
Decoding Lua: Formal Semantics for the Developer
and the Semanticist

Mallku Soldevila

FAMAF, UNC and CONICET

Argentina

mes0107@famaf.unc.edu.ar

Beta Ziliani

FAMAF, UNC and CONICET

Argentina

bziliani@famaf.unc.edu.ar

Bruno Silvestre

INF, UFG

Brazil

brunoos@inf.ufg.br

Daniel Fridlender

FAMAF, UNC

Argentina

fridlend@famaf.unc.edu.ar

Fabio Mascarenhas
∗

DCC, UFRJ

Brazil

fabiom@dcc.ufrj.br

Abstract
We provide formal semantics for a large subset of the Lua

programming language, in its version 5.2. We validate our

model by mechanizing it and testing it against the test suite

of the reference interpreter of Lua, obtaining evidence that

our model accurately represents the language.

We target both a PL semanticist —not necessarily versed

in Lua—, and a Lua developer —not necessarily versed in

semantic frameworks. To the former, we present the pe-

culiarities of the language, and how we model them in a

modular small-step operational semantics, using concepts

from Felleisen-Hieb’s reduction semantics with evaluation

contexts. Moreover, we mechanize and test the model in PLT

Redex, the de facto tool for reduction semantics.

To the reader unfamiliar with such concepts, we provide

a gentle introduction to the model. It is our hope that de-

velopers of the different Lua implementations and dialects

understand the model and consider it both for testing their

work and for experimenting with new language features.

CCSConcepts •Theory of computation→Operational
semantics; • Software and its engineering → Seman-
tics;

Keywords Lua, Operational Semantics, PL Formalization.

ACM Reference Format:
Mallku Soldevila, Beta Ziliani, Bruno Silvestre, Daniel Fridlender,

and Fabio Mascarenhas. 2017. Decoding Lua: Formal Semantics

∗
Supported by a grant from CNPq (Universal 447727/2014-1).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

DLS’17, October 24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5526-1/17/10. . . $15.00

https://doi.org/10.1145/3133841.3133848

for the Developer and the Semanticist. In Proceedings of 13th ACM
SIGPLAN International Symposium on Dynamic Languages (DLS’17).
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3133841.
3133848

1 Introduction
Lua is a lightweight imperative scripting language, featur-

ing dynamic typing, automatic memory management, data

description facilities, and metaprogramming mechanisms to

adapt the language to specific domains [15]. The typical use

case of a Lua application is as an extension library embedded

in a host application, commonly written in C or C++. In that

setting, Lua offers the possibility to add scripting facilities to

the host application, combining the flexibility and rapid pro-

totyping of a dynamic language within the static guarantees

and optimizations of stricter programming languages.

Lua is extensively used in many diverse applications, rang-

ing from game development, most notably by “AAA" games [5]

but also in mobile games and game frameworks, plugin devel-

opment (for example, in the photo editing software Adobe

Photoshop Lightroom
1
, and the type-setting system Lua-

Tex
2
), web application firewalls

3
, and embedded systems

4
.

Lua is informally specified by both its reference manual

and its reference interpreter, developed and maintained by

the core Lua authors. Thanks to Lua’s success, several alter-

native implementations
5
, as well as code linters and static

analyzers
6
can be found in the wild. However, the informal

nature of the specification means that developers of those

tools must resort to their intuition, formed by study of the

reference manual, inspection of the source code of the inter-

preter, and experimentation.

In this work, we present a comprehensive formalization

of (most of) Lua 5.2, which we argue will facilitate the de-

velopment and testing of these alternative implementations

1http://www.adobe.com/devnet/photoshoplightroom.html
2http://www.luatex.org/languages.html
3https://blog.cloudflare.com/cloudflares-new-waf-compiling-to-lua
4https://www.lua.org/uses.html
5http://lua-users.org/wiki/LuaImplementations
6http://lua-users.org/wiki/ProgramAnalysis

https://doi.org/10.1145/3133841.3133848
https://doi.org/10.1145/3133841.3133848
https://doi.org/10.1145/3133841.3133848
http://www.adobe.com/devnet/photoshoplightroom.html
http://www.luatex.org/languages.html
https://blog.cloudflare.com/cloudflares-new-waf-compiling-to-lua
https://www.lua.org/uses.html
http://lua-users.org/wiki/LuaImplementations
http://lua-users.org/wiki/ProgramAnalysis

DLS’17, October 24, 2017, Vancouver, Canada Soldevila et al.

and analysis tools, as well as the prototyping of new features

and extensions to the Lua language.

The formalism that we use to express the semantics of Lua

is mainly a small-step operational semantics with evaluation

contexts. Evaluation contexts, taken from Felleisen-Hieb’s re-

duction semantics (FH) [2], are used for the specific purposes

of modularization, for providing a concise description of the

context sensitive semantics, and to define the execution or-

der. In this, we follow the path taken by [3, 13, 14], where FH

is similarly applied for successfully formalizing real program-

ming languages. However, from a technical point of view,

we depart from the aforementioned works and introduce the

following particularities:

• We emphasize the distinction between what consti-

tutes the language we want to model, and what are

the run-time constructs; the extra pieces of informa-

tion required to model the semantics. Maintaining this

distinction eases the presentation of the model, in par-

ticular for readers familiar with FH as presented in

[2].

• For similar reasons, we separate the notion of a store,

as presented in the text, from its mechanization, fol-

lowing a more traditional textbook approach.

• For better understanding and trusting the model, we

reduce the complexity of the desugaring process, by

staying as close as possible to the source language. See

§6 for more on this topic.

While providing the semantics on paper of the most in-

teresting parts of the language is an important contribution,

it does not suffice to ensure that our characterization of the

language is correct. For this reason we mechanize the seman-

tics in PLT Redex [2], following the success of previously

mechanized semantics for other scripting languages [3, 14].

We tested the mechanization of our formal semantics of

Lua against the test suite of the reference interpreter, success-

fully passing every test within the scope of the formalization.

We take this as strong evidence to support the claim that our

semantics is a sound representation of the selected subset of

the language’s features, including:

• Every type of Lua value, except coroutines and userdata
(see below);

• Metatables;

• Identity of closures;

• Dynamic execution of source code;

• Error handling;

• A large collection of the services of the standard li-

brary.

We purposely left out the following features for future work:

• Coroutines, in essence single-shot delimited continua-

tions;

• Userdata, opaque handles to data from the host appli-

cation and native libraries;

• Garbage collection;

• The goto statement;

1 local function memoize(fn)
2 local t = {}
3 return function(x)
4 local y = t[x]
5 if y == nil then y = fn(x) ; t[x] = y end
6 return y
7 end
8 end
9

10 local memsum = memoize(function(x)
11 local a = 1
12 for i = 1,x do a = a + i end
13 return a
14 end)

Figure 1.Memoization in Lua.

