the same context as the code executing
remove, but without x. To avoid unsound results, remove
ensures that t does not have z—or any other variable de-
pending on z—free, raising an exception if this condition is
not satisfied.

In clear, calling evar inside remove will create a meta-
variable without x in its context, as required. The clear tactic
then instantiates the current goal with the created meta-
variable and returns the new goal.

5. Composing tactics in MetaCoq
In Ltac it is custom to compose tactics with the semicolon
operator. This operator acts on different structures, having
different semantics depending on what is being composed.
In MetaCoq we emulate the same behavior, and we extended
it to handle also goal selectors.

MetaCoq’s composition operator takes the notation from
the pipe redirection operator in terminals: &>. On the left-
hand side of a &> there is always a tactic. On the right
it accepts the following types of operands (and it can be
extended to handle others, as will be noted soon):

A single tactic. When composing two tactics, the second
tactic is applied to all the subgoals generated by the first
tactic. For instance, we can “redirect” all the goals generated
by the destruct tactic to the assumption tactic by writing:

destruct n &> assumption

destruct performs a case analysis on the argument, in this
case n. If, for instance, n is a natural number, it gener-
ates two subgoals, one for zero and one for successor. In
the script above all of them are solved using the tactic
assumption.

A list of tactics. When composing a tactic with a list of
tactics, the first tactic in the list is applied to the first subgoal
generated by the tactic on the left, the second tactic in the
list to the second subgoal, and so on. For instance, consider
the following example where n is again a natural number:

destruct n &> [assumption; exact X]

(Note the standard notation for Coq lists [t1; . . . ; tn] to rep-
resent a list with elements t1 to tn.) In this case, the first
subgoal is solved by the assumption tactic, and the second
one by some hypothesis named X .

A goal selector. Goal selectors are just functions from a
list of goals to a list of goals, and they enable the filtering or
reordering of goals.

Definition selector := list goal → M (list goal).

For instance, the following goal selector takes the n-
th goal of the list (starting from 0) using the standard list
operation nth error:

Definition snth n : selector := λ l ⇒
match nth error l n with
| None ⇒ raise NoGoalsLeft
| Some g ⇒ ret [g ]
end.

We can then solve the first subgoal composing snth:

destruct n &> snth 0 &> assumption

In fact, since it is so common to use such selector, we provide
a suitable notation for it:

destruct n |1> assumption

In order to make &> work with these variations we take
advantage of the overloading mechanisms readily available
in Coq. In fact, a MetaCoq user can overload the operator
with another type of operand if suitable. Since it is not the
purpose of this work to explain overloading, and there is
nothing special about it in our use in MetaCoq, we defer the
reader to the source code for details.

This is yet another advantage of MetaCoq over traditional
approaches: we have at our disposal the full Gallina lan-
guage and its tools to build our tactics. We already men-
tioned Coq’s typechecker and overloading mechanisms, but
we can also take advantage of the Program command to
build tactics interactively, the module system (not only for
namespacing!), etc.
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A little detour. As a matter of fact, Coq is equipped with
two different mechanisms: Type Classes (Sozeau and Oury
2008) and Canonical Structures (Mahboubi and Tassi 2013).
In MetaCoq we use the latter for two practical reasons:
1) The resolution mechanism of Type Classes is less pre-
dictable, and sometimes reduces terms unnecessarily, and 2)
the lead author has more experience with Canonical Struc-
tures.

In the following section we will see how the composition
operator deals with variables introduced by previous tactics.

5.1 Composing intros

Someone used to Ltac will naturally write the following
code to introduce a variable in the hypotheses and use it
afterwards in a tactic, here destruct:

intros n &> destruct n

However, this does not work in MetaCoq. The reason is
simple: we decided to make the &> operator agnostic about
the names introduced by intros. That is, intros does not have
a special status like in Ltac. Indeed, in Ltac other tactics
introducing names, like rename or Ssreflect’s move, do not
enjoy such special treatment and cannot be used effectively
in Ltac procedures. In contrast, for us intros is just a tactic
like any other.

