
Proceedings of the Work-in-Progress Session
of the 20th IEEE Real-Time and Embedded Technology and Applications Symposium

Berlin, Germany
April 15, 2014

Edited by Björn B. Brandenburg
Max Planck Institute for Software Systems

© Copyright 2014 Max Planck Institute for Software Systems.
All rights reserved. The copyright of this collection is with the Max Planck Institute for Software Systems. The copyright
of the individual articles remains with their authors. Cover photo: B. Brandenburg.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

Message from the Work-in-Progress Chair
The Work-in-Progress (WiP) session at RTAS 2014 is dedicated to new and on-going research in the field of
real-time and embedded systems. The WiP session is an integral and important part of the RTAS program, as
it exposes promising research directions to a wider audience and provides researchers with an opportunity to
discuss evolving and early-stage ideas, and to solicit feedback from the real-time systems community at large.

First of all, I would like to thank the authors for submitting their work, and the members of the program
committee for their quick and helpful reviews. This year, the WiP track received a total of 17 high-quality
submissions, each of which was reviewed by three members of the program committee. After a final online
discussion round, twelve excellent papers were selected for presentation at the WiP session.

The resulting technical program covers a broad range of topics—spanning from, on the one hand, timing
analysis, schedulability analysis, and mapping heuristics for many-core platforms to, on the other hand, air
data estimation in UAVs, a novel kernel design for mixed-criticality systems, and support for parallel execution
in a time-triggered operating system—and thus reflects the breadth of the real-time systems community. I’m
convinced that the diverse mix of foundational as well as applied topics will provide for stimulating discussions
and encourage lively interactions at the poster session.

It is my hope that the WiP track and the poster session will be interesting to and enjoyable for presenters and
the audience alike, and I invite you to join me in taking advantage of this excellent opportunity to learn, to
discuss, and to network.

Björn B. Brandenburg
Max Planck Institute for Software Systems
Kaiserslautern, Germany
RTAS 2014 WiP Chair

RTAS 2014 Work-in-Progress Technical Program Committee
Andrea Bastoni, SYSGO AG, Germany

Marko Bertogna, University of Modena, Italy

Bernard Blackham, NVIDIA Corp., UK

Aaron Block, Austin College, USA

Tommaso Cucinotta, Bell Laboratories Alcatel-Lucent, Ireland

Wanja Hofer, Brose Fahrzeugteile GmbH & Co. KG, Germany

Cong Liu, The University of Texas at Dallas, USA

Alex Mills, Indiana University at Bloomington, USA

Harini Ramaprasad, Southern Illinois University Carbondale, USA

Michael Roitzsch, Technische Universität Dresden, Germany

iii

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

Technical Program

A hybrid system approach to air data estimation in unmanned aerial vehicles
Mohammad Shaqura and Christian Claudel 1
A Refined Approach for Stochastic Timing Analysis
Nathan C. Cox, Darius G. Luchian, Thomas E. Herschede, and Christopher A. Healy 3
Thread Migration for Mixed-Criticality Systems
Alexander Zuepke 5
What if we would degrade LO tasks in mixed-criticality systems?
Marcus Völp 7
Synchronous Execution of a Parallelised Interrupt Handler
Christian Bradatsch, Florian Kluge, and Theo Ungerer 9
On the Schedulability of P-FRP Tasks
Yu Jiang, Xingliang Zou, and Albert M. K. Cheng 11
Concurrent soft-real-time execution on GPUs
Kiriti Nagesh Gowda and Harini Ramaprasad 13
Scheduling Hard Real-Time Self-Suspending Tasks In Multiprocessor Systems
Maolin Yang, Hang Lei, Yong Liao, and Furkan Rabee 15
Mapping Real-Time Tasks onto Many-Core Systems considering Message Flows
Matthias Becker, Kristian Sandström, Moris Behnam, and Thomas Nolte 17
Comparison of Heuristics and Linear Programming Formulations for Scheduling of In-Tree Tasksets
Thomas Kothmayr, Jakob Hirscheider, Alfons Kemper, Andreas Scholz, and Jörg Heuer 19
Mathematical Considerations of Linear Real-Time Logic Verification
Stefan Andrei, Albert M. K. Cheng, and Mozahid Haque 21
Towards a communication-aware mapping of software components in multi-core embedded real-time
systems
Hamid Reza Faragardi, Kristian Sandström, Björn Lisper, and Thomas Nolte 23

v

A hybrid system approach to air data estimation in
unmanned aerial vehicles

Mohammad Shaqura, Mechanical Engineering and Christian Claudel, Electrical Engineering,
King Abdullah University of Science and Technology

Abstract—Fixed wing Unmanned Aerial Vehicles (UAVs) are
an increasingly common sensing platform, owing to their key
advantages: speed, endurance and ability to explore remote areas.
While these platforms are highly efficient, they cannot easily
be equipped with air data sensors commonly found on their
manned counterparts since these sensors are bulky, expensive and
reduce the payload capability of the UAV. In consequence, UAV
controllers have little information on the actual mode of operation
of the wing (normal, stalled, spin) which can cause catastrophic
failures when flying in turbulent weather conditions. In this
article, we propose a real-time air parameter estimation scheme
that can run on commercial, low power autopilots in real-time.
The computational method is based on an hybrid decomposition
of the modes of operation of the UAV. An implementation on
a real UAV is presented, and the efficiency of this method is
validated using a hardware in the loop (HIL) simulation.

I. INTRODUCTION

Unlike their ground or water-based counterparts, Unmanned
Aerial Vehicles (UAVs) have the potential to be deployed
extremely rapidly for surveillance and monitoring applications.
Among all types of UAVs, fixed-wing UAVs are the most fuel
efficient and the fastest for a given weight and propulsive
power. However, manual or automatic flight of UAVs can
be complex, as existing air data probes are too bulky, too
expensive and too heavy [2] and are thus restricted on heavier,
larger and more expensive UAVs. The lack of air data severely
restricts pilot or autopilot actuation, and does not allow the
operators of the UAV to explore its full flight domain due
to the risk of stalls. Numerous articles have been written on
the issue of air data estimation, in particular the work of [4],
[3] which is based on classical Extended Kalman Filters and
LQR methods. While these methods are very accurate, they
typically draw significant computational resources to compute
the required matrices. In this article, we propose an hybrid
system formulation of the UAV dynamics for this purpose.
For each mode, we show that the airspeed, angle of attack
and angle of sideslip are given by analytical formulas.

II. HYBRID SYSTEM MODELING

We use the 6-degrees of freedom (6-DOF) equations of
motion to model the dynamics of the UAV as a rigid body.

M. Shaqura is a PhD student, Department of Mechani-
cal Engineering, KAUST, 23955-6900 Saudi Arabia. Email:
mohammad.shaqura@kaust.edu.sa. Corresponding author

C. Claudel is an Assistant Professor, Department of Electrical Engineering,
KAUST, 23955-6900, Saudi Arabia

For compactness, we choose not to write these equations in the
present article, though these equations relate inertial measure-
ments (acceleration and angular acceleration) to control inputs
and the airflow parameters to be estimated. These relations are
non linear in terms of the angle of attack α, angle of sideslip
β and airspeed Va.

III. ESTIMATION METHOD

To estimate α, β and Va in real time, we express the
nonlinear model as an hybrid model where the dynamics are
linear in terms of angle of attack and angle of sideslip in each
mode. An analytical expression of the airspeed is computed
offline in terms of measurements and inputs. For mode i, the
linear 6-DOF system of equations can be written as Aixi = b
where A is a 6 × 2 matrix that contains the coefficients of
α and β for mode i and b is a 6 × 1 vector contains the
measurements, control inputs and linear coefficients of α and
β, which are mode dependents.

b = [b1 b2 b3 b4 b5 b6]T (1)

Ai =

[
CDαi 0 CLαi 0 Cmα 0
CDβi CYβ CLβi Clβ 0 Cnβ

]T
(2)

The least square solution is computed analytically:
[
α(Va)
β(Va)

]
= (ATA)−1AT b (3)

We then substitute back α and β into the nonlinear dynam-
ical model. The explicit formula of Va is computed by min-
imizing the difference between the estimated aerodynamical
forces and torques and the actual ones in the norm 2 sense:

N1 = FAXest − FX(Va) − FGX − Fthrottle (4)
N2 = FAYest − FY (Va) − FGY (5)
N3 = FAZest − FGZ (6)
N4 = TAXest − TX(Va) (7)
N5 = TAYest − TY (Va) − TYthrottle (8)

N6 = TAZest − TZ(Va) (9)

N(Va) = (N12 +N22 +N32 +N42 +N52 +N62)(Va) (10)

Vanalytic = arg min
Va

N(Va) (11)

In the present case, the minimization problem yields an
analytic solution, which is a function of the inertial measure-
ments, inputs (from the aileron, elevator and throttle) as well
as aerodynamic model parameters.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

1

Vanalytic = f(ax, ay, az, p, q, r, ṗ, q̇, ṙ,∆A,∆E,

throttle, CDαi , CDβi , CLαi , CLβi)
(12)

We thus compute the estimated airspeed, angle of attack
and sideslip angle for all possible modes (this boils down
to applying a 2 × 6 matrix on a vector, and to computing
a function of the parameters. Obviously, since each mode i
yields a different value for the estimated airspeed, angle of
attack and angle of sideslip, we identify the mode in which
the UAV flies by computing the residuals in the norm 2 sense
between the original nonlinear model (in which we apply the
estimated values of airspeed, angle of attack and sideslip) and
the measurements, then minimizing these residuals.

IV. IMPLEMENTATION

A. System

The system consists of an RC C-17 Globemaster air-
craft [1] equipped with an Ardupilot Mega (APM) v2.6
microcontroller and a number of sensors including barometer,
magnetometer, GPS, inertial measurement unit (IMU) and an
ultrasound ground proximity sensor. The firmware used in
APM is Arduplane, which is an open source code for flight
management. The onboard processing is done by the APM
processor itself, an Atmel ATMEGA 2560 8-bit chip with
256KB flash memory and a maximum operating frequency
of 16 MHz. Given the relatively low computational power of
this platform (which also handles a large number of processes
related to guidance and attitude estimation), we want to
validate that the estimation of Va, α and β can be performed
in real-time.

B. Simulated computational performance

To validate this approach, we use Hardware-In-The-Loop
(HIL) to test the code execution when the APM microcontroller
is interfaced with a commercial flight simulator. We choose
the flight simulator X-Plane, and create a UAV matching
the specifications of our current UAV, using both computer
assisted design and computational fluid mechanics software.
We break down the dynamics of the UAV into 15 different
modes. The estimation function is implemented as part of
the Arduplane code in the 50 Hz loop. We choose this
very fast update rate (compared to the typical dynamics of
the UAV) since more advanced mode selection schemes will
be used in the future. The interface between the APM and
X-Plane is done using a customized version of the APM
Mission Planner (open source software). The complete
setup is illustrated in Figure 1.

To validate this approach, we used manual flight mode to
voluntarily place the UAV in an aerodynamic stall. Aerody-
namic stalls occur whenever the angle of attack α exceeds a
threshold (for our UAV: 12◦) that is a function of the wing
shape and size. As can be seen from figure 2, the estimation
process run on the APM detects this event easily. The estimate
of the angle of attach for this case was 16◦, which can be

Fig. 1. Hardware in the loop simulation setup

Fig. 2. Left: aerodynamic stall detection during a manual HIL flight test.
Right: Distribution of the measured computational times of the air data
estimation process (running at 50Hz)

confirmed independently by computing the difference between
the pitch angle (about 15◦) and the angle of climb (about 0◦).

V. CONCLUSION AND FUTURE WORK

In this article, we presented a computational method for
air data estimation in Unmanned Aerial Vehicles (UAVs), that
can run on the low-power hardware that is typically used on
low-cost Micro Air Vehicles (MAVs). This method is based
on a hybrid representation of the dynamical model of the
UAV, and consists in computing a set of explicit functions of
the inertial measurements and input variables, which is very
fast. Estimating these airflow parameters in real time is very
important in practice to detect stalls (which is a leading cause
of crashes, and which is not considered in most UAV autopilots
(including the APM) because of the lack of angle of attack
sensors), and to detect airspeed sensor faults. Future work will
deal with enhanced mode-selection methods based for instance
on compressed sensing or on machine learning, taking into
account the dynamics of the evolution of the estimated values
and residuals.

REFERENCES

[1] M. Abdelkader, M. Shaqura, C.G. Claudel, and W. Gueaieb. A UAV
based system for real time flash flood monitoring in desert environments
using Lagrangian microsensors. In ICUAS, 2013, pages 25–34, 2013.

[2] M. Ghommem V. Calo C. Claudel. Micro cantilever flow sensor for
small aircrafts. SAGE Journal on Vibration and Control, 2013. doi:
10.1177/1077546313505636.

[3] M.Z. Fekri and M. Mobed. Angle of attack estimation and aircraft con-
troller design using lqr methods. In Electrical and Computer Engineering,
2005. Canadian Conference on, pages 2253–2256, May 2005.