• Services from the standard library that interface with

the operating system, such as file manipulation, or

have large complex C implementations, such as string

pattern matching.

The mechanization can be downloaded from

https://github.com/Mallku2/lua-redex-model.
The rest of the paper is organized as follows: §2 presents

a very brief description of Lua, with emphasis on some of

the features that we formalize in later sections; §3 presents

the basic concepts that our formalization uses, via a formal-

ization of a very small subset of Lua; §4 expands §3 with the

formalization of most important and original parts of our

complete semantics; §5 briefly discusses the mechanization

and its tests; §6 discusses relatedwork; finally, §7 summarizes

our contributions and discusses future avenues of research.

2 Lua, an Extensible Scripting Language
We organize our presentation of Lua around the examples of

memoization and object-oriented programming, shown in

figures 1 and 2, respectively. They serve to introduce several

characteristics of Lua: its syntax, the versatility of its single

data structure (tables), its metaprogramming mechanisms

and some aspects of its scoping rules.

2.1 Memoization
The code

7
shown in Figure 1 implements a memoization

function, memoize, which takes a function fn as argument

and returns its memoized version. The values of fn already

computed will be stored in a table (t in line 2). At their core,

tables are associative arrays that can be indexed with any

Lua value except nil. We will show later in this section that

tables also come with syntax sugar and metaprogramming

facilities that can greatly extend their functionality beyond

simple associative arrays.

Line 3 is where the memoized version of fn is returned

through an anonymous function. This function takes x as
argument and, before computing fn(x), performs a look-up in

7
Taken from http://lua-users.org/wiki/FuncTables .

https://github.com/Mallku2/lua-redex-model
http://lua-users.org/wiki/FuncTables

Decoding Lua: Formal Semantics. . . DLS’17, October 24, 2017, Vancouver, Canada

1 local MyClass = {}
2MyClass.__index = MyClass
3

4 functionMyClass.new(init)
5 local self = setmetatable ({}, MyClass)
6 self . value = init
7 return self
8 end
9

10 functionMyClass:set_value(newval)
11 self . value = newval
12 end
13

14 functionMyClass:get_value()
15 return self . value
16 end
17

18 local mc = MyClass.new(5)
19 print (mc:get_value ()) >> 5
20mc:set_value (6)
21 print (mc:get_value ()) >> 6

Figure 2. OOP based on Lua’s metatable mechanism.

the table for value x (line 4). If the result of the look-up is nil
it means no result was found, so it proceeds to compute fn(x)
and store it in the table (line 5). The resulting value, either

computed or retrieved from the table, is returned in line 6.

The function memoize is used in lines 10–14 to improve the

performance of a function that performs a sum from 1 to x.
All procedures and functions in Lua, anonymous or named,

are first-class values, and form lexically-scoped closures. The

anonymous function that memoize returns will effectively
capture into its scope the table t, as expected.
Note that the definitions of memoize, t, and memsum

are prefixed by the keyword local. Without it, all of these

declarations are simple assignments, and do not introduce

new names in the current scope. In an assignment, if there

is no variable in scope with that name, then the variable

is global: the assignment will actually store its rvalue in a

table called the environment, with a string containing the

variable’s name as the key. Using a variable that is not in

scope also looks up the variable in the environment.

The environment is available to the programmer through a

variable _ENV, which is always in scope. This means that any

occurrence of a variable x that is not in scope is just syntax

sugar for _ENV[“x"]. Since it is a variable, the programmer

can change the environment at will by simply assigning

another table to _ENV.

2.2 Simple OOP in Lua
Another interesting example

8
is listed in Figure 2. It presents

the implementation of some basics concepts of object-oriented

8
Taken from http://lua-users.org/wiki/ObjectOrientationTutorial .

programming, namely classes and objects, by combining ta-

bles, first-class functions, and the metatable mechanism. It

also presents some syntax sugar provided by Lua to better

support OOP.

In Lua, a class is essentially implemented as a dictionary

(e.g., table), in which the method names form the keys of the

dictionary, and the method implementations are the associ-

ated values. Objects are also modelled with tables, containing

the fields and their values.

In the example, we have a class MyClass with its corre-

sponding constructor (line 4) and only one field value with
its setter (line 10) and getter (line 14). The function declara-

tions in these lines are actually syntax sugar for assignments,

where the left-hand sides are, respectively, MyClass[“new"],
MyClass[“set_value"], and MyClass[“get_value"]. For the
two methods on line 10 and line 14 the use of : instead of

. also includes an extra first parameter for these functions,

named self.
In the last lines of Figure 2 we show how to create an in-

stance of MyClass (line 18), and how to invoke the methods.

In line 20 we can observe the invocation of set_value with
yet another syntax sugar: mc:set_value(6) is equivalent to
mc[“set_value"](mc, 6).

If classes contain methods, and objects contain fields, how

is mc[“set_value"] looking up the set_value method? The

answer is the metatable mechanism, used in lines 2 and 5.

In line 5, the call to setmetatable assigns MyClass as the
metatable of the empty table {} passed as argument, and then

returns this empty table.

A metatable can modify the behavior of a table with re-

gards to most of Lua’s operations. For this example, the

behavior we are modifying is look-up of non-existing keys.

Each behavior that can be modified has an associated han-

dler. For look-up of non-existing keys the handler is called

__index (line 2). A handler is usually a function, but in the

case of __index it can be another table, in this caseMyClass.
A non-existing key then will be looked up in this table, and

this is how mc[“set_value"] results in the method set_value
fromMyClass.

Lua also specifies handlers for setting a non-existing key,

for calling a value as if it were a function, for most of the

binary and unary operators, for setting finalizers, and even

for some functions in the standard library. Lua programmers

typically use metatables for object-oriented programming

(including more elaborated object models than class-based

single inheritance), for operator overloading, and for proxies.

3 Basics of the Formalization
In this section, we gently introduce the semantic framework

used throughout the paper by providing semantics to a small

subset of Lua. Essentially, we mix classical ideas from op-

erational semantics based on abstract machines —the de-

scription of a programs’ execution by abstractly represent-

ing run-time constructions and their evolution during an

http://lua-users.org/wiki/ObjectOrientationTutorial

DLS’17, October 24, 2017, Vancouver, Canada Soldevila et al.

s ::= if e then s else s end | ;
v ::= nil | bool_literal
e ::= v | e binop e | unop e

binop ::= and | or
unop ::= not
Figure 3. Syntax of simple statements and expressions

v < {nil, false}
if v then s1 else s2 end →s s1

v ∈ {nil, false}
if v then s1 else s2 end →s s2

Figure 4. Semantics of the conditional statement.

not v →e δ (not, v)
op ∈ {and,or}

v op e →e δ (op, v, e)
Figure 5. Semantics of expressions.

