Verification of Dynamic Bisimulation Theorems in Coq

Raul Fervari®?, Francisco Trucco®, Beta Ziliani®P

2Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina
YFAMAF, Universidad Nacional de Cérdoba, Argentina
¢TU Wien, Austria

Abstract

Over the last years, the study of logics that can update a model while evaluating
a formula has gained in interest. Motivated by many examples in practice such
as hybrid logics, separation logics and dynamic epistemic logics, the ability to
update a model has been investigated from a more general point of view. In
this work, we formalize and verify in the proof assistant Coq, the bisimulation
theorems for a particular family of dynamic logics that can change the struc-
ture of a relational model while evaluating a formula. Our framework covers
update operators to perform different kinds of modifications on the accessibility
relation, the valuation and the evaluation point of a model. The benefits of this
formalization are twofold. First, our results apply for a wide variety of dynamic
logics. Second, we argue that this is the first step towards the development of a
modal logic library in Coq, which allows us to mechanize many relevant results.

Keywords: Modal logics, dynamic logics, bisimulation, proof mechanization.

1. Introduction

Historically, modal logic [1, 2] has been understood as a logic to reason about
different modes of truth. Under this perspective, it can be seen as an exten-
sion of propositional logic with modalities, that in specific contexts may have
some particular interpretations. Examples of such interpretations are necessity,
knowledge, belief, temporality, or obligation, to name a few. Nowadays, modal
logics is a term defining a family of formalisms tailored to reasoning about rela-
tional structures, i.e., to reasoning about graphs. This is a consequence of the
insights provided by the most classical semantics for modal logics given in terms
of the so-called Kripke structures [3]. In the wide spectrum of existing modal
logics, one family has gained in interest lately: dynamic modal logics, i.e., logics
that can update the model while evaluating the truth of a formula. Some classic
examples in this family are dynamic epistemic logics [4], separation logics [5, 6],
and hybrid logics [7], to mention a few.

Email addresses: rfervari@unc.edu.ar (Raul Fervari), franciscoctrucco@gmail.com
(Francisco Trucco), beta@mpi-sws.org (Beta Ziliani)

Preprint submitted to Journal of Logical and Algebraic Methods in Programming (JLAMP)January 25, 2021

However, the examples of dynamic logics mentioned above are specific in-
stances designed with a particular goal in mind. Recently, several investigations
focus on understanding the behaviour of dynamic logics from a more general
point of view (see e.g. [8, 9, 10]). Such a perspective enables us to investigate
the properties of abstract operators that constitute the building blocks used
to construct concrete modalities. Moreover, it allows us to obtain a general
perspective of the impact of including and combining such kind of operators.

Nowadays, there is a vast literature investigating abstract update operators.
The reactive Kripke semantics from [11, 12] is one of the first attempts of mod-
eling abstract updates. However, the dynamic information is kept inside the
model instead of having operators performing actual modifications. An analysis
of basic model modifiers is introduced in [13], in particular regarding expressiv-
ity and complexity. The logics studied therein combine different updates on the
domain, the accessibility relation and the valuation of a model. Other works
explore more specific instances of model updates. Domain modifications are
covered, for instance with public announcement logics, whose expressivity and
computational behaviour are studied in [14, 15]. Updates on the valuations are
investigated from a dynamic epistemic logic perspective in [16]; more abstractly
in the memory logics of [17, 18, 19] and hybrid logics of [20, 7]; and recently
from a game perspective in [21]. In most of these works, the operators are very
expressive, and as a trade-off, they have high computational complexity.

The literature about operators that can change the accessibility relation of
a model completes the picture of the dynamic modal logics family. Starting
by the first ideas about sabotage logic presented in [8, 9] (and later in [22]),
various operations are presented in [23, 24, 25], more precisely, modalities to
delete, add and swap-around an edge (both locally with respect to the current
evaluation point, and globally in the whole model). These logics are called
relation-changing logics, and the obtained results include expressivity and com-
plexity. A more general approach is taken in [10], where the notion of ‘updating
a relation’ is generalized, and some results can be proved for all the logics en-
compassed in this framework. For instance, a general notion of bisimulation is
introduced, thus some properties can be proved for a whole family of logics by
using this notion. This generality also allows us to extend the results to other
kinds of updates; therefore we will use such an approach in this paper.

This is just a summary illustrating the importance of dynamic logics, and
what is the kind of results that are explored in the literature. Moreover, all
such results require proofs that are tedious and of high complexity, so it would
be interesting to benefit of the use of computational tools in order to guide or
verify (parts of) the proofs. Our work focuses on the formalization of a family
of theorems for dynamic logics in the Coq proof assistant.

1.1. Computational Assistance in Complex Proofs

The Coq proof assistant [26] is an interactive tool that helps us to perform
complex mathematical proofs. It provides a formal language to formalize math-
ematical definitions, algorithms, theorems and their proofs. One of the main
advantages of the Coq assistant is that it allows us to build mathematical proofs

constructively. The underlying logic in Coq is an intuitionistic logic with de-
pendent types, known as the calculus of inductive constructions (CIC). Thanks
to the Curry-Howard correspondence, propositions are interpreted as types and
proofs are interpreted as programs with the type of the corresponding proposi-
tion. Thus, we can say that Coq is essentially a type verifier (see, e.g. [27]).

In the last years, several mathematical problems have been solved with the
help of interactive tools like Coq; problems whose pen-and-paper proofs were
put to doubt due to their high complexity. For instance, in [28], a problem from
graph theory known as the four colour problem was solved with the assistance of
Coq. More recently, in [29] the Kepler conjecture, an open problem from com-
binatorial geometry, was proved by using a combination of the proof assistants
HOL light [30] and Isabelle [31].

Motivated by examples like those in the last paragraph, we aim to develop
a library to formalize and verify formal proofs in modal logic. In particular,
we extend the formalization provided in [32] in order to model dynamic logics.
Following |25, 10], we introduce a family of logics with dynamic operators that
are parameterized by a model update function. A model update function takes
a relational model as input, and returns a modified relational model. Then we
formalize a bisimulation notion that is agnostic with respect to the model update
function and mechanize the proof of two important theorems: the invariance
under bisimulation theorem, and the Hennessy-Milner theorem. The invariance
theorem establishes that given two models that are related by a bisimulation,
they satisfy the same formulas of the corresponding language. The Hennessy-
Milner theorem, states that under certain circumstances, the converse also holds.
We consider this is the first step towards the development of a library for the
mechanization of proofs for a wide variety of modal and dynamic logics.

Our choice of the Coq proof assistant over other tools is based on the follow-
ing facts: 1) it is one of the most popular and actively developed proof assistants;
2) it is based on an intuitionistic logic, allowing us to clearly separate when we
need to work in a classical setting, or when we can avoid resorting to classical
axioms (not a real concern in this particular work, but that is important for
studying non-classical modal logics like those in [33, 34]; 3) it is the one we
have the most expertise in; 4) it includes an impressive universe of tools to help
coding proofs, making them look pretty much like pen-and-paper proofs (a good
IDE, Unicode support, etc.).

1.2. Related Work

There are several works exploring the mechanization of proofs for modal
and non-classical logics. In [32], a formalization of the basic modal logic £(<) is
presented, in which we base our formalization. In addition, the author formalizes
the extensions S5 and S5™ [1], together with a natural deduction system. Then,
the system is used to solve some logical puzzles. In [35] the modal logic cube,
a family of extensions of the basic modal logic, is automatically verified using
Isabelle/HOL. The main result is the proof of the inclusion relations between
the cube’s logics. A formalization in Coq of a Sahlqvist’s global correspondence
theorem for the very simple Sahlqvist class is presented in [36]. Interestingly,

from such formalization, it is possible to extract a verified Haskell program that
computes correspondents of simple Sahlqvist formulas. Another approach has
been taken in [37], in which a verification in Lean [38] of tableaux methods for
modal logics is presented. In [39], Coq is used to verify the equivalence between
two deductive systems for constructive modal logic.

Regarding non-classical logics, in [40], the authors present a formalization in
Coq of linear logic, together with the mechanization of some theorems for such
logic, such as a proof of cut-elimination. Finally, recent works present a proof
language for differential dynamic logic [41] for applications in cyber-physical
systems, in the theorem prover KeYmaera X [42].

It is worth to mention that the list of related work is obviously non-exhaustive,
but it reflects an increasing interest in the use of proof assistants to mechanize
proofs in the logic research area.

