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Abstract
Most interactive theorem provers provide support for some form of
user-customizable proof automation. In a number of popular sys-
tems, such as Coq and Isabelle, this automation is achieved primar-
ily through tactics, which are programmed in a separate language
from that of the prover’s base logic. While tactics are clearly useful
in practice, they can be difficult to maintain and compose because,
unlike lemmas, their behavior cannot be specified within the ex-
pressive type system of the prover itself.

We propose a novel approach to proof automation in Coq that al-
lows the user to specify the behavior of custom automated routines
in terms of Coq’s own type system. Our approach involves a sophis-
ticated application of Coq’s canonical structures, which generalize
Haskell type classes and facilitate a flexible style of dependently-
typed logic programming. Specifically, just as Haskell type classes
are used to infer the canonical implementation of an overloaded
term at a given type, canonical structures can be used to infer the
canonical proof of an overloaded lemma for a given instantiation of
its parameters. We present a series of design patterns for canonical
structure programming that enable one to carefully and predictably
coax Coq’s type inference engine into triggering the execution of
user-supplied algorithms during unification, and we illustrate these
patterns through several realistic examples drawn from Hoare Type
Theory. We assume no prior knowledge of Coq and describe the
relevant aspects of Coq type inference from first principles.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verifica-
tion; F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—Logic and constraint programming
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1. Introduction
In recent years, interactive theorem proving has been successfully
applied to the verification of important mathematical theorems and
substantial software code bases. Some of the most significant exam-
ples are the proof of the Four Color Theorem [8] (in Coq), the ver-
ification of the optimizing compiler CompCert [17] (also in Coq),
and the verification of the operating system microkernel seL4 [16]
(in Isabelle). The abovementioned proof assistants employ higher-
order logics and type systems in order to maximize expressiveness
and generality, but also to facilitate modularity and reuse of verifi-
cation effort. However, despite the expressiveness of these theorem
provers, effective solutions to some verification problems can often
only be achieved by going outside of the provers’ base logics.

To illustrate, consider the following Coq lemma, which natu-
rally arises when reasoning about heaps and pointer aliasing:

noalias : ∀h:heap. ∀x1x2:ptr.∀v1:A1. ∀v2:A2.
def (x1 7→ v1 • x2 7→ v2 • h)→ x1 != x2

Here, the type heap classifies finite maps from pointers of type
ptr to values, h1 • h2 is the disjoint union of h1 and h2, and
x 7→ v is a singleton heap consisting solely of the pointer x,
storing the value v. The disjoint union may be undefined if h1

and h2 overlap, so we need a predicate def h, declaring that h
is not undefined. Consequently, def (h1 • h2) holds iff h1 and h2

are disjoint heaps. Finally, the conclusion x1 != x2 is in fact a
term of type bool, which Coq implicitly coerces to the proposition
(x1 != x2) = true. The noalias lemma states that x1 and x2 are
not aliased, if they are known to belong to disjoint singleton heaps.

Now suppose we want to prove a goal consisting of a number of
no-aliasing facts, e.g.,

(x1 != x2) && (x2 != x3) && (x3 != x1),

under the following hypothesis:

D : def (i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3)).

Before noalias can be applied to prove, say, x2 != x3, the disjoint
union in D will have to be rearranged, so that the pointers x2 and
x3 appear at the top of the union, as in:

D′ : def (x2 7→ v2 • x3 7→ v3 • i1 • i2 • x1 7→ v1)

Otherwise, the noalias lemma will not apply. Because • is commu-
tative and associative, the rearrangement is sound, but it is tedious
to perform by hand, and it is not very robust under adaptation. In-
deed, if the user goes back and changes the input heap in D, a new
rearrangement is necessary. Furthermore, the tedium is exacerbated
by the need for different rearrangements in proving x1 != x2 and
x3 != x1.

The most effective solution would be for the type checker to
somehow automatically recognize that the heap expression fromD
is in fact equivalent to some form required by noalias. Unfortu-
nately, none of the proof assistants that we are aware of provide
such automatic reasoning primitively. Instead, they typically pro-
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vide a separate language for writing tactics, which are customized
procedures for solving a class of proof obligations. For example,
one can write an auto noalias tactic to solve a goal like x2 != x3
by automatically converting the assumption D into D′ and then
applying the noalias lemma. However, while tactics have been de-
ployed successfully (and with impressive dexterity) in a variety of
scenarios [6, 7], they are beset by certain fundamental limitations.

The primary drawback of tactics is that they lack the precise
typing of the theorem prover’s base logic (and in the case of Coq,
they are essentially untyped). This can make them much more
difficult to maintain than lemmas, as changes in basic definitions do
not necessarily raise type errors in the code of the tactics affected
by the changes. Rather, type checking is performed on the goals
obtained during tactic execution, resulting in potentially obscure
error messages and unpredictable proof states in the case of failure.
Moreover, the behavior of a tactic typically cannot be specified, nor
can it be verified against a specification.

Due to their lack of precise typing, tactics suffer a second-class
status, in the sense that they may not be used as flexibly as lemmas.
For example, suppose the pointer (in-)equalities we want to resolve
are embedded in a larger context, e.g.,

G : if (x2 == x3) && (x1 != x2) then E1 else E2

In this situation, we cannot apply the auto noalias tactic directly to
reduce (x2 == x3) and (x1 != x2) to false and true, respectively,
since those (in-)equalities are not the top-level goal. Coq’s rewrite
primitive is designed precisely for this situation—it enables one
to reduce all (in-)equalities within G that match the conclusion
of a particular lemma—but it is not applicable to tactics (like
auto noalias).

Thus, with the auto noalias tactic, we are left with essentially
two options: (1) use it to prove a bespoke lemma about one specific
inequality (say, x1 != x2), perform a rewrite using that lemma,
and repeat for other (in-)equalities of interest, or (2) implement
another custom tactic that crawls over the goal G searching for any
and all (in-)equalities that auto noalias might resolve. The former
option sacrifices the benefits of automation, while the latter option
redundantly duplicates the functionality of rewrite.

Ideally, we would prefer instead to have a way of writing
auto noalias as a lemma rather than a tactic. Had we such a lemma,
we could give it a precisely typed specification, we could rewrite
the goalG with it directly, and we could also compose it with other
lemmas. For instance, we could use ordinary function composition
to compose it with the standard lemma

negbTE : ∀b:bool. !b = true→ b = false,

thus transforming auto noalias into a rewrite rule for positive facts
of the form (x2 == x3) = false. Consequently, we could apply
rewrite (negbTE (auto noalias D)) to the goal G, thereby reduc-
ing it to E2.

The question of how to support automation, while remaining
within the first-class world of lemmas, is the subject of this paper.

1.1 Contributions
We propose a novel and powerful approach to proof automation
in Coq, which avoids the aforementioned problems with tactics by
allowing one to program custom automated routines within the ex-
pressive dependent type system of Coq itself. In particular, we will
be able to rephrase the noalias lemma so that it can automatically
analyze its heap-definedness hypothesis D in order to derive what-
ever valid pointer inequalities are needed, without any manual in-
tervention from the user. Our proposal is much more general, how-
ever, and we will illustrate it on a variety of different and signifi-
cantly more involved examples than just noalias.

Our approach involves a sophisticated application of Coq’s
canonical structures, which have existed in Coq for quite some
time [23], but with sparse documentation and (perhaps as a con-
sequence) relatively little use. At a high level, canonical structures
may be viewed as a generalization of Haskell’s type classes [28,
13], in the sense that they provide a principled way to construct
default dictionaries of values and methods—and hence support
overloading and implicit program construction—as part of the type
inference process.

However, unlike in Haskell, where the construction of canonical
instances is keyed solely on the type belonging to a certain type
class, instance construction in Coq may be keyed on terms as
well. This, together with Coq’s support for backtracking during
type inference, enables a very flexible style of dependently-typed
logic programming.1 Furthermore, since canonical structures can
embed proofs of interesting invariants about the instance fields
being computed, one can use them to implement custom algorithms
(in logic-programming style) together with proofs of their (partial)
correctness. Thus, just as Haskell type classes are used to infer the
canonical implementation of an overloaded term at a given type,
canonical structures can be used to infer the canonical proof of an
overloaded lemma for a given instantiation of its parameters. We
feel this constitutes a beautiful application of the Curry-Howard
correspondence between proofs and programs in Coq.