Our alternative to the broken script above, which we
strongly argue is better than Ltac’s semicolon, is to use
scoped intros, as we will see in Section 5.2. This said, we do
not prevent the use of intros followed by a &>, as long as the
name is not used. For instance, the following is a perfectly
valid MetaCoq code:

intros a b c &> assumption

The tactic assumption will see in the list of hypotheses that
there are three, named a, b, and c.

Is for this kind of legal uses of intros that we created
the goal type as a telescope, extending the telescope in Sec-
tion 4.3 with the introduced variable.

If we recall the tactics we have seen so far, every time
a tactic in MetaCoq receives a goal g, it is always assumed
the telescope is open: g is just Goal and not AHyp. In order
to keep this invariant, the composition operator must open
goals prior to pass them on. It does so by calling the tactical
open and apply from Figure 11.

open and apply takes a tactic t and a goal g, and for each
AHyp in g it introduces the variable (or definition) in the
context, and recurses. When it reaches the Goal, it executes
t with the opened goal. After recursing, it seals back the
list of goals generated by t by calling auxiliary functions
(let )close goals.

In order to ensure the new variables introduced respect
the names introduced before, e.g., by the intros tactic, we
obtain the names from the binders of the telescope calling

Definition open and apply (t : tactic) : tactic :=
fix open g :=

match g return M with
| Goal ⇒ t g
| @AHyp C None f ⇒

x ← get binder name f ;
nu x None (λ x : C⇒
open (f x ) � close goals x )

| @AHyp C (Some t) f ⇒
x ← get binder name f ;
nu x (Some t) (λ x : C⇒
open (f x ) � let close goals x )

end.

Figure 11. The tactical open and apply.

the following operator:

get binder name : ∀{A : Type}, A → M string

This operator returns the name of the binder in a function, a
let-binding, or a product. Otherwise, it raises an exception.

5.2 Scoped introduction of variables
Let us ponder on the information provided in sections 4.1,
4.3, and 5.1, and consider the following short code:

intros H &> assumption

The following actions regarding variable H are taking place:

1. H is added to the context (intros).

2. A new goal is created (intros).

3. H is abstracted from the goal created in (2) (intros).

4. H is re-introduced (&>).

5. H is abstracted from the result of assumption (&>).

It seems a bit too bureaucratic for such a simple task. Luck-
ily, there is a simple solution: instead of using &> to com-
pose intros, use scoped intros:

cintros H {- assumption -}

This tactic only performs steps 1, 2, and 5. The only inter-
esting bit in the implementation of cintros is that it is a Coq
recursive notation, allowing for an arbitrary number of vari-
ables without involving explicit recursion:

Notation ”’cintros’ x .. y ’{-’ t ’-}’” :=
(intro cont (λ x ⇒ .. (intro cont (λ y ⇒ t)) ..))
(at level 0, x binder, y binder, right associativity).

6. Working with inductive types
Inductive types are an integral part of Coq, and in Mtac2
we provided several primitives to deal with them: constrs,
destcase, and makecase.
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Inductive Vector (T : Type) : (∀ n : nat), Type :=
| vnil : Vector T 0
| vcons (n : nat) (t : T ) : Vector T n → Vector T (S
n).

Figure 12. An inductive type of length-indexed lists.

01 Definition constructor (n : nat) : tactic := λ g ⇒
02 A ← goal type g ;
03 match n with
04 | 0 ⇒ raise ConstructorsStartsFrom1
05 | S n ⇒
06 l ← constrs A;
07 match nth error (snd l) n with
08 | Some x ⇒ apply (elem x ) g
09 | None ⇒ fail CantFindConstructor g
10 end
11 end.

Figure 13. The constructor tactic.

In order to understand these primitives we need to un-
derstand some of inductive types’s main components: pa-
rameters and indices: the former are arguments to both the
inductive type itself and all constructors. They are implicitly
quantified over in every constructor and must not be changed
in any occurrence of the inductive type in the constructor’s
signature. Parameters must be the first arguments of an in-
ductive type, a restriction which is enforced syntactically.

Indices, on the contrary, are arguments only to the induc-
tive type, and they are allowed to change in every construc-
tor’s signature.

Figure 12 contains an example of an inductive type that
describes length-indexed lists (often called vectors). The ar-
gument T is a parameter, n is an index, and the construc-
tors are vnil and vcons. Note, particularly, that the construc-
tors’s signatures mention parameter T without quantifying
over it explicitly, and that they instantiate the occurrences of
Vector T with different indices.