1.3. Contributions

This paper extends and greatly improves the results introduced in [43].
Therein, we presented a formalization in Coq of the so-called relation-changing
modal logics, together with the mechanization of the invariance under bisimu-
lation theorem from [10]. More precisely:

o We generalize the definition of model update function from [43] to cover a
larger family of dynamic logics. Concretely, we allow updates not only in
the evaluation point and the accessibility relation but also in the valuation
of a relational model.

e We formalize a bisimulation notion for this family of logics and mechanize
the proof of the invariance under bisimulation theorem. The theorem
states that two bisimilar models satisfy the same formulas of the language.

e It is known that the converse of the invariance theorem does not always
hold. However, as shown in [10], it holds under certain circumstances such
as for finite models or for the so-called f-saturated models (the dynamic
version of w-saturated models). We formalize the notion of f-saturation
and use it to prove in Coq that if two f-saturated models are modally
equivalent, then they are bisimilar.

e In all cases, our mechanization permits languages defined with arbitrary
sets of dynamic modalities. Thus, logics with multiple updates are covered
in this framework. We include two of such logics as examples, namely local
sabotage logic from [10] and poison modal logic from [21].

1.4. Organization

We start in Sec. 2 by providing a brief introduction to Coq’s main features.
In Sec. 3 we introduce the syntax, semantics and the notion of bisimulation
for a family of dynamic modal logics. The formal definitions are accompanied
by the corresponding formalization in Coq. Then, in Sec. 4 we present the
mechanization of the different bisimulation-based theorems for this family of
logics. We conclude in Sec. 5 with some final remarks and future lines of research.

2. A Bird’s View of Coq

A typical proof in Coq looks like the following:

Lemma and_intro: V(A B : Prop), A -+ B — A A B.
Proof.

move=- A B HA HB. split.

— by apply HA.

— by apply HB.
Qed.

This simple proof states that if you are given a proof of proposition A and
another proof of proposition B, then you have a proof for their conjunction. In
order to be able to state the lemma and prove it, Coq presents several domain-
specific languages: Gallina, The Vernacular and several tactic languages. Below
we provide a brief explanation of each of them.

Gallina: It is Coq’s mathematical higher-level language and program specifi-
cation language. In the example, the lemma’s statement (what follows the
;) is written in this language. Seen as a programming language, Gallina
is a dependently-typed functional language, while seen as a logical sys-
tem, Gallina is an intuitionistic higher-order type theory —in its purest
form called the calculus of inductive constructions (CIC). Unlike other
higher-order type theories like Isabelle [31], CIC embeds a notion of pure
computations, which must be obviously terminating. Therefore, it em-
beds a notion of equality up to computation: we do not need to prove
obvious facts such that 2 + 2 = 4. The restriction to pure computations
stems from the fact that, if non-terminating computations were allowed,
the logic would be unsound.

The Vernacular: It allows the definition of functions or predicates, the state-
ment of mathematical theorems and software specifications, the machine
checking of proofs and the extraction of certified programs to different
languages. In the example we use the following Vernacular commands:
Lemma indicates the desire to state a theorem; Proof starts the proof; Qed
signals that the proof is completed, and therefore must be checked for
errors and stored in the database of known facts if everything is correct.
The reason for this check is to guarantee that the proof is indeed complete
and that the tactics used to write the proof (see below) rightfully solved
the problem.

Tactic languages: They allow us to perform and automate the deduction steps
required to complete the proof. They are usually impure and might call
external tools to help with the construction of the proof. What matters
in the end is that they produce a proof term that can be checked by Coq’s
kernel typechecker (called at Qed).

In this example, we use two tactic languages: Ltac and Ssreflect, although
several others exist. The former is Coq’s standard (we do not require to

load any specific library), while the latter must be imported with some
variant of the Require Vernacular command.

In order to better understand how proofs work in Coq, we need to link
them to the style of formal reasoning we employ as mathematicians. In
essence, a proof is nothing but a tree of deduction rules, each of which
relates a conclusion with a list of premises. There are two ways to un-
derstand a deduction rule: in forward reasoning, if we want to deduce the
conclusion, we first try to deduce the list of premises and then use the
deduction rule to prove the conclusion; in backward reasoning, we go in
the opposite direction: in order to prove the conclusion, we must prove the
premises. Tactics are typically deduction rules that implement backward
reasoning: when applied to a conclusion, usually called a goal, a tactic
replaces this goal with the subgoals it generates, one for each premise of
the rule.

In the example, everything between Proof and Qed are tactic invocations.
In a nutshell: move=- is Ssreflect’s tactic to introduce the formal parame-
ters of the proof (propositional variables A and B, and the two hypotheses);
Ltac’s tactic split replaces the goal A A B with two subgoals, one for prov-
ing A and another for proving B; tactic apply is akin to applying a lemma or
hypothesis to solve the goal, perhaps generating subgoals for its premises;
and by is Ssreflect’s terminator to ensure that the current goal is solved,
or solving it in case it is trivial.

Not all tactics are as simple as split. For instance, the tactic tauto im-
plements a decision procedure for intuitionistic propositional calculus, so
it is appropriate to solve many trivial statements (actually, it is capable of
solving the above lemma in just one tactic invocation). Ltac also allows
the definition of complex user-defined tactics and decision procedures, al-
though as a language it has some drawbacks: 1) its semantics are at times
confusing and error-prone, and 2) it is essentially untyped, meaning that
a typo can lead to obscure error messages when interpreting the proof.
Therefore, we also use a third tactic language named Mtac2 [44], which is
typed and has a well-defined semantics.

One key aspect that made Coq so popular is its interactive mode, in which a
proof is processed sentence by sentence. Therefore, we can observe the changes
performed to the goal at each step of the proof and act accordingly, without
having to play the proof in our heads to understand what to do next. For
instance, after executing the first sentence (that is, the one with move=), our
goal changes to the following:

A : Prop
B : Prop
HA: A

Above the double line we have the hypotheses, whereas below the double line
we have what we need to prove.

For an insightful description of Coq and its tactic languages the user is
invited to read the official documentation [26] together with the specific docu-
mentation for each additional tactic language [45, 44].

Before closing this section, we note that most of the work in creating and
understanding a formalized proof is devoted to knowing how to codify a concept
in the logic, and how to best solve the proofs. In the rest of the article, we devote
considerable time to these two problems, explaining in detail each concept /tactic
as we use them. We refer the reader to the code and comments in the code for
details that are not core to the formalization.

3. Dynamic Logics in Coq

In this section, we introduce the syntax, semantics, and the notion of bisim-
ulation for a family of dynamic modal logics, together with their corresponding
formalizations in Coq. The source code can be found at

https://github.com/liis-modal-logics/RelationChanginglogicsInCoq

As we will see below, it is easy to match the mathematical definitions with
their counterpart in Coq.

8.1. Syntaz

The syntax of the family of dynamic modal logics we introduce herein is
a straightforward extension of the propositional logic. Let us introduce their
syntax and semantics.

Definition 3.1 (Syntax). Let Prop be a countable, infinite set of propositional
symbols. The set Form of formulas over Prop is defined as:

Form::=1|p|lo=1v |,

where p € Prop, &; € Dyn a set of dynamic operators, and p,v € Form. Other
operators are defined as usual, e.g., = is defined as ¢ = 1, and O;p is defined
as <O,

For O C Dyn a set of dynamic operators, we call £(O) the extension of the
propositional language also allowing the operators in O. If O = {4y, ..., b,
sometimes we write £(<;,, ..., <4) instead of L({Ciy, .-, <0, })-

To formalize in Coq the syntax of dynamic modal logics, we first need to
define the countable set of propositional symbols Prop. We can accomplish this
by using an inductive type definition:

Inductive prop : Set := p : nat — prop.

https://github.com/liis-modal-logics/RelationChangingLogicsInCoq

This Vernacular command creates a new type called prop with a type constructor
p that, given a natural number n, constructs an inhabitant of the type prop,
namely p n. Clearly, prop correctly formalizes the countable infinite set Prop.

Before we define the syntax, we need to assume that a set of dynamic oper-
ators exists. This assumption is necessary because the definition of £(0), with
O C Dyn, depends on the existence of a set of dynamic operators Dyn.

Context (Dyn : Set).

Afterwards, when considering specific instantiations of logics, we will provide a
specific value to Dyn. This is achieved using the module system of Coq, which
is similar to that of the ML languages.!