δ (and, v , e) =
{

v if v = false ∨ v = nil
e otherwise

δ (or, v , e) =
{

v if v , false ∧ v , nil
e otherwise

δ (not, v) =

{
true if v = false ∨ v = nil
false otherwise

Figure 6. δ function: boolean operators.

execution— together with reduction semantics with evalua-

tion contexts [2], formalism from which we take the tools for

modeling continuations, and to obtain a modular description

of the semantics from simple computations to the execution

of complete programs.

An interesting aspect of Felleisen-Hieb’s reduction seman-

tics is the possibility of defining the semantics of a language

by decomposing it into fragments, describing the fragment’s

semantics in isolation with a separate relation. For our small

subset of the Lua language, we describe three fragments:

pure statements, pure expressions (following Lua’s distinc-

tion of statements and expressions), and stateful (i.e.,memory

changing) statements. Then, we compose the three using

a fourth relation, thus providing the semantics for entire

programs.

We show the grammar for stateless programs in Figure 3.

The statements are conditional branching and skip (denoted

with ;). The expressions are nil (the absence of a useful

value), boolean constants, and logical operators. Of course,

we are not able to write any useful program. In the coming

sections we will grow our language until we reach Lua.

Figure 4 introduces the typical operational semantics for

the conditional statement, modeled with the →s
relation

between stateless statements. The first rule states that, in a

boolean context (the conditional of the if), any value different
from nil and false is considered true, and therefore the

then branch is considered. Note that we write above the line

σ ’ = (r, v),σ

σ : local x = v in s end →s_σ σ ’ : s[x\r]

σ ’ = σ [r := v]

σ : r = v →s_σ σ ’ : ;
σ : r →e_σ σ : σ (r)

Figure 7. Semantics of variables and references.

the conditions in which the rule applies. When no condition

is required, the line will be omitted. The second rule states

that, for false or nil, the else branch is considered.

Figure 5 gives the semantics of expressions using a sepa-

rate→e
relation. We use an interpretation function δ , as seen

in the literature, which provides meaning to operators using

denotational style of semantics. In contrast to the relations

over terms presented so far, denotational semantics are not

tied to single computation steps. Figure 6 shows (a simplified

version of
9
) the δ -equations for boolean operators.

We proceed now to extend the language with imperative

features: (local) variables. Statements are enlarged with vari-

able definition and assignment:

s ::= ... | local x = e in s end | x = e

In order to describe its operational semantics, we must intro-

duce a model of the memory store. We model it as a partial

function from a set of references to values, denoted as σ . We

refer to σ as the “values’ store”, or simply store.
As for references, we will not force any specific repre-

sentation, just ask them to satisfy some simple properties

to ensure the relation modeling the semantics of variables

stays decidable. More specifically, we ask the domain of σ
(referred as to dom(σ)) to be a finite set, with elements that

must be syntactically represented, but different from any

other syntactic object in the language. We further assume it

is always possible to obtain a fresh reference from the store.

Whenever we write (r, v),σ we assume r to be fresh for σ .
We extend the grammar of expressions with references:

e ::= ... | r

References, in contrast to all the language constructs wemen-

tioned so far, do not belong to the Lua source language, i.e.,
they cannot be written down by a developer. They are run-
time constructs: constructions not expressible in the source

language, which are related to run-time concepts and are

made explicit for the purpose of obtaining an operational

semantics of the language. We will see other examples of

such constructs in the coming sections.

Figure 7 describes the semantics of the definition and

assignment of local variables. We use a new→s_σ
relation,

which maps a pair of a store σ and a statement s to another

pair of a new store σ ′ and the resulting statement s′.
As shown in the rule for the introduction of local variables,

when the right side of the definition is a value v we put it
in the store with a fresh reference r . Then, we replace each

9
The actual equations use Lua’s parenthesized expressions, introduced in 4.1.

Decoding Lua: Formal Semantics. . . DLS’17, October 24, 2017, Vancouver, Canada

E ::= [] | if E then s else s end
| local x = E in s end |

| x = E | E binop e | unop E

Figure 8. Evaluation contexts.

e →e e′

σ : E[[e]] 7→ σ : E[[e′]]
s →s s′

σ : E[[s]] 7→ σ : E[[s′]]

σ : s →s_σ σ ′ : s′

σ : E[[s]] 7→ σ ′ : E[[s′]]
σ : e →e_σ σ ′ : e′

σ : E[[e]] 7→ σ ′ : E[[e′]]

Figure 9. Semantics of programs.

occurrence of variable x in the scope of the local statement

by the new reference r .
An important property of this semantics is that variables

are never free, as substitution will always replace them by

references right before they would become free. This will

have an impact on closure creation (see 4.2).

Returning to Figure 7, the second rule shows variable

assignment, with σ [r := v] denoting a store σ ′ such that

dom(σ ′) = dom(σ), whereσ ′(r) = v and∀r’ ∈ dom(σ ′), r’ ,
r ⇒ σ ′(r’) = σ (r’). Note that the assignment reduces to an

empty statement ;, indicating that there is nothing else to

do for this particular statement. The third and final rule

shows that references appearing in expressions are always

implicitly dereferenced.

We have already defined three different relations, each

of them computing a bit of a program: →e
computes an

expression,→s
an stateless statement, and→s_σ

an stateful

statement. Nowwe are ready to combine the three to perform

the execution of a full program. To that effect we define the

7→ relation. This relation will say exactly when each of the

previously defined relations will trigger, at the same time

defining the order in which statement or expression must be

executed next.

Here is where evaluation contexts play a central role. They
describe the syntax of the language with the addition of a

new construction: a hole, usually denoted as []. Evaluation
contexts will play different roles in later sections, but for the

moment the (only) hole in a program will be filled in with

the next statement or expression to be executed.

Figure 8 defines the evaluation context E for the small sub-

set of Lua we described so far. We can see from the definition

the order we expect evaluation to take place: in an if, the
guard must be evaluated first. In the definition of variables

we evaluate the rvalue for the definition first. In a binary

operation, we evaluate the left operand first
10
.

Figure 9 defines the 7→ relation. Both E[[e]] and E[[s]] de-
note an evaluation context where the hole is filled with the

10
Our definition enforces left-to-right evaluation of expressions. Even if

this is left unspecified in Lua’s reference manual, the two most popular

implementations of Lua, the reference interpreter and LuaJIT (luajit.org),
both evaluate expressions left-to-right.

s ::= ... | while e do s end | break | s s
v ::= ... | number_literal | string_literal
binop ::= ... | strictbinop
strictbinop ::= + | - | * | / |ˆ | % | .. | < | ≤ | > | ≥ | ==
unop ::= ... | - | #

Figure 10. Syntax of the remaining stateless subset.

s ::= ... | $iter e do s end | L s Mlabel
label ::= Break

Figure 11. Run-time statements for while and break.

while e do s end→s L $iter e do s end MBreak
$iter e do s end→s if e then s $iter e do s end

else ; end
; s →s s

L E lf[[break]] MBreak →s ;
L ; MBreak →s ;

Figure 12. Semantics of stateless statements.

e ::= ... | L e Mlabel
label ::= ... | ArithWO | ConcatWO | OrdWO | . . .

