
Mechanizing Bisimulation Theorems for
Relation-Changing Logics in Coq

Raul Fervari1,2, Francisco Trucco1 and Beta Ziliani1,2

1FaMAF, Universidad Nacional de Córdoba, Argentina
2Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. Over the last years, the study of logics that can modify a
model while evaluating a formula has gained in interest. Motivated by
many examples in practice such as hybrid logics, separation logics and
dynamic epistemic logics, the ability of updating a model has been inves-
tigated from a more general point of view. In this work, we formalize and
verify in the proof assistant Coq, the bisimulation theorems for a partic-
ular family of dynamic logics that can change the accessibility relation of
a model. The benefits of this formalization are twofold. First, our results
apply for a wide variety of dynamic logics. Second, we argue that this is
the first step towards the development of a modal logic library in Coq,
which allows us to mechanize many relevant results in modal logics.

1 Introduction

Historically, modal logic [10,11] has been understood as a logic to reason about
different modes of truth. Under this perspective, it can be seen as an extension
of propositional logic with modalities, that in certain contexts may have some
particular interpretations, such as necessity, knowledge, belief, temporality, or
obligation, just to name a few. Nowadays, modal logics is a term defining a family
of logics to reason about relational structures, i.e., to reason about graphs. This
is a consequence of the insights provided by the most common semantics for
modal logics given in terms of the so-called Kripke structures [26]. In the wide
spectrum of existing modal logics, one familiy has gained in interest over the last
years: dynamic modal logics, i.e., logics that are able to update the model while
evaluating the truth of a formula. Some well-known examples of this family are
dynamic epistemic logics [37], separation logics [31,30], and hybrid logics [6].

The aforementioned examples of dynamic logics are specific instances de-
signed with a particular goal in mind. Over the last years, there has been an
increasing interest in understanding the behaviour of dynamic logics from a more
general point of view (see e.g. [34,27,3]). Such perspective allows us to investi-
gate the properties of abstract operators that are the building blocks used to
construct concrete modalities, and to obtain a general perspective of the impact
of including such kind of operators.

Some examples of results about operators that can change the accesibility
relation of a model are collected in [18]. In [1,2] various abstract operations are

2 Fervari, Trucco and Ziliani

presented, in particular, modalities to delete, add and swap-around an edge (both
locally at an evaluation point and globally in the whole model). These logics are
called relation-changing logics. In such works, particular notions of bisimulation
for each operation are defined. A more general approach is taken in [3], where
the notion of ‘updating a relation’ is generalized, and some results can be proved
for all the logics encompassed in this framework. Also, the complexity of model
checking is studied, whereas satisfiability is investigated in [4] (see also [27,8]).
All these results require proofs that are tedious and of high complexity, so it
would be interesting to benefit of the use of computational tools in order to
guide or verify (parts of) the proofs.

The Coq proof assistant [9] is an interactive tool that helps us to perform
complex mathematical proofs. It provides a formal language to formalize math-
ematical definitions, algorithms, theorems and their proofs. One of the main ad-
vantages of the Coq assistant, is that it allows us to build mathematical proofs
constructively. The underlying logic in Coq is an intuitionistic logic with de-
pendent types, known as the calculus of inductive constructions (CIC). Thanks
to the Curry-Howard correspondence, propositions are interpreted as types and
proofs are interpreted as programs with the type of the corresponding proposi-
tion. Thus, we can say that Coq is essentially a type verifier (see e.g. [25]).

In the last years, several mathematical problems have been solved with the
help of interactive tools like Coq; problems whose pen-and-paper proofs where
put to doubt due to their complexity. For instance, in [22] a problem from graph
theory known as the four colour problem was solved with the assistance of Coq.
More recently, in [23] the Kepler conjecture, an open problem from combinato-
rial geometry, was proved by using a combination of the proof assistants HOL
light [33] and Isabelle [29].

Motivated by examples as those in the last paragraph, we aim to develop
a library to formalize and verify formal proofs in modal logic. In particular,
we extend the formalization provided in [15] in order to model a particular
family of dynamic logics called relation-changing modal logics. We introduce a
family of dynamic operators, parameterized by a model update function that
given a relational model, it returns a modified relational model. This follows
the definitions introduced in [18,3]. Then we formalize a bisimulation notion
which is agnostic with respect to the model update function, and mechanize the
proof of the theorem of invariance under bisimulation. This theorem establishes
that given two models that are related by a bisimulation, they satisfy the same
formulas of the corresponding language. We consider this is the first step towards
the development of a library for the mechanization of proofs for a wide variety
of modal and dynamic logics.

Structure. In Sec. 2 we introduce the syntax and semantics of relation-changing
modal logics, in which we have modalities parameterized by a model update
function. In Sec. 3 we introduce the notion of bisimulation, and enunciate the
invariance theorem. Then we focus on our main contribution: in Sec. 4 we present
the formalization of these results in Coq. We conclude in Sec. 5 with some final
remarks and future lines of research.

Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq 3

2 Basic Definitions

The syntax of the family of dynamic modal logics we call herein relation-changing
modal logics, is a straightforward extension of the propositional logic. Let us
introduce their syntax and semantics.

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM : : = ⊥ | p | ϕ→ ψ | �iϕ,

where p ∈ PROP, �i ∈ DYN a set of dynamic operators, and ϕ,ψ ∈ FORM.
Other Boolean operators are defined as usual. �iϕ is defined as ¬�i¬ϕ.

For S ⊆ DYN a set of dynamic operators, we call L(S) the extension of the
propositional language allowing also the operators in S. If S is a singleton set
S = {�}, we write L(�) instead of L({�}).

Semantically, formulas of L(S) are evaluated in standard relational models.

Definition 2 (Models). A model M is a triple M = 〈W,R, V 〉, where W
is the domain, a non-empty set whose elements are called points or states;
R ⊆W ×W is the accessibility relation; and V : PROP 7→ 2W is the valuation.

Let w be a state in M, the pair (M, w) is called a pointed model; we usually
drop parentheses and call M, w a pointed model.

In this article, we restrict ourselves to models with only one accessibility
relation (i.e., the underlying modal language has only one modal operator). A
generalization to models with multiple accessibility relations is possible, but
leads to further choices concerning the definition of the dynamic operators (e.g.,
which relation is affected by a given dynamic operator). Also, we only consider
changes on the accessibility relation, but changes in the valuation would be easily
incorporated in this framework.

Definition 3 (Model update functions). Given a domain W , a model up-

date function for W is a function fW :W × 2W
2 → 2W×2

W2

, that takes a state
in W and a binary relation over W and returns a set of possible updates to the
state of evaluation and accessibility relation.

Let C be a class of models, a family of model update functions f is a class
of model update functions, one for each domain of a model in C:

f = {fW | 〈W,R, V 〉 ∈ C}.
C is closed under a family of model update functions f if whenever M =
〈W,R, V 〉 ∈ C, then {〈W,R′, V 〉 | fW ∈ f, w ∈W, (v,R′) ∈ fW (w,R)} ⊆ C.

Clearly, the class of all pointed models is closed under any family of model
update functions. In the rest of the article we only discuss the class of all models.

Notice, in the definition above, that a model update function is defined rela-
tive to a domain. We specifically require that all models with the same domain

4 Fervari, Trucco and Ziliani

have the same model update function. This constraint limits the number of op-
erators that can be captured in the framework, but at the same time leads to
operators with a more uniform behavior. We will discuss this issue further after
we introduce the formal semantics of the relation-changing operators below.

We now introduce the semantics for the general case.

Definition 4 (Semantics). Let C be a class of models, M = 〈W,R, V 〉 be a
model in C, w ∈W a state, f a family of model update functions for C and �f its
associated dynamic modality. Let ϕ be a formula in L(�f). We say that M, w
satisfies ϕ, and write M, w |= ϕ, when

M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ϕ→ ψ iff M, w 6|= ϕ or M, w |= ψ
M, w |= �fϕ iff for some (v,R′) ∈ fW (w,R), 〈W,R′, V 〉, v |= ϕ.

The definition extends to languages with many modal dynamic operators in
the obvious manner. A formula ϕ is satisfiable if for some pointed model M, w
we have M, w |= ϕ. We write M, w ≡L N , v when both models satisfy the same
L-formulas, i.e., for all ϕ ∈ L, M, w |= ϕ if and only if N , v |= ϕ.

Notice, in the semantic definition, how the relation-changing modal operator
�f potentially changes both the state of evaluation and the accessibility relation.
On the other hand, the domain remains the same, and hence all �f operators in
a formula are evaluated using the same model update function.

Examples of Relation-Changing Logics. First, notice that the classical
modal diamond ♦ [10,11] is one particular instance of a dynamic operator, in
which the accessibility relation remains unchanged and the evaluation state is
changed by some successor via R. To simplify notation we use wv as a shorthand
for {(w, v)} or (w, v); context will always disambiguate the intended use. Let W
a domain and R ⊆W 2, the model update function associated to ♦ is defined as

f♦W (w,R) = {(v,R) | wv ∈ R}.
Consider now the model update functions from [3]. Given a binary relation R,
let us introduce some notation:

R−wv = R\wv R+
wv = R ∪ wv R∗wv = (R\vw) ∪ wv.

Define the following six model update functions, which give rise to natural dy-
namic operators: Van Benthem’s sabotage operator �gsb [34], and a local version
�sb that deletes an existing edge between the current state of evaluation and a
successor state; a “bridge” operator �gbr that adds an edge between two previ-
ously unconnected states, and a local version �br that links the current state of
evaluation and an inaccessible state; and the global and local versions (�gsw and
�sw, respectively) of an operation that swaps around edges of the model.

f sbW (w,R) = {(v,R−wv) | wv ∈ R} fgsbW (w,R) = {(w,R−uv) | uv ∈ R}
fbrW (w,R) = {(v,R+

wv) | wv 6∈ R} fgbrW (w,R) = {(w,R+
uv) | uv 6∈ R}

f swW (w,R) = {(v,R∗vw) | wv ∈ R} fgswW (w,R) = {(w,R∗vu) | uv ∈ R}.

Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq 5

It is easy to show that the basic modal logic L(♦) enriched with other relation-
changing modalities gains in expressivity. For example, the local sabotage oper-
ator �sb and the local swap operator �sw are logically stronger than the diamond
operator when restricted to non-dynamic predicates, as the formulas �sbp→ ♦p
and �swp→ ♦p are valid. These operators are very expressive as they can force
non-tree models (see e.g. [18,3]). For example, the formula �sb�⊥ means that
any local sabotage leads to a dead-end, hence the formula ♦♦> ∧ �sb�⊥ can
only be true at a reflexive state, a property that cannot be expressed in L(♦).

3 Bisimulations

In modal model theory, the notion of bisimulation is a crucial tool. Typically, a
bisimulation is a binary relation linking elements of the domains that have the
same atomic information, and preserving the relational structure of the model.
Because we need to keep track of the changes on the accessibility relation that
the dynamic operators may introduce, bisimulations are defined as relations that
link pairs of a state together with the current accessibility relation [18,3]. Notice
that the notion we introduce is parameterized with a model update function,
making the results general for the relation-changing logics from Sec. 2.

Definition 5 (Bisimulations). Let M = 〈W,R, V 〉, M′ = 〈W ′, R′, V ′〉 be
two models, and f a family of model update functions. A non empty relation
Z ⊆ (W×2W

2

)×(W ′×2W
′2

) is an L(�f)-bisimulation if it satisfies the following
conditions. If (w, S)Z(w′, S′) then

(atomic harmony) for all p ∈ PROP, w ∈ V (p) iff w′ ∈ V ′(p);
(f-zig) if (v, T) ∈ fW (w, S), there is (v′, T ′) ∈ fW ′(w′, S′) s.t. (v, T)Z(v′, T ′);
(f-zag) if (v′, T ′) ∈ fW ′(w′, S′), there is (v, T) ∈ fW (w, S) s.t. (v, T)Z(v′, T ′).

Given two pointed models M, w and M′, w′ they are L(�f)-bisimilar (no-
tation, M, w ↔L(�f) M′, w′) if there is an L(�f)-bisimulation Z such that
(w,R)Z(w′, R′) where R and R′ are the respective relations of M and M′.

Summing up, the bisimulation notion for each logic L(�f) includes (atomic
harmony) and the particular conditions for the model update function f . For
instance, according to the above definition, the (zig) and (zag) conditions for the
basic modal logic L(♦) are defined as:

(zig) if (w, v) ∈ S, there is v′ ∈W ′ s.t. (w′, v′) ∈ S′ and (v, S)Z(v′, S′);
(zag) if (w′, v′) ∈ S′, there is v ∈W s.t. (w, v) ∈ S and (v, S)Z(v′, S′).

On the other hand, instantiating f with f sb we get the following conditions:

(f sb-zig) If (w, v) ∈ S, there is v′ ∈W ′ s.t. (w′, v′) ∈ S′ and (v, S−wv)Z(v′, S′−w′v′);
(f sb-zag) If (w′, v′) ∈ S′, there is v ∈W s.t. (w, v) ∈ S and (v, S−wv)Z(v′, S′−w′v′).

In the same way, we can instantiate f with any of the model update functions
mentioned in Sec. 2.

6 Fervari, Trucco and Ziliani

Theorem 1 (Invariance). Let f be a family of model update functions, then
M, w ↔L(�f)M′, w′ implies M, w ≡L(�f)M′, w′.

Proof. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉, such that M, w ↔L(�f)

M′, w′. Then there exists Z such that (w,R)Z(w′, R′).
We prove the theorem by structural induction. In fact, we prove a more gen-

eral result. Let S ⊆ W 2, S′ ⊆ W ′2 such that (w, S)Z(w′, S′), we will show that
〈W,S, V 〉, w ≡L(�f) 〈W ′, S′, V ′〉, w′. The base cases hold by (atomic harmony),
and the → case is trivial.
[�fϕ case:] Suppose 〈W,S, V 〉, w |= �fϕ. Then there is (v, T) ∈ fW (w, S) s.t.
〈W,T, V 〉, v |= ϕ. Because Z is a bisimulation, by (f -zig) we have (v′, T ′) ∈
fW ′(w′, S′) s.t. (v, T)Z(v′, T ′). By inductive hypothesis, 〈W ′, T ′, V ′〉, v′ |= ϕ
and by definition, 〈W ′, S′, V ′〉, w′ |= �fϕ. For the other direction use (f -zag).

Therefore, since (w,R)Z(w′, R′), we get M, w ≡L(�f)M′, w′. ut

Clearly the result holds when we extend L with any set of relation-changing
modal operators. It suffices to require that the bisimulation comply with the
various (f -zig) and (f -zag) conditions corresponding to all operators. In the
next section we will reproduce the proof of Thm. 1 in Coq.