The Mtac2 primitive constrs takes an inductive type and
returns a pair containing a dyn and a list of dyns. The first
element contains the same inductive type, applied to all of
its parameters but without the indices. For instance, if we
call constrs on Vector nat 1, it will return Vector nat. The
second element contains the constructors, also applied to the
parameters (e.g., vnil nat and vcons nat). Note that we need
to wrap these elements in dyns since their types are not easily
expressed in terms of the inductive type provided.

Using constrs, we can easily implement a constructor
tactic (Figure 13), which solves a goal of type T by applying
its n-th constructor.

With constrs taking care of the inspection of inductive
definitions, we are still missing primitives to handle their
destruction: dependent pattern matching.

In Coq, pattern matching is done with syntactic match
constructs that are generated for every inductive definition.
For instance, the following is a template example of a depen-
dent match on the Vector type:

match v in Vector k return P k with
| vnil ⇒ (* goal: P 0 *)

| vcons n’ a v ’ ⇒ (* goal: P (S n’) *)

end

Note that the return type may depend on the specific
indices of the given inductive value.

As pattern matching terms only exist for specific induc-
tive types, it is impossible to construct a pattern matching
term on a statically unknown inductive type. This represents
an obstacle when considering mmatch to identify pattern
matching terms unless the inductive type is known when the
tactic is typechecked.

MetaCoq solves this problem by providing the destcase
and makecase primitives—responsible for inspecting and,
respectively, creating pattern matching terms.

When destcase is given a pattern matching term, it will
return a record specifying the inductive type, the inductive
value, the return type, and the branch associated with ev-
ery single constructor. The branches are functions of the re-
spective constructor’s arguments except for parameters of
the inductive type. Both the return type and the branches are
wrapped in dyn since their type cannot easily be expressed
in terms of the input type or the inductive type.

destcase’s counterpart makecase takes such a record
and constructs the corresponding pattern matching term. It
assumes that the list of branch functions is in the order in
which the constructors were defined and that parameters
are not abstracted over—an invariant maintained by both
constrs and destcase.

With constrs and makecase we were able to build a
simple destruct tactic. Unfortunately, space forbids us to
show it here, and we are currently working on a significant
improvement of this tactic.

7. Reducing terms
Tactics often need to reduce terms in order to build more
compact proofs, or simply to avoid goals to be cluttered with
unnecessary information. In Mtac2 we drastically improved
Mtac’s reduction primitives in two aspects:

1. Reduced terms remain equal to the original term for the
typechecker. Indeed, in the former version the reduction
primitives were tied to the monadic unit (ret), making it
impossible to inform the typechecker, without a coercion,
that the returned term was convertible to the original one.

2. Several reduction functions were added.

In order to achieve (1), we instruct the interpreter of
Mtac2 to not reduce let-bindings. Then, we inspect the head
of the term in the definition of the let-binding: if it is a
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special constant, then we call the reduction engine. If it is
not, then the let-binding is reduced as custom. For instance,
the following code performs β-weak-head reduction on a
term t before returning it:

let x := reduce (RedWhd [RedBeta]) t in ret x

We define the constant reduce to be just the identity func-
tion. Therefore, for Coq’s typechecker x is just a definition
for t: whenever t is expected, x is also accepted.

As for (2), the following is the list of reduction functions
included in Mtac2: RedWhd flags for (weak) head reduc-
tion, RedStrong flags for strong reduction, RedSimpl for the
heuristic used by Coq’s simpl tactic, and RedOneStep for
one step head reduction. As for the flags, currently it ac-
cepts a list with the following: RedBeta, RedDelta RedIota,
RedZeta, for β, δ, ι, ζ reduction, respectively (see The Coq
Development Team (2016, ch. 4.3) for details). Additionally,
it includes flags RedDeltaX and RedDeltaC for unfolding of
just variables or constants, respectively (RedDelta performs
both).

8. Unification primitives + backtracking
semantics: enabling pattern matching

In Mtac the evaluation of mmatch was mainly performed
on the OCaml interpreter side. Thanks to new unification
primitives and backtracking semantics we managed to write
mmatch directly in Mtac2. Similarly, we developed a tactic
to perform goal pattern matching directly in MetaCoq.