Intuitively, our approach works as follows. Suppose we want
to write a lemma whose application may need to trigger an auto-
mated solution to some subproblem (e.g., in the case of noalias, the
problem of testing whether two pointers x1 and x2 appear in dis-
joint subheaps of the heap characterized by the heap-definedness
hypothesis D). In this case, we define a structure (like a type class)
to encapsulate the problem whose solution we wish to automate,
and we encode the algorithm for solving that problem—along with
its proof of correctness—in the canonical instances of the structure.
Then, when the lemma is applied to a particular goal, unification of
the goal with the conclusion of the lemma will trigger the construc-
tion of a canonical instance of our structure that solves the automa-
tion problem for that goal. For example, if auto noalias is the over-
loaded version of noalias, and we try to apply (auto noalias D)
to the goal of proving x2 != x3, type inference will trigger con-
struction of a canonical instance proving that the heap character-
ized by D contains bindings for x2 and x3 in two disjoint sub-
heaps. (This is analogous to how the application of an overloaded
function in Haskell triggers the construction of a canonical dictio-
nary that solves the appropriate instantiation of its type class con-
straints.) Although we have described the approach here in terms of
backward reasoning, one may also apply overloaded lemmas using
forward reasoning, as we will see in Section 5.

Key to the success of our whole approach is the Coq type in-
ference engine’s use of syntactic pattern-matching in determining
which canonical instances to apply when solving automation prob-
lems. Distinguishing between syntactically distinct (yet semanti-
cally equivalent) terms and types is essential if one wishes to sim-
ulate the automation power of tactics. However, it is also an aspect
of our approach that Coq’s type system cannot account for because
it does not observe such syntactic distinctions. Fortunately, our re-
liance on Coq’s unification algorithm for analysis of syntax is the
only aspect of our approach that resides outside of Coq’s type sys-
tem, unlike tactics, which are wholly extra-linguistic.

Perhaps the greatest challenge in making our approach fly is
in developing effective and reliable ways of circumventing certain

1 It is folklore that one can simulate logic programming to some extent using
Haskell’s multi-parameter classes with functional dependencies [15] or with
associated types [5], but Haskell’s lack of support for backtracking during
type inference limits what kinds of logic programming idioms are possible.
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inherent restrictions of Coq’s canonical structures, which were not
designed with our ambitious application in mind. In particular,
in order to implement various useful forms of automation using
canonical structures, it is critically important to be able to write
overlapping instances, but also to control the order in which they
are considered and the order in which unification subproblems are
solved. None of these features are supported primitively, but they
are encodable using a series of simple “design patterns”, which
form the core technical contribution of this paper.

We illustrate these patterns through several realistic examples
involving reasoning about heaps, pointers and aliasing. All of these
examples have been implemented and tested in the context of Hoare
Type Theory (HTT) [19], where they have replaced often-used
tactics. The code in this paper and HTT itself is built on top of
Ssreflect [10], which is a recent extension of Coq providing a
very robust language of proofs, as well as libraries for reflection-
based reasoning. However, in the current paper, we assume no
prior knowledge of Coq, Ssreflect, or canonical structures them-
selves. We will remain close, but not adhere strictly, to the Coq
notation and syntax. All of our sources are available on the web at
http://www.mpi-sws.org/~beta/lessadhoc.

2. Basics of Canonical Structures
In this section, we provide a quick introduction to the basics of
canonical structure programming, leading up to our first important
“design pattern”—tagging—which is critical for supporting order-
ing of overlapping instance declarations.

2.1 “Type Class” Programming
In the literature and everyday use of Coq, the word “structure” is
used interchangeably (and confusingly) to mean both dependent
records and the types they inhabit. To disambiguate, in this paper
we use structure for the type, instance for the value, and canonical
instance for a canonical value of a certain type. We will use the
term canonical structures only when referring generally to the use
of all of these mechanisms in tandem.

The following definition is a simplified example from a struc-
ture (i.e., type) taken from the standard Ssreflect library [10]:

structure eqType := EqType {sort : Type;
equal : sort→ sort→ bool;

: ∀x y : sort. equalx y ↔ x = y}
The definition makes eqType a record type, with EqType as its
constructor, taking three arguments: a type sort, a boolean binary
operation equal on sort, and a proof that equal decides the equality
on sort. For example, one possible eqType instance for the type
bool, may be

eqType bool := EqType bool eq bool pf bool

where eq bool x y := (x && y) || (!x && !y), and pf bool is a
proof, omitted here, that ∀x y : bool. eq bool x y ↔ x = y.

The labels for the record fields serve as projections out of the
record, so the definition of eqType also introduces the constants:

sort : eqType→ Type
equal : ∀T :eqType. sort T → sort T → bool

We do not care to project out the proof component of the record, so
we declare it anonymous by naming it with an underscore.

Notational Convention 1. We will usually omit the argument T
of equal, and write equal x y instead of equal T x y, as T can be
inferred from the types of x and y. We use the same convention for
other functions as well, and make implicit such arguments that can
be inferred from the types of other arguments. This is a standard
notational convention in Coq.

It is also very useful to define generic instances. For example,
consider the eqType instance for the pair typeA×B, whereA and
B are themselves instances of eqType:

eqType pair (A B : eqType) :=

EqType (sort A× sort B) (eq pair A B) (pf pair A B)

where

eq pair (A B : eqType) (u v : sort A× sort B) :=

equal (π1 u) (π1 v) && equal (π2 u) (π2 v)

and pf pair is omitted as before.
Declaring both eqType bool and eqType pair now as canoni-

cal instances—using Coq’s canonical keyword—will have the fol-
lowing effect: whenever the type checker is asked to type a term like
equal (b1, b2) (c1, c2), where b1, b2, c1 and c2 are of type bool, it
will generate a unification problem of the form

sort ?T =̂ bool× bool

for some unification variable ?T , generated implicitly at the ap-
plication of equal. It will then try to solve this problem using the
canonical instance eqType pair, resulting in two new unification
subproblems, for fresh unification variables ?A and ?B:

sort ?A =̂ bool sort ?B =̂ bool

Next, it will choose ?A =̂ eqType bool and ?B =̂ eqType bool,
with the final result that equal (b1, b2) (c1, c2) reduces implicitly
to eq bool b1 c1 && eq bool b2 c2, as one would expect.

In this manner, canonical instances can be used for overloading,
similar to the way type classes are used in Haskell [28, 13].2 We can
declare a number of canonical eqType instances, for various prim-
itive types, as well as generic instances for type constructors (like
the pair example above). Then we can uniformly write equal x y,
and the typechecker will compute the canonical implementation of
equality at the types of x and y by solving for equal’s implicit ar-
gument T .

Generalizing from eqType to arbitrary structures S, the declara-
tion of an instance V : S as canonical instructs the typechecker that
for each projection proj of the structure S, and c the head symbol
of proj V , the unknown X in the unification equation

proj X =̂ c x1 . . . xn (*)

should by default be solved by unifying X =̂ V . For instance, in
the case of eqType pair, the projector proj is sort, the head constant
c is (·× ·), and the head constant arguments x1 . . . xn are bool and
bool. We emphasize that: (1) to control the number of such default
facts, we will frequently anonymize the projections if they are not
important for the application, as in the case of the proof in eqType
above; and (2) there can only be one specified default solution for
any given proj and c (i.e., overlapping canonical instances are not
permitted). As we will see shortly, however, there is a simple design
pattern that will allow us to circumvent this limitation.

2.2 “Logic” Programming
Although the eqType example is typical of how canonical struc-
tures are used in much existing Coq code, it is not actually repre-
sentative of the style of canonical structure programming that we
explore in this paper. Our idiomatic style is closer in flavor to logic
programming and relies on the fact that, unlike in Haskell, the con-
struction of canonical instances in Coq can be guided not only by
the structure of types (such as the sort projection of eqType) but
by the structure of terms as well.

2 It is worth noting that Coq also provides a built-in type class mechanism,
but this feature is independent of canonical structures. We discuss Coq type
classes more in Section 7.
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To make matters concrete, let’s consider a simple automation
task, one which we will employ gainfully in Section 3 when we
present our first “overloaded lemma”. We will first present a naı̈ve
approach to solving the task, which almost works; the manner in
which it fails will motivate our first “design pattern” (Section 2.3).

The task is as follows: search for a pointer x in a heap h. If the
search is successful, that is, if h is of the form

· · · • (· · · • x 7→ v • · · · ) • · · · ,
then return a proof that x ∈ dom h. To solve this task using
canonical structures, we will first define a structure find:

structure find x := Find {heap of : heap;
: invariant x heap of}

where invariant is defined as

invariant x h := def h→ x ∈ dom h

The first thing to note here is that the structure find is parameterized
by the pointer x (causing the constructor Find to be implicitly
parameterized by x as well). This is a common idiom in canonical
structure programming—and we will see that structure parameters
can be used for various different purposes—but here x may be
viewed simply as an “input” to the automation task. The second
thing to note here is that the structure has no type component, only
a heap of projection, together with a proof that x ∈ dom heap of
(under the assumption that heap of is well-defined).