4 Formalization in Coq

4.1 The Coq Proof Assistant in a Nutshell

A typical proof in Coq looks like the following:

Lemma and_intro: forall (A B : Prop), A → B → A ∧ B.
Proof.
intros A B HA HB. split.
− apply HA.
− apply HB.

Qed.

This simple proof states that if you are given a proof of proposition A and another
proof of proposition B, then you have a proof for their conjunction. In order to be
able to state the lemma and prove it, Coq presents three different domain spe-
cific languages: Gallina, The Vernacular and the tactics language Ltac. Gallina
is Coq’s mathematical higher-level language and program specification language.
Seen as a programming language, Gallina is a dependently-typed functional lan-
guage, while seen as a logical system, Gallina is a higher-order type theory. In the
example, the lemma’s statement (what follows the :) is written in this language.

The Vernacular allows the definition of functions or predicates, the statement
of mathematical theorems and software specifications, the machine checking of
proofs and the extraction of certified programs to different languages. In the
example we use the following Vernacular commands: Lemma indicates the desire
to state a theorem; Proof starts the proof; and Qed signals that the proof is
completed, and therefore must be checked for errors and stored in the database
of known facts if everything is correct. The reason for this check is to guarantee

Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq 7

that the proof is indeed complete and that the tactics used to write the proof
(see below) rightfully solved the problem.

Finally, the proof itself is written using the tactic language Ltac. In formal
reasoning, a deduction rule is a link between a conclusion and a list of premises.
There are two ways to understand a deduction rule. With forward reasoning, if
we want to deduce the conclusion, we first try to deduce the list of premises and
then use the deduction rule to prove the conclusion. With backward reasoning
we go in the opposite direction: in order to prove the conclusion, we must prove
the premises. Coq tactics are typically deduction rules that implement backward
reasoning: when applied to a conclusion, usually called a goal, a tactic replaces
this goal with the subgoals it generates, one for each premise of the rule. In the
example, everything between Proof and Qed are tactic invocations. For instance,
the tactic split replaces the goal A ∧ B with two subgoals, one for proving A and
another for proving B.

Not all tactics are as simple as split. For instance, the tactic tauto im-
plements a decision procedure for intuitionistic propositional calculus, so it is
appropriate to solve many trivial statements (actually, it is capable of solving
the above lemma in just one tactic invocation). Ltac also allows the definition
of complex user defined tactics and decision procedures. See e.g. [9] for a more
complete presentation of Coq.

4.2 Formalizing Relation-Changing Logics in Coq

In the rest of this section we will present our formalization of relation-changing
modal logics in Coq, and the mechanization of the proof of the general invariance
theorem (Thm. 1). The source code can be found at http://tinyurl.com/

rcml-in-coq0. As we will see in the formalization below, it is easy to match the
mathematical definitions from Secs. 2 and 3 with their counterpart in Coq.

Syntax. In order to formalize the syntax of relation-changing modal logics, we
first need to define the countable set of propositional symbols PROP. We can
accomplish this by using an inductive type definition:

Inductive prop : Set := p : nat → prop.

This creates a new type called prop with a type constructor p that given a natural
number n constructs an inhabitant of the type prop, namely p n. It is clear that
prop correctly formalizes the countable infinite set of propositions PROP.

Before we give the definition of the syntax we need to assume that a set
of dynamic operators actually exists. This assumption is necessary because the
definition of L(S), with S ⊆ DYN, depends on the existence of a set of dynamic
operators DYN.

Variable Dyn : Set.

Now we can give the definition of the set of formulae FORM, as in Def. 1:

Inductive form : Type :=
| Atom : prop → form

http://tinyurl.com/rcml-in-coq0
http://tinyurl.com/rcml-in-coq0

8 Fervari, Trucco and Ziliani

| Bottom : form

| If : form → form → form

| DynDiam : Dyn → form → form.

Each line of this definition is interpreted as the members of the BNF from Def. 1.
Other operators are defined as syntactic sugar. For example:

Definition DynBox (d : Dyn) (phi : form) : form := Not (DynDiam d (Not phi)).

Writing formulae with these constructors can be very tedious. Fortunately,
Coq allows us to define a notation for them (we present the cases of dynamic
operators; other operators are defined as expected):

Notation "<o> d phi" := (DynDiam d phi) (at level 65, right associativity).

Note that between parentheses we specify the precedence level and associativity.

Semantics. We now turn our attention to the formalization of the semantics
of these logics. First, we need to formalize the concept of a relational model as
those from Def. 2. In turn this requires to consider how powersets and relations
are represented in Coq.

Let A be a set and A its correspoding formalization in Coq. In order to
formalize a subset S of the power set 2A, we can view S as a function that for
each element a ∈ A determines whether a belongs to S or not. Naively, one could
think that S can be modeled with a function from A to bool. However, this is
overly restrictive, as it will force us to make S decidable (Coq’s functions are
guaranteed to terminate). Thus, we use the constructive type Prop instead of
bool and write A → Prop to mean “a subset of the 2A”.