8.1 Unification primitives
In Mtac2 we have two new primitives for unification:

munify : ∀{A}(x y : A),Unif → M (option (x = y))
munify cumul : ∀{A B}(x : A)(y : B),Unif → M bool

In the first one, x and y must have the same type. As a result,
it produces a proof of x = y (or returns None if they are
not unifiable). In the second one, x and y may have different
types A and B, respectively, and it will succeed if x and y
are unifiable and A is a Type lower or equal in the universe
hierarchy. For instance, if x is True, having Prop type, and y
is a meta-variable with type Type, then it will succeed. Note
that it cannot return a proof of x being equal to y because
their types are not strictly equal.

The argument with Unif type switches among different
algorithms: UniCoq uses the algorithm described in Ziliani
and Sozeau (2015), inspired in MetaCoq’s needs. UniMatch
uses the same algorithm, but it prevents the instantiation
of meta-variables in the term on the right (y above) and
reduction of the term on the left (x above). UniMatchNoRed
is like UniMatch but it also prevents reduction on y. Finally,
UniEvarconv uses Coq’s own unification algorithm.

8.2 Backtracking semantics
In Mtac, meta-variables were conceived as one-time-write
pointers. Therefore, the creation and instantiation of meta-

variables was not rolled-back when an exception was raised.
In the new semantics of Mtac2, meta-variables created—
or instantiated—inside a mtry block are discarded—or un-
instantiated—before executing the with block.

To give an example, in the following code two meta-
variables are created, e1 outside the mtry block, and and
e2 inside. e1 is instantiated with number 1 inside the mtry
block. After the exception is raised, e2 is erased and e1
remains un-instantiated.

e1 ← evar nat;
mtry
e2 ← evar nat;
munify e1 1 UniCoq;;
raise exception

with ⇒ ret 0 end

For space reasons we are not able to show how we im-
plement pattern matching, and goal pattern matching, using
these two concepts, but the interested reader is invited to find
the implementation in the accompanying code.

9. Related work
Type for tactics LCF (Gordon et al. 1979) introduced
backward reasoning based on tactics. A tactic in LCF en-
joys the type (Gordon 2015) goal → list goal × procedure
where procedure validates the process of reducing the input
goals to a list of subgoals. The resemblance with our type for
tactics is striking. (Remember, it is goal → M (list goal).)
The differences between the traditional LCF type for tactics
and ours are nonetheless essential.

First, we do not need a validation procedure to be safe.
Indeed, many tactics are already sufficiently typed to be
automatically justified by Coq’s typechecker. Other tactics
may be weakly typed: their types do not say what they
prove. By contrast, in a strongly typed metalanguage like
VeriML (Stampoulis 2012), every tactic is specified and jus-
tified by a very precise type. As this very strong typing can
make some tactics hard to write, we decide to allow some
form of dynamic typing. Note that the overall process will
never be unsafe since Coq follows the de Bruijn principle:
its kernel will eventually recheck the final proof entirely.

Second, as noted by Matita’s designers (Sacerdoti and
Tassi 2009), the LCF type for tactics has many deficiencies:
it ignores meta-variables; it forces a form of locality dur-
ing goal solving; it forbids the rendering of partial proofs;
it complicates the implementation of declarative languages
and mechanisms to structure scripts. While Matita’s type for
tactics exposes a global environment and the entire context
in a low-level OCaml type, we encapsulate the available ef-
fectful operations inside a monad, which simplifies tactic
composition. In the same vein, Spiwack (2010) proposes a
backtracking monad for tactics, which has been integrated
in the proof engine of Coq. Such a backtracking monad can
be implemented in MetaCoq but this is not the default com-
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putational model, which is deterministic, hence more pre-
dictable.

Types of tactics SSReflect (Gonthier and Mahboubi 2010)
provides an alternative to Ltac’s tactics. It is designed to
incorporate small-scale reflection steps in proofs, and more
generally to improve the robustness of proof script with
respect to changes. Unfortunately, due to its poor interaction
with Ltac, SSReflect’s scripts are hard—if not impossible—
to modularize. We believe that MetaCoq can be used to
implement tactic languages similar to SSReflect directly in
Coq.