Now we can give the definition of the set of formulas Form, as in Def. 3.1:

Inductive form : Set :=
| Bottom : form
| Atom : prop — form
| Impl : form — form — form
| DynDiam : Dyn — form — form.

Each line of this definition is interpreted as the members of the BNF from
Def. 3.1. Other operators are defined as syntactic sugar. For example:

Definition Not (¢ : form) : form := p—’ L.

Definition Top : form := "’ 1.
Definition And (p ¢: form) : form:= 7’ (¢ =’ ~9).
Definition Or (¢ ®: form) : form:= ~'¢p —’ 1.

Definition Iif (p ®: form) : form:= (p =’ ¥) A’ (Y =).
Definition DynBox (d : Dyn) (¢ : form) : form:= G d .

Note that in defining these formulas, we make use of Coq’s facilities for
writing and displaying code: its notation system and its support for Unicode.
This way, we can write Coq code almost as in paper: A’ is a notation for And,
— for Impl, < for DynDiam, and ~ for Not. We append an apostrophe to those
notations conflicting with Coq’s own, as in —’.

3.2. Semantics

Semantically, formulas of £(O) are evaluated in standard relational models.

1We will not discuss modules hereafter, and assume we can instantitate such variable when
needed. The interested reader is invited to read the code and Coq’s reference manual.

Definition 3.2 (Models). A model is a triple 9 = (W, R, V), where W is the
domain, a non-empty set whose elements are called points or states, R C W x W
1s the accessibility relation, and V' C Prop x W is the valuation.

Let w be a state in M, the pair (M, w) is called a pointed model; we usually
drop parentheses and call M, w a pointed model.

Notice that in standard presentations (see, e.g., [1, 2]) the valuation V in a
model is a function V :Prop — 2. Instead, we chose an equivalent presentation
given in terms of relations, which later will simplify some other definitions.

Also, in this article we restrict ourselves to models with only one accessibil-
ity relation. A generalization to models with multiple accessibility relations is
possible, but leads to further choices concerning the definition of the dynamic
operators (e.g., which relation is affected by a given dynamic operator).

We will introduce operators that update the structure of a model. These
operators will modify the accessibility relation and the valuation of the model.
Changes in the domain are not considered, as will be discussed below.

Definition 3.3 (Model update functions). Given a domain W, a model update
function for W is a function

. W2 _ oPropxW W x2W? 5 oPropx W
fw : W x 2W7 x gPropxW _y o),

that takes a state in W, a binary relation over W and a valuation of symbols
from Prop in W, and returns a set of possible updates to the state of evaluation,
the accessibility relation and the valuation.

Let € be a class of pointed models, a family of model update functions f is
a class of model update functions, one for each domain of a model in €:

A class € is closed under a family of model update functions f if whenever
(W,R,V),w € €, then

{<VV7R/7V/>’U | fW S fa (’U,R/,V/) € fW(UJ,R, V)} g <.

Clearly, the class of all pointed models is closed under any family of model
update functions. In this article, we only discuss the class of all models.

Notice, in the definition above, that a model update function is defined
relative to a domain. We specifically require that all models with the same
domain have the same model update function. This constraint limits the number
of operators that can be captured in the framework, but at the same time leads
to operators with more uniform behaviour. We will discuss this issue further
after we introduce the formal semantics of the dynamic operators below.

We proceed to formalize the concept of a relational model. In turn, this
requires us to consider how powersets and relations are represented in Coq.

Let A be a set and A its corresponding formalization in Coq. In order to
formalize a subset S of A (that is, S € 24) we can view S as a function that
for each element a € A determines whether a belongs to S or not. Naively, one

could think that S can be modeled with a function from A to bool. However,
this is overly restrictive, as it will force us to make S decidable (Coq’s functions
are guaranteed to terminate). Thus, we use the constructive type Prop instead
of bool and write A — Prop to mean “a subset of A”. Then, an element x is in
S if Sz is a provable proposition. To help the readability of our definitions, we
define a notation and write set A instead of A — Prop,? and we add a notation
x €S to mean S x.
For instance, if A is N and S is {z | = is odd}, we can write in Coq:

Definition odd : set nat :—
fix odd (n: nat): Prop :=
match n with
| 0 = False (* False is the unprovable Prop *)
| 1 = True (* True is the trivial Prop *)
| S(Sn’) = oddn’
end.

(What is in between (* ... %) are comments in the code.)

Similarly, a binary relation R over A can be viewed as a function that given
two elements a,b € A determines whether a Rb or not. For this reason, we model
Ras A — A — Prop. Or, using Coq’s standard library, simply relation A.

Now we are ready to introduce the formalization of the models of our logic.
We can think a relational model as a triple consisting of a set W, a binary rela-
tion R defined over W, and a valuation function that for each element in W and
each propositional symbol with type prop, decides whether that propositional
symbol is valid or not in that element of W. In Coq we write the triple using a
Structure:

Structure model := {
m_states :> Set;
m_rel: relation m_states;
m_val: valuation m_states

}.

The notation :> inserts a coercion from a model to a Set. This coercion
acts like a simple overloading of a mathematical concept. This way, when
having m : model, we can use m to mean both the model m or its set of states
(m.(m_states)). In practice, every time a function requires a set of states we
can pass m instead of m.(m_states), and Gallina’s type checker will take care of
inserting the required coercion.

In the same way, as m_states defines a projector for the set W of states,
m_rel and m_val define projectors for relation R and valuation V', respectively.

The type of the valuation deserves an explanation. The valuation is defined
as valuation m_states, where valuation is defined as in Def. 3.2:

2In fact, the notation uses a definition from the standard library, Ensembles A, which is
in turn defined as A — Prop.

10

Definition valuation (W: Set) : Type := set (prop * W).

We will use two other structures: the self-explanatory pointed_model (which
can be coerced to a model), and state_model, which essentially is like a pointed
model, but in which the set W of states is parameterized. For it, we use a conve-
nient notation using angle brackets. It is possible to coerce from a pointed_model
to a state_model, and the other way around.

Structure pointed_model := {
pm_model :> model,;
pm_point : pm_model

1.

Structure state_model (W: Set) := {
st_point: W;
st_rel: relation W;
st_val: valuation W

}.

Notation "(a , b, c)" :=
{| st_point := a; st_rel := b; st_val := c |}.

Before we can define satisfiability, we must provide a formalization for the
type of all model update functions. Remember that a model update function
takes a triple like our state_model and in essence returns a set of triples of the
same type, for a given domain W. Therefore, we define the type of a model
update function (muf) as:

Definition muf : Type := V(W : Set), state_model W — set (state_model W).

As with the mathematical definition fy,, a muf depends on the set W, and that
is why we start with V (W : Set),

Given that we have defined the notion of model update function and both
the syntax and the models of the dynamic modal logics, we can now define the
notion of satisfiability.

Definition 3.4 (Semantics). Let € be a class of models, let M = (W, R, V) be
a model with w € W a state such that M, w € €. Let O C Dyn, and for each
Op € O, let fits associated family of model update functions on €. Let ¢ be a
formula in £(O0). We say that M, w satisfies ¢, and write M, w = ¢, when

M, w B~ L

M w=p iff (p,w)eV

MwE =0 iff MwlpEeorMwE=y

Mw = e iff for some (v, R, V') € fw(w,R, V), W,R,V'),v = .

A formula ¢ is satisfiable if for some pointed model M, w we have M, w = .
We write M, w =¢0y N, v when both models satisfy the same £(O)-formulas,
i.e., for all p € £(0), M, w | ¢ if and only if N, v = .

11

Notice, in the semantic definition, how a dynamic modal operator <; poten-
tially changes the state of evaluation, the accessibility relation and the valuation.
On the other hand, the domain remains the same, and hence all occurrences of
each ¢y in a formula are evaluated using the same model update function f.

It must be clear at this point that to formalize the semantics, we need a
function that assigns to each dynamic operator a model update function. We
can assume that such a function exists, and we give it the name F.

Context (F : Dyn — muf).

Fixpoint satisfies (9)1: pointed_model) (¢ : form) : Prop :=
match ¢ with
| Bottom = False
| Atom a = (a, 9.(pm_point)) € 9. (m_val)
| 1 =" @2 = (M |= pl) = (M | ¢2)
| Of o=
let fw := F f 9.(m_states) in
dp, p €efuMA D Fo
end
where "M = ¢" := (satisfies M o).