Similarly, a binary relation R over A can be viewed as a function that given
two elements a, b ∈ A determines whether aRb or not. For this reason, we model
R as A → A → Prop. Or, using Coq’s standard library, simply relation A.

Now we are ready to introduce the formalization of the models of our logic.
We can think a relational model as a triple consisting of a set W, a binary relation
R defined over W, and a valuation function that for each element in W and each
propositional symbol with type prop, decides whether that propositional symbol
is valid or not in that element of W. In Coq we write the types of W, R and V as:

W : Set

R : relation W

V : W → prop → Prop

The type of the valuation function deserves an explanation. Above we define
the valuation function as a function V :PROP→ 2W . Given a propositional sym-
bol p ∈ PROP, an element w ∈ W and their respective formalizations p : prop

and w : W, we formalize the expression w ∈ V (p) as V w p.
Before we can give a definition of satisfiability we must give a formalization

for the type of all model update functions. Remember that a model update

function for a given domain W is a function fW :W × 2W
2 → 2W×2

W2

that for
each state of W and for each binary relation over W , associates a set of possible
updates to the evaluation state and the accessibility relation. In Coq, we define
the type of a model update function (muf) as:

Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq 9

Definition point (W: Set) : Type := (W ∗ relation W).

Definition muf : Type := forall (W : Set),
(point W) → (point W → Prop).

As with the mathematical definition fW , a muf depends on the set W , and
that is why we start with forall (W : Set), For readability, we define a type

point W to denote (W ∗ relation W), the Coq equivalent of W × 2W
2

. Then, we
define the muf as (point W) → (point W → Prop). Note that the parentheses are
just for readability: the function type → is right-associative.

Given that we have defined the notion of model update function and both the
syntax and the models of our logic, we can now define the notion of satisfiability.
It must be clear at this point that in order to define it, we need a function
that assigns to each dynamic operator a model update function. We can simply
assume that such function exists.

Variable F : Dyn → muf.

Fixpoint satisfies (W : Set) (R : W → W → Prop) (V : W → prop → Prop)
(w : W) (phi : form) : Prop :=

match phi with

| Atom a ⇒ V w a

| Bottom ⇒ False

| If phi1 phi2 ⇒ (satisfies W R V w phi1) → (satisfies W R V w phi2)
| DynDiam d phi ⇒

let fw := F d W in

exists (v : W) (R’ : W → W → Prop), fw (w, R) (v, R’) ∧ satisfies W R’ V v phi

end.

Note how each case has one-to-one correspondence with Def. 4. For readability,
we define the following notation:

Notation "# W , R , V >> w |= phi" := (satisfies W R V w phi) (at level 30).

Properties. With all of these definitions we can now formalize the notions of
modal equivalence and bisimulation. For this part, we assume we work under
the following assumptions:

Variables W W’ : Set.
Variables (V : W → prop → Prop) (V’ : W’ → prop → Prop).

The notion of modal equivalence can be formalized unsurprisingly as:

Definition equivalent_at_points ’(w, R) ’(w’, R’) :=
forall (phi:form), (# W , R , V >> w |= phi) ↔ (# W’ , R’ , V’ >> w’ |= phi).

(The notation ’(a, b) just serves to say the definition takes a pair with compo-
nents a and b.)

Before formalizing the notion of bisimulation for these logics, let us define
the type of relations between models. As introduced in Def. 5, the type of rela-
tions defining bisimulations relates pairs of points and binary relations over the
domains of the models:

10 Fervari, Trucco and Ziliani

Definition model_to_model_relation : Type :=
(point W) → (point W’) → Prop.

To formalize the notion of bisimulation, we first define each condition sep-
arately and then use them as functions in the definition of bisimulation (f_zag
clause is analogous). To state these conditions, we work under the assumption
that we have a relation between models Z:

Variable Z : model_to_model_relation.

Definition atomic_harmony : Prop :=
forall w S w’ S’, Z (w, S) (w’, S’) → V w = V’ w’.

Definition f_zig (f : muf) : Prop :=
forall w S w’ S’ v T, Z (w, S) (w’, S’) →
f W (w, S) (v, T) →
(exists (v’ : W’) T’, f W’ (w’, S’) (v’, T’) ∧ Z (v, T) (v’, T’)).

Each condition shares the precondition of bisimulation (see Def. 5), namely that
there is a relation Z between the models, and that the condition holds for every
states w and w’ and relations S and S’ such that they are related according to Z.

Finally, the notion of bisimulation is defined as follows:

Definition bisimulation : Prop := atomic_harmony ∧
(forall d : Dyn, (f_zig (F d))) ∧ (forall d : Dyn, (f_zag (F d))).

Definition bis_at_points (p: point W) (p’: point W’) : Prop :=
bisimulation ∧ Z p p’.

Now we are ready to formally state the Theorem of Invariance under Bisim-
ulation (Thm. 1):

Theorem InvarianceUnderBisimulation :
forall (p: point W) (p’: point W’),
bis_at_points p p’ → equivalent_at_points p p’.