The search task will commence when some input heap h gets
unified with heap of X for an unknown X : find x, at which
point Coq’s unification algorithm will recursively deconstruct h
in order to search for a canonical implementation of X such that
heap of X = h. If that search is successful, the last field of X
will be a proof of invariant x h, which we can apply to a proof
of def h to obtain a proof of x ∈ dom h, as desired. (By way of
analogy, this is similar to what we previously used for eqType pair.
The construction of a canonical equality operator at a given type
A will commence when A is unified with sort T for an unknown
T : eqType, and the unification algorithm will proceed to solve
for T by recursively deconstructing A and composing the relevant
canonical instances.)

The structure find provides a formal specification of what a
successful completion of the search task will produce, but now
we need to actually implement the search. We do that by defining
several canonical instances of find corresponding to the different
cases of the recursive search, and relying on Coq’s unification
algorithm to actually implement the recursion:

canonical found struct A x (v : A) :=
Find x (x 7→ v) (found pf A x v)

canonical left struct x h (f : find x) :=
Find x ((heap of f) • h) (left pf x h f)

canonical right struct x h (f : find x) :=
Find x (h • (heap of f)) (right pf x h f)

Note that the first argument to the constructor Find in these in-
stances is the parameter x of the find structure.

The first instance, found struct, corresponds to the case where
the heap of projection is a singleton heap whose domain contains
precisely the xwe’re searching for. (If the heap is y 7→ v for y 6= x,
then unification fails.) The second and third instances, left struct
and right struct, handle the cases where the heap of projection is
of the form h1•h2, and x is in the domain of h1 or h2, respectively.
Note that the recursive nature of the search is implicit in the fact that
the latter two instances are parameterized by instances f : find x
whose heap of projections are unified with the subheaps h1 or h2

of the original heap of projection.

Notational Convention 2. In the declarations above, found pf,
left pf and right pf are proofs, witnessing that invariant relates
x and the appropriate heap expression. We omit the proofs here,
but they are available in our source files. From now on, we omit
writing such explicit proofs in instances, and simply replace them
with “. . . ”, as in: Find x ((heap of f) • h) . . .

Unfortunately, this set of canonical instances does not quite
work. The trouble is that left struct and right struct are over-
lapping instances since both match against the same head symbol
(namely, •), and overlapping instances are not permitted in Coq.
Moreover, even if overlapping instances were permitted, we would
still need some way to tell Coq that it should try one instance first
and then, if that fails, to backtrack and try another. Consequently,
we need some way to deterministically specify the order in which
overlapping instances are to be considered. For this, we introduce
our first design pattern.

2.3 Tagging: A Technique for Ordering Canonical Instances
Our approach to ordering canonical instances is, in programming
terms, remarkably simple. However, understanding why it actually
works is quite tricky because its success relies critically on an
aspect of Coq’s unification algorithm that diverges significantly
from how unification works in, say, Haskell. We will thus first
illustrate the pattern concretely in terms of our find example, and
then explain afterwards how it solves the problem.

The Pattern First, we define a “tagged” version of the type of
thing we’re recursively analyzing—in this case, the heap type:

structure tagged heap := Tag {untag : heap}

This structure declaration also introduces two functions witnessing
the isomorphism between heap and tagged heap:

Tag : heap→ tagged heap
untag : tagged heap→ heap

Then, we modify the find structure to carry a tagged heap instead
of a plain heap, i.e., we declare

invariant x (h : tagged heap) :=
def (untag h)→ x ∈ dom (untag h)

structure find x := Find {heap of : tagged heap;
: invariant x heap of}

Next, we define a sequence of synonyms for Tag, one for each
canonical instance of find. Importantly, we define the tag synonyms
in the reverse order in which we want the canonical instances to be
considered during unification, and we make the last tag synonym
in the sequence be the canonical instance of the tagged heap struc-
ture itself. (The order doesn’t matter much in this particular exam-
ple, but it does in other examples in the paper.)

right tag h := Tag h
left tag h := right tag h
canonical found tag h := left tag h

Finally, we modify each canonical instance so that its heap of
projection is wrapped with the corresponding tag synonym.

canonical found struct A x (v : A) :=
Find x (found tag (x 7→ v)) . . .

canonical left struct x h (f : find x) :=
Find x (left tag ((untag (heap of f)) • h)) . . .

canonical right struct x h (f : find x) :=
Find x (right tag (h • (untag (heap of f)))) . . .
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The Explanation The key to the tagging pattern is that, by em-
ploying different tags for each of the canonical instance declara-
tions, we are able to syntactically differentiate the head constants of
the heap of projections, thereby circumventing the need for over-
lapping instances. But the reader is probably wondering: (1) how
can semantically equivalent tag synonyms differentiate anything?
and (2) what’s the deal with defining them in the reverse order?

The answer to (1) is that Coq does not unfold all definitions
automatically during unification—it only unfolds the definition of
a term like found tag h automatically if that term is unified with
something else and the unification fails (see the next paragraph).
This stands in contrast to Haskell type inference, which implic-
itly expands all (type) synonyms right away. Thus, even though
found tag, left tag, and right tag are all semantically equivalent
to Tag, the unification algorithm can distinguish between them,
rendering the three canonical instances of find non-overlapping.

The answer to (2) is as follows. By making the last tag syn-
onym found tag the sole canonical instance of tagged heap,
we guarantee that unification always pattern-matches against the
found struct case of the search algorithm first before any other. To
see this, observe that the execution of the search for x in h will get
triggered when a unification problem arises of the form

untag (heap of ?f) =̂ h,

for some unknown ?f : find x. Since found tag is canonical, the
problem will be reduced to unifying

heap of ?f =̂ found tag h.

As found struct is the only canonical instance of find whose
heap of projection has found tag as its head constant, Coq will
first attempt to unify ?f with some instantiation of found struct. If
h is a singleton heap containing x, then the unification will succeed.
Otherwise, Coq will backtrack and try unfolding the definition of
found tag h instead, resulting in the new unification problem

heap of ?f =̂ left tag h,

which will in turn cause Coq to try unifying ?f with some instantia-
tion of left struct. Again, if that fails, left tag hwill be unfolded to
right tag h and Coq will try right struct. If in the end that fails as
well, then it means that the search has failed to find x in h, and Coq
will correctly flag the original unification problem as unsolvable.

3. A Simple Overloaded Lemma
Let us now attempt our first example of lemma overloading, which
makes immediate use of the find structure that we developed in the
previous section. First, here is the un-overloaded version:

indom : ∀x:ptr. ∀v:A.∀h:heap.
def (x 7→ v • h)→ x ∈ dom (x 7→ v • h)

The indom lemma is somewhat simpler than noalias from Sec-
tion 1, but the problems in applying them are the same—neither
lemma is applicable unless its heap expressions are of a special
syntactic form, with the relevant pointer(s) at the top of the heap.

To lift this restriction, we will rephrase the lemma into the
following form:

indomR : ∀x:ptr. ∀f :find x.
def (untag (heap of f))→
x ∈ dom (untag (heap of f))

The lemma is now parameterized over an instance f of structure
find x, which we know—just according to the definition of find
alone—contains within it a heap h = untag (heap of f), together
with a proof of def h→ x ∈ dom h. Based on this, it should come
as no surprise that the proof of indomR is trivial (it’s a half-line
long in Ssreflect). In fact, the lemma is really just the projection

function corresponding to the unnamed invariant component from
the find structure, much as the overloaded equal function from
Section 2.1 is a projection function from the eqType structure.

To demonstrate the automated nature of indomR on a concrete
example, we will walk in detail through the “trace” of Coq type
inference when indomR is applied to prove the goal

z ∈ dom h

in a context where x y z : ptr, u v w : A, h : heap :=x 7→ u•y 7→
v • z 7→ w, and D : def h. When indomR is applied, its formal pa-
rameters are turned into unification variables ?x and ?f : find ?x,
which will be constrained by the unification process. (Hereafter, we
will use ? to denote unification variables, with previously unused
?x’s denoting fresh unification variables.)