Figure 13. Run-time expressions for errors.

respective expression or statement, if this yields a syntacti-

cally valid term of the language. If the evaluation context

is well-defined, together with the relations that describes

computation steps, there is a unique decomposition of a valid

term into an evaluation context and a subterm, and this sub-

term will match one and only one of the semantic rules. The

subterm that is filling the hole gives the current focus of the

computation.

With all of the main ingredients in place, we are now ready

to provide semantics to Lua.

4 A Formal Description of Lua
In this section, we describe the highlights of our formal-

ization of the semantics of Lua, the main contribution of

this work. §4.1 covers the stateless subset of the language,

§4.2 covers the imperative subset, §4.3 describes the concepts

added to support standard library services, §4.4 covers the se-

mantics of metatables, and §4.5 wraps up with the semantics

of complete programs and error handling.

4.1 Stateless Lua
We extend the stateless subset presented in §3 with while

loops, breaks, composition of statements, and numbers and

strings with their corresponding operations (Figure 10).

Correspondingly, we extend the relation→s
with the se-

mantics of the new statements (Figure 12). First, a while loop

begins by wrapping the whole loop in a Break label, chang-

ing also the name from while to $iter. The purpose of the
label is to mark the point in which a break should continue

luajit.org

DLS’17, October 24, 2017, Vancouver, Canada Soldevila et al.

op ∈ {+, -, *, /, ˆ ,%,<,≤} v1, v2 ∈ number

v1 op v2 →e δ (op, v1, v2)

op ∈ {+, -, *, /,ˆ ,%}
v1 < number ∨ v2 < number

ν1 = δ (tonumber, v1, 10) ∈ number
ν2 = δ (tonumber, v2, 10) ∈ number

v1 op v2 →e δ (op,ν1,ν2)

op ∈ {+, -, *, /,ˆ ,%}
v1 < number ∨ v2 < number

(δ (tonumber, v1, 10) < number ∨
δ (tonumber, v2, 10) < number)

v1 op v2 →e L v1 op v2 MArithWO

Figure 14. Semantics of stateless expressions.

the execution, and the renaming is necessary to avoid re-

peatedly unfolding a while and piling up labels. Labels and

$iter are new run-time statements (Figure 11). Then, a loop

marked with $iter is unfolded as usual, using the conditional
to check the guard and perform a new iteration. In [3], the

Break label is inserted when desugaring the code. Instead,

we opt to execute code that is closer to what the developer

wrote.

In a composition of two statements, when the one on

the left is a skip (;), we continue with the second. More

interestingly, when the execution finds a break inside a

(labeled) block, the whole code is replaced with a skip, to

signal the execution of the break has exited. This is achieved

by using a new evaluation context Elf, which represents a

program in which no other labeled term occur (its definition

is elided for brevity). By not having other labels, we know

the one surrounding this context is the one we have to break.

The last rule removes the label once the execution of a loop

reached skip.

Having defined the semantics for statements, we turn our

attention to expressions (Figure 14). For brevity we focus

only on arithmetic operators, but similar rules exists for

strings. The first rule state that, if operands v1 and v2 are
both numbers, and the operation is relevant to numbers, we

delegate the result to the δ function already introduced in

3. The second rule covers the case where one or both of the

operands are not numbers, but can be coerced into a number

by the external function tonumber. In that case, we coerce

the operands and do the operation. There is similar rule for

concatenation, elided for brevity, when one of the operands is

a string and the other a number. Finally, the last rule applies

when the operands cannot be coerced into numbers. In this

case we label the expression with ArithWO (some labels are

listed in Figure 13, where WO stands for Wrong Operands),

to signal the error. At this point, execution is stuck here, but

in §4.4 we show how the metatable mechanism handles this

erroneous situation.

v ::= . . . | function l (x , . . .) s end
| function l (x , . . . , ...) s end

s ::= . . . | e (e , . . .) | e : x (e , . . .) | return e
| local x , . . . = e, . . . in s end | var , . . . = e , . . .

var ::= x | e [e]
e ::= . . . | (e) | {field , . . . } | e(e , . . .) | e : x (e , . . .)
field ::= e | [e] = e

Figure 15. Syntax of the remaining imperative subset.

v ::= . . . | objr
e ::= . . . | < e , ... >
label ::= ... | Return | Index | NewIndex | WFunCall

Figure 16. Store-related run-time terms.

δ (rawget, objr, v1,θ1) , nil
θ2 = δ (rawset, objr, v1, v2,θ1)

θ1 : objr [v1] = v2 →s_θ θ2 : ;

δ (rawget, objr, v1,θ) = nil

θ : objr [v1] = v2 →s_θ θ : L objr [v1] = v2 MNewIndex

δ (type, v1) , ”table”

θ : v1 [v2] = v3 →s_θ θ : L v1 [v2] = v3 MNewIndex

Figure 17. Field update.

v2 = δ (rawget, objr, v1, θ) v2 , nil

θ : objr [v1] →e_θ θ : v2

δ (rawget, objr, v, θ) = nil

θ : objr [v] →e_θ θ : L objr [v] MIndex

δ (type, v1) , “table”

θ : v1 [v2] →e_θ θ : L v1 [v2] MIndex
Figure 18. Field indexing.

4.2 Imperative Lua
The imperative subset is made up of functions, function appli-

cation, tables, field indexing, and field update. Despite being

values, Lua functions are in the imperative subset because

parameters are mutable variables, so they are allocated in

the σ store. Tables are mutable objects, and we allocate them

in a separate store, denoted with θ . Object references, the
domain of θ , are considered values, so are in the image of σ .
We ask form them to satisfy the same properties as asked for

references σ , together with the possibility of distinguishing

syntactically between each kind of reference. The image of

θ only contains tables.

Functions are labeled so each function in the source pro-

gram has a unique label l. How labels are represented is not

important; as long as they are comparable. This reproduces

the correct semantics of function equality in Lua, where

two identical functions are not equal if they are defined in

Decoding Lua: Formal Semantics. . . DLS’17, October 24, 2017, Vancouver, Canada

∀ 1 ≤ i, field i = v ∨ field i = [v] = v ′

θ2 = (objr, < addkeys({field1, ...}) , nil >), θ1

θ1 : {field1, ...} →e_θ θ2 : objr

Figure 19. Object creation.