Proof. The proof follows by structural induction on the formula phi. In order
to get the right induction principle, we need to first massage the goal and the
list of hypotheses a bit. The first lines of the proof are the following (we use
Coq’s (* comments *) to explain each line).

intros [w S] [w’ S’]. (* name each component of the points *)

unfold bis_at_points. (* unfold definitions *)

unfold equivalent_at_points.
unfold bisimulation.

At this point, the goal looks like

(atomic_harmony ∧
(forall d : Dyn, f_zig (F d)) ∧ (forall d : Dyn, f_zag (F d))) ∧
Z (w, S) (w’, S’) →
forall phi : form, # W, S, V >> w |= phi ↔ # W’, S’, V’ >> w’ |= phi

Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq 11

We split the different components of the first hypothesis, naming each of them
again with the intros tactic. Then we introduce the formula phi.

intros [[HAtomicHarmony [HFZig HFZag]] HZwSw’S’].
intros phi.

Now our hypotheses looks like follows (the ... omits the trivial ones):

...
HAtomicHarmony : atomic_harmony
HFZig : forall d : Dyn, f_zig (F d)
HFZag : forall d : Dyn, f_zag (F d)
HZwSw’S’ : Z (w, S) (w’, S’)
phi : form

With the goal being # W, S, V >> w |= phi ↔ # W’, S’, V’ >> w’ |= phi. We are
almost ready to use structural induction on phi, but first we need to strengthen
our inductive hypothesis, so we can use it on any points (i.e., on any pairs
composed by a state and a binary relation). We do this by generalizing the goal:

generalize dependent S’. generalize dependent S.
generalize dependent w’. generalize dependent w.

The goal now looks like

forall (w : W) (w’ : W’) (S : relation W) (S’ : relation W’),
Z (w, S) (w’, S’) →
W, S, V >> w |= phi ↔ # W’, S’, V’ >> w’ |= phi

Now, we are ready to perform structural induction on phi:

induction phi as [p | | phi IHphi psi IHpsi | d phi IH];

The syntax above tells Coq how it should name the different hypothesis in
the different cases. Notice that we usually end the tactics with a dot (.) but this
time we ended the tactic induction with a semicolon (;). This tells Coq that the
next tactic has to be applied to all cases in the induction. In particular we unfold
the definition of satisfies and introduce all required variables and hypothesis.

simpl; (* This tactic unfolds definitions *)

intros w w’ S S’ HZwSw’S’.

The atomic case is V w p ↔ V’ w’ p, which is solved with a simple rewrite using
Atomic Harmony and a call to the tactic tauto mentioned in the previous section.

rewrite (HAtomicHarmony w S w’ S’ HZwSw’S’).
tauto. (* Solves the goal "V’ w’ p ↔ V’ w’ p" *)

For the bottom case we simply use tauto. Now for the if case, we split the
proof into two separate directions. First we prove the left-to-right direction and
then the right-to-left. This is performed using the split tactic. Luckily, we do
not need to think about the two directions separately, since the same tactics
work to prove both directions. That is why we end all tactics with a semicolon.
Both directions are proved simply by assuming the two antecedents and then
applying the inductive hypothesis of psi and phi and these two antecedents to
the current subgoal.

12 Fervari, Trucco and Ziliani

split;
intros HIf Hsat;
apply (IHpsi w w’ S S’ HZwSw’S’);
apply HIf;
apply (IHphi w w’ S S’ HZwSw’S’);
apply Hsat.

The proof of the dynamic operator follows closely the same reasoning as
the one present in Sec. 3. First, like with the if case, we use the tactic split to
consider both directions, but this time we prove them separately. We will explain
the left-to-right direction only, as the other direction is analogous. After split

and simpl Coq tells us that we need to prove the following:

(exists (v : W) (R’ : W → W → Prop),
F d W (w, S) (v, R’) ∧ # W, R’, V >> v |= phi) →

exists (v : W’) (R’ : W’ → W’ → Prop),
F d W’ (w’, S’) (v, R’) ∧ # W’, R’, V’ >> v |= phi

First we give a name to the existentially quantified values of the antecedent,
together with its properties:

intros [v [T [HfWwSvT HsatTv]]].

We get that v : W, that T : relation W and that they also satisfy two properties
that we will name HfWwSvT and HsatTv:

HfWwSvT : F d W (w, S) (v, T) (* (v,T) is a succesor via F d of (w,S) *)

HsatTv : # W, T, V >> v |= phi (* the updated model satisfies phi *)

At this point we can apply the HFZig hypothesis in HfWwSvT:

apply (HFZig d w S w’ S’ v T HZwSw’S’) in HfWwSvT

as [v’ [T’ [HfW’w’S’v’T’ HZvTv’T’]]].

This introduces the following new hypotheses:

v’ : W’
T’ : relation W’
HfW’w’S’v’T’ : F d W’ (w’, S’) (v’, T’)
HZvTv’T’ : Z (v, T) (v’, T’)
HsatTv : # W, T, V >> v |= phi

Remember that our goal at this point is to prove that:

exists (v’’ : W’) (R’ : relation W’),
F d W’ (w’, S’) (v’’, R’) ∧ # W’, R’, V’ >> v’’ |= phi

The existential quantifiers are removed by providing witnesses: v’ and T’ :

exists v’. exists T’.