As a first step, the system tries to unify

?x ∈ dom (untag (heap of ?f)) =̂ z ∈ dom h

getting ?x = z, and, then

untag (heap of ?f) =̂ h

By canonicity of found tag, we need to solve

heap of ?f =̂ found tag h

Unification tries to instantiate ?f with found struct, but for that
it must unify the entire heap h with z 7→?v, which fails. Before
giving up, the system realizes it can unfold the definitions of h and
of found tag, yielding, as • is left-associative,

heap of ?f =̂ left tag ((x 7→ u • y 7→ v) • z 7→ w) (1)

Now, left struct can be used for ?f , and the following unification
problems eventually arise:

untag (heap of ?f2) =̂ x 7→ u • y 7→ v

?h =̂ z 7→ w

?f =̂ left struct z ?h ?f2

Attempting to solve the first equation, the system again applies
found tag and found struct. As before, it fails, unfolds found tag
to get left tag, then attempts left struct to get

untag (heap of ?f3) =̂ x 7→ u,

It can now apply found tag and found struct to finally fail, be-
cause z does not match x. Rolling back, it unfolds left tag to
right tag, matches z with y, fails again, and rolls back to the equa-
tion (1). At this point it unfolds left tag to right tag, resulting in

heap of ?f =̂ right tag (x 7→ u • y 7→ v • z 7→ w),

then chooses right struct to eventually obtain

?h′ =̂ x 7→ u • y 7→ v

untag (heap of ?f ′2) =̂ z 7→ w

?f =̂ right struct z ?h′ ?f ′2

The first equation unifies immediately, after which the second one
is solved by applying found tag and choosing found struct for
?f ′2. After that, the third equation also unifies right away.

4. Reflection: Turning Semantics into Syntax
As canonical structures are closely coupled with the type checker,
it is possible to fruitfully combine the logic-programming idiom
afforded by canonical structures together with ordinary functional
programming in Coq. In this section, we illustrate the combina-
tion by developing a thoroughly worked example of an overloaded
lemma for performing cancellation on heap equations. In our im-
plementation of Hoare Type Theory, this lemma is designed to re-
place an often used, but rather complicated and brittle, tactic.
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Mathematically, cancellation merely involves removing com-
mon terms from disjoint unions on the two sides of a heap equation.
For example, if we are given an equation

x 7→ v1 • (h3 • h4) = h4 • x 7→ v2

and we know that the heaps are disjoint (i.e., the unions are de-
fined), then we can extract the implied equations

v1 = v2 ∧ h3 = empty

We will implement the lemma in two stages. The first stage is
a canonical structure program, which reflects the equation, that is,
turns the equation on heap expressions into an abstract syntax tree
(or abstract syntax list, as it will turn out). Then the second stage
is a functional program, which cancels common terms from the
syntax tree. Notice that the functional program from the second
stage cannot work directly on the heap equation for two reasons:
(1) it needs to compare heap and pointer variable names, and (2)
it needs to pattern match on function names, since in HTT heaps
are really partial maps from locations to values, and 7→ and • are
merely convenient functions for constructing them. As neither of
these is possible within Coq’s base logic, the equation has to be
reflected into syntax in the first stage. The main challenge then is
in implementing reflection, so that the various occurrences of one
and the same heap variable or pointer variable in the equation are
ascribed the same syntactic representation.

Cancellation Since the second stage is simpler, we explain it first.
For the purposes of presentation, we restrict our pointers to only
store values of some predetermined type T (although the actual
implementation in our source files is more general). The data type
that we use for syntactic representation of heap expressions is then
the following:

elem := Var of nat | Pts of nat & T

term := seq elem

An element of type elem identifies a heap component as being
either a heap variable or a points-to clause x 7→ v. In the first
case, the component is represented as Var n, where n is a number
identifying the heap variable in the style of de Bruijn indices; that
is, as an index into some environment (to be explained below). In
the second case, the component is represented as Pts m v, where
m is a number identifying the pointer variable in an environment.
We do not perform any reflection on v, as it is not necessary for
the cancellation algorithm. A heap expression is then represented
via term as a list (seq) of elements. We could have represented the
original heap expression more faithfully as a tree, but since • is
commutative and associative, lists suffice for our purposes.

We will require two kinds of environments, which we package
into the type of contexts:

ctx := seq heap× seq ptr

The first component of a context is a list of heaps. In a term
reflecting a heap expression, the element Var n stands for the n-
th element of this list. Similarly, the second component is a list of
pointers, and in the element Pts m v, the number m stands for the
m-th pointer in the list.

Because we will need to verify that our syntactic manipulation
preserves the semantics of heap operations, we need a function that
interprets syntax back into semantics. Assuming lookup functions
hlook and plook which search for an index in a context of a heap
or pointer, respectively, the interpretation function crawls over the
syntactic term, replacing each number index with its value from
the context (and returning an undefined heap, if the index is out of

cancel (i : ctx) (t1 t2 r : term) : Prop :=
match t1 with

nil⇒ interp i r = interp i t2
| Pts m v :: t′1 ⇒

if premove m t2 is Some (v′, t′2) then
cancel i t′1 t

′
2 r ∧ v = v′

else cancel i t′1 t2 (Pts m v :: r)
| Var n :: t′1 ⇒

if hremove n t2 is Some t′2 then cancel i t′1 t
′
2 r

else cancel i t′1 t2 (Var n :: r)
end

Figure 1. Heap cancellation algorithm.

bounds). The function is implemented as follows:

interp (i : ctx) (t : term) : heap :=
match t with

Var n :: t′ ⇒ if hlook i n is Some h then h • interp i t′

else Undef
| Pts m v :: t′ ⇒

if plook i m is Some x then x 7→ v • interp i t′

else Undef
| nil⇒ empty
end

For example, if the context i is ([h3, h4], [x]), then

interp i [Pts 0 v1,Var 0,Var 1] = x 7→ v1 • (h3 • (h4 • empty))

interp i [Var 1,Pts 0 v2] = h4 • (x 7→ v2 • empty)

Given this definition of term, we can now encode the cancel-
lation algorithm as a predicate (i.e., a function into Prop) in Coq
(Figure 1). The predicate essentially constructs a conjunction of
the residual equations obtained as a consequence of cancellation.
Referring to Figure 1, the algorithm works as follows. It looks at
the head element of the left term t1, and tries to find it in the right
term t2 (keying on the deBruijn index of the element). If the el-
ement is found, it is removed from both sides, before recursing
over the rest of t1. When removing a Pts element keyed on a
pointer x, the values v and v′ stored into x in t1 and t2 must be
equal. Thus, the proposition computed by cancel should contain
an equation between these values as a conjunct. If the element is
not found in t2, it is shuffled to the accumulator r, before recurs-
ing. When the term t1 is exhausted, i.e., it becomes the empty list,
then the accumulator stores the elements from t1 that were not can-
celled by anything in t2. The equation between the interpretations
of r and t2 is a semantic consequence of the original equation, so
cancel immediately returns it (our actual implementation performs
some additional optimization before returning). The helper func-
tion premove m t2 searches for the occurrences of the pointer in-
dex m in the term t2, and if found, returns the value stored into
the pointer, as well as the term t′2 obtained after removing m from
t2. Similarly, hremove n t2 searches for Var n in t2 and if found,
returns t′2 obtained from t2 after removal of n.

Soundness of cancel is established by the following lemma
which shows that the facts computed by cancel indeed do follow
from the input equation between heaps, when cancel is started with
the empty accumulator.

cancel sound : ∀i : ctx. ∀t1 t2 : term.
def (interp i t1)→ interp i t1 = interp i t2 →
cancel i t1 t2 nil.

The proof of cancel sound is rather involved so we omit it here,
but it can be found in our source files. We could have proved the
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converse direction as well, to obtain a completeness result, but this
was not necessary for our purposes.

The related work on proofs by reflection usually implements the
cancellation phase in a manner similar to above (see for example
the work of Grégoire et al. [12]). Where we differ from the related
work is the implementation of the reflection phase. This phase is
usually implemented by a tactic, but here we show that it can be
implemented with canonical structures instead.

Reflection via Canonical Structures Intuitively, the reflection al-
gorithm traverses a heap expression, and produces the correspond-
ing syntactic term. In our overloaded lemma, presented further be-
low, we will invoke this algorithm twice, to reflect both sides of the
equation. To facilitate cancellation, we need to ensure that identical
variables on the two equation sides, call themE1 andE2, are repre-
sented by identical syntactic elements. Therefore, reflection of E1

has to produce a context of newly encountered elements and their
syntactic equivalents, which is then fed as an input to the reflection
ofE2. If reflection ofE2 encounters an expression which is already
in the context, the expression is reflected with the syntactic element
provided by the context.

Notational Convention 3. Hereafter, projections out of an in-
stance are considered implicit coercions, and we will typically omit
them from our syntax. For example, in Figure 2 (described below),
the canonical instance union struct says union tag(f1•f2) instead
of union tag((untag (heap of f1))•(untag (heap of f2))), which
is significantly more verbose. This is a standard technique in Coq.