[4] F Adhika Pradipta Lie and Demoz Gebre-Egziabher. Synthetic air data
system. Journal of Aircraft, 50(4):1234–1249, 2013.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

2

Compute estimated time distribution:
- A compiler produces ARM assembly code.
- RALPHO produces control-flow information.
- Timing analyzer generates distribution.
Compute observed time distribution:
- A compiler produces ARM executable code.
- Run the benchmark repeatedly to gather
 observed time distribution.
Compare the two distributions, using
 statistical and integral tests.

A Refined Approach for Stochastic Timing Analysis

Nathan C. Cox, Darius G. Luchian, Thomas E. Herschede, Christopher A. Healy
Department of Computer Science

Furman University
Greenville, South Carolina, USA

Abstract—In real-time scheduling, the worst-case execution
time (WCET) of a task needs to be known in advance. However,
the actual WCET of a task is unlikely to occur in practice.
Therefore, scheduling for a soft real-time system can make use of
execution times that have a finite probability of being exceeded.
As a result, it is desirable to statically compute a program’s
execution time distribution, rather than just a single number
representing an extreme value. In this short paper, we describe
ongoing work to produce accurate execution time distributions.

Keywords—WCET analysis, probabilistic timing analysis,
scheduling, control-flow analysis

I. INTRODUCTION
In order to support real-time scheduling, it is necessary to

statically predict the worst-case execution time of each
scheduled task. Considerable research has been conducted in
static WCET analysis [11]. The purpose of such analysis is to
guarantee that all deadlines will be met. By contrast, a soft-
real time system is one in which an occasional deadline miss
degrades performance but is tolerated [7]. The motivation for
our present work is that the predicted WCET may be
unrealistically high. For soft-real time systems, we may
instead want to pursue, say, the 99th percentile of the execution
time probability distribution. Our aim is to generate the
distribution of execution times statically.

Our approach to stochastic execution time looks at the
whole distribution, rather than the execution time with a small
probability, e.g. 10–12, of being exceeded [5] [2]. Keim et al.
introduced an algorithm to statically produce the stochastic
timing analysis of a single loop [6]. This approach reduced the
problem to using repeated applications of a binomial
probability distribution throughout. The approach combined
paths in pairs, and results for code having more than two paths
were not very accurate. Our motivation was to improve upon
this approach and to be able to tackle a wider class of
benchmarks.

II. APPROACH
Our approach follows two directions. One is to gather a

time distribution estimate from the timing analyzer, and the
other is to glean a corresponding time distribution based on
observed execution times. The following is a high-level
outline of our approach.

This methodology relies on three pieces of software. First
is an off-the-shelf compiler such as gcc, which can produce
assembly and executable code. The other two software tools
are our own analysis suite. We modified two existing analysis
tools. The assembly code is fed into a revised version of
RALPHO [3], in order to produce a control-flow file. This
control-flow information is input into a modified timing
analyzer [8] to give us the execution time distributions. The
modifications to RALPHO are beyond the scope of this paper.

A. Static calculation
The timing analyzer computes the probability that each

path is selected during a loop iteration. This is based on the
branch instructions that are encountered in each path. Next, we
enumerate the cases of selecting each path for all the iterations
of the loop. Note that we are only interested in the number of
times that each path is taken, not the sequence in which they
occur. This assumption simplifies the analysis.

The approach suggested by [6] works well for two paths,
but in our experimentation we found it to be inaccurate for
more than two paths. Therefore, we decided to modify the
algorithm to use multinomial probabilities [9], instead of
repeated applications of the binomial probability. To avoid a
combinatorial explosion, we restrict our algorithm to handle up
to eight paths. If a loop has more than eight paths, then only
the eight most likely taken paths are considered.

Our algorithm computes an execution time distribution for
every loop and function in the program. Then, it computes the
distribution for the entire program, using the convolution
technique of [1]. This step is taken when we need to combine
two or more loops, or when a loop or function is nested inside
another loop or function. Essentially, the technique is to take
the Cartesian product of two distributions, and then re-sort the
result so that it has N buckets instead of N2.

This work was supported in part by grants from the Furman Advantage
and Francis M. Hipp Research Fellowship and the Howard Hughes Medical
Institute.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

3

B. Comparing with Dynamic Calculation
We consider three possible metrics to evaluate the accuracy

of the timing analyzer’s stochastic distribution versus the
observed one. First, we compare the means and standard
deviations of the two distributions. Second, we compare the
top quantile of each distribution. This is analogous to the usual
way of comparing statically predicted versus observed
WCETs. This metric also highlights how much lower a likely
WCET is compared to its guaranteed WCET.

A third metric is an integral test. It seeks to capture the
differences between the probability curves throughout their
domain 0 ≤ x ≤ 1. The estimated and observed functions
(est(x) and obs(x), respectively) are normalized so that the
integrals of each function are equal to 1. This is done so that
we can allow for a varying number of trials performed when
computing obs(x). Then the error can be defined as:

 (1)

III. EXPERIMENTAL EVALUATION
We tested our approach on six benchmarks, each having up

to five loops. The loops had between two and seven execution
paths, inclusive. The code was taken from established set of
benchmarks used in WCET analysis [4] [11].

TABLE I. RESULTS OF EXPERIMENTS

Test
case

Observed
mean

Estimated
mean

Observed
99 %ile

Estimated
99 %ile

A* 0.77 W 0.74 W 0.86 W 0.97 W

A 0.77 W 0.76 W 0.86 W 0.87 W

B 0.37 W 0.36 W 0.49 W 0.49 W

C 0.71 W 0.86 W 0.81 W 0.88 W

D 0.90 W 0.88 W 0.94 W 0.92 W

E 0.90 W 0.89 W 0.94 W 0.90 W

F 0.93 W 0.90 W 0.94 W 0.92 W

Avg. 0.76 W 0.78 W 0.93 W 0.83 W

These results show that the predicted execution time
distribution was often very close to the observed distribution.
In each case, W represents the predicted WCET of the
benchmark. To normalize the results, the second through fifth
columns express the execution time as a factor of W.
Benchmark A* is the same as A, and is presented here to
compare previous work with ours. The A* row refers to the
result reported by [6]. This benchmark features a loop with
seven paths and is now much more accurately predicted, as a
result of using multinomial rather than binomial probabilities.

Considering the absolute value of the error of the means,
the predicted mean was within 4 percentage points of the
observed mean of the execution times. The absolute value of

the error in the 99th percentile statistics was less than 3
percentage points. For sake of brevity, results of the standard
deviation comparison and integral test are not shown.

IV. ONGOING WORK
Our static analysis tool can generate a statistical

distribution of execution times of whole benchmarks. The
analysis can handle multiple paths, nested or consecutive
loops, as well as the nesting of function calls and/or loops.

We are currently working on improving the accuracy of our
stochastic predictions, and expanding the class of programs
that we can analyze. For example, we are addressing the
problem of individual branch probabilities, to determine which
branches govern loop control. We are also modifying
RALPHO so that it can accurately compute loop iterations for
more complex loop nests.

We also plan to investigate probabilistic runs, i.e. the
problem of being temporarily lucky or unlucky in the execution
time [9]. This concept has recently been studied elsewhere in
the context of predicting performance in the presence of
random errors and bursts of random errors in a system [10].

ACKNOWLEDGMENT
The authors would like to thank Zach Hall and Joey

Iannetta for their assistance with RALPHO. Kory Kraft helped
to implement the core of the timing analysis algorithm.

REFERENCES
[1] G. Bernat, A. Colin, S. Petters, “WCET analysis of probabilistic hard

real-time systems,” IEEE Real-Time Systems Symposium, December
2002, pp. 279-288.

[2] R. Davis, L. Santinelli, S. Altmeyer, C. Maiza, L. Cucu-Grosjean,
“Analysis of probabilistic cache related pre-emption delays,” Euromicro
Conferences on Real-Time Systems, July 2013, pp. 168-179.

[3] J. Estep, Design and Implementation of the Retargetable Assembly-
Level Program Hierarchical Organizer, senior thesis, Furman University,
2003.

[4] J. Gustafsson, B. Lisper, A. Betts, A. Ermedahl, “The Malardalen
WCET benchmarks: past, present and future,” International workshop
on worst-case execution time analysis, July 2010, pp. 137-147.

[5] J. Hansen, S. Hissam, G. Moreno, “Statistical-based WCET estimation
and validation,” International workshop on worst-case execution time
analysis, June 2009, pp. 129-133.

[6] P. Keim, A. Noyes, A. Ferguson, J. Neal, C. Healy, “Extending the path
analysis technique to obtain a soft WCET,” International workshop on
worst-case execution time analysis, June 2009, pp. 134-142.

[7] P. Laplante, Real-Time Systems Design and Analysis, Wiley-IEEE
Press, 2004.

[8] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, D. Whalley,
“Parametric timing analysis and its applications to DVS,” IEEE Trans.
Embed. Compt. Syst., December 2010.

[9] S. Ross, A first course in probability, New York: Macmillan, 3rd
edition, 1988.

[10] M. Short, J. Proenza, “Towards efficient probabilistic scheduling
guarantees for real-time systems subject to random errors and random
bursts of errors,” Euromicro Conference on Real-Time Systems, July
2013, pp. 259-268.

[11] R. Wilhelm et al., “The worst-case execution time problem – overview
of methods and survey of tools,” ACM Trans. Embed. Comput. Syst.
7(3):1-53, 2008.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

4

Thread Migration for Mixed-Criticality Systems

Alexander Zuepke
RheinMain University of Applied Sciences, Wiesbaden, Germany

Email: alexander.zuepke@hs-rm.de

Abstract—This work-in-progress paper presents a thread mi-
grating operating system concept for mixed-criticality systems
on multi-core platforms. Thread migration provides fast context
switching between isolated software components which handle
shared resources. Combined with criticality inheritance protocols
and a multi-policy scheduler, the described operating system
concept aims to meet the level of determinism and analysability
which is required for safety-critical applications.

I. INTRODUCTION
With Cyber Phyiscal Systems and the Internet of Things,

mixed-criticality systems have become a reality in the embed-
ded computing world. Combined with the recent availability
of multi-processor systems, it imposes a new challenge on
operating systems when different functional units are combined
in a single computer system. Similarily, regulatory standards
like ISO 26262 require freedom of interference between these
independent functional units [1]. On the other hand, tight inte-
gration of today’s hardware technology results in problematic
sharing of computational resources like caches and memory
bandwidth, and functional resources like I/O devices and buses.
An operating system for such scenarios should therefore help
to make the side effects of resource sharing predictable and
enforce the required level of determinism.

From a real-time perspective, this means that applications
of different criticality levels (in the sense of importance to
a device’s overall function and cost of malfunction) need
to be scheduled concurrently. It also requires that access to
shared resources and any resulting priority inversion problems
need to be solved in a bounded worst-case execution time
(WCET) to guarantee that deadlines are met. From a safety
perspective, a high degree of separation between different
application components and shared components is necessary
to guarantee the required freedom of interference and fault
isolation. State of the art techniques place applications, drivers,
and services into separate address spaces, protected by means
of the processor’s memory management unit (MMU) [2] [3].

However, while decomposition of a system’s components
into multiple address spaces helps to fulfill the safety re-
quirements, it entails overhead due to the cost of additional
context switches. Therefore, operating system support for
mixed criticality systems should include:
• isolation of components in separate address spaces,
• fast context switches between isolated components,
• bounded WCET of all internal operations of the kernel,
• solving of priority inversion problems on shared resources,
• concurrent scheduling of threads of different criticality.

This paper briefly presents the design principles of the
WINGERT operating system, which addresses the goals dis-
cussed above. Its overall architecure is shown in section II, the
benefits of thread migration is described in III, scheduling in
IV, resource sharing in V, and related work in VI. We conclude
and give an overview of future work in section VII.

II. SYSTEM ARCHITECTURE
The WINGERT OS is built upon a small kernel running

in the CPU’s privileged mode and a hierarchically structured
set of isolated address spaces (tasks) of different criticality
in user mode, which comprise applications or services like
shared drivers. Following the design principle of a small
trusted computing base, critical application tasks only depend
on the required subset of tasks providing shared services for
them. Communication between tasks is implemented by remote
procedure calls (RPCs), which are described in detail in the
following section. Starting from the application tasks as the
leaves of the task tree, the hierarchy of depending tasks down
to the kernel as the root node never decreases in the criticality
level. This implies that applications can trust the tasks down
in the chain.

Further, all system resources like memory, I/O and time
budgets are statically assigned to the tasks at startup. This
resource partitioning approach eliminates the later need to
transfer system resources or access permissions via task com-
munication at runtime, keeping the RPC implementation in the
kernel fast and simple.

Each task manages its capabilities in its own name space.
Capabilities address the user and kernel parts of threads, inter-
rupts, child tasks, child address spaces, and communication
channel endpoints. Memory is addressed differently by its
implicit virtual address in the task’s page tables. Additionally,
tasks can freely repurpose their assigned amount of page-
sized kernel memory to page tables for dynamically created
memory mappings or in-kernel stacks for threads. This degree
of freedom allows for example a para-virtualized Linux task
to reconfigure itself for different use cases at runtime, without
violating the static partitioning approach.