Now we only need to prove that:

F d W’ (w’, S’) (v’, T’) ∧ # W’, T’, V’ >> v’ |= phi

Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq 13

The left proposition of the conjunction is identical to one of our hypothesis
(namely HfW’w’S’v’T’). The other proposition can be proved by applying the
inductive hypothesis to the HsatTv hypothesis. We can prove all this using the
following tactics:

split.
∗ assumption.
∗ eapply IH. apply HZvTv’T’. assumption.

The proof is ended, so we issue the closing command Qed.

5 Final Remarks

In this work we formalized in the interactive proof assistant Coq, the syntax,
semantics and a notion of bisimulation for a family of dynamic logics called
relation-changing logics. These logics contain modalities that update the ac-
cessibility relation of the model while evaluating a formula. One particularity
of our formalization is that, following the definition from [3], dynamic modal-
ities are parameterized by a model update function, i.e., a function that given
a pointed model, returns an updated pointed model. Thus, the definitions in
Coq are simple, but powerful enough to encompass a whole family of logics.
With these definitions at hand, we recreated the proof of the invariance under
bisimulation theorem: if two models are bisimilar for a determined logic, then
they satisfy the same formulas. Again, given the generality of our framework,
we only need to prove one theorem, which holds for any instance of model up-
date function (e.g., sabotage logics [34,32], swap logic [2], and others such as
the program-based relation-changing operations from [21,35,19,20], which are as
expressive as propositional dynamic logic [24] and whose bisimulation notion is
the same as for the basic modal logic [10]). Moreover, the results we introduced
can be straightforwardly extended to model update functions that also update
the valuation of the model (see e.g. [36,7,5]).

There exist in the literature other works exploring the mechanization of
proofs for modal and non-classical logics. In [15], a formalization of the basic
modal logic L(♦) is presented, in which we based our formalization. In addition,
the author formalizes the extensions of the basic modal logic S5 and S5n [10],
together with a natural deduction system. Then, the system is used to solve
some logical puzzles. Regarding non-classical logics, in [39] the authors present
a formalization in Coq of linear logic, together with the mechanization of some
theorems for such logic, such as a proof of cut-elimination. A formalization in
Coq of a Sahlqvists global correspondence theorem for the very simple Sahlqvist
class is presented in [13]. From such formalization, it is possible to extract a
verified Haskell program that computes correspondents of simple Sahlqvist for-
mulas. Another approach has been taken in [38], in which a formalization and
verification in Lean [14] of tableaux methods for modal logics is presented. Fi-
nally, recent works present a proof language for differential dynamic logic [12] for
applications in cyber-physical systems, in the theorem prover KeYmaera X [28].

14 Fervari, Trucco and Ziliani

There are several interesting directions that we would like to explore in the
future. The next step will be the mechanization of more complex results for
relation-changing logics, such as the Hennessy-Milner theorem (i.e., the other
direction of the proof presented here), and the correctness of the encodings into
first-order and second-order logic [3]. Some of these results can be proved for
particular instances of model updates functions, while others can be proved for
the general case. Moreover, we would like to use our framework for mechanizing
proofs for more concrete instances of this family, such as dynamic epistemic
logics [37] and modal separation logics [16,17].

We consider that this work represents a first step towards a more serious
use of an interative proof assistant for proofs in modal logic. One of the main
problems in the aforementioned works, is that all the formalizations are too
heterogeneous, and it makes difficult to reuse previous results. Our main goal is
the development of a modal logic library that allows us the mechanization in a
uniform way of a wide variety of results in modal and dynamic logics.

Ackowledgements. This work was partially supported by ANPCyT-PICTs-2017-1130

and 2016-0215, MinCyT Córdoba, SeCyT-UNC, and the Laboratoire International

Associé INFINIS.

References

1. C. Areces, R. Fervari, and G. Hoffmann. Moving Arrows and Four Model Checking
Results. In WoLLIC 2012, volume 7456 of LNCS, pages 142–153. Springer, 2012.

2. C. Areces, R. Fervari, and G. Hoffmann. Swap Logic. Logic Journal of the IGPL,
22(2):309–332, 2014.

3. C. Areces, R. Fervari, and G. Hoffmann. Relation-Changing Modal Operators.
Logic Journal of the IGPL, 23(4):601–627, 2015.

4. C. Areces, R. Fervari, G. Hoffmann, and M. Martel. Satisfiability for relation-
changing logics. Journal of Logic and Computation, 28(7):1443–1470, 2018.

5. C. Areces, D. Figueira, S. Figueira, and S. Mera. The Expressive Power of Memory
Logics. The Review of Symbolic Logic, 4(2):290–318, 2011.