In contrast to SSReflect, Rtac (Malecha and Bengtson
2016) provides reflection-based tactics in pure Gallina. As
in MetaCoq, an Rtac tactic is simply a Coq term. Yet, con-
trary to MetaCoq, the semantics of Rtac stays inside Coq.
(There is no need for an external interpreter.) Therefore,
while MetaCoq’s interpreter must produce a concrete effect-
free proof-term to serve as a trusted proof, a tactic applica-
tion in Rtac is directly a (more compact) proof. As the Cy-
bele experiment shows (Claret et al. 2013), certain effects—
like non-termination—can be executed outside Coq, return-
ing a witness, and replayed inside Coq.

In declarative proof languages like Isar (Wenzel 1999)
or Corbineau’s declarative mode (Corbineau 2007), a proof
is written following forward reasoning instead of backward
reasoning. Such declarative proofs mimick pencil and pa-
per proofs and they are usually easier to read than tradi-
tional LCF proofs. We believe that MetaCoq is expressive
enough to allow such declarative languages to be simply im-
plemented as embedded domain specific languages, i.e. as
libraries of combinators. Similarly, we expect that the imple-
mentation of the IPM (Interactive Proof Mode for embedded
logics) (Krebbers et al. 2017) can be significantly simplified
and improved by using MetaCoq instead of plain Ltac and
overloading.
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A. Mtac2 Language and Its Semantics
In this appendix we show the Mtac2 language to its full
extent, together with its big-step operational semantics.

The type of the operations are given in the following
inductive type:

Inductive M : Type → Prop :=
| ret : ∀ {A}, A → M A
| bind : ∀ {A} {B},

M A → (A → M B) → M B
| mtry : ∀ {A}, M A → (Exception → M A) → M A
| raise : ∀ {A}, Exception → M A
| tfix1 : ∀ {A} {B : A → Type},
((∀ x : A, M (B x )) → (∀ x : A, M (B x ))) →
∀ x : A, M (B x )

| is var : ∀ {A}, A → M bool
| nu : ∀ {A B}, string → option A → (A → M B) →
M B

| abs fun : ∀ {A P} (x : A), P x → M (∀ x , P x )
| abs let : ∀ {A P} (x : A) (t : A), P x →
M (let x := t in P x )

| abs prod : ∀ {A} (x : A), Type → M Type
| abs fix : ∀ {A}, A → A → N → M A
| get binder name : ∀ {A}, A → M string
| remove : ∀ {A B}, A → M B → M B

| evar : ∀ (A : Type), option (list Hyp) → M A
| is evar : ∀ {A}, A → M bool

| print : string → M unit
| pretty print : ∀ {A}, A → M string

| hypotheses : M (list Hyp)

| destcase : ∀ {A} (a : A), M (Case)
| constrs : ∀ {A} (a : A), M (dyn × (list dyn))
| makecase : ∀ (C : Case), M dyn

| munify {A} (x y : A) : Unif → M (option (x = y))
| munify cumul {A B} : A → B → Unif → M bool

In the following figures we show the big-step semantics
of the language. The judgment

Σ;Γ � t ⇓ (Σ�; v)

specifies: under local context Γ and meta-context Σ, evalu-
ating code t produces a new meta-context Σ� and a value v.
Values are: ret e or raise e, for some Coq term e.

CONJECTURE 1 (Type soundness). If Σ;Γ � t : M τ and
there exist t� and Σ� such that Σ;Γ � t ⇓ (Σ�; v) then Σ� is
an extension of Σ and Σ�;Γ � v : M τ .

Values

ERET

Σ;Γ � ret e ⇓ (Σ; ret e)

ERAISE
FV(e) �∈ Γ FMV(e) = ∅
Σ;Γ � raise e ⇓ (Σ; raise e)

EFAILURE
Σ;Γ � t �⇓

Σ;Γ � t ⇓ (Σ; raise Failure)

Reduction

EWHD

Σ;Θ,Γ � t
whd� βδι t

�

Σ;Γ � t� ⇓ (Σ; v)

Σ;Γ � t ⇓ (Σ; v)

EREDUCE

Σ;Θ,Γ � t
r̂� t� Σ;Γ � u{t�/x} ⇓ (Σ; v)