III. THREAD MIGRATION
The main difference of WINGERT compared to other micro

kernels like L4 lies in its low-level abstraction model named
body and soul instead of threads as the basic entities of exe-
cution. The soul is a scheduling entity with priority, deadline,
and a kernel stack. It migrates synchronously between different
bodies, which comprise of an entry point and dedicated stack
in user space. The invocation of a new body resembles an RPC
call to the same or a remote address space, while keeping the
calling soul to have a unique entity to control the execution
flow and to reduce context switching overhead in the kernel.

For asynchronous communication and decoupling of po-
tentially blocking calls, the kernel provides fork-join opera-
tions: a soul forks and instructs its forked sibling to issue
a synchronous RPC. With a technique named lazy forking,
the kernel follows the forked path using the original soul
first and performs the real fork operation when a blocking
point is encountered. Assuming there is no blocking point, the
forked one returns the result and joins gracefully without any
overhead.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

5

IV. SCHEDULING
The practical challenge of mixed-criticality scheduling

lies in reclaiming scheduling reservations of higher critical
tasks at run time caused by their overly pessimistic WCET
analysis. Inspired by MC2 [4], the kernel scheduler provides
multiple scheduling policies for different levels of criticality.
In descending order of criticality, these are:

1) P-FP: partitioned fixed-priority scheduling
2) P-EDF: partitioned earliest deadline first scheduling
3) G-FP: global fixed-priority scheduling
4) G-EDF: global earliest deadline first scheduling
5) BE: best effort scheduling for non-real-time applications
6) IDLE: scheduling of idle threads of the lowest level

All scheduling policies are mapped into the same priority
space, but have disjoined priority ranges and different queueing
policies (FIFO or deadline ordered). The highest priority level
ready queues are kept exclusive per processor to ensure parti-
tioned scheduling, the lower levels share a single set of ready
queues. The dispatcher picks the highest eligible thread for
scheduling on its CPU. Supporting other scheduling policies,
like the ones used by Linux, is not the responsibility of the
OS scheduler. On top of this system, a para-virtualized Linux
implementation would use its built-in scheduler and dispatch
its processes by thread migration.

V. RESOURCE SHARING
WINGERT provides two different mechanisms for synchro-

nization and resource sharing: thread migration across tasks;
and mutexes and condition variables shared by threads in the
same task. The latter use Deterministic Futexes described in
[5] as the underlying kernel mechanism. The implementation
enters the kernel only on contention and uses atomic operations
on variables in user space in the fast path.

As bodies have a single user space stack only and therefore
do not support multiple souls inside, migrating souls have to
wait when a body is already occupied. With an extension to let
souls wait outside the body and let them stay there until they
are signalled again by the body, the body effectively becomes
a Monitor [6].

On contention, both bodies and futexes need to properly
solve priority inversions problems. The standard priority in-
heritance protocol (PIP) [7] solves this issue for the class of
highest criticality P-FP scheduling. Additionally, the protocol
covers P-EDF by prefering earlier deadlines on priority ties.
Finally, with migratory priority inheritance [8], the scheduler
migrates preempted threads across CPUs and solves priority
inversions in global scheduling scenarios. With these exten-
sions for mixed-criticality scheduling, the described protocol
effectively becomes a criticality inheritance protocol.

VI. RELATED WORK
WINGERT has in common with micro kernels like L4 [9] a

similar overall system structure of decomposed software com-
ponents in isolated address spaces and the use of a synchronous
context switch mechanism as a means of communication [2].
However, our approach is more specific to the mixed-criticality
use case than the policy-free approach in L4.

Thread migration was previously used in [10], [11], and
[12]. Compared to COMPOSITE, which uses thread migration
and solves contention on user stacks with PIP and PCP
(priority ceiling protocol) [3], the presented approach scales
to multi-processor platforms.

VII. CONCLUSION AND FUTURE WORK
This paper presented the WINGERT operating system,

which aims to exploit thread migration for real-time systems.
Using thread migration for strictly hierarchical system designs
such as mixed-criticality systems seems to be a good trade-off
between software component isolation for safety reasons on
the one hand and fast performance on the other hand, while at
the same time reducing the number of possibly misbehaving
actors and keeping the overall system complexity low.

In future work, we plan to evaluate the system performance
and provide an in-depth analysis of the presented criticality
inheritance protocol, with a special focus on an implementation
with a bounded WCET.

REFERENCES
[1] ISO 26262, “Road vehicles – Functional safety,” 2011.
[2] J. Liedtke, “On µ-Kernel Construction,” in SOSP, 1995, pp. 237–250.
[3] Q. Wang, J. Song, and G. Parmer, “Execution Stack Management for

Hard Real-Time Computation in a Component-Based OS,” in RTSS,
2011, pp. 78–89.

[4] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M.
Johnson, “RTOS Support for Multicore Mixed-Criticality Systems,” in
RTAS, 2012, pp. 197–208.

[5] A. Zuepke, “Deterministic Fast User Space Synchronisation,” in OS-
PERT Workshop, 2013.

[6] C. A. R. Hoare, “Monitors: An Operating System Structuring Concept,”
Commun. ACM, vol. 17, no. 10, pp. 549–557, Oct. 1974.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans. Computers,
vol. 39, no. 9, pp. 1175–1185, 1990.

[8] B. B. Brandenburg and A. Bastoni, “The case for migratory priority
inheritance in linux: Bounded priority inversions on multiprocessors,”
in Fourteenth Real-Time Linux Workshop, 2012.

[9] K. Elphinstone and G. Heiser, “From L3 to seL4 What Have We Learnt
in 20 Years of L4 Microkernels?” in SOSP, 2013, pp. 133–150.

[10] B. Ford and J. Lepreau, “Evolving Mach 3.0 to A Migrating Thread
Model,” in USENIX Winter Conference, 1994, pp. 97–114.

[11] G. A. Parmer, “Composite: A Component-based Operating System for
Predictable and Dependable Computing,” Ph.D. dissertation, Boston,
MA, USA, 2010.

[12] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz, “The
Pebble Component-based Operating System,” in USENIX ATC, 1999.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

6

What if we would degrade LO tasks in
mixed-criticality systems?

Marcus Völp
School of Computer Science, Logical Systems Lab

Carnegie Mellon University
Pittsburgh, PA, USA
mvoelp@cs.cmu.edu

I. INTRODUCTION

Mixed-criticality (MC) systems [1] allow tasks of different
importance (or criticality) to be consolidated into a single
system. Consolidation facilitates resource sharing (even across
criticality levels) and hence bears the potential to reduce
the overall amount of resources needed. However, there is a
common misconception that recurs in literature about Vestal’s
model: the false believe that low criticality tasks are degraded
to soft real-time or even best effort tasks. In this work, we not
only wish to clarify this misconception but also ask ourselves
what would happen if we degrade LO tasks. Revisiting Quality
Assuring Scheduling (QAS) [2], [3], our goals are stochastic
guarantees for LO completion in addition to and replacing
the hard MC guarantees if LO tasks are soft real-time. In
this WIP report, we focus on properties of dropped LO tasks
(while keeping hard MC guarantees) such as: “What is the
likelihood of lower criticality jobs being dropped because
higher criticality jobs exceed their low WCET estimates?”,
“What is the likelihood of dropped jobs to still make their
deadline?”, and “What is the expected time / Q-percentile for
dropped jobs to catch up with their execution?”. Part of our
future work will be to extend these guarantees and to develop
MC schedulers for a combination of hard and soft real-time
tasks. Notice though, that the assumptions in this report still
limit the applicability of our results. We indicate how we plan
to relax them in the future. Most notably, we assume that jobs
arrive in their synchronous arrival sequence and that execution-
time distributions are known. The latter we plan to replace with
confidence of WCET estimates.

II. MIXED-CRITICALITY SCHEDULING

Let T be a set of sporadic tasks. As usual, we characterize
τi ∈ T by tuples (li, Di, Ti, Ci) where li is a criticality level
in the ordered set of criticality levels L (e.g., L = {LO,HI}
with LO < HI), Di ≤ Ti is the relative deadline and Ti
the minimal interrelease time. We subject tasks to execution
time analyses suitable for the individual levels. The result is a
vector of increasingly more pessimistic WCET estimates Ci(l).
The set L and the requirements for considering an analysis
suitable may be drawn from evaluation criteria such as DO-
178C [4] but other metrics are also conceivable. We assume
the system enforces budgets Ci(li) and subject τi only to the
WCET analyses for all l ≤ li. The feasibility criteria and hence
the guarantee given to all admitted tasks is:

Definition 1 (Feasibility): The set T is feasible if every
job Jl = τi,j receives Ci(li) time in between its release time
rl and its absolute deadline rl + Di provided no job Jh of

a higher criticality task with lh > li exceeds its low WCET
estimate Ch(li).

There are two important points to notice:

1) If no higher-criticality job Jh exceeds its low estimate
Ch(ll), lower criticality jobs Jl receive the same hard
real-time guarantees as in a classical system. That is,
provided all WCET estimates are safe, they receive
sufficient time to complete before their deadlines; and

2) No guarantee is given to these jobs once a higher
criticality job exceeds its low WCET estimate.

Notice also that dropped jobs merely loose their real-time
guarantees (and possibly their high prioritized budget). There
is no necessity to terminate these jobs. The question about
low-criticality guarantees now boils down to whether WCET
estimates are safe or whether in some rare situations the actual
execution time may exceed these estimates. Either way, MC
schedulers convey no guarantee about the subset of deadlines
low criticality tasks meet, which is essential for soft real-time.

III. QUALITY ASSURING SCHEDULING

QAS [2] offers stochastic guarantees for imprecise com-
putations [5] where jobs are composed of mandatory parts,
which must execute to completion, and optional parts, which
improve the final result. For the first, a safe WCET estimate
(P[Xi ≤ Ci] = 1) is anticipated whereas for the latter QAS
assigns budgets bki resulting from requested Qi-percentiles of
the execution time distribution (P[Xi ≤ bki] = Qi). Here
and in the following Xi and Y ki denote non-negative random
variables capturing actual execution times and P[Xi ≤ c]
stands for the probability that Xi ≤ c. QAS aborts parts at
their assigned budgets but considers the actual execution time
distribution to determine the likelihood of lower prioritized
jobs meeting their deadlines. The kth optional part oki is
executed (possibly at a different priority) only if all prior
optional parts completed in time. For the special case where
tasks shares a common release time r and deadline D, the job
Ji completes oki with probability p if

P[Y ki < bki ∧ (Σ
j∈hpi

Xj + Σ
l

min (Y lj , b
l
j) +

Xi + Σ
m≤k

min (Y mi , bmi)) < D] = p

IV. OPTIONAL PARTS MEET MIXED CRITICALITY

Our goal is to translate MC scheduling into QAS to (1)
reuse the feasibility and abortion results and (2) devise new
algorithms to convey stochastic guarantees for LO jobs.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

7

Xi

priority

H

L

…
time

t1 t2

h

 dropping
dependency

release deadline
budgetτ

τ

τ

Fig. 1. Mixed-criticality schedule with execution-time distributions
Xi and optional-part dependencies (dashed lines) for the tasks τH =
(HI, 4, 4, (1, 3)), τL = (LO, 4, 4, (2,−)) and τh = (HI, 8, 8, (1, 2)) with
J1 = τH,1, J2 = τL,1, J3 = τh,1, J4 = τH,2, J5 = τL,2. There is still a
chance to complete J2 after dropping it, even if J2 exceeds its initial budget.

a) Likelihood to drop low criticality jobs: Fig. 1 shows
an example of a standard (i.e., not QAS) adaptive MC algo-
rithm. The algorithm is adaptive in that τL must be dropped
(i.e., the priority of τL must change) to guarantee the com-
pletion of the two HI tasks in case J1 exceeds CH(LO).
In other words, X1 < CH(LO) must hold for J2 to not be
dropped and in addition X3 < Ch(LO) and X4 < CH(LO) to
start executing J5. But these are exactly the conditions for the
execution of optional parts. By regarding the LO parts of HI
jobs whose criticality decision point is before the worst-case
response time RLOk of a job Jk as preceding optional parts of
this job, QAS gives us the likelihood of this job being dropped
as:

1− Π
τi∈T |RLO

i ≤RLO
k

P[Xi < Ci(LO)] (1)

where RLOi = Ci(LO) + Σ
τj∈hp(i)

⌈
Ri

Tj

⌉
Cj(LO) is the worst-

case response time of Ji assuming all higher prioritized job Jj
require no more than Cj(LO). Fig. 1 indicates this dropping
dependency as dashed lines. The criticality decision point of a
job Jk is the worst-case response time of its low part. At this
point, we know whether Jk causes LO tasks to be dropped 1.

b) Likelihood of dropped jobs meeting their deadlines:
The bottom part of Fig. 1 shows that it is possible to complete
the dropped job J2 at a priority level where it can no longer
defer the execution of J3, which could have caused a deadline
miss. J2 completes in time if after J1 has exceeded CH(LO)
the combined execution time X1 + X2 + X3 is less than or
equal to DL. J2 may even complete if CL(LO) is an unsafe
WCET estimate, for example if J3 stops before time t1 and if
additional time is given to J2 after t2. More generally, if a HI
job Jk does not complete, it receives an additional part with
Yk = max (Xk − Ck(LO), 0) and the originally scheduled
parts of LO jobs Jl in dropping dependency with Jk are
aborted. Instead of not executing dropped jobs Jl, we assume
they receive a possibly larger budget at a priority level that
is sufficiently low to not risk high completion. Priorities in a
strictly lower band fulfill this condition, however, we expect
to find less pessimistic setups in the future. The important
constraint (in particular when considering more than two
criticality levels) is to preserve the relative priority ordering
of dropped jobs because then MC guarantees extend to the

1Notice, there is no need to make this decision earlier because the comple-
tion of no high task is at risk.

stochastic MC guarantees for dropped jobs. That is, dropped
jobs with a higher criticality level than other dropped jobs
complete more likely. As a preliminary result, the likelihood
that a dropped job Ji meets its deadline under the condition
that π(J1) > . . . > π(Ji−1) denotes the priority ordering of
higher than Ji prioritized jobs after jobs have been dropped is
P[max(Ti−1, ri) +Xi < ri +Di] where T−1 = T0 = 0 and

Tk =

{
max(Tk−1, rk) +Xk if max(Tk−1, rk)+

Xk < rk +Dk

max(Tk−2, rk +Dk) otherwise
(2)

c) Time to catch up: Even without the above precaution
LO jobs Jk = τl,m may catch up with their execution by
exploiting the budgets of the next jobs of their tasks. Notice,
the result is late and its value degraded. τl,m catches up after
consuming max (Xl,m − F, 0) of τl,m+1’s budget and both
τl,m and τl,m+1 complete before τl,m+1’s deadline if τl,m+1

would complete with its execution-time distribution changed
to max (Xl,m − F, 0) +Xl,m+1 where F is the time that τl,m
did run before consuming τl,m+1’s time.