The reflection algorithm is encoded using the structure ast from
Figure 2. The inputs to each traversal are the initial context i of
ast, and the initial heap in the heap of projection. The output is
the (potentially extended) context j and the syntactic term t that
reflects the initial heap. One invariant of the structure is precisely
that the term t, when interpreted under the output heap j, reflects
the input heap:

interp j t = heap of

There are additional invariants too, which are necessary to carry out
the proofs, but we omit them here for brevity; they can be found in
our source files.

There are several cases to consider during a traversal, as shown
by the canonical instances in Figure 2. We first check if the in-
put heap is a union, as can be seen from the (as usual, reverse)
ordering of tag synonyms. In this case, the canonical instance is
union struct. The instance specifies that we recurse over both sub-
heaps, by unifying the left subheap with f1 and the right subheap
with f2.

The types of f1 and f2 show that the two recursive calls work
as follows. First the call to f1 starts with the input context i and
computes the output context j and term t1. Then the call to f2
proceeds with input context j, and computes outputs k and t2. The
output context of the whole union is k, and the output reflected term
is the list-concatenation of t1 and t2.

When reflecting the empty heap, the instance is empty struct.
In this case, the input context i is simply passed as output, and the
reflected term is the empty list.

When reflecting a singleton heap x 7→ v, the corresponding
instance is ptr struct. In this case, we first have to check if x is
a pointer that already appears in the pointer part xs1 of the input
context. If so, we should obtain the index m at which x appears in
xs1. This is the number representing x, and the returned reflected
elem is Pts m v. On the other hand, if x does not appear in xs1,
we need to add it. We compute a new context xs2 which appends
x at the end of xs1, and this is the output pointer context for
ptr struct. The number m representing x in xs2 now equals the
size of xs2, and returned reflected elem is again Pts m v. Similar

var tag h := Tag h
pts tag h := var tag h
empty tag h := pts tag h
canonical union tag h := empty tag h

structure ast (i j : ctx) (t : term) :=
Ast {heap of : tagged heap;

: interp j t = heap of ∧ . . .}

canonical union struct (i j k : ctx) (t1 t2 : term)
(f1 : ast i j t1)(f2 : ast j k t2) :=

Ast i k (append t1 t2) (union tag (f1 • f2)) . . .

canonical empty struct (i : ctx) :=
Ast i i nil (empty tag empty) . . .

canonical pts struct (hs : seq heap) (xs1 xs2 : seq ptr)
(m : nat) (v : A) (f : xfind xs1 xs2 m) :=

Ast (hs, xs1) (hs, xs2) [Pts m v] (pts tag (f 7→ v)) . . .

canonical var struct (hs1 hs2 : seq heap) (xs : seq ptr)
(n : nat) (f : xfind hs1 hs2 n) :=

Ast (hs1, xs) (hs2, xs) [Var n] (var tag f) . . .

Figure 2. Structure ast for reflecting a heap.

structure xtagged A := XTag {xuntag : A}

extend tag A (x : A) := XTag x
recurse tag A (x : A) := extend tag x
canonical found tag A (x : A) := recurse tag x

structure xfind A (s r : seq A) (i : nat) :=
XFind {elem of : xtagged A;

: index r i = elem of ∧ . . .}

canonical found struct A (x : A) (s : seq A) :=
XFind (x :: s) (x :: s) 0 (found tag x) . . .

canonical recurse struct (i : nat) (y : A) (s r : seq A)
(f : xfind s r i) :=

XFind (y :: s) (y :: r) (i+ 1) (recurse tag f) . . .

canonical extend struct A (x : A) :=
XFind nil [x] 0 (extend tag x) . . .

Figure 3. Structure xfind for searching for an element in a list;
appending the element at the end if not found.

considerations apply in the case when we are reflecting a heap
variable h. The instance is then var struct and we search in the
heap portion of the context hs1, producing a new heap portion hs2.

In both cases, the task of searching and extending the context is
performed by the polymorphic structure xfind (Figure 3), which re-
curses over the context lists in search of an element, relying on uni-
fication to make syntactic comparisons between expressions. The
inputs to the structure are the parameter s which is the sequence to
search in, and the field elem of, which is the (tagged) element to
search for. The output sequence r equals s if elem of is not in s,
or extends s with elem of otherwise. The output parameter i is the
position at which the elem of is found in r.
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If the searched element x appears at the head of the list, the
selected instance is found struct and the index i = 0. Otherwise,
we recurse using recurse struct. Ultimately, if s is empty, the
returned r is the singleton [x], via the instance extend struct.

It may be interesting to notice here that while xfind is in prin-
ciple similar to find from Section 2.3, it is keyed on the element
being searched for, rather than on the list (or in the case of find, the
heap) in which the search is being performed. This exemplifies that
there are many ways in which canonical structures of similar func-
tionality can be organized. In particular, which term one keys on
(i.e., which term one unifies with the projection from the structure)
may in general depend on when a certain computation needs to be
triggered. If we reorganized xfind to match find in this respect, then
the structure ast would have to be reorganized too. Specifically, ast
would have to recursively invoke xfind by unifying it against the
contexts xs1 and hs1 in the instances pts struct and var struct,
respectively. As we will argue in Section 6, such unification leads
to incorrect results, if done directly, but we will be able to perform
it indirectly, using a new design pattern.

Now we can present the overloaded lemma cancelR.

cancelR : ∀j k : ctx.∀t1 t2 : term.
∀f1 : ast nil j t1.∀f2 : ast j k t2.

def (untag (heap of f1))→
untag (heap of f1) = untag (heap of f2)→
cancel k t1 t2 nil

Assuming we have a hypothesis

H :

h1︷ ︸︸ ︷
x 7→ v1 • (h3 • h4) =

h2︷ ︸︸ ︷
h4 • x 7→ v2

and a hypothesis D : def h1, we can apply

move/(cancelR D) :H.

This will make Coq fire the following unification problems:

1. def (untag (heap of ?f1)) =̂ def h1

2. untag (heap of ?f1)) =̂ h1

3. untag (heap of ?f2)) =̂ h2

Because f1 and f2 are variable instances of the structure ast, Coq
will construct canonical values for them, thus reflecting the heaps
into terms t1 and t2, respectively. The reflection of h1 will start
with the empty context, while the reflection of h2 will start with
the output context of f1, which in this case is ([h3, h4], [x]).

Finally, the lemma will perform cancel on t1 and t2 to produce
v1 = v2 ∧ h3 = empty ∧ empty = empty. The trailing empty =
empty can ultimately be removed with a few simple optimizations
of cancel, which we omitted to simplify the presentation.

5. Solving for Functional Instances
Previous sections described examples that search for a pointer in a
heap expression or for an element in a list. The pattern we show
in this section requires a more complicated “search and replace”
functionality, and we describe it in the context of our higher-order
implementation of separation logic [22] in Coq. Interestingly, this
search-and-replace pattern can also be described as higher-order,
as it crucially relies on the typechecker’s ability to manipulate first-
class functions and solve unification problems involving functions.

To set the stage, the formalization of separation logic that we
use centers on the predicate

verify : prog A→ heap→ (A→ heap→ Prop)→ Prop.

The exact definition of verify is not important for our purposes here,
but it suffices to say that it encodes a form of Hoare-style triples.
Given a program e : prog A returning values of type A, an input

heap i : heap, and a postcondition q : A → heap → Prop over
A-values and heaps, the predicate

verify e i q

holds if executing e in heap i is memory-safe, and either diverges
or terminates with a value y and heap m, such that q y m holds.

Programs can perform the basic heap operations: reading and
writing a heap location, allocation, and deallocation. In this section,
we focus on the writing primitive; given x : ptr and v : A, the
program write x v : prog unit stores v into x and terminates. We
also require the operation for sequential composition, which takes
the form of monadic bind:

bind : prog A→ (A→ prog B)→ prog B.

We next consider the following provable lemma, which serves
as a Floyd-style rule for symbolic evaluation of write.

bnd write : verify (e ()) (x 7→ v • h) q →
verify (bind (write x v) e) (x 7→ w • h) q

To verify write x v in a heap x 7→ w • h, it suffices to change the
contents of x to v, and proceed to verify the continuation e.

In practice, bnd write suffers from the same problem as indom
and noalias, as each application requires bringing the pointer x to
the top of the heap. We would like to devise an automated version
bnd writeR, but, unlike indomR, application of bnd writeR cannot
merely check if a pointer x is in the heap. It needs to remember the
heap from the goal, and reproduce it in the premise, only with the
contents of x changed from w to v.

For example, applying bnd writeR to the goal

G1 : verify (bind (write x2 4) e)
(i1 • (x1 7→ 1 • x2 7→ 2) • (i2 • x3 7→ 3))
q

should return a subgoal which changes x2 in place, as in:

G2 : verify (e ()) (i1 • (x1 7→ 1 • x2 7→ 4) • (i2 • x3 7→ 3)) q.