Note how each case has a one-to-one correspondence with Def. 3.4. For read-
ability, together with the recursive function satisfies we define the usual no-
tation M = . Also, note how Coq performs a coercion from model 9 to the
state_model expected by fw, and take the returned state_model 99U’ and coerce
it into a model for the recursive call.

The definition of modal equivalence poses no challenges:

Definition equivalent (9t 9U: pointed_model) :=
V (p: form), (M = ¢) < (M |=).

Notation "9t = IM’" := (equivalent M IM’) (at level 0).

3.8. Examples of Dynamic Modal Logics

First, notice that the classical modal diamond < [1, 2] is one particular
instance of a dynamic operator, in which the accessibility relation and the valu-
ation remain unchanged, and the evaluation state is changed by some successor
via R. To simplify notation we use wv as a shorthand for {(w, v)} or (w,v); con-
text will always disambiguate the intended use. Let W be a domain, w € W,
R C W? and V C Prop x W, the model update function associated to < is
defined as

fI?V(waR7V) - {(U,R,V) ‘ wv € R}
Such a model update function is defined in Coq as follows:

Definition diamond : muf :—=
fun W’ (w, R, V) (v, R, V)=
RWvAR=R AV=V.

12

For a given pointed model with domain W, the model update function for &
returns a new pointed model (represented by a state, an accessibility relation
and a valuation) which is exactly as the original one, but the evaluation point
is changed. The new evaluation point is an R-successor of the original evalu-
ation point. In the definition, the > allows deconstructing the record into its
components, in this case, using the notation provided for state_model.
Consider now the local sabotage operator from [10]. Given a binary relation
R, let us introduce the notation R, = R\wv. Define the model update function

o (w, R, V) = {(v,Ry,,V) | wv € R},

that deletes the edge between the current evaluation point and some succes-
sor, and moves the evaluation to such succesor. The function defines the local
sabotage operator Og,. In Coq, we first define the updated relation R, as
rel_minus, which essentially states that it is false that w and v are related.
Then, we define two modalities: the <& modality based on the previously de-
fined muf called diamond, and the <g4, modality based on rel_minus. In this way
we get the language £(0, Ogp) by instantiating the type Dyn with a type con-
taining the two operators, and function F that given one such operator returns
the corresponding muf.

Definition rel_minus {W} (R: relation W) (w v: W) : relation W :=
fun w’ v'=
(w=w Av=v —False) V(W#w Vv#v - Rw V).

Inductive Dyn := Diamond | Sb.

Definition F (f: Dyn) : muf :=
match f with
| Diamond = diamond
| Sb= fun W '(w,R, V) (v, R, V)=
Rwv AR —rel minusRwv AV =V
end.

As customary, we introduce some useful notation in the code:

Notation "<& ¢" := (DynDiam Diamond ¢) (at level 65, right associativity).
Notation "?Osb’ " := (DynDiam Sb) (at level 65, right associativity).

It is easy to show the logic £(<, Og,) gains in expressivity with respect to
£(©). For example, the local sabotage operator <O, is logically stronger than
the diamond operator when restricted to non-dynamic predicates, as the formula
Ogpp — Op is valid. We state and prove such property in Coq:

Example valid_in_sb : V(p:prop) pm, pm = <$sb p =7 Op.

We direct the reader to the code for details of the proof. Also, Og, can force
non-tree models (see, e.g., [25, 10]). For example, the formula O L means
that any local sabotage leads to a dead-end, hence the formula GOT A OgdL
can only be true at a reflexive state, a property that cannot be expressed in

13

£(<©). Other relation-changing operators behave in a similar way (see [8, 25, 10]
for details).

Finally, consider the poison modal logic from [21]. For a given ‘poison atom’
p®, the poison modality ¢° is defined by the following model update function:

foy(w, R V) ={(v,R, V') |wv € Rand V' =V U{(p®,v)}}.
We start by formalizing the poison atom and a notation for it:

Context (poison_atom : prop).
Notation "pe" := poison_atom.

For the language £(<, <), we define the two modalities similarly as we did
for sabotage.

Definition F (d: Dyn) : muf :=
match d with
| Diamond = diamond
| Poison = fun W ’(w, R, V) (v, R, V)=
Ruv AR =RAV = (VU{(pe, v)})
end.

This logic is also very expressive. For instance, it can express that the current
state has a reflexive edge with ©O®p®. This holds as long as p® is initially false
everywhere. The example cycle in the code illustrates this fact.

It is worth to notice that £(<,<0®) is closely related to memory logics
(see, e.g., [17, 18]), and it is a fragment of some hybrid logics (see, e.g., [7]).
Also, other logics are easily encompassed with this approach, such graph modi-
fiers [13], and public assignments [16], to name a few. This also illustrates the
wide spectrum of logics that our framework covers.

8.4. Bisimulations

In modal model theory, the notion of bisimulation is a crucial tool. Typi-
cally, a bisimulation is a binary relation linking elements of the domains that
have the same atomic information, and preserving the relational structure of the
model. Because we also need to keep track of the changes on the accessibility
relation and on the valuation that the dynamic operators may introduce, bisim-
ulations are defined as relations that link triples consisting of the current state,
accessibility relation and valuation. This follows the ideas introduced, e.g., for
relation-changing modal logics in [25, 10], and for memory logics in [19]. Notice
that the notion we introduce is parameterized with the corresponding model up-
date functions, making the results general for the dynamic logics from Def. 3.1.

Definition 3.5 (Bisimulations). Let M = (W, R, V) and M = (W', R, V') be
two models. Let O C Dyn, and let § be the set of model update functions f
such that &y € O. A non-empty relation Z C (W x 2W? 2ProPx W) s (W' x
W 2Pr°pXW/) is an £(O)-bisimulation if it satisfies the following conditions.

If (w,S,U)Z(w',S",U") then for all f € §F,

14

(atomic harmony) for all p € Prop, (p,w) € U iff (p,w’) € U’;

(f_=zig) if (v,T,X) € fw(w,S,U), there is (v',T',X") € fw/(w',S",U’) s.t.
(v, T, X)Z(v', T, X');

(f_=zag) if (v, 17", X") € fw(w',S",U"), there is (v,T,X) € fw(w,S,U) s.t.
(v, T, X)Z(v', T, X").

Given two pointed models M, w and M, w', we say they are £(O)-bisimilar
(notation, M, w ey M, w') if there is an £(O)-bisimulation Z such that
(w,R,V)Z(w',R', V') where R and R' are the respective relations of M and
M, and V, V' their respective valuations.

Summing up, the bisimulation notion for each logic £(O) includes (atomic
harmony) and the particular conditions for each model update function f such
that Oy € O. For instance, according to the above definition, the (zig) and
(zag) conditions for the basic modal logic £(<) are defined as:

(zig) if (w,v) € S, there is v’ € W’ s.t. (w',v') € S and (v, S, U)Z(v',S",U");
(zag) if (w',v') € 57, there is v € W s.t. (w,v) € S and (v,S,U)Z(v',S",U").
On the other hand, instantiating f with f** we get the following conditions:

(f* zig) if (w,v) € S, there is v/ € W’ s.t. (w/,v') € 8" and
(0,80, U)Z(V', S, U);

(f*£ zag) if (w',v') € ', there is v € W s.t. (w,v) € S and
(0,8, U)Z(V', S.5,, U").

Before formalizing the notion of bisimulation for these logics, let us define the
type of relations between models. As introduced in Def. 3.5, the type of relations
defining bisimulations relates triples of points, binary relations over the domains
of the models, and valuations. This is precisely what a state_model is, as defined
in Sec. 3.2.

Context {W W : Set}.

Definition state_model_relation : Type :=
state_model W — state_model W — Prop.

The command Context allows us to state that we work under the assumption
that we have two sets W and W', an assumption we keep throughout the rest of
the formalization. The curly braces around the variables’ definitions indicate
that they are implicit; that is, they can be inferred from the context in which
the definitions are used.

To formalize the notion of bisimulation, we first define each condition sep-
arately and then use them as functions in the definition of bisimulation (f_zag
clause is analogous). To state these conditions, we work under the assumption
that we have a relation between models z:

15

Context (Z : state_model_relation).

Definition atomic_harmony : Prop :=
Vpp, Zpp — Vpr: prop,
(pr, p-(st_point)) € p.(st_val) <> (pr, p’.(st_point)) € p’.(st_val).