V. RELATED WORK

To our best knowledge, this is the first attempt to cast MC
scheduling into an imprecise computation context. There is
of course a large body of work on probabilistic analyses and
scheduling of non-MC systems. Alahmad et al. [6] investigate
probabilistic execution-behavior models and identify stochastic
MC scheduling as an open problem [7]. In contrast to our
work, they seek to optimize the feasibility of the MC schedule
itself, not only of dropped tasks. Also they do not consider the
possibility of unsafe WCET estimates for LO jobs.

VI. CONCLUSIONS

We present first results connecting quality assuring and
mixed-criticality scheduling to give stochastic guarantees for
dropped jobs2.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium. Tucson, AZ, USA: IEEE, December 2007, pp. 239–243.

[2] C.-J. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter, and
H. Härtig, “Quality Assuring Scheduling - Deploying Stochastic Behav-
ior to Improve Resource Utilization,” in 22nd IEEE Real-Time Systems
Symposium (RTSS), London, UK, Dec. 2001.

[3] C.-J. Hamann, L. Reuther, J. Wolter, and H. Härtig, “Quality-assuring
scheduling,” TU Dresden, Dresden, Germany, Tech. Rep. TUD-FI06-09,
December 2006.

[4] DO-178C: Software Considerations in Airborne Systems and Equipment
Certification, RTCA, Dec. 2011.

[5] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin, “Scheduling periodic jobs that
allow imprecise results,” IEEE Transactions on Computers, vol. 39, no. 9,
pp. 1156–1173, Sep. 1990.

[6] B. Alahmad, S. Gopalakrishnan, L. Santinelli, and L. Cucu-Grosjean,
“Probabilities for mixed-criticality problems: Bridging the uncertainty
gap,” in Real-Time Systems Symposium - Work in Progress, Vancouver,
Canada, Nov. 2011.

[7] B. Alahmad and S. Gopalakrishnan, “Can randomness buy clairvoyance?
a look into stochastic scheduling of mixed criticality real-time job sys-
tems with execution time distributions,” in 3rd Int. Real-Time Scheduling
Open Problems Seminar (RTSOPS), Pisa, Italy, July 2012.

2This work is partially funded through NSF Grant CNS-0931985 and by
the DFG through the cluster of excellence Center for Advancing Electronics
Dresden.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

8

Synchronous Execution of a
Parallelised Interrupt Handler

Christian Bradatsch, Florian Kluge, Theo Ungerer
Department of Computer Science

University of Augsburg
86159 Augsburg, Germany

{bradatsch,kluge,ungerer}@informatik.uni-augsburg.de

Abstract—Upcoming multicore processors for embedded real-
time domains allow the integration of multiple applications and
new features in electronic control units. PharOS [1] enables an
efficient parallelisation of tasks by executing these in a time-
triggered manner on a multicore processor. Many processes
especially in the automotive domain are event triggered. PharOS
allows to define event triggered tasks with short deadlines and
hence only a low complexity. We also see the need for more
complex event-triggered tasks that need to be parallelised. Still,
we want to profit from the benefits of the time-triggered execution
model. We propose a method to execute a parallelised interrupt
handler synchronously within the PharOS execution model on a
network-on-chip based manycore processor.

I. INTRODUCTION

Multicore processors are entering the domain of safety-
critical real-time systems. This enables the integration of new
features and of more complex control algorithms, e.g. in auto-
motive electronic control units. With PharOS [1], an operating
system was proposed to enable the use of multicore processors
in safety-critical automotive systems. With increasing core
numbers, those efforts have to go hand in hand with an
efficient parallelisation of applications, thereby still keeping
well-known safety properties. The time-triggered execution
model used in PharOS enables such a parallelisation for time-
triggered tasks. However, we also foresee the need for a par-
allelisation of event triggered tasks, like more complex crank
angle triggered interrupt handlers in an engine management
system. While the concept of event triggered tasks is part of
PharOS, their parallelisation is not discussed.

Our aim is to execute a parallelised interrupt handler on a
manycore processor, where the single cores are linked by an
interconnect. In such an architecture, communication between
cores takes place in the form of implicit or explicit messages.
Depending on source and sink nodes, the messages can have
varying worst-case traversal times (WCTTs). A multicast
message sent by one core will arrive at different times at the
receiver cores. Still, we must ensure that the actual processing
of such a message starts at the same time on all cores.

In the following section, we briefly review the properties
of the PharOS execution model and discuss their adequacy
for the parallelisation of interrupt handlers. Our method for
synchronous execution of a parallelised interrupt handler is
presented in section III. A first prototype implementation is

outlined in section IV. In section V, we give an outlook on
future work.

II. EXECUTION MODEL

PharOS is based on the time-triggered execution model of
OASIS. OASIS [2] defines an approach for the design of
safety-critical systems, e.g. in nuclear power plants. In OASIS,
all tasks are executed in a time-triggered manner. Each task ω
has an associated real-time clock Hω . This clock is defined by
the time instances at which input and output of the task can
occur. Tasks can use an instruction ADV(n) to advance their
clock by n instants. A task is then activated again n instants
after its last activation. During clock advancement, execution
of the calling task is blocked.

For communication between tasks, OASIS defines temporal
variables and an asynchronous message passing mechanism.
Both mechanisms are coupled to real-time clocks. Sent data is
visible at the receiver at predefined time instants. The imple-
mentation of these mechanisms ensures that neither senders
nor receivers experience blocking times. This model allows to
implement concurrent tasks without explicit synchronisation,
leading to a less pessimistic WCET analysis as no blocking
times through interferences between tasks can occur. Indeed,
the only blocking times that can occur are those requested by
tasks themselves through the use of the ADV instruction.

PharOS [1] extends the OASIS concepts for automotive
systems using multicore processors. PharOS partitions a sys-
tem into time and event triggered domains. Each domain is
assigned to dedicated cores. Time-triggered tasks are referred
to as agents and executed on computing cores. In addition,
PharOS places event-triggered tasks, called handlers, on con-
trol cores. The control core also processes I/O interrupts. This
concept is demonstrated by an example where a handler task
monitors a PWM signal for its duty cycle and sends measured
data to an agent for further processing.

In our work, we go one step further. Our aim is to par-
allelise an interrupt handler and benefit from the advantages
of the OASIS/PharOS execution model. The need for such
an approach arises, if an interrupt handler not only has to
read some input data, but also must process the data and set
some output within a short deadline. If, furthermore, such an
interrupt can occur with widely varying inter-arrival times, it is

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

9

hard to dislocate processing and output into the time-triggered
domain, if possible at all.

III. START TIME SYNCHRONIZATION

The target of the proposed approach is a parallelised and
synchronous processing of an IRQ handler. We assume that
agents are executed exclusively on computing cores and han-
dlers on control cores accordingly. An I/O interrupt is only
triggered at one dedicated control core. On this core, an initial
handler is executed which does not use the time-triggered
execution model. The initial handler sends messages to activate
processing of the IRQ by the processing handlers running
on other control cores. Thereby, two requirements have to
be fulfilled: (1) the latency between the occurrence of the
IRQ and the start of the actual processing must be statically
boundable and sufficiently low to allow schedulability, and
(2) the processing handlers must start execution at the same
time such that their implementation can also use the time-
triggered execution model of OASIS/PharOS. From the second
requirement follows, that an event triggered processing handler
must also be able to use the ADV instruction like tasks
executed in the time-triggered domain. For the ADV instruction
a clock reference point is required. In the time-triggered
domain this reference point is the start of the program.

To obtain such a reference point for processing handlers,
we extend the messages sent by the initial handler by a
future-timestamp. This future-timestamp represents the clock
reference point. It is computed from the actual timestamp
when entering the initial handler and the WCTT of the
messages. Each receiving control core uses an ADV instruction
to advance to this future-timestamp. Thereafter all cores start
their processing handler synchronously at the same time.

To realise this approach, two requirement must be fulfilled
by the underlying hardware: (1) A message mechanism must
be available which signals an incoming message at receiver
side immediately. (2) All cores need a common, fine-granular
time base.

IV. IMPLEMENTATION

We have performed a first prototype implementation of
our approach on the manycore simulator of the parMERASA
project [3]. The simulator provides a common time base for
all cores by hardware, a flexible interrupt system, and a global
address space.

Our use case is an engine control application using, amongst
other things, an interrupt triggered by certain crank angle
positions. The occurrence of this crank angle interrupt varies
within a certain range depending on the rotation speed of
the crank shaft. The interrupt signal is processed by the
initial handler on a dedicated core. The aim is to execute
a parallelised version of the crank angle interrupt handler
routine. Currently, only one processing handler is executed
exclusively on each control core. Due to that circumstances, a
control core is actively waiting for an incoming message and
thus needs not to be interrupted by a message notification.
This simplifies the implementation.

After an interrupt is asserted at the dedicated interrupt
core, the initial IRQ handler is started. The initial handler
requests the actual time base and adds a WCTT offset that
was calculated offline. The result is the clock reference point
tr which is stored at a specific location mt in shared memory.
Afterwards, the initial handler returns, and the core can also
execute a processing handler. Each control core that shall
execute a processing handler is spinning on the memory
location mt until its value changes. It then loads the value tr
into a register and executes an ADV abs(tr) instruction, that
advances to an absolute point in time. Thus, a synchronous
start of all processing handlers is enabled.

In our case the WCTT of the message is calculated as the
sum of the WCET of the store instruction executed by the
initial handler and the WCET of the load instruction executed
by the processing handlers. Measurements have shown that the
deviation of the start time of each handler is up to 50 clock
cycles. Additionally, the actual execution of the handlers starts
150-200 cycles after tr elapsed. This circumstance is due to
the fact that memory accesses to shared as well as private
memory are routed through the interconnect of the simulated
processor. Thereby, interferences on the interconnect occur and
the latency for accesses is quite long. The same effect was also
observed when an ADV(n) instruction with the same clock
value n was executed on all cores in the time-triggered domain.
So the deviations are likely to result because of the underlying
hardware.

V. CONCLUSIONS AND FUTURE WORK

We have presented an extension of the ADV instruction that
was introduced in OASIS. This extension, ADV abs, allows
to advance execution to an absolute point in time. Thus, we
achieve to synchronously start the threads of a parallelised
interrupt handler, and their implementation is able to profit
from the time-triggered execution model. In the future, we
plan to investigate in two directions. First, we will compare our
polling mechanism to messages sent via inter-core interrupts.
Second, we will integrate agent and handler tasks on single
cores to improve utilization compared to exclusive control
cores. The consequences for schedulability of both task types
will be analysed.

ACKNOWLEDGEMENTS

Part of this research has been supported by the EC FP7
project parMERASA under Grant Agreement No. 287519.

REFERENCES

[1] C. Aussaguès, D. Chabrol, V. David, et al., “PharOS, a multicore
OS ready for safety-related automotive systems: results and future
prospects”, in Embedded Real-Time Software and Systems (ERTS2

2010), Toulouse, France, May 2010.
[2] C. Aussagués and V. David, “A method and a technique to model

and ensure timeliness in safety critical real-time systems”, in Fourth
IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS ’98), 1998, pp. 2–12.