The Pattern Here is where functions come in. The bnd writeR
lemma should attempt to infer a function f which represents a heap
with a “hole”, so that filling the hole with x 7→w (i.e., computing
f (x 7→w)), obtains the heap from the goal. Then replacing w with
v is computed as f (x 7→ v).

For example, in G1 we want to “fill the hole” with x 7→ 2,
while in G2, we want to fill it with x 7→ 4. Hence, in this case, the
inferred function f should, intuitively, be:

fun k. i1 • (x1 7→ 1 • k) • (i2 • x3 7→ 3).

The function f therefore takes an input heap k, but it should
not merely produce an output heap. Instead, we want f ’s range to
be a structure, called here partition k r (Figure 4). A projection
heap of out of this structure will be used to trigger the search for
the subheap that should be replaced with a hole.

For technical reasons, partition has an additional heap param-
eter r, whose role will be explained later. Because the range of f
depends on the input k, f must have a dependent function type, and
the bnd writeR lemma looks as below. For clarity, we use Π to dis-
tinguish a function, even when Coq does not make that distinction.

bnd writeR : ∀r : heap.∀f : (Πk : heap. partition k r).
verify (e ()) (f (x 7→ v)) q →
verify (bind (write x v) e) (f (x 7→ w)) q

We have omitted the projections and written f (x 7→ w) instead of
untag (heap of (f (x 7→ w))), and similarly in the case of x 7→ v.

When the bnd writeR lemma is applied to a verify goal with a
heap h, the type checker attempts to unify

untag (heap of (?f (x 7→ w))) =̂ h.
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structure tagged heap := Tag {untag : heap}

right tag (h : heap) := Tag h
left tag h := right tag h
canonical found tag h := left tag h

structure partition (k r : heap) :=
Partition {heap of : tagged heap;

: heap of = k • r}

canonical found struct k :=
Partition k empty (found tag k) . . .

canonical left struct h r (f : Πk. partition k r) k :=
Partition k (r • h) (left tag (f k • h)) . . .

canonical right struct h r (f : Πk. partition k r) k :=
Partition k (h • r) (right tag (h • f k)) . . .

Figure 4. Structure partition for partitioning a heap into two parts:
the part matching k, and “the rest” (r).

The instances in Figure 4 are designed so that the canonical solution
f will have the property that the heap component of f (x 7→ w)
syntactically equals h, matching exactly the order and the paren-
thesization of the summands in h. We have three instance selectors:
one for the case where we found the heap we are looking for, and
two to recurse over each side of the •.

The reader may wonder why all the instances of partition take
the k parameter last, thus forcing the f parameter in the latter
two instances to be itself abstracted over k as well. The reason is
simple. The last step in solving the above unification goal will be to
unify ?f (x 7→ w) with whatever canonical structure is ultimately
computed. For example, if h = h0 • x 7→ w, then the last step of
unification will resolve the following goal:

?f (x 7→ w) =̂ right struct h0 empty found struct (x 7→ w).

Coq’s unification will reduce to subgoals involving the structural
components of the applications:

?f =̂ right struct h0 empty found struct

and
x 7→ w =̂ x 7→ w,

which are solved immediately. However, this only works because
the k parameter of right struct comes last, thus making it possible
to structurally match the occurrences of x 7→ w on the two sides of
the equation. If k came earlier, the unification would simply fail.

We have described how to construct the canonical solution f ,
but the mere construction is not sufficient to carry out the proof of
bnd writeR. For the proof, we further require an explicit invariant
that f (x 7→ v) produces a heap in which the contents of x is
changed to v, but everything else is unchanged when compared to
f (x 7→ w).

This is the role of the parameter r, which is constrained by
the invariant in the definition of partition to equal the “rest of the
heap”, that is

h = k • r.
With this invariant in place, we can vary the parameter k from
x 7→ w in the conclusion of bnd writeR to x 7→ v in the premise.
However, r remains fixed by the type of f , providing the guarantee
that the only change to the heap was in the contents of x.

It may be interesting to note that, while our code computes an
f that syntactically matches the parentheses and the order of sum-

mands in h (as this is important for using the lemma in practice), the
above invariant on h, k and r is in fact a semantic, not a syntactic,
equality. In particular, it doesn’t guarantee that h and k • r are con-
structed from the same exact applications of 7→ and •, since in HTT
those are defined functions, not primitive constructors. Rather, it
captures only equality up to commutativity, associativity and other
semantic properties of heaps as partial maps. This suffices to prove
bnd writeR, but more to the point: the syntactic property, while
true, cannot even be expressed in Coq’s logic, precisely because it
concerns the syntax and not the semantics of heap expressions.

To conclude the section, notice that the premise and conclusion
of bnd writeR both contain projections out of f . Therefore, the
lemma may be used both in forward reasoning (out of hypotheses)
and in backward reasoning (for discharging a given goal). For
example, we can prove the goal

verify (bind (write x2 4) e) (i1 • (x1 7→ 1 • x2 7→ 2)) q

under hypothesis

H : verify (e ()) (i1 • (x1 7→ 1 • x2 7→ 4)) q

in two ways:

• Backward: By applying bnd writeR to the goal. The goal will
therefore be changed to exactly match H .

• Forward: By applying bnd writeR (x := x2) (w := 2) to the
hypothesisH , thus obtaining the goal. Note how in this case we
need to explicitly provide the instantiations of the parameters x
and w because they cannot be gleaned just from looking at H .

This kind of versatility is yet another advantage that lemmas
based on canonical instances exhibit when compared to tactics. The
latter, it seems, must be specialized to either forward or backward
mode, and we have not managed to encode a tactic equivalent of
bnd writeR that is usable in both directions.

6. Reordering Unification Subproblems
In this section we design an overloaded version of our original
noalias lemma from Section 1. The main challenge, as it turns
out, is ensuring that the unification constraints generated during
canonical structure inference are resolved in the intended order.
This is important because the postponing of a certain constraint
may underspecify certain variables, leading the system to choose
a wrong intermediate value that will eventually fail to satisfy the
postponed constraint. In the case of noalias, the problem is that a
naı̈ve implementation will result in the triggering of a search for a
pointer in a heap before we know what pointer we’re searching for.
Fortunately, it is possible to handle this problem very easily using
an extremely simple design pattern we call hoisting.

Before we come to explain the details of the problem and the
pattern, let us first present the search structures that form the core
of the automation for noalias and are shown in Figures 5–7. Given
a heap h, and two pointers x and y, the algorithm for noalias
proceeds in three steps: (1) scan h to compute the list of pointers
s appearing in it, which must by well-definedness of h be a list of
distinct pointers; (2) search through s until we find either x or y;
(3) once we find one of the pointers, continue searching through the
remainder of s for the other one.

Step (1) is implemented by the scan structure in Figure 5. Like
the ast structure from Section 4, scan returns its output using its
parameter (here, s). It also outputs a proof that the pointers in s are
all distinct (i.e., uniq s) and that they are all in the domain of the
input heap, assuming it was well-defined.

Step (2) is implemented by the search2 structure (named so be-
cause it is searches for two pointers, both taken as parameters to the
structure). It produces a proof that x and y are both distinct mem-
bers of the input list s, which will be passed in through unification
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structure tagged heap := Tag {untag : heap}
default tag (h : heap) := Tag h
ptr tag h := default tag h
canonical union tag h := ptr tag h

structure scan (s : seq ptr) :=
Scan {heap of : tagged heap;

: def heap of →
uniq s ∧ ∀x. x ∈ s→ x ∈ dom heap of}

canonical union struct s1 s2 (f1 : scan s1) (f2 : scan s2) :=
Scan (append s1 s2) (union tag (f1 • f2)) . . .

canonical ptr struct A x (v : A) :=
Scan (x :: nil) (ptr tag (x 7→ v)) . . .

canonical default struct h := Scan nil (default tag h) . . .

Figure 5. Structure scan for computing a list of pointers syntacti-
cally appearing in a heap.

structure tagged seq2 := Tag2 {untag2 : seq ptr}
foundz (s : seq ptr) := Tag2 s
foundy s := foundz s
canonical foundx s := foundy s

structure search2 (x y : ptr) :=
Search2 {seq2 of : tagged seq2;

: x ∈ seq2 of ∧ y ∈ seq2 of
∧(uniq seq2 of → x != y)}

canonical x struct x y (s1 : search1 y) :=
Search2 x y (foundx (x :: s1)) . . .

canonical y struct x y (s1 : search1 x) :=
Search2 x y (foundy (y :: s1)) . . .

canonical z struct x y z (s2 : search2 x y) :=
Search2 x y (foundz (z :: s2)) . . .