σ ′ = (r1, v’1), ..., (rn, v’n),σ
i ≤ m⇒ v’ i = v i i > m⇒ v’ i = nil

σ : (function l (x1, ..., xn) s end) (v1, ..., vm) →funcall

σ ′ : L s [x1\r1, ..., xn\rn] MReturn

σ ′ = (r1, v1), ..., (rn, vn),σ
i ≤ m⇒v’ i = v i i > m⇒ v’ i = nil

tuple = < vn+1, ..., vm >

σ : (function l (x1, ..., xn, ...) s end) (v1, ..., vm)

→funcall σ ′ : L s [x1\r1, ..., xn\rn, ...\tuple] MReturn

δ (type, v) , “function”

σ : v (v1, ..., vn) →funcall σ : L v (v1, ..., vn) MWFunCall

σ : v:name (e1,...,en) →funcallσ : v[“name"] (v ,e1,...,en)

Figure 20. Function and method calls.

σ : L ; MReturn →funcall σ : ;
σ : L E lf[[return < v, ... >]] MReturn →funcall

σ : < v, ... >
σ : L E lf[[return < v, ... >]] MBreak →funcall

σ : return < v, ... >
Figure 21. Semantics of return.

different parts of the source file, as shown in the following

interaction with the reference interpreter:

> f = function() end
> g = function() end
> print (f == g)
false

A source function may evaluate to different values during

the evaluation of the program, due to different substitutions

of their free variables. Our use of substitution and references

means that we do not need to have explicit closures, a func-
tion definition is itself a closure once the focus of evaluation

has reached it.

Figure 16 adds tuples, used for returning multiple values

from function application, and for functions that can handle a

variable number of arguments (vararg functions) through the
... vararg operator. Wrapping an expression in parenthesis

has a semantic effect in Lua: if the expression evaluates to

a tuple the parenthesis discards all but the first value of the

tuple (if the tuple is empty the parenthesized expression

evaluates to nil).

Besides being “truncated" to their first value, these tuples

can also be concatenated with another tuple, depending on

their syntactical place in the program: in an expression list

e1, . . . , en the tuples of expressions e1 to en−1 evaluate to their
first value, or nil for the empty tuple (the same behavior as

parenthesized expressions). These n − 1 values then form a

tuple of their own, which is concatenated with the tuple of

en . Semantically, this is done through reductions between

tuples that “flattens" tuples of tuples until reaching a tuple

where none of the values are another tuple.

The new statements also include multiple variable defini-

tion and assignment, which generalizes the single-variable

versions introduced in §3. The reduction rules for these state-

ments are not shown here for reasons of brevity, but are a

straightforward extension of the simpler versions: in case

of multiple assignment, the evaluation contexts assure that

all lvalues are evaluated before rvalues, and the tuples for

both sides are flattened, then lvalues are paired with their

corresponding rvalue, with any lvalues that do not have a

corresponding rvalue paired with nil.
Figure 17 describes assignment to table fields. It uses some

services modeled by the δ function: δ (type, v) is the type

of the value; δ (rawget, objr, v,θ) is primitive table indexing,

yielding either the value associated with v in θ (objr) or nil if
there is no associated value; δ (rawset, objr, vk , v,θ) is primi-

tive table update, yielding a new θ where the table referenced

by objr associates v with value vk .
The rules show field update under 3 different circum-

stances: when the operation is made over an actual table

with an existing key; when the operation is made over an

actual table but with an unknown key; and when the assign-

ment is carried over a non-table value. The last two cases

just tag the expression with NewIndex, which will be handled

by the metatable mechanism explained in Section 4.4. Field

access (Figure 18) have similar rules, but tagging exceptional

situations with Index.

Figure 19 provides meaning to table constructors. Its com-

plete semantics actually depends upon the meta-function

addkeys, which adds absent keys in the constructor (see

Figure 15 for the syntax of table constructors). It works by

supplying consecutive natural numbers as keys, startingwith

1.

Figure 20 shows function and method application, de-

scribed with a new relation→funcall
. Formal parameters are

mutable variables, so a fresh reference is allocated for each

parameter. The first rule covers all the cases involving the

application of a non-vararg function: when it is applied to

the same number of arguments as formal parameters, when

it is applied to fewer arguments, with unpaired parameters

receiving nil, and when it is applied to more arguments,

with extra arguments silently ignored. Similar to what we

did with while loops in §4.1, we label the body with Return,

to indicate the point in which a return statement must jump

DLS’17, October 24, 2017, Vancouver, Canada Soldevila et al.

l ∈ {type, assert, error, pcall, select, ...}

θ : $builtIn l (v1, ..., vn)→builtIn θ : δ (l, v1, ..., vn)

l ∈ {ipairs, next, pairs, getmetatable, ...}

θ : $builtIn l (v1, ..., vn)→builtIn θ : δ (l, v1, ..., vn,θ)

l ∈ {rawset, setmetatable}
θ2 = δ (l, v1, ..., vn,θ1)

θ1 : $builtIn l (v1, ..., vn)→builtIn θ2 : v1
Figure 22. Interface with the δ function.

to. It is, roughly speaking, the syntactic equivalent to the

return address saved in an activation frame. In [3], as with

while loops, the body of every function is put into a labeled

block when desugaring.

Returning to Figure 20, the second rule shows the case of

a vararg function call: the difference just resides on what is

done with surplus arguments: in this case, they are put into

a tuple expression, which replaces the vararg expression (...)
in the body of the function.

The third rule has to do with one of the exceptional situa-

tions that can be managed by the metatable mechanism: a

function call over a non-function value. Again, at this point

we just label the whole expression with a tag that indicates

what happened. The last rule shows how the method invoca-

tion is translated into a table look-up, with the object being

injected as the first argument of the function.

Figure 21 shows the semantics of the return statement

as well as implicitly returning by reaching the end of the

function. The ideas used in this rules are analogous to the

ones expressed when defining the semantics of the break
statement, in Section 4.1.

4.3 Built-in Services
In Lua, built-in services offered by Lua’s standard library are

stored in the execution environment, a table named _ENV,
where the keys are the names of the services and the values

are their definitions. For instance, when we access the table

field named “type", we access the function that given an

element provides its type (as a string):

> print (type ({}))
table

(Remember from §2: using an identifier not in scope is equal

to accessing _ENV.) We can override its definition and obtain

a different behavior:

> type = function () return 'not a type ' end
> print (type ({}))
not a type

δ (pairs,objr,θ) =

(function $getIter ()
local v1, v2 , v3 = h(objr) in
return < v1, v2 , v3 >

end)()
where h = indexmetatable(objr, “__pairs”,θ)
and h , nil

δ (pairs,objr,θ) =
< function $next (table , index)

return $builtIn next(table , index)
end, objr , nil>

if indexmetatable(objr, “__pairs”,θ) = nil
δ (pairs,v,θ) = $builtIn error(msg .. $builtIn type(v))

if δ (type, v) , “table”
where msg = “table expected, got "

Figure 23. Basic functions of the standard library: pairs.