[3] T. Ungerer, C. Bradatsch, M. Gerdes, et al., “parMERASA – multi-
core execution of parallelised hard real-time applications supporting
analysability”, in Euromicro Conference on Digital System Design
(DSD), 2013, Los Alamitos, CA, USA: IEEE, Sep. 2013, pp. 363–370.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

10

On the Schedulability of P-FRP Tasks
Yu Jiang+

School of Computer Science and Technology
Heilongjiang University

Harbin, Heilongjiang 150001, China
jiangyu@hlju.edu.cn

Xingliang Zou+, Albert M. K. Cheng
Department of Computer Science

University of Houston
Houston, TX 77004, USA

xzou@uh.edu, cheng@cs.uh.edu

Abstract—As a variant of Functional Reactive Programming
(FRP), priority-based FRP (P-FRP) maintains both type-safety
and state-less execution paradigm of FRP, and supports
assigning different priorities to different tasks in real-time
systems. Since the abort-and-restart execution semantics of P-
FRP are different from that of the classical preemptive model,
the schedulability analysis for P-FRP is much of difference and
difficulty. In this short paper we briefly present our ongoing
work about an exact schedulability condition and a response time
bound we have newly discovered for scheduling P-FRP tasks.

Keywords—real-time system; schedulability; functional reactive
programming (FRP); priority-based FRP; response time analysis;
feasibility interval; permissibility interval

I. INTRODUCTION

A. Motivations and contributions

Compared with the classical preemptive model [1], the
schedulability analysis for Priority-based Functional Reactive
Programming (P-FRP) [2] is of difficulty because of the abort-
and-restart feature and scheduling uncertainty of lower priority
tasks interfered by higher priority tasks. For a P-FRP n-task set,
the current schedulability condition [3] is only being sufficient
and is utilization-based with the bound 1/n under some
restrictions on the task periods, making it less useful as n gets
larger. If some conditions could be found without this kind of
restrictions it would be much better. Furthermore, under the P-
FRP model, for a given release pattern such as synchronous,
for the computation-based actual response time analysis, a
higher performance algorithm is needed, which is also
beneficial to the worst-case response time (WCRT) study.

In this work-in-progress paper, we present an exact
(necessary and sufficient) schedulability condition for P-FRP
n-tasks with the rate monotonic (RM) scheduling, without
using the utilization bound.

B. Backgrounds and related works

Functional Reactive Programming(FRP) [4] is a declarative
programming language for the modeling and implementation
of safety-critical embedded systems, and is getting widely used
in preemptive reactive systems. However, it has no real-time
guarantees. To address this limitation, P-FRP has been put
forward, which maintains both type-safety and state-less
execution paradigm of FRP, and supports assigning different
priorities to different tasks in real-time systems.

Different from the classical preemptive model in which
tasks can resume execution from the point they were

preempted, in P-FRP lower priority tasks will resume in a
transactional execution way, i.e., resuming execution from the
very beginning, in order to meet the natural requirement of
atomic execution of FRP. Therefore, P-FRP is characterized as
the abort-and-restart execution semantics.

In their seminal paper, Liu and Layland [1] have shown
that, in the classical preemptive model using the RM
scheduling for periodic tasks with deadlines equal to periods, a
n-task set is schedulable if the first instance of each task can
meet its deadline when these tasks are released synchronously
(at the same time). Based on the processor utilization bound,
they also presented a necessary condition of schedulability for
periodic tasks using the RM scheduling. For schedulability
analysis under the classic preemptive model with a given
priority assignment, there are also some other research work
such as [5-8]. However, the schedulability tests discovered for
the classical preemptive model, using either processor
utilization bound or an iterative equation to compute the
WCRT then for checking up the schedulability, do not apply
directly to the P-FRP model because of the abort-and-restart
feature and hence the uncertain response time of the P-FRP.

In [3] the authors put forward a necessary schedulability
condition for 2-task sets, and some sufficient schedulability
conditions for 2-task sets and n-task sets in P-FRP, based on
processor utilization and under certain restrictions on periods
and release scenarios. In [9] and [10] they further present the
Gap-enumeration and idle-period game board algorithms,
respectively, for computing the actual response time, and then
the schedulability of the task set is determined. However, both
algorithms have some slack in performance due to higher
search costs or balance-tree maintaining costs [10]. The authors
also present in [11] the feasibility of using time Petri nets for
schedulability analysis in P-FRP for small task sets. In [12] the
authors prove the feasibility interval for n-task sets.

II. BASIC CONCEPTS AND NOTATIONS

In this paper, we consider a P-FRP real-time uniprocessor
system with a set of independent, periodic n tasks. A task

i
has a (maximum) computation time Ci > 0, an arrival time
period Ti, a relative deadline Di equal to its period Ti, i.e.,
Di=Ti>0, and a release offset Oi 0 which is the release time of
the first instance of the task and is relative to time 0. For later
notational convenience we label the tasks so that task

i is

assigned a fixed priority i, where n is the lowest priority. When
using the RM scheduling, there will be T1T2 ...Tn.

For 1 k n, let
kΓ },...,,{ 21 k nΓ },...,,{ 21 n ,

}{ j
minO }{1 i

k
i Omin

, and }{ j
maxO }{1 i

k
i Omax

.

This work is sponsored in part by the State Scholarship Fund of China
under award No. 201308230034, and in part by the US National Science
Foundation under award Nos. 0720856 and 1219082.

+Corresponding authors.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

11

We use LCMk to represent the least common multiple (LCM)
of the periods of the first k tasks, i.e., LCMk=LCM(T1,T2,...,Tk),
1 kn, and LCM1=T1.

An absolute time t (or time t) is the time elapsed since the
start, which is assumed to be at the absolute time 0, of the real-
time system. A half-closed interval [ti, tj) represents a time
interval such that: t[ti, tj), ti t<tj ti tj.

A feasibility interval is the time interval [t, t+H) such that
if all tasks are schedulable in [t, t+H) then the tasks will also be
schedulable in the time interval [0, Z): Z→∞ [12].

We define the i-permissibility interval for task
i as the

time interval [tj, tk) such that the length of the interval, i.e., tk-tj,
is no less than Ci, and in which no higher priority task is
awaiting execution and ready to execute strictly before tj.
Notice that this concept is different from the k-gap in [9] which
has not taken the requirement of interval length into account in
the definition of the k-gap.

Due to space limitation, the execution model is referred to
[12].When considering abort and restore costs, the computation
time Ci can be replaced by the processing time Pi for simplicity.

III. OUR RESULTS

In this section we briefly present our new results on the
schedulability condition without using the utilization bound,
and a method of computing the WCRT upper bound, for P-FRP
n-tasks using the RM scheduling.

A. An exact schedulability condition

Lemma 1. Considering a schedulable n-task set nΓ =

},...,,{ 21 n using fixed task priority, with a given release

order such that for all 1 j n, 0Oj<Tj, then, for each 1 k n,
(1) for any t }{k

minO , the release and executing patterns of
kΓ =

},...,,{ 21 k nΓ in the intervals [t+m LCMk, t+(m+1) LCMk)

and [t+(m+1) LCMk, t+(m+2) LCMk), m 0, will be the same;
(2) the feasibility interval of kΓ is [t, t+LCMk), where t }{k

minO .

There are two differences between Lemma 1 and those in
[12]. First, with the assumption of 0 Ok<Tk, 1 k n, the
starting point of the relevant intervals shifts to the left and is
from }{k

minO instead of from }{n
maxO , making an extended coverage

of the time line. Second, Lemma 1 is feasible for all subsets

kΓ },...,,{ 21 k nΓ , 1 k n, achieving more flexibility.

Theorem 2. Considering an n-task set
nΓ },...,,{ 21 n

using the RM scheduling, with a given release order such that
for all 1 j n, 0 Oj <T1, then, for each 2 k n, kΓ is

schedulable if and only if: (1) 1kΓ },...,,{ 121 k nΓ is

schedulable, (2) task k is schedulable in the time interval [Ok,

Ok+maxk), where maxk = max{ }1{ k
minO +LCMk-1, Tk}), and (3)

there are jk k-permissibility intervals for k in the time interval

[Ok, Ok+ }1{ k
minO +LCMk-1), denoted by [t1, t2), [t3, t4), ..., [

12 kj
t ,

kj
t2), and the next k-permissibility interval is denoted by [

12 kj
t ,

22 kj
t), such that jk>0 and Tk lmax or Tk=LCMk-1 when t1-

Ok+Ck LCMk-1 or Tk lmax when t1-Ok+Ck >LCMk-1, where
lmax= kj

imax 1 {t1-Ok+Ck, t2i+1-t2i+2Ck-1}.

The release order requirement in this theorem aims at
getting the largest response time. Due to space limitation, we
omit the proofs of Lemma 1 and Theorem 2 here; they will be
included in the complete version of this paper.

B. Computing WCRT upper bound

From Theorem 2 we may compute an WCRT upper bound
using nj

imax 1 {t1-On+Cn, t2i+1-t2i+2Cn-1} for nΓ .

This is a recursive method which can be applied step-by-
step from the highest priority task to each of lower ones in the
n-task set. Compared with the algorithms in [9]-[10], this
computing-based schedulability examining method is much
more efficient due to the reduction of the maximum search
bound from LCMn to LCMn-1.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we present an exact condition of
schedulability for P-FRP n-tasks using RM scheduling, without
using the utilization bound. We reduce the maximum search
bound from LCMn to LCMn-1. It is also a recursive method
which can be applied to each task in the n-task set. Our
ongoing work includes developing a WCRT-computing
algorithm based on this condition.

REFERENCES

[1] C. L. Liu, L. W. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of ACM, 1973, 20(1): 46–61.

[2] R. Kaiabachev, W. Taha, A. Zhu, “E-FRP with priorities,” in 7th ACM
& IEEE Int’l Conf. on Embedded Software(EMSOFT2007), pp.221-230.

[3] C Belwal, A. M. K. Cheng, “A Utilization based Sufficient Condition
for P-FRP,” in 9th IEEE/IFIP Int'l Conf. on Embedded and Ubiquitous
Computing (EUC), 2011, pp.237-242.

[4] Z. Wan, P. Hudak, “Functional reactive programming from first
principles,” in ACM SIGPLAN PLDI 2000, pp. 242–252.

[5] J. Lehoczky, L. Sha, Y. Ding, “The rate monotonic scheduling algorithm:
Exact characterization and average case behavior,” IEEE RTSS 1989, pp.
166-171

[6] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. Wellings.
“Applying new scheduling theory to static priority preemptive
scheduling,” Software Engineering Journal, 1993, 8(5): 284-292

[7] G. Bernat, “Response time analysis of asynchronous real-time systems,”
Real-Time Systems, 2003, 25(2-3): 131–156.

[8] R. I. Davis, A. Burns. “Response Time Upper Bounds for Fixed Priority
Real-Time Systems,” IEEE RTSS 2008, pp.407-418.

[9] C. Belwal, A. M. K. Cheng, “Determining actual response time in P-
FRP,” in PADL 2011, LNCS 6539, pp. 250–264.

[10] C. Belwal, A. M. K. Cheng, “Determining Actual Response Time in P-
FRP Using Idle-Period Game Board,” in 14th IEEE Int’l Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing,
2011, pp. 136–143.

[11] C. Belwal, A. M.K. Cheng, Y.F. Wen,“Time Petri nets for schedulability
analysis of the transactional event handlers of P-FRP,” in ACM
Research in Applied Computation Symp. (RACS), 2012, pp. 257-262.

[12] C. Belwal, A. M. K. Cheng, B. Liu, “Feasibility interval for the
transactional event handlers of P-FRP,” Journal of Computer and
System Sciences, 2013, 79(5): 530–541.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

12

Concurrent soft-real-time execution on GPUs
Kiriti Nagesh Gowda, Harini Ramaprasad

kiriti@siu.edu, harinir@siu.edu
Southern Illinois University Carbondale

Abstract—Graphics Processing Units (GPUs) are computa-
tional powerhouses that were originally designed for accelerating
graphics applications. However, in recent years, there has been a
tremendous increase in support for general purpose computing on
GPUs (GPGPU). GPU based architectures provide unprecedented
magnitudes of computation at a fraction of the power used
by traditional CPU based architectures. As real-time systems
integrate more and more functionality, GPU based architectures
are very attractive for their deployment. However, in a real-time
system, predictability and meeting temporal requirements are
much more important than raw performance. While some real-
time jobs may benefit from the performance that all cores of
the GPU can provide, most jobs may require only a subset of
cores in order to successfully meet their temporal requirements.
In this paper, we propose to study concurrent scheduling of soft-
real-time jobs on a GPU based platform.

Keywords GPU; Soft Real Time; Scheduling.

I. INTRODUCTION

Real-time systems not only have to satisfy logical cor-
rectness requirements like any other computing system, but
also have to adhere to temporal correctness requirements,
typically represented as deadlines for every job within the
system. As computational demands of such systems continue
to increase in the wake of the ubiquitous presence of real-time
systems in today’s world, traditional single-core architectures
are no longer a viable option for their deployment. As a
result, there is a significant body of research that studies
the challenges involved in real-time execution on multi-core
architectures. However, most of this work focuses on CPU
based architectures.

Recently, researchers have started to explore the use of
GPU based architectures in real-time systems. There is strong
motivation for enabling real-time execution on GPUs. As noted
by Elliott and Anderson [1], there are two fundamental aspects
that make GPUs an attractive option for real-time systems.
First, GPUs execute at higher frequencies, thereby accelerating
the execution of jobs allocated to it. This could improve system
responsiveness. Second, the power needed for a GPU to carry
out an operation is much lesser than that needed by traditional
CPUs, making it ideal for use in real-time embedded systems.