Figure 6. Structure search2 for finding two pointers in a list.

structure tagged seq1 := Tag1 {untag1 : seq ptr}
recurse tag (s : seq ptr) := Tag1 s
canonical found tag s := recurse tag s

structure search1 (x : ptr) := Search1 {seq1 of : tagged seq1;
: x ∈ seq1 of}

canonical found struct (x : ptr) (s : seq ptr) :=
Search1 x (found tag (x :: s)) . . .

canonical recurse struct (x y : ptr) (f : search1 x) :=
Seach1 x (recurse tag (y :: f)) . . .

Figure 7. Structure search1 for finding a pointer in a list.

with the seq2 of projection. The search proceeds until either x or
y is found, at which point the search1 structure (next paragraph) is
invoked with the other pointer.

Step (3) is implemented by the search1 structure, which searches
for a single pointer x in the remaining piece of s, returning a proof
of x’s membership in s if it succeeds. Its implementation is quite
similar to that of the find structure from Section 2.3.

With our core automated machinery in hand, we are ready for
our first (failed) attempt at an overloaded version of noalias:

noaliasR wrong :
∀x : ptr. ∀s : seq ptr. ∀f : scan s. ∀g : check x s.

def (untag (heap of f))→ x != unpack (y of g)

The intuition behind the reformulation can be explained in pro-
gramming terms. When the lemma is applied to a hypothesis D
of type def h, the heap h will be unified with the projection
untag (heap of f). This will trigger an inference problem in which
the system solves for the canonical implementation of f by execut-
ing the scan algorithm, thus producing as output the pointer list s.
For example, if

h = i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3),

then s will get unified with [x1, x2, x3], so it can serve as a well-
defined input to the search steps that follow.

When the lemma is subsequently applied in order to solve a goal
of the form x′ != y′, we need some way to get the unification with
the conclusion of the lemma to trigger the automated search for x′

and y′ in the list s. Toward this end, we can use the unification with
either x′ or y′ as the trigger for the search, and here we choose the
latter. Specifically, we define a structure check, whose construction
is keyed on a projection y of that will be unified with y′:3

structure packed ptr := Pack {unpack : ptr}

canonical pack (z : ptr) := Pack z

structure check (x : ptr) (s : seq ptr) :=
Check {y of : packed ptr;

: uniq s→ x != unpack y of}

canonical start x y (s2 : search2 x y) :=
Check x (untag2 (seq2 of s2)) (pack y) . . .

The sole purpose of the canonical instance start for the check
structure is to take x′ and s, passed in as parameters, and y′, passed
in through unification with the y of projection, and repackage them
appropriately in the form that the search2 structure expects. In
particular, recall that search2 expects the two pointers to be passed
in as parameters, and s to be unified with its seq2 of projection.

Unfortunately, the linking structure we’ve defined here doesn’t
quite work. The trouble has to do with the way in which Coq or-
ders the subproblems that arise during canonical instance unifica-
tion. Although a fully detailed presentation of the Coq unification
algorithm is beyond the scope of this paper, the rule of thumb is that
when matching against a canonical instance, Coq solves the unifi-
cation subproblems in a left-to-right order—that is, it first solves
the unification subproblems corresponding to each of the structure
parameters (in the case of check, the x and s parameters) and only
then unifies the structure projections (like y of in this case).

Thus, when matching against the start instance, what happens
is the following. First, fresh unification variables are generated for
the instance parameters ?x, ?y and ?s2. Then, three new unifica-
tion subproblems are generated and solved in the following order,

3 The astute reader may notice that it is not actually necessary to tag (or
in this case, pack) the y of projection of the check structure since we are
only defining one canonical instance for the structure. We tag y of simply
to minimize the delta required when we describe the hoisting pattern below.
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corresponding to the arguments of Check:

?x =̂ x′

untag2(seq2 of ?s2) =̂ s

?y =̂ y′

The problem is that the solution to the second equation will fire the
search for a canonical solution for ?s2 of type search2 x′ ?y—
thus triggering the search for x′ and ?y in s—before the third
equation has unified ?y with y′. So we will end up searching s
for an unknown ?y, leading to the wrong behavior in most cases.

The Pattern In order to fix our check structure, we need a way
to arrange for ?y to be unified with y′ before the search algorithm
gets triggered on the pointer list s. The trick to doing this is to give
check an extra parameter y, which will appear earlier than (i.e., to
the left of) s in the parameter list, thus ensuring higher priority in
the unification order. But we will also constrain that parameter y to
be equal to the y of projection from the structure by (effectively)
giving the projection a singleton type. We call this hoisting.

To illustrate, here is how to change the packed ptr and check
structures (and their instances) according to the hoisting pattern:

structure equals ptr (z : ptr) := Pack {unpack : ptr}

canonical equate (z : ptr) := Pack z z

structure check (x y : ptr) (s : seq ptr) :=
Check {y of : equals ptr y;

: uniq s→ x != unpack y of}

canonical start x y (s2 : search2 x y) :=
Check x y (untag2 (seq2 of s2)) (equate y) . . .

The key here is the new version of packed ptr, which (for clarity)
we call equals ptr, and which is now explicitly parameterized over
a pointer z. The instance equate guarantees that the canonical value
of type equals ptr z is a package containing z itself. We rely on
this guarantee in the check structure, whose y of projection now
has type equals ptr y, thus constraining it to be equal to check’s
new parameter y.

We can now revise our statement of the overloaded noaliasR
lemma ever so slightly to mention the new parameter y:

noaliasR :
∀x y : ptr. ∀s : seq ptr. ∀f : scan s.∀g : check x y s.

def (untag (heap of f))→ x != unpack (y of g)

As above, suppose that noaliasR has already been applied to a
hypothesis D of type def h, so that the lemma’s parameter s has
already been solved for. Then, when noaliasR is applied to a goal
x′ != y′, the unification engine will unify x′ with the argument ?x
of noaliasR, and proceed to unify

unpack (y of ?g) =̂ y′

in a context where ?g : check x′ ?y s. Note that, although we have
elided it, unpack here really takes as its first (implicit) argument
the unknown pointer ?y that is implied by equals ptr ?y (the type
of y of ?g). Thus, by canonicity, the equation will be resolved with
equate, and two new equations will be generated (in this order):

?y =̂ y′

y of ?g =̂ equate y′

The first unification is the essential one that needs to happen prior
to triggering of the search procedure, so that all inputs to the search
are known; the rest of unification then works as expected.

Intuitively, the reason the equation between ?y and y′ is gen-
erated first is because it arises from unifying the types of y of ?g
and equate y′, which is necessary before one can unify the terms

themselves. For a more formal explanation of canonical instance
resolution, we refer the reader to our online appendix [11].

Finally, note the y that is shared between the parameter (y) and
the projection (equate y) of the start instance. By hoisting y so that
it appears before s in the argument list of Check, we have ensured
that it will be unified with the y′ from the goal before the search
through s begins.

Applying the Lemma The overloaded noaliasR lemma supports a
number of modes of use: it can be applied, used as a rewrite rule, or
composed with other lemmas. For example, assume that we have
a hypothesis specifying a disjointness of a number of heaps in a
union:

D : def (i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3)).

Assume further that the arguments x, y, s, f and g of noaliasR
are implicit, so that we can write simply (noaliasR D) when we
want to partially instantiate the lemma with the hypothesisD. Then
the following are some example goals, and proofs to discharge
them, illustrating the flexibility of use. As can be seen, no tedious
reordering of heap expressions by commutativity and associativity
is needed.

1. The lemma can be used in backward reasoning. The type
checker picks up x1 and x2 from the goal, and confirms they
appear in D.

Goal : x1 != x2
Proof : by apply : (noaliasR D).

2. The lemma can be used in iterated rewriting (notice the modifier
“!”). The lemma is partially instantiated withD. It performs the
initial scan of D once, but is then used three times to reduce
each conjunct to true. There is no need in the proof to specify
the input pointers to be checked for aliasing. The type checker
can pick them up from the goal, in the order in which they
appear in the conjunction.

Goal : (x1 != x2) && (x2 != x3) && (x3 != x1)
Proof : by rewrite !(noaliasR D).

3. The lemma can be composed with other lemmas, to form new
rewrite rules. Again, there is no need to provide the input
pointers in the proofs. For example, given the standard library
lemma negbTE : ∀b:bool. !b = true→ b = false, we have:

Goal : if (x2 == x3) && (x1 != x2) then false else true
Proof : by rewrite (negbTE (noaliasR D)).

4. That said, we can provide the input pointers in several ways, if
we wanted to, which would correspond to forward reasoning.
We can use the term selection feature of rewrite to reduce only
the specified conjunct in the goal.

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)
Proof : by rewrite [x2 != x3](noaliasR D) andbT.