Σ;Γ � let x := reduce r t in u ⇓ (Σ; v)

ELET
t’s head is not reduce Σ;Γ � u{t/x} ⇓ (Σ; v)

Σ;Γ � let x := t in u ⇓ (Σ; v)

Standard operations

EFIX
Σ;Γ � f (mfix f) t ⇓ (Σ; v)

Σ;Γ � mfix f t ⇓ (Σ; v)

EBINDR
Σ;Γ � t ⇓ (Σ�; ret e)

Σ;Γ � bind t f ⇓ (Σ�; f e)

EBINDE
Σ;Γ � t ⇓ (Σ�; raise e)

Σ;Γ � @bind τ τ � t f ⇓ (Σ; @raise τ � e)

ETRYR
Σ;Γ � t ⇓ (Σ�; ret e)

Σ;Γ � mtry t f ⇓ (Σ�; ret e)

ETRYE
Σ;Γ � t ⇓ (Σ�; raise e)

Σ;Γ � mtry t f ⇓ (Σ; f e)
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Variable handling

EISVAR
b = e is a variable

Σ;Γ � is var e ⇓ (Σ; ret b̌)

ENU
x̂ �∈ Θ,Γ Σ;Γ, x̂ := u : τ � t ⇓ (Σ�; v)

if v = ret e then x̂ /∈ FV(e)

Σ;Γ � νx := u : τ, t ⇓ (Σ�; v)

EABSFUN
deps(x̂, e) ⊆ {x̂} deps(x̂, ρ) = ∅

Σ;Γ � @abs fun τ ρ x e ⇓ (Σ; ret (λy ⇒ e{y/x}))

EABSPROD
deps(x̂, τ �) ⊆ {x̂}

Σ;Γ � @abs prod τ x τ � ⇓ (Σ; ret (∀y, τ �{y/x}))

EABSLET
deps(x̂, e) ⊆ {x̂} deps(x̂, ρ) = ∅

Σ;Γ � @abs let τ ρ x e e� ⇓ (Σ; ret (let y := e in e�{y/x}))

EABSFIX
deps(x̂, e) ⊆ {x̂} τ has at least n̂ products

Σ;Γ � @abs fix τ x e n ⇓ (Σ; ret (fixn f ⇒ e{f/x}))

EGETBINDERNAME
e = x ∈ Γ or e = λx ⇒ e� or e = ∀x, e� or e = let x := d in e�

Σ;Γ � get binder name e ⇓ (Σ; ret ˇ“x”)

EREMOVE
x̂ �∈ FV(Γ2) x̂ �∈ FV(e) Σ;Γ1,Γ2 � e ⇓ (Σ�; v)

Σ;Γ1, x := d : τ,Γ2 � remove x e ⇓ (Σ�; v)

Meta-Variables

EISEVAR
b = e’s head is an undefined meta-variable

Σ;Γ � is evar e ⇓ (Σ; ret b̌)

EEVARSOME

?x /∈ dom(Σ) e = Some Γ� Σ � Γ̂�

Σ;Γ � evar τ e ⇓ (Σ, ?x : τ [Γ̂�]; ret ?x[idΓ� ])

EEVARNONE
?x /∈ dom(Σ)

Σ;Γ � evar τ None ⇓ (Σ, ?x : τ [Γ]; ret ?x[idΓ])

Unification

EMUNIFY
Σ;Γ � e ≈r e� � Σ�

Σ;Γ � munify e e� r ⇓ (Σ�; ret (Some (eq refl e)))

EMUNIFYNOT
Σ;Γ � e✟✟≈re

�

Σ;Γ � munify e e� r ⇓ (Σ; ret None)

EMUNIFYCUMUL
Σ;Γ � e �r e� � Σ�

Σ;Γ � munify cumul e e�r ⇓ (Σ�; ret true)

EMUNIFYCUMULNOT

Σ;Γ � e���re
�

Σ;Γ � munify cumul e e�r ⇓ (Σ; ret false)

Printing

EPRINT
print s to stdout

Σ;Γ � print s ⇓ (Σ; ret ��)

EPRETTYPRINT
converts e to string s

Σ;Γ � pretty print e ⇓ (Σ; ret š)
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