However, the original type function is still accessible from

other services in the library. We can see this when we call

next, the function that iterates over the fields in a table:

> next (1)
stdin :1: bad argument (table expected, got number)

In order to model this behavior, prior to the execution

of a program the _ENV table must be populated with the

functions from the standard library. But these functions are

just wrappers for a special (run-time) expression $builtIn.
When evaluated, this expression calls the δ function with the

actual definition of the function. Built-in services, like next,
might call other services through the $builtIn term instead

of ordinary function application, effectively reproducing the

early binding that is required.

While it might sound a bit intricate, this design gives the

formalization several desirable properties: compliance with

the semantics as defined in the reference manual and the

reference interpreter, and a modular way of tackling the

formalization of built-in services. And at the level of the

mechanization, it allows us to experiment and test against

different implementations of these services with minimal

changes in the rest of the formalization.

Figure 22 gives the semantics of $builtIn using three rules,

corresponding to three different kinds of services: services

that do not operate on tables, so do not need to access the

object store θ , services that read from tables, and services

that update existing tables, yielding a new θ . The antecedents
of the first two rules show just some of the services that are

in each category; the actual list of services includes almost

all the built-in basic functions of the Lua language, together

with services from the libraries math, string and table.
The δ function defines, in a denotational way, the actual

fundamental details of the semantics of the built-in services

and the primitive operators of the language. In the rest of this

section we discuss an interesting example: the pairs built-in
function (Figure 23).

Decoding Lua: Formal Semantics. . . DLS’17, October 24, 2017, Vancouver, Canada

The built-in service pairs is used to iterate a table using

a for loop. It must return three values: an iterator function,

the object to index, and the first index. According to the

equations in the figure, there are three different scenarios:

In the first case, when the table objr has a custom handler

h in the __pairs key of its metatable, calls this handler to

get the iterator triplet. The metafunction indexmetatable
queries the metatable (metatables are discussed further in

§4.4). Also note that we let δ yield not only values but any

valid expression.

It could look odd to create a function whose body calls h,
instead of directly returning it. The reason is twofold: First,

according to the manual, we must only return the first three

values returned by the indexed function. This is achieved by

creating three variables, one for each value, and return only

those. If there are more values, they are discarded. Second,

since local and return are not valid expressions, and in this

case, δ must return an expression (not necessarily a value!),

we wrap this code in a closure.

In the second case, when the table has no metatable or

no handler for __pairs, the reference manual indicates that

pairs(t) returns “the next function, the table t, and nil". This
case models this behavior by wrapping a call to $builtIn
next, as mentioned earlier in this section. The label of this

function guarantees that it will be the same function that is

bound to next in our initial environment.

The third and final case of pairs constructs an expression

that will assemble an error message and then throw an error

using the error built-in primitive. As with next, we cannot
look-up the error built-in function in the environment, as it

could have been rebound by the programmer.

Before concluding this section, we note that we let the

interpretation function define themeaning of every primitive

operator and library service using a denotational approach.

Several of these primitives could also be given an operational

semantics, however, we decided to prioritize cohesion and

modularity.

4.4 Metatables
The most notable feature of Lua is its metaprogramming

mechanism, metatables, that lets the programmer adapt the

language to specific domains. With metatables Lua can main-

tain its original design decision to “keep the language simple
and small"[4], while still being able to cope with a variety of

programming concepts
11
.

Briefly, metatables let the programmer specify fallbacks
for certain operations: arithmetic over non-numeric values,

concatenation over non-string values, equality between ob-

jects that do not have the same identity, application over

values that are not functions, indexing or updating a field

over a value that is not a table, etc.

11
See section “Code Structure / Programming Paradigms" at lua-users.org/

wiki/LuaDirectory

Metatables are plain tables, and the fallbacks that a par-

ticular metatable supports are typically functions associated

with a unique string key for each operation (e.g. __add for

the fallback to the plus operator, or __newindex for the fall-
back to field update). Lua libraries are free to extend this

mechanism with their own fallbacks (like the pairs built-in
function of the previous section, which can look up __pairs
in the metatable, if it exists). Each Lua table can have its

own metatable, while values of other types share a single

metatable for each type.

We have shown in previous sections that regular semantics

of operations just labels the expression or statement involved

when it reaches a case where a fallback in a metatable could

be used. This approach simplifies the regular semantics, and

improves the modularity of the formalization. The relations

→e_metatable
and →s_metatable

that we show in this section

take these labeled terms and act accordingly.

Figure 24 shows how→e_metatable
resolves arithmetic oper-

ations over operands of unexpected type, a condition labeled

with ArithWO. The metafunction getbinhandler is analogous
to those described in the Lua reference manual: it looks for

a handler first in the metatable of the left operand v1, then
the metatable of the right one v2, by looking into the cor-

responding field in those metatables. We also abstract the

mapping between binary operators and their metatable keys

with the metafunction binopeventkey.
Looking up a fallback in a metatable is guaranteed to

either return the fallback or return nil because of two invari-
ants: a metatable is always a table, and the metatable of a

metatable, it if exists, is ignored for this look-up. This means

that abstracting this look-up with a metafunction does not

compromise the small-step nature of our semantics.

The first rule of Figure 24 shows how the operation is

rewritten as an application of the handler on the two operands

as arguments. If the handler is not a function this may trigger

yet another fallback. The second rule shows what happens

when no handler is found: an error is thrown using the error
built-in service. We also abstract the construction of error

messages with the #errmessage metafunction.

Figure 25 describes how the metatable mechanism works

for field updates over a non-table value or a missing key.

Again, we make use of metafunctions that abstracts the in-

ner workings of the metatable mechanism: indexmetatable,
which looks for the metatable of its first argument and looks

up the fallback with the key passed as its second argument.

The first two rules of Figure 25 shows how this case re-

solves differently depending on whether the handler is a

function or not (typically, in the second case the handler

will be a table). The last two rules show how the absence

of handler has different results depending on whether the

original value is a table or not.

lua-users.org/wiki/LuaDirectory
lua-users.org/wiki/LuaDirectory

DLS’17, October 24, 2017, Vancouver, Canada Soldevila et al.

v3 = getbinhandler(v1, v2, binopeventkey(op),θ) v3 , nil

θ : L v1 op v2 MArithWO →
e_metatable θ : v3 (v1, v2)

getbinhandler(v1, v2, binopeventkey(op),θ) = nil t1 = δ (type, v1) t2 = δ (type, v2)

θ : L v1 op v2 MArithWO →
e_metatable θ : $builtIn error (#errmessage(ArithWO, t1, t2))

Figure 24. Metatable mechanism for arithmetic binary expressions.

v4 = indexmetatable(v1, “__newindex”,θ) δ (type, v4) = “function”

θ : L v1 [v2] = v3 MNewIndex →
s_metatable θ : v4 (v1, v2, v3)

v4 = indexmetatable(v1, “__newindex”,θ) v4 , nil δ (type, v4) , “function”

θ : L v1 [v2] = v3 MNewIndex →
s_metatable θ : v4 [v2] = v3

indexmetatable(objr, “__newindex”,θ1) = nil θ2 = δ (rawset, objr, v1, v2,θ1)

θ1 : L objr [v1] = v2 MNewIndex →
s_metatable θ2 : ;

indexmetatable(v1, “__newindex”,θ) = nil t = δ (type, v1) t , “table”

θ : L v1 [v2] = v3 MNewIndex →
s_metatable θ : $builtIn error (#errmessage(NewIndex, t))

Figure 25.Metatable mechanism for field update.