Here a rewrite by andbT : ∀b. b && true = b is used to remove
the true left in the goal after rewriting by noaliasR.

5. Or, we can supply one (or both) of the pointer arguments di-
rectly to noaliasR.

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)
Proof : by rewrite (noaliasR (x :=x2) D) andbT.

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)
Proof : by rewrite (noaliasR (y := x3) D) andbT.
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7. Related Work
Expressive Type Systems for Proof Automation A number of
recent languages consider specifying tactics via very expressive
dependent types. Examples include VeriML [26] for automat-
ing proofs in Coq, and Delphin [21] and Beluga [20] for proofs
in Twelf. Their starting point is the higher-order abstract syntax
(HOAS) style of term representation; consequently, one of their
main concerns is using types to track the variable contexts of sub-
goals generated during tactic execution. In contrast, we do not build
a separate language on top of Coq, but rather customize Coq’s uni-
fication algorithm. This is much more lightweight, as we do not
need to track variable contexts in types, but it also comes with lim-
itations. For example, our automations are pure logic programs,
whereas the other proposals may freely use imperative features. On
the other hand, as we have demonstrated, canonical structures can
benefit from freely mixing with Coq’s primitives for higher-order
computation. The mixing would not have been possible had the
automation and the base language been kept separated, as is the
case in other proposals. Another benefit of the tight integration is
that canonical structures can be used to automate not only proofs,
but also more general aspects of type inference (e.g., overloading).

In this paper, we have not considered HOAS representations,
but we have successfully made first steps in that direction. The
interested reader can find in our source files an implementation of
the motivating example from VeriML, which considers a simple
automation tactic for a logic with quantifiers.

Canonical Structures One important application of canonical
structures is described by Bertot et al. [3], where the ability to
key on terms, rather than just types, is used for encoding iterated
versions of classes of algebraic operators.

Gonthier [9] describes a library for matrix algebra in Coq,
which introduces a variant of the tagging pattern, but briefly, and
as a relatively small part of a larger mathematical development. In
contrast, in the current paper, we give a more abstract and detailed
presentation of the general tagging pattern and explain its operation
with a careful trace. We also present several other novel design
patterns for canonical structures, and explore their use in reasoning
about heap-manipulating programs.

Asperti et al. [1] present unification hints, which generalize
Coq’s canonical structures by allowing that a canonical solution be
declared for any class of unification equations, not only for equa-
tions involving a projection out of a structure. Hints are shown
to support applications similar to our reflection pattern from Sec-
tion 4. However, they come with limitations; for example, the au-
thors comment that hints cannot support backtracking. Thus, we
believe that the design patterns that we have developed in the cur-
rent paper are not obviated by the additional generality of hints, and
would be useful in that framework as well.

Type Classes Sozeau and Oury [24] present type classes for Coq,
which are similar to canonical structures, but differ in a few im-
portant respects. The most salient difference is that inference for
type class instances is not performed by unification, but by gen-
eral proof search. This proof search is triggered after unification,
and it is possible to give a weight to each instance to prioritize the
search. This leads to somewhat simpler code, since no tagging nor
hoisting is needed, but, on the other hand, it seems less expressive.
For instance, we were not able to implement the search-and-replace
pattern of Section 5 using Coq type classes, due to the lack of con-
nection between proof search and unification. We were able to de-
rive a different solution for bnd writeR using type classes, but the
solution was more involved (requiring two specialized classes to
differentiate the operations such as write which perform updates to
specific heaps, from the operations which merely inspect pointers
without performing updates). More importantly, we were not able

to scale this solution to more advanced lemmas from our imple-
mentation of higher-order separation logic. In contrast, canonical
structures did scale, and we provide the overloaded code for these
lemmas in our source files [11].

In the end, we managed to implement all the examples in this
paper using Coq type classes, demonstrating that lemma overload-
ing is a useful high-level concept and is not tied specifically to
canonical structures. (The implementations using type classes are
included in our source files as well [11].) Nevertheless, unlike for
canonical structures, we have not yet arrived at a full understand-
ing of how Coq type classes perform instance resolution. In ad-
dition, the preliminary performance results are mixed, with type
classes sometimes beating canonical structures (in terms of speed)
and sometimes vice versa. Ultimately, it may turn out that the two
formalisms are interchangeable in practice, but we need more ex-
perience with type classes to confirm this.

Spitters and van der Weegen [25] present a reflection algorithm
using Coq type classes based on the example of Asperti et al. dis-
cussed above. In addition, they consider the use of type classes for
overloading and inheritance when defining abstract mathematical
structures such as rings and fields. They do not, however, consider
lemma overloading more generally as a means of proof automation,
as we have presented here.

Finally, in the context of Haskell, Morris and Jones [18] propose
an alternative design for a type class system, called ilab, which
is based on the concept of instance chains. Essentially, instance
chains avoid the need for overlapping instances by allowing the
programmer to control the order in which instances are considered
during constraint resolution and to place conditions on when they
may be considered. Our tagging pattern (Section 2.3) can be seen
as a way of coding up a restricted form of instance chains directly
in existing Coq, instead of as a language extension, by relying on
knowledge of how the Coq unification algorithm works. ilab also
supports failure clauses, which enable one to write instances that
can only be applied if some constraint fails to hold. Our approach
does not support anything directly analogous, although (as Morris
and Jones mention) failure clauses can be encoded to some extent
in terms of more heavyweight type class machinery.

Dependent Types Modulo Theories Several recent works have
considered enriching the term equality of a dependently typed sys-
tem to natively admit inference modulo theories. One example is
Strub et al.’s CoqMT [27, 2], which extends Coq’s typechecker with
first-order equational theories. Another is Jia et al.’s language λ∼=
(pronounced “lambda-eek”) [14], which can be instantiated with
various abstract term-equivalence relations, with the goal of study-
ing how the theoretical properties (e.g., the theory of contextual
equivalence) vary with instantiations. Also related are Braibant et
al.’s AAC tactics for rewriting modulo associativity and commuta-
tivity in Coq [4].

In our paper, we do not change the term equality of Coq. Instead,
we allow user-supplied algorithms to be executed when desired,
rather than by default whenever two terms have to be checked for
equality. Moreover, these algorithms do not have to be only deci-
sion procedures, but can implement general-purpose computations.

8. Conclusions and Future Work
The most common approach to proof automation in interactive
provers is via tactics, which are powerful but suffer from several
practical and theoretical limitations. In this paper, we propose an
alternative, specifically for Coq, which we believe puts the problem
of interactive proof automation on a stronger foundational footing.

The approach is rooted in the recognition that the type checker
and inference engines are already automation tools, and can be co-
erced via Coq’s canonical structures into executing user-supplied
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code. Automating proofs in this style is analogous to program over-
loading via type classes in Haskell. In analogy with the Curry-
Howard isomorphism, the automated lemmas are nothing but over-
loaded programs. In the course of resolving the overloading, the
type checker performs the proof automation.

We have illustrated the flexibility and generality of the approach
by applying it to a diverse set of lemmas about heaps and pointer
aliasing, which naturally arise in verification of stateful programs.
Overloading these lemmas required developing a number of design
patterns which we used to guide the different aspects of Coq’s
unification towards automatically inferring the requisite proofs.

Of course, beyond this, much remains to be done, regarding both
the theoretical and pragmatic aspects of our approach. From the
theoretical standpoint, we believe it is very important that Coq’s
unification algorithm, as well as the algorithm for inference of
canonical structures, be presented in a formal, declarative fashion,
which is currently not the case. To somewhat remedy the situation,
and help the reader interested in developing their own overloaded
lemmas, we include in our online appendix [11] a brief description
of the order in which canonical instances are resolved in Coq.
This is essentially a specification of the “operational semantics”
of canonical instance resolution, and we have found it invaluable,
but it has been obtained by a diligent study of the source code of
Coq’s unification algorithm.

The study of the unification algorithm is also important from the
pragmatic standpoint, as in our experience, the current implemen-
tation suffers from a number of peculiar performance problems.
For example, we have observed that the time to perform a simple
assignment to a unification variable is quadratic in the number of
variables in the context, and linear in the size of the term being as-
signed. In contrast, in Ltac, or in type classes, variable assignment
is essentially constant-time.

Thus, even though the proof terms produced by application of
our overloaded lemmas are usually much shorter than the proofs
generated by corresponding tactics, they often take somewhat
longer to generate and type check, and scale much worse. This
complexity has so far not been too problematic in practice, as inter-
active proofs tend to keep variable contexts short, for readability.
However, it is a serious concern, and one which is not inherent to
overloading or to canonical structures; if addressed by an optimiza-
tion of Coq’s kernel functionality, it will likely improve many other
aspects of the system.
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