Having said that, execution on GPU architectures has funda-
mental differences compared to that on CPU based multi-core
architectures. First, due to significant hardware and firmware
challenges in enabling preemptive execution, GPU execution is
assumed to be non-preemptive. Second, GPUs do not provide
the degree of controllability of cores that is typically available
on CPU based multi-core platforms. In early versions of GPU
platforms, only one instruction stream or function represented
by a kernel could execute on a GPU at any given time,

regardless of GPU utilization. As such, most existing work
on enabling real-time execution on GPUs treat the GPU as a
black box and focus on developing techniques to determine
the order (schedule) for dispatching kernels.

More recent GPU platforms such as the NVIDIA Fermi
architecture [2] do support concurrent execution of kernels1. In
practice, real-time functions may not benefit from the perfor-
mance that using the entire GPU (i.e., all its cores) can provide.
One reason may be simply because it does not require that
amount of computational power. A second reason may be that
the function is memory bound and cannot effectively utilize
all computational elements due to memory transfer delays.
On the other hand, concurrent execution of multiple functions
could be tremendously useful in maintaining timeliness of
applications. This motivates us to explore the development of
policies for concurrent scheduling of kernels. In the current
work, we target soft-real-time job execution, i.e., execution of
jobs with non-strict deadlines.

II. EXISTING RESEARCH

Elliott and Anderson present potential real-time applica-
tions that can benefit from GPU architectures and discuss
the limitations and constraints of current GPU architectures
[1]. Several researchers propose policies for scheduling real-
time jobs on the GPU [4], [5], [6] using a priority-based
approach. In other recent work, researchers target a multi-
GPU model, where jobs are dispatched on to an array of
available GPUs [7], [6]. Research has been conducted in
decoding the GPU driver or managing the GPU as a resource
[8], [9]. However, this entire body of work assumes that
only one kernel may execute on a GPU at a given time.
Recent work has explored concurrent execution of multiple
kernels on a single GPU, using hardware (e.g., NVIDIA Fermi
architecture) that supports concurrent execution. Wang et al.
discuss considerations involved in such execution and present
an experimental evaluation of the performance impact of such
execution [3]. This work does not specifically target real-time
execution. Junsung et al. present frameworks for supporting
adaptive GPU resource management by allowing tasks to use
a variable number of cores on the GPU based on their needs
and core availability [10]. The authors propose an explicit
management mechanism that requires significant programmer

1Currently, the Fermi architecture only allows concurrent execution of
kernels that share a common GPU context. However, the fundamental ideas
of our work are not affected by or dependent on this limitation. Moreover,
there exist software solutions such as context funneling [3] to allow kernels
from multiple GPU contexts to execute concurrently.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

13

involvement and an implicit management mechanism with less
programmer involvement.

III. OUR ONGOING WORK

Our ongoing work aims to develop a dynamic schedule
management framework for soft-real-time jobs2 on GPU based
architectures. Cores on a platform such as the NVIDIA Fermi
architecture [2] are organized into clusters, termed streaming
multiprocessors (SMs). Cores within each SM share resources
(register file, control units, L1 cache, etc.) and execute a
common kernel. Our goal is to divide a real-time job into
kernels and schedule kernels on the GPU, treating each SM
as an indivisible unit. We propose to achieve this goal with
minimal programmer involvement.

In general, a kernel consists of a set of thread blocks. When
a kernel is dispatched to the GPU, a work distribution engine
in the GPU schedules thread blocks on available SMs3. The
fundamental idea behind our technique is to divide a kernel
into a set of controlled blocks of threads such that the number
of threads per block is close to the total number of threads
that a single SM can handle concurrently. For example, in
the NVIDIA Fermi architecture [2], every SM is capable
of supporting 1536 threads, among which 1024 threads can
execute concurrently with minimal context switch costs. So,
for this architecture, block sizes of 1024 threads are found
to be a suitable choice. In this way, no more that one block
may reside on a SM at a given time and hence, the number
of blocks is a measure of the number of SMs that a kernel
will occupy. We have conducted preliminary experimentation
on the NVIDIA Fermi platform to verify and evaluate the
feasibility of this basic approach towards SM scheduling. Thus
far, we have found the results to be encouraging.

We propose to exploit this basic idea to perform coarse-
grained scheduling of jobs on SMs. Our work lays emphasis on
minimal programmer involvement. To this end, we are devel-
oping a dynamic schedule management framework (somewhat
similar to the implicit adjustment approach proposed in [10])
that is responsible for 1) keeping track of current and expected
SM availability; 2) determining which kernel(s) to dispatch
to the GPU at a given time; and 3) determining how many
SMs to assign for a given kernel. These decisions will be
made based on observed and predicted system state and on
job characteristics (expected execution times, deadlines, etc.).
Figure 1 depicts our framework. As seen in the figure, our
scheduling framework resides on a CPU core and dispatches
kernels to the GPU.

IV. CONCLUSIONS

Graphics Processing Units (GPUs) are capable of pro-
viding tremendous computational power under reasonable

2To the best of our knowledge, there is no technique that produces safe
estimates of the worst-case execution time or WCET of jobs for GPU
based architectures because of their closed nature. Hence, we currently target
soft-real-time jobs and propose to use measurement-based estimation of job
execution times.

3Dependent blocks in a kernel are made part of a single stream that is
guaranteed to execute in sequence.

Fig. 1. Concurrent kernel execution on GPU

power/energy budgets. Recent GPU based platforms allow
concurrent execution of multiple functions on the GPU. This
provides an avenue to explore real-time scheduling on such
platforms, trading off raw performance of individual jobs for
improved responsiveness and schedulability of job sets. In
the ongoing work described in this paper, we envision the
development of a dynamic schedule management framework
for soft-real-time job execution on GPU based platforms. In
ongoing work, we are targeting sets of independent soft-real-
time jobs. As part of future work, we plan to extend our
framework to support recurring (periodic) soft-real-time tasks.

REFERENCES

[1] G. A. Elliott and J. H. Anderson, “Real-World Constraints of GPUs
in Real-Time Systems,” in International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2011, pp. 48–
54.

[2] P. N. Glaskowsky, “NVIDIA’s Fermi: the first complete GPU computing
architecture,” White paper, 2009.

[3] L. Wang, M. Huang, and T. El-Ghazawi, “Exploiting concurrent kernel
execution on graphic processing units,” in International Conference on
High Performance Computing and Simulation (HPCS), 2011, pp. 24–32.

[4] G. A. Elliott and J. H. Anderson, “Globally scheduled real-time multi-
processor systems with GPUs,” Real-Time Systems, vol. 48, no. 1, pp.
34–74, 2012.

[5] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:
GPU scheduling for real-time multi-tasking environments,” in USENIX
Annual Technical Conference (USENIX ATC), 2011, p. 17.

[6] G. A. Elliott, B. C. Ward, and J. H. Anderson, “GPUSync: A framework
for real-time GPU management,” in Real-Time Systems Symposium
(RTSS), 2013, pp. 33–44.

[7] G. A. Elliott and J. H. Anderson, “An optimal k-exclusion real-time
locking protocol motivated by multi-GPU systems,” Real-Time Systems,
vol. 49, no. 2, pp. 140–170, 2013.

[8] G. Elliott and J. Anderson, “Robust real-time multiprocessor interrupt
handling motivated by GPUs,” in Euromicro Conference on Real-Time
Systems (ECRTS), 2012, pp. 267–276.

[9] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar, “RGEM: A responsive GPGPU execution model for
runtime engines,” in Real-Time Systems Symposium (RTSS), 2011, pp.
57–66.

[10] J. Kim, R. R. Rajkumar, and S. Kato, “Towards adaptive GPU resource
management for embedded real-time systems,” ACM SIGBED Review,
vol. 10, no. 1, pp. 14–17, 2013.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

14

Scheduling Hard Real-Time Self-Suspending Tasks In Multiprocessor Systems

Maolin Yang1, Hang Lei1, Yong Liao1, Furkan Rabee2

1School of Information and Software Engineering, 2School of computer science and engineering,
University of Electronic Science and Technology of China (UESTC), China

maolyang@gmail.com, hlei@uestc.edu.cn, liaoyong@uestc.edu.cn, forkanr@yahoo.com

Abstract—The problem of self-suspensions has attracted a lot
of attentions in recent years, especially when more and more
special-purpose processors are adopted in systems with real-
time requirements. This work presents a novel scheduling
approach, based on semi-partitioning, for fixed priority hard
real-time sporadic self-suspending tasks in multiprocessor
systems. By splitting self-suspending tasks into non-suspending
subtasks and assigning them to different processors, this
scheduling approach can avoid higher priority tasks from
introducing additional schedulability losses, by suspension
delays, to lower priority tasks assigned on the same processor.
We also conducted schedulability experiments to study the
performances of different scheduling approaches.

I. INTRODUCTION

In order to improve the performance of increasingly
complex embedded applications, more and more embedded
system designers rely on modern System-on-a-Chip (SoC)
techniques that are able to integrate several special-purpose
processors into single physical systems. Conceivably, most
of these systems are heterogeneous, for example a system
may contain a homogeneous multi-core processor and one or
more accelerators such as Graphics Processing Units
(GPUs). However, the use of such accelerators may
introduce considerable suspension delays [1]. Tasks
interacting with I/O devices and waiting for shared resources
can also lead to such delays. A major issue in building such
heterogeneous real-time systems is how to make full use of
the available computing resources while ensuring real-time
requirements for the self-suspending tasks in the system.

In general, tasks can be scheduled by global, partitioned,
semi-partitioned, or clustered scheduling. Wherein, semi-
partitioned scheduling extends partitioning by allowing part
of tasks to migrate between partitions, while clustered
scheduling limits global scheduling by only allowing tasks
to migrate among processors within the same cluster.

Although suspension-oblivious analysis [2][3][4] that
simply incorporates suspension delays in normal execution
time requirements seems to be a computationally efficient
approach to deal with the schedulability problem for self-
suspending tasks, it can be quite pessimistic in case
suspension durations are long. On the other hand, it is an
intractable problem to find an optimal solution for
multiprocessor real-time scheduling under suspension-aware
analysis [5]. Prior work has proved that the feasibility
problem of scheduling periodic tasks with implicit deadlines
and at most one suspension per task in uniprocessors is NP-

hard [6]. Moreover, classical dynamic priority scheduling
algorithm such as Earliest-Deadline First (EDF) can cause
scheduling anomalies in self-suspending task systems.

In Fixed-Priority (FP) uniprocessor scheduling, Kim et
al. [7] developed the first two Worst-Case Response Time
(WCRT) analyses for tasks with only one suspension per
task. Lakshmanan et al. [8] proposed two slack enforcement
schemes for Sporadic Self-Suspending (SSS) tasks under
RM scheduling. However, these schemes may cause a lot of
run-time overheads through are considered to be efficient in
terms of schedulability. Most recently, Kim et al. [9]
proposed a set of heuristics for SSS tasks based on a
segment-fixed priority scheduling and DM scheduling.
Under multiprocessor scheduling, Liu and Anderson [10]
proposed the first Global FP (GFP) schedulability analysis
for Hard Real-Time (HRT) SSS tasks. So far as we know, no
prior work has been reported the issue of scheduling HRT
SSS tasks in semi-partitioned scheduled multiprocessors. In
this work, we develop a scheduling approach based on semi-
partitioning, without use any enforcement mechanism, and
present its associated WCRT analysis for FP-HRT-SSS
tasks, we also bring preliminary results to study the
performances of different scheduling approaches.

II. SEMI-PARTITIONED SCHEDULING FOR SSS TASKS

System model. n sporadic tasks Γ={τ1,τ2,…,τn} (ordered by
decreasing order of priority) are scheduled on m processors
p1, p2, …, pm. Each τi contains si (si ≥ 1) execution segments
with suspension between consecutive segments. Let τi,j
denote the jth segment of τi, and let BCi,j/WCi,j to be the
Best/Worst-Case Execution Time (B/WCET) of τi,j. We use
WCi=∑jWCi,j as the WCET of τi. When τi,j (1≤ j≤si−1)
finishes, it suspends for Gi,j[Gi,j,min, Gi,j,max] and then τi,j+1
becomes ready. The period or minimum time interval
between any two consecutive jobs of τi is Ti, and the relative
deadline is Di. The utilization of τi and τi,j are ui=WCi/Ti and
ui,j=WCi,j/Ti respectively. The system utilization is denoted
by U=Σiui. We also assume Di=Ti and si≤m for simplicity.
Scheduling. In the partitioning phase, tasks are split to
pieces and are assigned among processors. Each execution
segment of a task is considered to be a subtask, and all
subtasks of the same task are assigned to different
processors. Tasks are assigned one after another, and the
Worst-Fit-Decreasing (WF) heuristic is used for sub-task
(segment) assignment. In the scheduling phase, all subtasks
assigned to the same processor are scheduled by RMS. Also,

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

U

Sc
he

du
la

bl
e

Ra
tio

 s
s0

Dy_Sla_En
Sta_Sla_En
Kim_B
Kim_A
Semi_Par
Global

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

U

Sc
he

du
la

bl
e

Ra
tio

 s
s0

Dy_Sla_En
Sta_Sla_En
Kim_B
Kim_A
Semi_Par
Global

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

κ

Sc
he

du
la

bl
e

Ra
tio

s0

Dy_Sla_En
Sta_Sla_En
Kim_B
Kim_A
Semi_Par
Global

 (a) (b) (c)
Figure 1. Schedulable ratios in various scenarios where (a) κ = 0.8, ui[0.01, 0.2]; (b) κ = 0.5, ui[0.2, 0.5]; and (c) U = 2, ui[0.05, 0.3].

each sub-task is executed strictly conforming to its logical
order and without overlapping with other sub-tasks of the
same task.