σ :θ : Enp[[$err v]] 7→ σ :θ : $err v
σ :θ : E[[L Enp[[$err v]] MProtMd]] 7→ σ :θ : E[[<false, v>]]

σ :θ : E[[L ; MProtMd]] 7→ σ :θ : E[[<true>]]
σ :θ : E[[L <v , ...> MProtMd]] 7→ σ :θ : E[[<true, v , ...>]]

Figure 26. Errors.

4.5 Semantics of Programs and Error Handling
The definition of the 7→ reduction relation that describes

the full semantics of Lua is essentially a straightforward

extension of the simpler relation given in Figure 10. The

domain now includes θ , and maps the relations that were

described in previous sections. Each of these relations is

extended with the θ and σ stores as needed. We omit these

definitions for brevity.

More interestingly, in order to model the semantics of

Lua’s exception handling, we must extend this relation. Lua’s

exception handling consist of two built-in functions: error,
which throws an error (any Lua value, usually a string), and
pcall, which executes a function in protected mode. As any
other built-in function, this behavior can be override by a

developer.

Normally an error aborts the program, but if it is thrown in

the context of a pcall, it is caught. In that case, pcall returns
false and the error, otherwise, it returns true and the values

returned by the function called.

Figure 26 describes the part of the 7→ relation that models

error propagation and handling. For it, two new run-time

constructs are added: $err to denote an error, and L s MProtMD

to denote code that must be executed in protected mode. In

the first rule, the evaluation context Enp is identical to E ,
except that there are no occurrences of L E MProtMD. The rule

essentially aborts the whole program if there is no protected

context around the error. The second rule aborts up to the

first occurrence of a protected mode label, if there is one. The

other three rules transition out of protected mode whether

an error occurred or not.

The reader might wonder why we are modeling error

handling here, and not in its own relation as we did with

all the other parts of the semantics. The reason is merely

technical: the rule that aborts the whole program, if isolated

in its own relation, would break the unique decomposition
property of evaluation contexts, in which there is a single

way for decomposing a term into an evaluation context and

the contents of its hole. We could have put just this rule

explicitly in 7→ while having the others in an hypothetical

→error
relation, but decided to keep all aspects of a feature

together.

5 Mechanization
The formalization of the semantics was carried in parallel

with its mechanization in PLT Redex [2]. This tool helped us

recognize problems in our first attempts at formalizing Lua,

and allowed us to experiment with new ideas before adding

them to the formalization. It also allowed us to execute part

of test suite of the reference interpreter of the language
12
,

providing evidence that our semantics is in compliance with

it.

We could not use the whole test suite, for the following

reasons:

• Language features not covered by our formalization:

coroutines, the goto statement, garbage collection,

some standard library functions (mostly related with

12
Available at https://www.lua.org/tests/.

Decoding Lua: Formal Semantics. . . DLS’17, October 24, 2017, Vancouver, Canada

File Features tested Coverage
calls.lua functions and calls 77.83%

closure.lua closures 48.5%

constructs.lua syntax and 63.18%

short-circuit opts.

events.lua metatables 90.4%

locals.lua local variables 62.3%

and environments

math.lua numbers and 82.2%

math lib

nextvar.lua tables, next, and for 53.24%

sort.lua (parts of) table 24.1%

library

vararg.lua vararg 100%

Figure 27. Lua 5.2’s test suite coverage.

file handling) and other standard libraries implemented

in C (bit32, coroutine, debug, io, etc).
• Several other tests for implementation details of the

interpreter, and not the language. According to the

Lua authors, the goal of the test suite is to test their

reference implementation of Lua, and not to serve as a

conformance test for alternative implementations
13
.

In practice, from the 25 .lua files present in the test suite,

which actually test some feature of the language, we are

able to port and run 9 against our PLT Redex mechanization.

Figure 27 shows the percentage of LOCs actually tested from

each of these remaining files, totaling 1256 LOCs successfully

tested. Each file from the test suite is a sequence of assertions

about the expected outcome of valid code as well as code

that generates errors. It is important to remark that every file

and line not tested is for the reasons explained above, and

every line (in the 9 files tested) that fall within the scope of

this work successfully passes the test. We take this as strong

evidence that the mechanization of our formal semantics

behaves exactly the same as the reference Lua interpreter.

Unfortunately, we do not have the space to discuss the

code, which we plan to do in an extended version of this

article. For the moment, we refer the reader to the documen-

tation accompanying the code attached as supplementary

material.

Dynamic Loading of Code By implementing our parser

directly in Racket (the language upon which PLT Redex is

based), wemechanized easily the load service: Lua’s compiler

available at runtime.

There are several details to mention related to the solution

implemented, but for reasons of space we point out the most

prominent:

• It covers the two modes: when the program to be com-

piled is passed as a string, or when it is a function from

which the service obtains the program’s string.

13
https://www.lua.org/wshop15/Ierusalimschy.pdf

• It can handle the compilation of code on a modified

global environment.

• For completion, we emulate the case of the compilation

of binary chunks (that is, a pre-compiled version of

the code). This feature is implemented in conjunction

with the service string.dump, which returns a string

containing a binary representation of a function, given

as a parameter.

6 Related Work
As mentioned in the introduction and throughout the text,

the major source of inspiration is the work done in [3, 13,

14]. At a broad view, we incorporated from these works

the semantic model, together with its mechanization in PLT

Redex. As for the differences, we already mentioned in the

introduction that our presentation of the model is, arguably,

more suitable for readers with a traditional background in

operational semantics.

Also, the metatable mechanism, the tuples, the δ -function
returning any expression of the language, and the evaluation

of code at runtime are some of the aspects of the language

and its formalization which distinguishes our work from

the aforementioned works. And as mentioned in the intro-

duction, we do not minimize the language into a core. As a

result, we avoid the known complexities that the core lan-

guage approach could introduce in the resulting model [1, 9]:

verbose desugared code, a reduced confidence on the com-

pliance of the given semantics with respect to the original

language’s specification and, in general, a non-trivial connec-

tion between the properties and phenomena observed in the

core language and the original language (this is tied to the

complexities of the translation process). Additionally, main-

taining the proximity with the original language paves the

way to a mechanization that also Lua developers could use

and verify, as their intuition about the language’s semantics

is better expressed —one of the key goals of this project.