Definition f_zig (f : muf) : Prop :=
Vpap, Zpp —
qeEfip—
(39, 9 €£W p AZqq).

Each condition shares the precondition of bisimulation (see Def. 3.5), namely
that Z relates models p and p’.
The notion of bisimulation is defined as:

Definition bisimulation : Prop :=
atomic_harmony A (V d, £_zig (F d)) A (V 4, f_zag (F d)).

Notice that we are asking the relation z to satisfy f_zig and f_zag for all
dynamic operators to be a bisimulation.

Two models are bisimilar if there exists a bisimulation Z relating the models
(see Def. 3.5):

Definition bisimilar (9 90: pointed_model) : Prop :=
3 Z, bisimulation Z A Z 9T 90.

Notation "9 S M’ := (bisimilar M M) (at level 30).

4. Formalizing Bisimulation Theorems

4.1. Invariance Under Bistmulation

In the rest of this section, we will present our formalization of the proof of the
general invariance theorem. It establishes that the bisimulation notion captures
the intended structural properties in order to preserve logical equivalence (over
the appropriate language).

Theorem 4.1 (Invariance). Let O C Dyn, and for each Oy € O let f be its
associated family of model update functions. Let 9, w and M, w’ be two pointed
models. Then, M, w < ooy M, w' implies M, w =¢ 0y M, w'.

Proof. Let M = (W, R, V) and M = (W', R, V') with w € W and v’ € W/,
such that 9, w € ¢y M, w’. Then there exists an £(O)-bisimulation Z such
that (w, R,V)Z(w',R',V").

We prove the theorem by structural induction on £(O)-formulas. In fact,
we prove a more general result. Let S C W2, S C W2, U C (Prop x W),
U’ C (Prop x W) such that (w,S,U)Z(w’,S’,U’) for some £(O)-bisimulation
Z, we will show that (W, S,U),w =gy (W', 5", U"),w'.

16

[L case:] Since L is unsatisfiable, (W, S, U),w = L iff (W', S, U'),w' = L.
[p case:]

(W, S,U),w=p
& (pw)elU ()
& (p,w')el’ (atomic harmony)
& (W8N U)w' Ep (=)
[¢ = ¢ case:]
WS U),wl=p =1
& (W5, U),w e por (W,5,U),w = (F)
& (WS U w' = @or (WS U'),w' =4 (ind. hypothesis, =¢(0))
& WU Ee=19 (=)

Let &f € O, it remains to prove only a general case for Cro.
[o case:] Suppose (W, S,U), w = Cpp. Then thereis (v, T, X) € fi(w,S,U)
st. (W, T,X),v = ¢. Because Z is a bisimulation, by (f zig) there exists
W, T X" e fw (S U)st. (v, T, X)Z(',T', X’). By inductive hypothesis
and definition of =gy, (W', T", X"), v’ = ¢. Since (v', T, X') € fw (w', 5", U’),
we get (W', 5", X"),w" = ¢rp. The other direction of the proof is analogous,
using (f zag) instead of (f_zig).

Therefore, since (w, R, V)Z(w', R', V'), we get M, w =gy M, w'. O

Now we are ready to formally state the Theorem of Invariance under Bisim-
ulation (Thm. 4.1) in Coq:

Theorem InvarianceUnderBisimulation : VO 9 : pointed_model,
M S M — M =M.

Proof. The proof follows by structural induction on the formula ¢. To get
the right induction principle, first, we need to massage the goal and the list of
hypotheses a bit so that ¢ is the first quantified variable. Therefore, the first
lines of the proof are the following (between (* comments %) we explain their
meaning):

move= I I’ bis . (* Put every variable in the context *)
move: I M’ bis. (* And bring everyone but ¢ back in the goal *)

At this point, the goal looks like
YV O 9 : pointed_model, M S M — M= & M = ¢

And our hypotheses look like follows:

Dyn : Set
F : Dyn — muf
p: form

17

Now, we are ready to perform structural induction on ¢:

elim: ¢ = [prop | | ¢ IHp ¢ IHY | £ @ IH] /=
MmN,

This line performs more than just structural induction, which is done with
what is on the left of the =. What comes after = is what is known as intro
patterns: they permit several actions on the goal. In our case we name the
different hypotheses in each case (Atom, Bottom, Impl, and DynBox, in that order)
with [prop | | ¢ IHp o IHY | £ ¢ IH|. Then, we simplify each generated sub-goal
(/=), performing some computation on the goal, and re-introduce the models
M and M’ in the context.
The goal for the atomic case is

M S M —
(prop, pm_point M) € m_val M <> (prop, pm_point M’) € m_val M’

Which is solved using Atomic Harmony (AH), from the assumption that the
models are bisimilar.

move=> [Z [bis HZ]].
rewrite lto_st_val !to_st_point.
by apply ((get_AH bis) 7?7 HZ).

The first line assumes a model relation z such that it is a bisimulation (bis),
and in which relates the models (Hz). In the second line, we turn all the projec-
tions pm_point and m_val into projections of a state_model, as required by the
definition of AH. Finally, the last line concludes by applying AH: get_AH takes
AH from the hypothesis, and the notation ?? calls an Mtac2 tactic that inserts
enough unknowns (_ in Coq’s lingo) until the whole expression is well-typed.

The bottom case is trivial (by []).

Now for the if case, we split the proof into two separate directions. First,
we prove the left-to-right direction and then the right-to-left direction. This is
performed using the split tactic. Luckily, we do not need to think about the
two directions separately, since the same tactics work to prove both directions.
That is why we end all the tactics in the following code with a semicolon (all
but the last, of course). Both directions are proved simply by assuming the two
antecedents HIf and Hsat, and then applying the inductive hypothesis for v and
© (using these two antecedents).

split; move=> HIf Hsat;
apply (IHy 7?7 bis);
apply HIf;
by apply (IHp 7?7 bis).

The proof of the dynamic operator follows closely the same reasoning as the
one presented above. First, like with the atom case, we assume the existence
of a bisimulation Z (move=-|Z [bis HZ]]). Second, like with the if case, we use
the tactic split to consider both directions, although this time we prove them

18

separately. We will explain the left-to-right direction only, as the other direction
is analogous. After split Coq tells us that we need to prove the following:

(3p : state_model M, p" EFAMMAD |E) —
Jp’ : state_model M, P € FAIM M AP E o

First, we give a name to the existentially quantified values of the antecedent,
together with its properties:

move=> [q [HqinfW Hsatq]|.

We end up with the following context:

d : Dyn

p: form

IH: V 9 90 : pointed_model, M S M — M = o> M E ¢
M, M : pointed_model

Z : state_model_relation I IV

bis : bisimulation Z

HZ : Z 9 M

q : state_model M

HqinfW:q € Fd M M

Hsatq: q F ¢

At this point, we can apply the (f zig) hypothesis from bis in the hypothesis
HqinfW:

apply ((get_Zig bis) ?7? HZ) in HqinfW
as [q’ [HqQ'infW’ HZqq']].

This introduces the following new hypotheses:

q’ : state_model M’
Hq'infW : @' € Fd I I
HZqq': Zqq

Hsatq: q F ¢

Remember that our goal at this point is to prove that:
Jp’ : state_model M, p" €eFAd M M Ap = o

The existential quantifier is removed by providing a witness:
dq.

Now we only need to prove that:
qQ EFAM M AQ E o

The proposition on the left of the conjunction is identical to one of our hypothe-
ses (namely Hq'infW’). The proposition on the right can be proved by applying
the inductive hypothesis, although we need to massage the goal a bit to remove
coercions. This is what we do in the following lines:

19

split; first by [|.

apply (IH q) ; last by [].
3 Z.

by rewrite !to_st_to_pm.

After analogously solving the right-to-left case the proof is ended, so we issue
the closing command Qed.

4.2. Hennessy-Milner-style Theorem

The Invariance Theorem proves that every bisimulation defines an equiva-
lence relation that is as least as fine as the one defined by modal equivalence.
Over specific classes of models the two notions coincide. These classes are usu-
ally called Hennessy-Milner classes and the theorem stating the equivalence is
called a Hennessy-Milner Theorem [46]. In this section, we generalize and for-
malize one kind of Hennessy-Milner class introduced in [10], and prove that over
this class, model equivalence and bisimulations actually coincide.