According to this scheduling approach, each processor
schedules a set of non-self-suspending subtasks. Once a job
self-suspends, it will not resume on the same processor again
in the same period, thus will not introduce additional
suspension-related interference to lower priority subtasks
that are assigned on the same processor.
WCRT analysis. Let the WCRT of τi,j be ri,j, and let the
release time of τi,1 be φi, then the release time of τi,j can be
upper and lower bound by Eq.(1) and Eq.(2) respectively1

 UOi,j = φi + ∑k[0, j−1](ri,k +Gi,k,max) (1)

 LOi,j = φi + ∑k[0, j−1](BCi,k +Gi,k,min) (2)

For the constraints of space, we present without giving
the proof of the following theorem.
Theorem 1 The amount of computations that τi,j can execute
in a time interval L (L > WCi,j) is upper bounded by

 Ii,j = (1+ β/Ti)WCi,j + |min(WCi,j, β−β/TiTi−LOi,j−φi)|0 (3)

where β = max(0, L −Ti −φi +UOi,j+1−WCi,j −Gi,j,max) if 0 < j <
si, and β = max(0, L −Ti +ri−WCi,j) if j = si.

Let Γi,j be the set of subtasks that are assigned on the
processor where τi,j is assigned. The WCRT of τi,j can be
bounded by performing a fixed-point iteration of the RHS of
(4) starting with L=WCi,j as follows.
 ri,j = WCi,j +

 jiyhyih ,,,

Ih,y (4)

The WCRT of τi can be bounded by

 ri = ∑j[1, si−1](ri,j +Gi,j,max)+ ri,si (5)

III. PRELIMINARY RESULTS

We compare the proposed method (Semi_Par) with
prior work2 through schedulability experiments. The WFD
heuristic is used for task assignment under partitioned
scheduling. Task period is uniformly distributed from [100,
1000], ui is randomly chosen from [0.01, 0.5]. We assume

1 Specifically, we let ri,0 = 0, BCi,0 = WCi,0 = 0, and Gi,0,max = Gi,0,min = 0.
2 The WCRT analyses in [7] (Kim_A and Kim_B) and [8] (Dy_Sla_En and
Sta_Sla_En) are used for partitioned scheduling, and the schedulability analysis
in [10] (GFP) is used for global scheduling.

m=4, and each task contains only two execution segments
and one suspension in this preliminary experiments, i.e. si
=2 for all i. Both BCi,*/WCi,* and Gi,*,min/Gi,*,max are set to be
0.5. Let WCaver=WCi/(si−1), i.e., the average WCET of each
execution segment. We set λ=WCi,j/WCaver lies in [0.2, 1.8],
and κ = Gi,j/WCi,j lies in [0.05, 2]. Experimental results in
Fig.1 show that, schedulability under partitioned scheduling
and using dynamic slack enforcement scheme [8] performs
the best, and the proposed method outperforms GFP in [10].
It can also be observed that schedulability tends to perform
worse with increasing suspension durations.

IV. CONCLUSION

This work presents a semi-partitioned scheduling for
FP-HRT-SSS tasks, which avoids higher priority tasks from
introducing suspension-related schedulability losses to
lower priority tasks. Preliminary experimental results show
that the proposed method outperforms prior work under
GFP scheduling. However, partitioned scheduling with the
state-of-the-art analysis for uniprocessors seems to be more
preferable at present. The ongoing work involves (1)
introducing period enforcement machanisms to improve the
WCRT analysis, and (2) studing about the task assigment
algorithms to improve the scheduliablity.

REFERENCES

[1] G. Elliott, J. Anderson, “Globally scheduled real-time multiprocessor
systems with GPUs,” Journal of Real-Time Systems, vol. 48, no. 1,
pp. 34-74, 2012.

[2] J. Liu. Real-time systems. Prentice Hall, 2000
[3] B. Brandenburg, J. Anderson, “Optimality results for multiprocessor

real-time locking,” in RTSS pp. 49-60, 2010.
[4] B. Brandenburg, J. Anderson, “Real-time resource-sharing under

clustered scheduling:mutex, realer-writer, and k-exclusion locks,” in
EMSOFT, pp. 69-78, 2011.

[5] K. Lakshmanan, S. Kato, R. Rajkumar, “Open problems in
scheduling self-suspending tasks”, in RTSOPS, pp 12–13, 2010.

[6] F. Ridouard et al., “Negative results for scheduling independent hard
real-time tasks with self-suspensions,” in RTSS, pp. 1-10, 2004.

[7] I. Kim, K. Choi, S. Park, K. Kim, and M. Hong, “Real-time
scheduling of tasks that contain the external blocking intervals,” in
RTCSA, pp. 54-59, 1995.

[8] K. Lakshmanan and R. Rajkumar, “Scheduling self-suspending real-
time tasks with rate-monotonic priorities,” in RTAS, pp. 3-12, 2010.

[9] J. Kim, B. Andersson, D. Niz, and R. Rajkumar, “Segment-fixed
priority scheduling for self-suspending real-time tasks,” in RTSS, pp.
246-257, 2013.

[10] C. Liu, J. Anderson, “Suspension-aware analysis for hard real-time
multiprocessor scheduling,” in ECRTS, pp. 271-281, 2013.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

16

Mapping Real-Time Tasks onto Many-Core
Systems considering Message Flows

Matthias Becker∗, Kristian Sandström†, Moris Behnam∗, Thomas Nolte∗†
∗MRTC / Mälardalen University, Västerås, Sweden
{matthias.becker, moris.behnam, thomas.nolte}@mdh.se

†Industrial Software Systems / ABB Corporate Research, Västerås, Sweden
kristian.sandstrom@se.abb.com

Abstract—In this work we focus on the task mapping problem
for many-core real-time systems. The growing number of cores
connected by a Network-on-Chip (NoC) calls for sophisticated
mapping techniques to meet the growing demands of real-time
applications. Hardware should be used in an efficient way such
that unnecessary resource usage is avoided. Because of the NP−
hardness of the problem, heuristic and meta-heuristic techniques
are used to find good solutions. We further consider periodic
communication between tasks and we focus on a static mapping
solution.

I. INTRODUCTION

According to Moore’s Law, the number of transistors on
integrated circuits doubles every two years, this observation is
still true. Processor frequency on the other hand has reached
stagnation. Higher frequency calls for higher operating voltage
which leads to an increasing power density that in the end
is limited by laws of physics. Both observations lead the
industry to focus on implementing multiple instances of the
same element on the die to increase the computational power
and meet the demand of future applications. A single processor
will incorporate tenths and hundreds of cores in the upcoming
years. Traditional interconnection mediums like the shared bus
or the crossbar are not suitable for such a large number of
interacting cores, since they all access the same medium and
thus the individual cores start to block each other while trying
to access the bus. The NoC is instead used as an intercon-
nection medium between the individual cores [1]. Rather than
connecting all cores to the same bus, a network is reassembled
on the chip. The individual cores are located on so called tiles,
together with a local memory subsystem. The tiles themselves
are connected to a router, reassembling the building blocks of
the NoC. Communication channels between the routers form
the network, where different network topologies are possible.

The natural parallelism and the high computational power
at low energy consumption make many-core processors well
suited for signal processing applications in embedded systems
[2]. However the increasing number of computing elements
on one die leads to a number of new challenges especially for
embedded real-time systems. Since energy consumption is a
dominant factor for embedded systems, hardware should be
used in an energy efficient way while meeting all execution
deadlines of the individual tasks. In contrast to traditional
applications it becomes increasingly important to consider inter
task/core communication to fully exploit the available parallel
resources. With this in mind task mapping onto cores is one of
the main challenges. The bin packing problem can be reduced

to the basic task mapping problem, without communication
between tasks. Therefore even the basic task mapping problem
is NP − hard. Several heuristics and meta-heuristics have
been proposed. Two recent surveys on mapping techniques for
many-core systems [3], [4] give an overview of the current
state of the art. Some of the introduced algorithms target real-
time systems however most of them target general computing
systems. Mapping algorithms can be divided into two cate-
gories, static and dynamic. Static mapping finds a solution
at design time and the tasks stay at those cores during run
time, static mapping is used for most real-time applications.
In contrast, dynamic mapping allows tasks to be remapped
during runtime, e.g., for load balancing purposes. We consider
static mapping algorithms for the purpose of this work. Ali
et al. [5] have proposed a design time mapping algorithm
to map real-time streaming applications. Their algorithm uses
multiple heuristics to map the tasks by considering locality.
Communicating tasks are mapped close together and parallel
tasks are mapped on different cores to exploit parallelization.
In contrast our approach applies meta-heuristic techniques to
map the tasks.

II. ASSUMPTIONS AND SETUP

A. Hardware Assumptions

Similar to most recent hardware [6]–[8] we assume a 2D-
Mesh network structure connecting the n identical cores on
the many-core processor. The individual tiles each contain a
scratchpad memory besides the core. As most recent proces-
sors [6]–[8] we assume wormhole routing [9] on the NoC.
One of the main advantages compared to transaction based
routing mechanisms is the limited memory resource needed
on each router. The deadlock and livelock free XY-routing is
implemented to determine the path taken by the header flit. The
deterministic routing strategy makes it well suited for real-time
systems.

B. Task and Message Model

We consider a periodic task model with N tasks, where
each task τi can be scheduled on each core. We further define
Γ as the set of all tasks τi. Since we target static mapping
algorithms, tasks are not allowed to migrate between cores.
The tuple τi = {Ci, Ti} describes task τi, where Ci is the
task’s worst case execution time and Ti is the task period.

Tasks can communicate with each other by periodic mes-
sage passing. We model those messages as traffic flow fi,j
starting at task i and ending at task j. Each flow is represented

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

17

by the tuple fi,j = (Ti,j , Di,j , Si,j , Pi,j), where Ti,j is the
flow’s period and equal to the period Ti of the task initiating
the flow, Di,j the deadline, Si,j the number of bytes to be
transfered and Pi,j is the priority of the flow. F represents
the set of all traffic flows fi,j . Our initial work assumes
equal periods for communicating tasks, therefore the message
deadlines are, as the task deadlines, equal to the period.

III. THE TASK MAPPING PROBLEM

We first define suitable models for both the hardware
and the task set and we outline our approach followed by
a discussion on open challenges inherent in the mapping
problem.

A. Application and Architecture Model

We represent the application as a directed graph G(Γ, F).
Each vertex τi ∈ Γ represents one task. The traffic flow
between two tasks is modeled as an edge fi,j ∈ F , connecting
task τi and task τj . As a first approach we allow only one
predecessor but multiple successors.

The architecture is represented by a topology graph [10].
The topology graph is a directed graph P (N,L) where each
vertex ni ∈ N represents a node in the topology, e.g., a router,
a tile or an external memory. Connections between the vertexes
are represented by directed edges li,j ∈ L.

The main objective now is to find a mapping Ω : G → P
such that all traffic flows meet their deadlines.

B. Mapping and Scheduling

Mapping and scheduling are closely related. We have to
find a suitable task to core mapping and further a viable
scheduling policy on each core which allows all tasks and
message flows to meet their deadlines. As most related work
we assume preemptive fixed priority scheduling and rate
monotonic priority assignment [11] on each core.

Mapping of tasks onto cores can be done by heuristics
and meta-heuristics. Most related work in mapping of real-
time tasks applies heuristics to find a mapping. We plan to
apply meta-heuristic techniques since they are widely used to
map applications in general many-core systems as well as in
cloud computing. In particular we plan to apply particle swarm
optimization [12]. Our approach is similar to the one proposed
by Sahu et al. [13] but since meeting deadlines is the first
priority for us, we need to change the fitness function used
to grade the individual solutions found by the algorithm. A
first approach for a fitness function is the number of tasks
not meeting their deadline. Since execution times of tasks
depend on their predecessors to finish and the message to
arrive, we propose to use a holistic response time analysis. We
use the transaction based fixed priority analysis for distributed
real-time systems by Tindell and Clark [14] to compute the
response time of each task. The work by Tindell and Clark
assumes a shared bus, instead we apply the worst case traversal
time analysis for mesh based NoC by Shi and Burns [15].

C. Open Challenges

In our current work-in-progress we have identified several
open challenges that must be addressed in finding a good
solution to the mapping problem.

• As the current communication model assumes each mes-
sage to be sent at the beginning or end of a period, a more
realistic model is required to more accurately replicate the
messaging behavior of actual applications.

• Often several applications are mapped onto one many-
core processor. Those applications are often developed
by different teams and thus a way of guaranteeing and
provisioning resources to the individual applications is
useful.