Following [3], one major step in formal semantics for

JavaScript is JSCert[1]: a formalization of ES5 in the Coq

proof assistant, together with an interpreter extracted from

the formalization (JSRef). It presents a big-step semantics for

the specification of ES5. In order to gain confidence about

the compliance of their formalization with respect to the

specification of ES5, the authors recognize the importance of

the revision of their Coq model by people of different areas,

ranging from developers of analysis tools for JavaScript, de-

velopers of JavaScript VMs and even ECMA authors. In our

project, beside semanticist and Lua implementers, it is our

hope to include Lua developers as well. This may be difficult

to achieve over a Coq model because, as the authors from [1]

recognize, using proof assistants requires considerable more

learning than using, for example, tools specifically designed

for mechanizing language specifications. While we pursue

in the future the mechanization of proofs of properties of

DLS’17, October 24, 2017, Vancouver, Canada Soldevila et al.

our model, perhaps using Coq, we want to take advantage

of the ease of use of PLT Redex.

Besides the aforementioned [3, 13], [9] introduces a small-

step operational semantics for the full language specified in

ECMA-262 Standard, 3rd Edition, including proofs of several

properties of the model. The authors recognize that, by defin-

ing the semantics of each construction as described by the

ECMA specification, it gives them the greatest likelihood that

the model is correct. While this approach resulted in a model

that inherited the size and complexities of the language being

defined, the experience is interesting for our investigations

on Lua, as we are dealing with a smaller, simpler language.

Specific to Lua’s semantics, to the best of our knowledge,

there is just one another experience: [8] presents an op-

erational semantics for Lua, in the style of Featherweight

Java [6]. It considers a subset of the features from the ones

presented here and provides a reference implementation in

Haskell. While being an interesting project, it suffers from

the same limitations that we mentioned above when con-

sidering the study of a core language instead of the full

language.

7 Conclusion
We give a small-step operational semantics for a large subset

of the Lua programming language, as specified both by its

informal reference manual and by its reference implementa-

tion.

The semantics tackles the majority of the complex features

of Lua, such as its metatable mechanism, dynamic execution

of source code, error handling and several other standard

library functions. It is defined in a modular way, and could

be extended to tackle absent features, such as coroutines [12]

and garbage collection [11], without modifying the essence

of what is already specified.

We provide a mechanization of the formal semantics in

PLT Redex. The portion of the test suite for the reference

interpreter, which is of interest for our model, has been

successfully tested against this mechanization, providing

evidence that we are successfully modeling the behavior of

the language.

The development of the formal semantics, its mechaniza-

tion, and its test suite make up a tool that both semanticists

and Lua developers can use for understanding and extending

the features of the language.

There are several further avenues for development: adding

missing features as coroutines, goto statements, new opera-

tors, large integer types of version 5.3 and garbage collector.

Among them, the goto statement would require using a

slightly different notion of a concept already in use in our

model: evaluation contexts that maintain the portions of the

program already executed, as used in [7]. The small step

style of the semantics of our model seems to be adequate

for modeling non-local control and the interaction between

goto statements and block-scoped variables, as argued in

the cited work. It remains as a future work to cope with the

remaining complexities of the semantics of the statement.

The formal semantics and its mechanization can provide

a basis for specifying, implementing, and formally proving

correct static analyses for Lua programs. There are already

some tools and language extensions that do this
14
, but they

currently have no formal guarantee of correctness.

In proving desired properties of the model (fundamentally,

progress property), we choose to let as a future work the

developing of a tool for assisting in the translation of our

PLT Redex model to a Coq model. In that way, we can offer

a mechanization ready to use by a broader audience, while

also having a quick escape to a proof assistant, to verify

properties of each iteration of the PLT Redex model.

Acknowledgments
We are very grateful to the anonymous reviewers for their

insightful feedback.

References
[1] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudz-

iuniene, A. Schmitt, and G. Smith. A trusted mechanised JavaScript

specification. In POPL ’14, 2014.
[2] M. Felleisen, R. B. Finlder, and M. Flatt. Semantics Engineering with

PLT Redex. The MIT Press, 2009.

[3] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript.

In ECOOP ’10, 2010.
[4] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The evolution of

an extension language: a history of Lua. In Brazilian Symposium on
Programming Languages, 2001.

[5] R. Ierusalimschy, L.H. de Figueiredo, and W. Celes. The evolution of

an extension language: a history of lua. In Brazilian Symposium on
Programming Languages, 2001.

[6] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal

core calculus for Java and GJ. TOPLAS, 23:396–450, 2001.
[7] R. Krebbers and F. Wiedijk. Separation logic for non-local control flow

and block scope variables. In FOSSACS’13, 2013.
[8] Hanshu Lin. Operational semantics for Featherweight Lua. Master’s

thesis, San JosÃľ State University, march 2015.

[9] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for

JavaScript. In APLAS ’08, 2008.
[10] A. M. Maidl, F. Mascarenhas, and R. Ierusalimschy. A formalization of

Typed Lua. In DLS ’15, 2015.
[11] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory

management. In FPCA ’95, 1995.
[12] A. L. Moura and R. Ierusalimschy. Revisiting coroutines. TOPLAS,

31(2):6:1–6:31, February 2009.

[13] J. G. Politz, M. J. Carroll, B. S. Lerner, J. Pombrio, and S. Krishnamurthi.

A tested semantics for getters, setters, and eval in JavaScript. In DLS
’12, 2012.

[14] J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patterson, J. Li,

A. Chitipothu, and S. Krishnamurthi. Python: The full monty: A tested

semantics for the Python programming language. In OOPSLA ’13,
2013.

[15] L. H. de Figueiredo R. Ierusalimschy and W. Celes. Lua – an extensible

extension language. Software: Practice and Experience, 26(6):635–652,
1996.

14
Such as Luacheck (https://github.com/mpeterv/luacheck), Ravi (http://

ravilang.github.io), and Typed Lua [10].

https://github.com/mpeterv/luacheck
http://ravilang.github.io
http://ravilang.github.io

	Abstract
	1 Introduction
	2 Lua, an Extensible Scripting Language
	2.1 Memoization
	2.2 Simple OOP in Lua

	3 Basics of the Formalization
	4 A Formal Description of Lua
	4.1 Stateless Lua
	4.2 Imperative Lua
	4.3 Built-in Services
	4.4 Metatables
	4.5 Semantics of Programs and Error Handling

	5 Mechanization
	6 Related Work
	7 Conclusion
	References

