
Introducing MetaCoq: A Safe Tactic Language for Coq

Beta Ziliani
FAMAF, Universidad Nacional de Córdoba and CONICET

bziliani@famaf.unc.edu.ar

Interactive proof assistants like Coq are now common
tools employed by researchers worldwide to inspire confi-
dence in their results. Noteworthy examples include major
milestones in the verification of large algebraic proofs (Gonthier
et al. 2013; Hales et al. 2015), and in the verification of large
software systems (Klein et al. 2010; Leroy 2009).

These assistants owe their success partially to the rich
higher-order logics they encode, which allow for the spec-
ification and verification of sophisticated theorems such as
the ones listed above. However, what is their gain is also
their curse: such highly undecidable logics do not allow for
the same level of automation SMT solvers provide for frag-
ments of first-order logic. As a consequence, the proof devel-
oper must often write several lines of proofs to solve goals,
even trivial ones that do not appear in their traditional pen-
and-paper counterparts.

To accommodate for this, proof assistants are equipped
with languages to build tactics: programs that decompose
a given goal into smaller subgoals until their truth is self-
evident. Coq, in particular, includes two languages: OCaml
and Ltac. The former is the language used to implement Coq
itself. Tactics written in OCaml are compiled and can make
use of imperative data structures—making them very effi-
cient. At the same time, developers are exposed the low level
details of Coq’s internals, including potentially unsafe oper-
ations. Moreover, the tactic development process is slow. For
one, the proof developer must reason at the level of de Bruijn
indices, carefully making sure that such indices refers to the
right binders. In addition, OCaml tactics must be compiled
and linked to Coq every time the tactic is modified.

Ltac, on the other hand, is a dynamic language that allows
for a rapid high-level development of tactics, directly within
the Coq environment and without requiring compilation and
linking. Moreover, it provides a convenient representation
of proof terms using the concrete syntax of Coq: it frees the
developer to think to the level of de Bruijn indices. However,
this language grew “one hack at a time”, and despite its
many years in the wild, it still lacks many basic language
constructs required for proper tactic development—a fact
reflected by a growing number of domain-specific tactic
languages that are written either as plugins in OCaml (e.g.,
Gonthier and Mahboubi 2010), or in sophisticated patterns

using Coq’s overloading mechanisms (e.g., Krebbers et al.
2017).

Another issue with languages like OCaml and Ltac is that
they offer almost no static guarantees: a tactic that is suc-
cessfully defined—that is, accepted by the OCaml compiler
or Ltac’s interpreter—may construct an ill-typed term that
is only rejected when it is too late to understand where the
problem originated from.

Recently, Ziliani et al. (2015) devised Mtac, a new lan-
guage providing the static guarantees tactic languages are
currently missing. Mtac is based on the key realization that a
tactic language is just a functional language with certain ef-
fects, like non-termination and syntax manipulation. These
effects can be typed in Gallina, the language in which def-
initions are written in Coq, by means of a monad—not un-
like Haskell’s IOMonad. As a result, a program of type M τ ,
where M is the monad and τ is any type in Gallina, has the
guarantee that, if it terminates, the resulting term will have
type τ .

While Mtac allows for the construction of more prin-
cipled programs than Ltac, it still suffers from a problem
shared with Ltac: it does not include enough language con-
structs to enable the construction of primitive tactics and tac-
tic combinators.

In this talk: The goal for the talk is to present and discuss
MetaCoq, a new framework—based on an improved version
of Mtac—for writing typed tactics and tactic combinators.
Tactics in MetaCoq are easy to write, to combine, and to
modularize.

In its current form, MetaCoq consists of:

1. Mtac2, a new version of Mtac with a richer set of lan-
guage constructs and revised semantics.

2. A novel extendable interface for manipulating goals.

3. Several basic tactics (proving MetaCoq’s versatility).

4. A new proof mode to write scripts directly in MetaCoq.

MetaCoq is a plugin for Coq developed in collaboration
with Yann Régis-Gianas and Jan-Oliver Kaiser. It is down-
loadable from:

http://github.com/MetaCoq/MetaCoq

1 2018/11/13



References
G. Gonthier and A. Mahboubi. An introduction to small scale

reflection in Coq. JFR, 3(2):95–152, 2010.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. Le Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca,
L. Rideau, A. Solovyev, E. Tassi, and L. Théry. A machine-
checked proof of the odd order theorem. In ITP. Springer, 2013.

T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L.
Hoang, C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen,
T. Q. Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev,
A. H. T. Ta, T. N. Tran, D. T. Trieu, J. Urban, K. K. Vu, and
R. Zumkeller. A formal proof of the kepler conjecture. arXiv,
1501.02155, 2015.

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verification
of an operating-system kernel. CACM, 53(6):107–115, 2010.

R. Krebbers, A. Timany, and L. Birkedal. Interactive proofs in
higher-order concurrent separation logic. In POPL, 2017.

X. Leroy. Formal verification of a realistic compiler. CACM, 52
(7):107–115, 2009.

B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis. Mtac: A monad for typed tactic programming in
Coq. JFP, 25, 2015.

2 2018/11/13