A well-known result establishes that w-saturated models are a Hennessy-
Milner class for many modal languages (see [1] for details). We will define a
suitable notion of w-saturation for dynamic modal logics and prove a Hennessy-
Milner Theorem with respect to the corresponding class of models.

Notice that all the definitions we will introduce generalize those presented
in [10]. This is due to the fact that, in this paper, we work with a more gen-
eral class of logics, since herein, we also allow updates in the valuation of the
model. Thus, we need to adjust the notions of saturation and remake the proof
accordingly.

Definition 4.2 (f-saturation; §-saturation). Let 9t = (W, R, V) be a model,
and let & C Wx2W* x2PropxW) - Tet S be g set of £(0)-formulas, for some
O C Dyn. X is satisfiable over & in 9 if there is some (u,S,X) € & such
that (W, S, X),u |= ¢, for all p € ¥ (we will not mention M when it is evident
from context). ¥ is finitely satisfiable over & in I if each finite subset of ¥ is
satisfiable over &.

Let § be a set of families of model update functions in one-to-one correspon-
dence with O, and let f € §. We say that M = (W, R, V) is f-saturated if for
all 3, and for all (v,S,X) € U,ezImglgw) U {(w, R, V) | w € W} whenever
Y is finitely satisfiable over & = {(¢t,T,U) | (t,T,U) € fw(v,S,X)} then it is
satisfiable over &.

A model M is F-saturated if it is f-saturated, for all f € §.

The definition of §-saturation is a variation of the standard definition of w-
saturation and intuitively requires w-saturation in each possible updated model
via every possible function from §, and also with respect to the set of possible
model updates in each state via every function from §.

The notion of a set of formulas 3 being satisfiable over & in 9 is simply
formalized as:

20

Section Satisfiability.

Context (9 : model).
Context (& : set (state_model 90M)).
Context (X : set form).

Definition satisfiable :=
d st : state_model N,
st € 6 A (V¢ form, p € ¥— st |=).

The first lines create a section named Satisfiability, which allows us to specify
local hypotheses for the definitions within the section. Once the section is closed
(with the command End Satisfiability), these variables will be prepended as
universally quantified to each definition within the section.

The definition of finitely satisfiable is defined likewise:

Definition finitely_satisfiable := VA: finset 3,
d st : state_model M, st € S A
Forall (fun ¢: form= st = ¢) A.

Where the type finset ¥ can be thought of as a (finite) list of formulas from X.
The function Forall P 1 asserts that property P holds for each element in list 1,
in this case, that every formula in A is satisfiable.

As for the concepts of f-saturated and §-saturated, the latter called saturated
in the code, are defined as follows:

Definition image_iden : set (state_model M) :=
fun st = st_rel st = m_rel M A st_val st = m_val M.

Definition image_fw f : set (state_model M) :=
fun st = dst’: state_model M, st € F £ M st’.

Definition image_Ufw : set (state_model 9M) :=
fun st = Jf, st € image_fw f.

Definition image := image_iden Uimage_Ufw.

Definition f_saturated f : =
V (X: set form) (st: state_model M),
st € image — let G :=F £ M st in
finitely_satisfiable G ¥— satisfiable G 3.

Definition saturated := V£, f_saturated f.

Let us consider these definitions in reverse order. With saturated we state
that a model is f_saturated for every model update function £ considered. The
definition of f_saturated is in perfect correspondence with the definition given
above, although we need to explain how we compute the image: it is computed
from the union of image_iden, which returns the set of the state_models with

21

the same relation and valuation as 9; and image_Ufw, which is the union of the
images of every operator f.

Proposition 4.3. Let O C Dyn and let § be a set of families of model update
functions in one-to-one correspondence with O. Let M, w, M, w' be two F-
saturated models. Then,

M, w =g(0) M, w' implies M, w < g0y M, w'.

Proof. We prove that when two §-saturated pointed models satisfy the same
formulas, they are bisimilar.

Let M = (W, R, V) and MM’ = (W', R/, V') be given, and let § be a set
of families of model update functions in one-to-one correspondence with O.
Define the relation «~ g (o) over ez Img(fw)U{(w, R, V)} xU;c5 Img(fw/)U
{(w’, R',V')} such that:

(v,8,X) e g0y (v, 8, X') holds iff (W, S, X),v =gy (W,5",X"),v".

Notice that (by hypothesis) (w, R, V) «~ gy (w', R',V"). We show that «~ ¢ (o)
is an £(0)-bisimulation.

Suppose (s, S, X) «vg0) (8,5, X’); we need to prove that each condition
from Def. 3.5 holds.

We start by proving the (atomic harmony) condition. Let p € Prop, suppose
that (p,s) € X. Then, we have (by) (W,S,X),s = p. By definition of
e o0y and the hypothesis, (W', S", X'), s’ |= p. Therefore, by |=, (p,s’) € X',
as wanted. Notice that each step works in both directions.

Now, we need to prove the (f zig) and (f zag) conditions for each f € F.
Let f € §. For the (f zig) condition, let (¢,7,Y) € fw(s,S,X). We
should prove that there is (¢',7",Y") € fw (s', 5", X') such that (t,T,Y) «~g(0)
', 1,Y").
Let ¥ ={p | (W, T,Y),t |= ¢}, for every A Cgp, ¥ we have
(W,8,X),s =<0 NA.

Notice that A can be (), thus as a convention we take A as T. By «wg0),
(W', 5", X"), s |=<p AA, then (by =) there exists (th, TA, YA) € fw (s, 5, X")
such that (W', Tx,YA),tx = A A. Since this holds for each A Cg, X, we have
that X is finitely satisfiable over

& ={(t\,Th.YA) € fw(s',S",X")| thereis A Cq, X, such that
<W/7 T/Av YA>7 t/A): /\ A}
As & C & ={{", T7",Y") € fw(s,5,X")}, it follows that X is finitely
satisfiable over &”. Hence, by F-saturation (and consequently, f-saturation)
of M, ¥ is satisfiable over &”, i.e., there exists (¢',77,Y’) € &” satisfying X.
Therefore we have (¢,T,Y) e~ gy (t',T,Y").
The (f_zag) condition is proved by using similar steps. O

The formalization of the proof mimics exactly the steps just described. Here,
we focus on the main definitions and direct the reader to the code for details.

22

The proof of the theorem is the corollary of a lemma stating that a new
relation, called «~ in the code, is a bisimulation. We start by defining «~:

Definition equiv_in_image st st’ =
st € image M A
st’ € image M’ A
st = st’.

Notation "a «w b" := (equiv_in_image a b) (at level 40).

Note how we restrict the domain of «~ within its definition re-using the defini-
tion of image provided before.
The lemma is named in the code as:

Lemma equiv_in_image_bisimulation : bisimulation equiv_in_image.

And it resorts on the models being saturated:

Context (M_sat : saturated I).
Context (M'_sat : saturated J0).

The proof follows the text closely: first proving (atomic harmony), and
then (f zig) and (f zag). We omit the proof of the former, since it poses no
challenges. As for (f zig) and (f_zag), in the code, we decided to work step
by step, even if that implies making the proof larger than strictly needed.

For (f zig), we work under the following assumptions:

imgS: (s, S, X) € image M

imgS’ : (s’, S, X’) € image M’

SeqS’: ((s, 8, X)) =((s) S, X))
tTYinsSX: (t, T, Y) €DF £ M (s, S, X)

And we have to prove that:

3q’ : state_model I,
Q@ EFEM (s, 8 X)A(t, T, Y) ewq

We defined the set of formulas ¥ that are satisfied by (t, T, Y), and prove
that any subset A of X is also satisfied, with their formulas conjoined in a big
conjunction (AA):

pose X: set form:= (fun o= (t , T, Y) E ¢).

have sat_big_and :
V A: finset X, (£, T, Y) E AA.

The proof of sat_big_and is by a simple induction on A. By hypotheses and the
just proved property we easily get:

have sat_next_big_and’ :
V A: finset ¥, Ist’, st’ € F£ 9 (s’, 8’, X’) Ast’ = AA.

23

Which allows us to conclude that &’ is finitely satisfiable:

pose &’ : set (state_model _) :=
funst’ = st’ € F£ M (s’, S), X) A
3 A: finset X, st’ = AA.

have G&’_fsat : finitely_satisfiable &’ X.