6. C. Areces and B. ten Cate. Hybrid Logics. In P. Blackburn, F. Wolter, and J. van
Benthem, editors, Handbook of Modal Logic, pages 821–868. Elsevier, 2007.

7. G. Aucher, P. Balbiani, L. Fariñas del Cerro, and A. Herzig. Global and local
graph modifiers. ENTCS, 231:293–307, 2009.

8. G. Aucher, J. van Benthem, and D. Grossi. Modal logics of sabotage revisited.
JLC, 28(2):269–303, 2018.

9. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Devel-
opment: Coq’Art The Calculus of Inductive Constructions. Springer Publishing
Company, Incorporated, 1st edition, 2010.

10. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

11. P. Blackburn and J. van Benthem. Modal Logic: A Semantic Perspective. In
Handbook of Modal Logic, pages 1–84. Elsevier, 2007.

12. B. Bohrer and A. Platzer. Toward structured proofs for dynamic logics. CoRR,
abs/1908.05535, 2019.

Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq 15

13. C. D’Abrera and R. Goré. Verified synthesis of (very simple) sahlqvist correspon-
dents via coq. In AiML 2018, short presentations, pages 26–30. College Publica-
tions, 2018.

14. L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The lean
theorem prover (system description). In CADE 2015, pages 378–388, 2015.

15. P. de Wind. Modal Logic in Coq. Vrije Universiteit, 2001.
16. S. Demri and R. Fervari. On the complexity of modal separation logics. In AiML

2018, pages 179–198. College Publications, 2018.
17. S. Demri, R. Fervari, and A. Mansutti. Axiomatising logics with separating con-

junction and modalities. In JELIA 2019, volume 11468 of LNCS, pages 692–708.
Springer, 2019.

18. R. Fervari. Relation-Changing Modal Logics. PhD thesis, Universidad Nacional de
Córdoba, Argentina, 2014.

19. R. Fervari and F. R. Velázquez-Quesada. Dynamic epistemic logics of introspection.
In DaĹı 2017, volume 10669 of LNCS, pages 82–97. Springer, 2017.

20. R. Fervari and F. R. Velzquez-Quesada. Introspection as an action in relational
models. JLAMP, 108:1–23, 2019.

21. P. Girard, J. Seligman, and F. Liu. General dynamic dynamic logic. In AiML
2012, pages 239–260. College Publications, 2012.

22. G. Gonthier. Formal proof the four-color theorem. 2008.
23. T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang,

C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen, T. Q. Nguyen, T. Nipkow,
S. Obua, J. Pleso, J. M. Rute, A. Solovyev, A. H. Thi Ta, T. N. Tran, D. T. Trieu,
J. Urban, K. K. Vu, and R. Zumkeller. A formal proof of the kepler conjecture.
Forum of Mathematics, Pi, 5:e2, 2017.

24. D. Harel. Dynamic Logic. Foundations of Computing. The MIT Press, 2000.
25. W. A. Howard. The formulae-as-types notion of construction. To HB Curry: essays

on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.
26. S. Kripke. Semantical Analysis of Modal Logic I. Normal Propositional Calculi.

Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 9:67–96,
1963.

27. Ch. Löding and P. Rohde. Model checking and satisfiability for sabotage modal
logic. In P. Pandya and J. Radhakrishnan, editors, FST TCS 2003: Foundations of
Software Technology and Theoretical Computer Science: 23rd Conference, Mumbai,
India, December 15-17, 2003. Proceedings, pages 302–313, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

28. S. Mitsch and A. Platzer. The keymaera X proof IDE - concepts on usability in
hybrid systems theorem proving. In F-IDE@FM 2016, volume 240 of EPTCS,
pages 67–81, 2016.

29. L. C. Paulson. Isabelle: A generic theorem prover, volume 828. Springer Science
& Business Media, 1994.

30. D. Pym, J. Spring, and P.W. O’Hearn. Why separation logic works. Philosophy &
Technology, pages 1–34, 2018.

31. J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In
LICS’02, pages 55–74. IEEE, 2002.

32. P. Rohde. On games and logics over dynamically changing structures. PhD thesis,
RWTH Aachen, 2006.

33. K. Slind and M. Norrish. A brief overview of hol4. In International Conference on
Theorem Proving in Higher Order Logics, pages 28–32. Springer, 2008.

34. J. van Benthem. An Essay on Sabotage and Obstruction. In Mechanizing Mathe-
matical Reasoning, pages 268–276, 2005.

16 Fervari, Trucco and Ziliani

35. J. van Benthem and F. Liu. Dynamic logic of preference upgrade. Journal of
Applied Non-Classical Logics, 17(2):157–182, 2007.

36. H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic epistemic logic with
assignment. In AAMAS 2005, pages 141–148. ACM, 2005.

37. H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic.
Synthese Library. Springer, 2007.

38. M. Wu and R. Goré. Verified decision procedures for modal logics. In ITP 2019,
volume 141 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

39. B. Xavier, C. Olarte, G. Reis, and V. Nigam. Mechanizing focused linear logic in
coq. ENTCS, 338:219–236, 2018.