Again, we omit the details of the proof, which can be found in the files. We
then generalize the result for &7, where we use the fact that our models are
saturated:

pose &7 :=Ff M (s’ 8, X).
have &' _fsat : finitely_satisfiable & X.

have G’’_sat : satisfiable & X
by apply M’_sat.

Thanks to &”’_sat we can now obtain the witness we need:
case: 6”_sat = [[t T’ Y| [inS H] |.

(e, T, V).

After some minor nuisances, we need to prove (for instance, that the witness is
in the image of the model), we get to the point where we need to prove that:

(¢ T, 7)) =(e, T, V))
This is mostly trivial, except that the case
(¢, T, Y) Ee=(t, T, Y) Eo

for some formula ¢ requires classical reasoning, namely, that either a formula
or its negation is satisfiable. We perform a case analysis on (t, T, Y) E¢ or
(t, T, Y) E"¢ being provable. The first case is trivial, since its precisely what
we need to prove.

case: (sat_classic (t, T, Y) ¢); first by [].
For the second case, we have to prove that

(6, T,Y)E(T)2, T, V) Eea (¢ T,Y) Fo
under the following assumptions:

Y:= (fun ¢: form= (t, T, Y) | ¢) : set (form)
H: Vy: form,pe X (t', T, Y) Ep

~9

Here it is easy to see the contradiction: ™ ¢ is in the set 3, since it is entailed by
(t, T, Y), but by Heverything in ¥ is also entailed by (t’, T’, Y’). Therefore,
(t, T, Y) E"¢, but we have as an hypothesis that (t’, T’, Y) E¢p, so we
get the contradiction. This reasoning is performed in the following lines:

24

fold (X (77 ¢)).
move/H. apply2. simpl.
contradiction.

The first line replaces { t, T, Y) (7" ¢) by its definitionally equivalent ¥ (77 ¢).
The second line uses this assumption to apply it to H, obtaining the goal

(0, T, P)EC 9o, T, V) e (t, T, Y) Eo

Now we can apply the second assumption to the first and obtain False. For
this, we call an Mtac2 tactic called apply2.
As usual, the proof of (f zag) is almost identical.

5. Final Remarks

In this work, we use the interactive proof assistant Coq to formalize the
syntax, semantics and a notion of bisimulation for a family of dynamic logics.
These logics contain modalities that update the evaluation point, the accessi-
bility relation and the valuation of the model while evaluating a formula. One
particularity of our formalization is that, following the definition from [10], dy-
namic modalities are parameterized by a model update function, i.e. a function
that given a pointed model, returns an updated pointed model. In [10] model
update functions are able to modify the evaluation point and the relation of a
model, whereas herein, we generalize these functions to update also the valua-
tion of a model. Thus, the definitions in Coq are simple but powerful enough to
encompass a whole family of logics. With these definitions at hand, we recre-
ated the proof of the invariance under bisimulation theorem: if two models are
bisimilar for a determined logic, then they satisfy the same formulas. In ad-
dition, we show that for the class of models that are saturated by the model
update functions involved in the language, the converse also holds: if two mod-
els are modally equivalent then they are bisimilar. Again, given the generality
of our framework, each theorem only needs to be proved once, and they hold
for any instance of model update functions. Examples of logics encompassed
in this framework are sabotage logics [8, 47], swap logic [24], arrow update
logics [48, 49], poison modal logic [21], the program-based relation-changing op-
erations from [50, 51, 52, 53| (which are as expressive as propositional dynamic
logic [54] and whose bisimulation notion is the same as for the basic modal
logic [1]), among others (e.g. [16, 13, 19]). Our choice of Coq as the proof assis-
tant for the formalizations relies mainly on the following facts: it is one of the
most popular and actively developed proof assistants; and, it includes an im-
pressive universe of tools to help coding proofs, making them look pretty much
like pen-and-paper proofs (a good IDE, Unicode support, etc.), which makes it
easy to use and understand.

There are several interesting directions that we would like to explore in
the future. The next step will be the mechanization of more complex results
for dynamic logics, such as the correctness of the encodings into first-order

25

and second-order logic [10]. Some of these results can be proved for particular
instances of model updates functions, while others can be proved for the general
case. With these results we will complete the mechanization of the basic model
theory for this family of dynamic logics, allowing us to go further and prove more
complex results, such as the dynamic version of van Benthem’s characterization
theorem [55]. Moreover, we would like to use our framework for mechanizing
proofs for more concrete instances of this family of logics, such as dynamic
epistemic logics [4] and modal separation logics [56, 57, 58, 59].

We consider that this work represents the first step towards a more serious
use of an interactive proof assistant for proofs in modal logic. One of the main
problems of existing formalizations of modal logics is that they all are too het-
erogeneous, and it makes it difficult to reuse previous results. Our main goal is
the development of a modal logic library that allows us the mechanization in a
uniform way of a wide variety of results in modal and dynamic logics.

Acknowledgments. We would like to thank the three anonymous review-
ers for their helpful comments and suggestions. This work is supported by
projects ANPCyT-PICTs-2017-1130 and 2016-0215, Stic-AmSud 20-STIC-03
“DyLo-MPC”, Secyt-UNC, GRFT Mincyt-Cba, and by the Laboratoire Inter-
national Associé SINFIN.

References

[1] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 2001. doi:
10.1017/CB09781107050884.

[2] P. Blackburn, J. van Benthem, Modal Logic: A Semantic Perspective,
in: Handbook of Modal Logic, Elsevier, 2007, pp. 1-84. doi:10.1016/
s1570-2464(07)80004-8.

[3] S.Kripke, Semantical Analysis of Modal Logic I. Normal Propositional Cal-
culi, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik
9 (1963) 67-96.

[4] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic,
Synthese Library, Springer, 2007. doi:10.1007/978-1-4020-5839-4.

[5] J. Reynolds, Separation logic: a logic for shared mutable data structures,
in: LICS’02, IEEE, 2002, pp. 55-74.

[6] D. Pym, J. Spring, P. O’'Hearn, Why separation logic works, Philosophy &
Technology 32 (3) (2019) 483-516. doi:10.1007/s13347-018-0312-8.

[7] C. Areces, B. ten Cate, Hybrid Logics, in: P. Blackburn, F. Wolter, J. van
Benthem (Eds.), Handbook of Modal Logic, Elsevier, 2007, pp. 821-868.
doi:10.1016/s1570-2464(07)80017-6.

26

https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/s13347-018-0312-8
https://doi.org/10.1016/s1570-2464(07)80017-6

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. van Benthem, An Essay on Sabotage and Obstruction, in: Mech-
anizing Mathematical Reasoning, 2005, pp. 268-276. doi:10.1007/
978-3-540-32254-2_16.

C. Loding, P. Rohde, Model checking and satisfiability for sabotage modal
logic, in: P. Pandya, J. Radhakrishnan (Eds.), FST TCS 2003: Foun-
dations of Software Technology and Theoretical Computer Science: 23rd
Conference, Mumbai, India, December 15-17, 2003. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 302-313. doi:10.1007/
978-3-540-24597-1_26.

C. Areces, R. Fervari, G. Hoffmann, Relation-Changing Modal Operators,
Logic Journal of the IGPL 23 (4) (2015) 601-627. doi:10.1093/jigpal/
jzv020.

D. Gabbay, Introducing reactive Kripke semantics and arc accessibility,
in: A. Avron, N. Dershowitz, A. Rabinovich (Eds.), Pillars of Computer
Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion
of His 85th Birthday, Vol. 4800 of Lecture Notes in Computer Science,
Springer, 2008, pp. 292-341. doi:10.1007/978-3-540-78127-1_17.

D. Gabbay, Reactive Kripke Semantics, Cognitive Technologies, Springer,
2013. doi:10.1007/978-3-642-41389-6.

G. Aucher, P. Balbiani, L. F. del Cerro, A. Herzig, Global and local graph
modifiers, ENTCS 231 (2009) 293-307.

C. Lutz, Complexity and Succinctness of Public Announcement Logic,
in: Proceedings of the 5th International joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’06, New York, NY, USA, 2006,
pp. 137-143.

J. Plaza, Logics of public communications, Synthese 158 (2) (2007) 165-
179, first published in 1989.

H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic epistemic logic with
assignment, in: AAMAS 2005, ACM, 2005, pp. 141-148.

C. Areces, D. Figueira, S. Figueira, S. Mera, Expressive Power and Decid-
ability for Memory Logics, in: Logic, Language, Information and Compu-
tation, Vol. 5110 of Lecture Notes in Computer Science, Springer, 2008,
pp- 56-68.

S. Mera, Modal memory logics, Ph.D. thesis, Université Henri Poincaré,
Nancy, France and Universidad de Buenos Aires, Argentina (2009).

C. Areces, D. Figueira, S. Figueira, S. Mera, The Expressive Power of
Memory Logics, The Review of Symbolic Logic 4 (2) (2011) 290-318.

27

https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1093/jigpal/jzv020
https://doi.org/10.1093/jigpal/jzv020
https://doi.org/10.1007/978-3-540-78127-1_17
https://doi.org/10.1007/978-3-642-41389-6

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

C. Areces, P. Blackburn, M. Marx, Hybrid logics: characterization, inter-
polation and complexity, Journal of Symbolic Logic 66 (3) (2001) 977-1010.

D. Grossi, S. Rey, Credulous acceptability, poison games and modal logic,
in: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada,
May 13-17, 2019, 2019, pp. 1994-1996.

G. Aucher, J. van Benthem, D. Grossi, Modal logics of sabotage revisited,
Journal of Logic and Computation 28 (2) (2018) 269-303. doi:10.1093/
logcom/exx034.

C. Areces, R. Fervari, G. Hoffmann, Moving Arrows and Four Model Check-
ing Results, in: WoLLIC 2012, Vol. 7456 of LNCS, Springer, 2012, pp.
142-153.

C. Areces, R. Fervari, G. Hoffmann, Swap Logic, Logic Journal of the IGPL
22 (2) (2014) 309-332. doi:10.1093/jigpal/jzt030.

R. Fervari, Relation-changing modal logics, Ph.D. thesis, Universidad Na-
cional de Cordoba, Argentina (2014).

Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Devel-
opment: Coq’Art The Calculus of Inductive Constructions, 1st Edition,
Springer Publishing Company, Incorporated, 2010.

W. A. Howard, The formulae-as-types notion of construction, To HB Curry:
essays on combinatory logic, lambda calculus and formalism 44 (1980) 479
490.

G. Gonthier, Formal proof-the four-color theorem, Notices of the AMS
55 (11) (2008) 1382-1393.

T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang,
C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen, T. Q. Nguyen,
T. Nipkow, S. Obua, J. Pleso, J. M. Rute, A. Solovyev, A. H. T. Ta, T. N.
Tran, D. T. Trieu, J. Urban, K. K. Vu, R. Zumkeller, A formal proof of the
kepler conjecture, Forum of Mathematics, Pi 5 (2017) e2.

K. Slind, M. Norrish, A brief overview of hol4, in: International Conference
on Theorem Proving in Higher Order Logics, Springer, 2008, pp. 28-32.

L. C. Paulson, Isabelle: A generic theorem prover, Vol. 828, Springer Sci-
ence & Business Media, 1994.

P. de Wind, Modal Logic in Coq, Vrije Universiteit, 2001.

F. Wolter, M. Zakharyaschev, Intuitionistic Modal Logic, Springer Nether-
lands, 1999, pp. 227-238. doi:10.1007/978-94-017-2109-7_17.

28

https://doi.org/10.1093/logcom/exx034
https://doi.org/10.1093/logcom/exx034
https://doi.org/10.1093/jigpal/jzt030
https://doi.org/10.1007/978-94-017-2109-7_17

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

G. Priest, An Introduction to Non-classical Logic: From If to Is, 2nd Edi-
tion, Cambridge U Press, 2000.

C. Benzmiiller, M. Claus, N. Sultana, Systematic verification of the modal
logic cube in isabelle/hol, in: Proceedings Fourth Workshop on Proof eX-
change for Theorem Proving, PxTP 2015, Berlin, Germany, August 2-3,
2015, 2015, pp. 27-41.

C. D’Abrera, R. Goré, Verified synthesis of (very simple) sahlqvist corre-
spondents via coq, in: AiML 2018, short presentations, College Publica-
tions, 2018, pp. 26-30.

M. Wu, R. Goré, Verified decision procedures for modal logics, in: ITP
2019, Vol. 141 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, 2019, pp. 31:1-31:19.

L. de Moura, S. Kong, J. Avigad, F. van Doorn, J. von Raumer, The lean
theorem prover (system description), in: CADE 2015, 2015, pp. 378-388.

L. Gonzélez-Huesca, F. E. Miranda-Perea, P. S. Linares-Arévalo, Axiomatic
and dual systems for constructive necessity, a formally verified equivalence,
Journal of Applied Non-Classical Logics 29 (3) (2019) 255-287. doi:10.
1080/11663081.2019.1647653.

B. Xavier, C. Olarte, G. Reis, V. Nigam, Mechanizing focused linear logic
in coq, ENTCS 338 (2018) 219-236.

B. Bohrer, A. Platzer, Toward structured proofs for dynamic logics, CoRR
abs/1908.05535 (2019). arXiv:1908.05535.

S. Mitsch, A. Platzer, The keymaera X proof IDE - concepts on usability in
hybrid systems theorem proving, in: F-IDEQFM 2016, Vol. 240 of EPTCS,
2016, pp. 67-81.

R. Fervari, F. Trucco, B. Ziliani, Mechanizing bisimulation theorems for
relation-changing logics in Coq, in: Dali 2019, Vol. 12005 of LNCS,
Springer, 2019, pp. 3-18.

J.-O. Kaiser, B. Ziliani, R. Krebbers, Y. Régis-Gianas, D. Dreyer, Mtac2:
Typed tactics for backward reasoning in Coq, Proc. ACM Program. Lang.
2 (ICFP) (2018) 78:1-78:31. doi:10.1145/3236773.

A. Mahboubi, E. Tassi, Mathematical components (2018).
URL https://math-comp.github.io/mcb/

J. van Benthem, Modal correspondence theory, Handbook of Philosophical
Logic 2 (1984) 167-247.

P. Rohde, On games and logics over dynamically changing structures, Ph.D.
thesis, RWTH Aachen (2006).

29

https://doi.org/10.1080/11663081.2019.1647653
https://doi.org/10.1080/11663081.2019.1647653
http://arxiv.org/abs/1908.05535
https://doi.org/10.1145/3236773
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/

48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

B. Kooi, B. Renne, Generalized arrow update logic, in: Theoretical Aspects
of Rationality and Knowledge, Proceedings of the Thirteenth Conference,
2011, pp. 205-211.

B. Kooi, B. Renne, Arrow Update Logic, Review of Symbolic Logic 4 (4)
(2011) 536-550.

P. Girard, J. Seligman, F. Liu, General dynamic dynamic logic, in: AiML
2012, College Publications, 2012, pp. 239-260.

J. van Benthem, F. Liu, Dynamic logic of preference upgrade, Journal of
Applied Non-Classical Logics 17 (2) (2007) 157-182. doi:10.3166/jancl.
17.157-182.

R. Fervari, F. R. Velazquez-Quesada, Dynamic epistemic logics of intro-
spection, in: Dal.i 2017, Vol. 10669 of LNCS, Springer, 2017, pp. 82-97.

R. Fervari, F. R. Velazquez-Quesada, Introspection as an action in rela-
tional models, Journal of Logical and Algebraic Methods in Programming
108 (2019) 1-23.

D. Harel, Dynamic Logic, Foundations of Computing, The MIT Press, 2000.

J. van Benthem, Model correspondence theory, Ph.D. thesis, University of
Amsterdam (1976).

S. Demri, M. Deters, Separation logics and modalities: A survey, Jour-
nal of Applied Non-Classical Logics 25 (1) (2015) 50-99. doi:10.1080/
11663081.2015.1018801.

S. Demri, R. Fervari, On the complexity of modal separation logics, in:
AiML 2018, College Publications, 2018, pp. 179-198.

S. Demri, R. Fervari, A. Mansutti, Axiomatising logics with separating
conjunction and modalities, in: JELIA 2019, Vol. 11468 of LNCS, Springer,
2019, pp. 692-708.

S. Demri, R. Fervari, The power of modal separation logics, Journal of Logic
and Computation 29 (8) (2019) 1139-1184. doi:10.1093/1logcom/exz019.

30

https://doi.org/10.3166/jancl.17.157-182
https://doi.org/10.3166/jancl.17.157-182
https://doi.org/10.1080/11663081.2015.1018801
https://doi.org/10.1080/11663081.2015.1018801
https://doi.org/10.1093/logcom/exz019