• The restricted resources available in embedded systems
call for energy efficient execution. Additional to guaran-
teeing that all deadline are met the mapping should also
be optimized for a low energy consumption.

IV. CONCLUSION

In this paper we outline our approach to map real-time
tasks onto a many-core processor. We first define the problem
by supplying suitable models to represent the application
and hardware architecture, and we give a short outline of
the planned mapping strategy. We further identify challenges
related to our approach, that we plan to address with further
research.

ACKNOWLEDGMENT

The work presented in this paper is supported by the
Knowledge Foundation via the research project PREMISE.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] J. Bengtsson, “Models and methods for development of dsp applications
on manycore processors,” Ph.D. thesis, Halmstad University, 2009.

[3] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for network-on-chip design,” J. Syst. Archit., vol. 59, no. 1,
pp. 60–76, 2013.

[4] A. K. Singh, M. Shafique, A. Kumar and J. Henkel, “Mapping on
multi/many-core systems: survey of current and emerging trends,” in
50th DAC, pp. 1:1–1:10, 2013.

[5] H. Ali, L. M. Pinho and B. Åkesson, “Critical-path-first based allocation
of real-time streaming applications on 2d mesh-type multi-cores,” in
19th RTAS, 2013.

[6] Intel. Single chip cloud computer.
http://www.intel.com/content/www/us/en/research/intel-labs-single-
chip-cloud-computer.html, Retrieved February 2014.

[7] Tilera. Tile64 processor.
http://www.tilera.com/products/processors, Retrieved February 2014.

[8] Epiphany Architecture Reference, Adapteva Inc., Adapteva Inc. 1666
Massachusetts Ave, Suite 14 Lexington, MA 02420 USA, 2012.

[9] L. Ni and P. McKinley, “A survey of wormhole routing techniques in
direct networks,” IEEE Comp. J., vol. 26, no. 2, 1993.

[10] R. Marculescu, J. Hu and U. Ogras, “Key research problems in noc
design: a holistic perspective,” in 3rd CODES+ISSS, pp. 69–74, 2005.

[11] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, 1973.

[12] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings., 4th ICNN, pp. 1942–1948, 1995.

[13] P. Sahu, P. Venkatesh, S. Gollapalli and S. Chattopadhyay, “Application
mapping onto mesh structured network-on-chip using particle swarm
optimization,” in 2nd ISVLSI, pp. 335–336, 2011.

[14] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” in Microprocessing and Microprogramming,
vol. 40, pp. 117–134, 1994.

[15] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in 2nd NOCS, 2008.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

18

Comparing Heuristics and Linear Programming
Formulations for Scheduling of In-Tree Tasksets

Thomas Kothmayr, Jakob Hirscheider, Alfons Kemper
Chair for Database Systems,

Technische Universität München, Germany
{kothmayr, hirschei, kemper}@in.tum.de

Andreas Scholz, Jörg Heuer
Corporate Technology, Siemens AG

{andreas.as.scholz, joerg.heuer}@siemens.com

Abstract—Cheap but resource constrained platforms are
poised to assume duties in next generation automation systems -
the Internet of Things (IoT) is entering the real-time scene. For
highly distributed systems like these, service oriented architec-
tures (SOAs) are being increasingly adapted to raise the overall
level of flexibility and adaptability. Our approach encompasses a
SOA for hard real-time tasks in industrial automation, aimed at
IoT class devices. The feasibility of task assignments to machines
is verified through computation of a local schedule for the tasks
assigned to each device. This reintroduces the need for efficient
non-preemptive single machine scheduling. In this paper, we
evaluate the efficiency of five heuristics and two linear program
formulations for scheduling task sets with release times, deadlines
and in-tree precedence constraints.

I. INTRODUCTION

Our vision takes the SOA approach to automation [1] and
aims to make resource constrained IoT class devices full
members of a hard real-time SOA. We chose a top-down
approach to this problem, focusing on the planing and data-
flow aspects instead of ontologies and network protocols. In
our system, automation tasks are defined as cyclic workflows
of distinct subtasks with precedence constraints and end-to-
end deadlines. Individual tasks are assigned to machines in
a real-time network by an engineer or an automatic planning
component. Local constraints (task release times and dead-
lines) are derived from the underlying network configuration,
dependencies of the tasks and the global end-to-end deadline.
The feasibility of the assignment is verified by scheduling the
tasks on each machine according to their new local constraints.
At this early stage, our current work focused on efficient local
scheduling as a means to verify a manual task assignment.

II. FORMAL PROBLEM DESCRIPTION

The scheduling problem analyzed in this paper is as follows:
Find a feasible schedule for a set of jobs J = {j1, j2, . . . , jn}
with a fixed integer processing time wceti on a single, non-
preemptive machine. Additional constraints are: Each job ji
has either exactly one successor jk, written as ji ≺ jk, or no
successor. A job may be annotated with a deadline di and a
release time time ri. Since the generated schedule is expected
to be executed cyclically, a maximum schedule length D is
defined. It is enforced by the root element Ω with wcetΩ =
0, dΩ = D and rΩ = D. If ∅ ≺ j set Ω ≺ j, thus transforming
the structure of J ∩Ω into a single in-tree. If no values for ri or
di are given, 0 and D are assigned by default. The objective
is minimizing the number of tardy jobs ΣUj . We are only

interested in finding a schedule that has no tardy jobs at all.
In the traditional notation of scheduling theory we can express
our problem as 1|rj , in− tree|ΣUj .

III. RELATED WORK

Chretienne [2] minimizes the makespan of in-tree task
sets with stochastic processing times in a distributed memory
environment under the assumption that the processing times
are greater than or equal to the data communication times
between the jobs. Liu [3] applies heuristics in a branch-and-
bound approach to minimize maximum lateness under general
precedence constraints and release dates. We use his BLOCK
heuristic on our problem set. For minimizing the maximum
tardiness, research based on Schrage’s Heuristic has proven
to be very efficient. Hall and Shmoys [4] improved on Pott’s
original work which employed Schrage’s Heuristic.

IV. LINEAR PROGRAMMING SOLUTIONS

This paper is using the mixed integer programming (MIP)
formulations given by Keha et al. [5]. They compare four
different approaches: Start time and completion time variables
(F1), time index variables (F2), linear ordering variables (F3),
and positional and assignment variables (F4). Because we
are looking for feasible instead of optimal solutions we only
adapted F1 and F4. These generate the highest amount of
feasible solutions in a given amount of time [5]. Due to space
constraints, we refer the reader to the original paper for the
MIP formulations.

V. HEURISTIC APPROACHES

Heuristics pose an attractive alternative for finding feasible
solutions. We compare earliest release time time first (ERF),
earliest deadline first (EDF), the BLOCK heuristic [3] and
Potts’ algorithm [4].

Earliest release time time first: The ERF heuristic simply
sorts all jobs in J ∪ Ω by ascending order of their release
time time. If two jobs have the same release time, then their
deadlines are used as a tiebreaker. Precedence constraints
should be mapped to modified release times by applying:
∀ji, jkεJ ∪ Ω : ji ≺ jk =⇒ r′k = max{rk, ri + wceti}

Earliest deadline first: In contrast to the ERF heuristic
we cannot simply sort jobs by their deadline because that
could lead to violation of precedence constraints. EDF instead
chooses the leaf of the tree with the earliest deadline jd and
the leaf with the earliest release time jr. If jr can be scheduled

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

19

before jd without conflict, i.e. rr + wcetr ≤ rd, schedule jr
first, otherwise jd. The scheduled leaf is then removed from
the tree and if all predecessors of a job have been scheduled
that job is then added to the set of available leaves. Effective
deadlines for each job should be computed beforehand as:
∀ji, jkεJ ∪ Ω : ji ≺ jk =⇒ d′i = min{di, dk − wcetk}

BLOCK heuristic: The BLOCK heuristic [3] first sets up
a schedule by ERF and divides it into blocks of jobs which
are executed with no time delay between them. If the schedule
is invalid, the heuristic adjusts the block by scheduling jobs
with higher deadline towards the end of the block.

Potts’ algorithm: Potts’ algorithm [4] is setup by sorting
tasks by their deadlines in topological order. If the schedule is
invalid, it analyzes the critical sequences of the schedule, i.e.
blocks of jobs where at least one job has an invalid deadline
(= critical job jcrit). An interference job jint is a job within a
critical sequence that is scheduled before jcrit but has a higher
deadline than dcrit. rint < rcrit must hold, since jint would
otherwise not have been scheduled this early. Interference jobs
are thus scheduled after their corresponding critical jobs to
reduce the amount of tardy jobs.

VI. EVALUATION

The evaluation was performed on over 40 000 randomly
generated scheduling problems with 16 to 128 jobs. The
amount of deadline and release time constraints per workflow
is uniformly distributed between one and |J |. Similarly,
the tightness factor (Σwceti/D) was uniformly distributed
between one (maximum tightness) and zero. Since the goal
of the evaluation is to evaluate the efficiency of a scheduling
algorithm, i.e. for how many of the feasible workflows it
can find a valid schedule within a given CPU time budget,
infeasible workflows have to be discarded first. As no optimal
algorithm for the non-preemptive case exists we employ the
preemptive least laxity first algorithm (LLF) to filter out
definitely unschedulable workflows. LLF has been shown to
be optimal for the preemptive single machine case [6]. Any
workflow that is not schedulable in the preemptive case will
remain so in the non-preemptive case. LLF discarded about
half of the generated workflows as unsolvable, the remaining
20 503 jobs where then scheduled with each of the methods
described in Sections IV and V and with simulated annealing
(SA). For only two of these jobs no solution could be found
with any of the employed methods, meaning that we have
20 501 jobs which comprise our set of feasible test cases.

We use Gurobi1 in version 5.5 for solving the LP formu-
lations for feasibility, not optimality. The simulated annealing
portion is based on the Opt4J2 framework using a simple linear
temperature function and ran for 250 000 iterations. The test
machines are equipped with an Intel Q6700 CPU at 2.66GHz
and 8 gigabytes of RAM.

The time budget for each algorithm in Figure 1 was
10 seconds. The MIP approach is outperformed by all the
heuristics, ruling them out for productive use. In the case

1http://www.gurobi.com/
2http://opt4j.sourceforge.net/

16 jobs 48 jobs 88 jobs 128 jobs
70%

80%

90%

100%

32 jobs 64 jobs

EDF BLOCK Potts’ ERF
SA LP F1 LP F4

Fig. 1: Percent of test cases solvable by each method

of LP F4 the efficiency sinks to 10% for 128 jobs. ERF
naturally also struggles to achieve a high efficiency because
it does not take deadlines into account. However, it is more
stable in the number of jobs. Simulated annealing performs
well for small problem instances but looses efficiency for
larger workflows because the state space it has to explore
is growing exponentially. EDF, BLOCK and Potts’ algorithm
all perform well with over 95% efficiency on average. Potts’
algorithm consistently performs at near 100% efficiency, there
were only 18 out of 20 501 test cases where it did not find
a solution, which equals an overall efficiency of over 99.9%.
The combination of Potts’ Algorithm, BLOCK and EDF finds
a solution for all but 8 test cases. It is worth noting that ERF,
EDF, BLOCK and Potts’ algorithm all run in polynomial time
and, on average, need less than one millisecond to generate a
solution.

VII. CONCLUSION AND FUTURE WORK

This paper shows that heuristics, especially Potts’ algorithm,
are able to solve our scheduling problem within a CPU time
budget of 10s in nearly 100% of our test cases. This makes
them a good fit for the scheduling component in our real-
time SOA. MIP formulations are not suited to finding feasible
solutions fast, but could be used to find optimal solutions in
a later, separate step. Future work will implement the other
building blocks, such as deriving local constraints from end-
to-end deadlines and evaluate the concept in simulation as well
as in real world testbeds.

REFERENCES

[1] L. De Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and
D. Savio, “SOCRADES: A Web Service Based Shop Floor Integration
Infrastructure,” in The Internet of Things, ser. LNCS. Springer Berlin
Heidelberg, 2008, vol. 4952.

[2] P. Chretienne, “A polynomial algorithm to optimally schedule tasks
on a virtual distributed system under tree-like precedence constraints,”
European Journal of Operational Research, vol. 43, 1989.

[3] Z. Liu, “Single machine scheduling to minimize maximum lateness sub-
ject to release dates and precedence constraints,” Computers & Operations
Research, vol. 37, no. 9, 2010.

[4] L. A. Hall and D. B. Shmoys, “Jackson’s rule for single-machine
scheduling: making a good heuristic better,” Mathematics of Operations
Research, vol. 17, no. 1, 1992.

[5] J. W. F. Ahmet B. Keha, Ketan Khowala, “Mixed integer programming
formulations for single machine scheduling problems,” Computers &
Industrial Engineering, vol. 56, 2009.

[6] A. K. Mok and M. L. Dertouzos, “Multiprocessor scheduling in a hard
real-time environment,” in Seventh Texas Conf. Comput. Syst., 1978.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

20

Mathematical Considerations of Linear Real-Time

Logic Verification

Stefan Andrei

Department of Computer Science

Lamar University

Beaumont, TX 77710, U.S.A.

stefan.andrei@lamar.edu

Albert M. K. Cheng

Department of Computer Science

University of Houston

Houston, TX 77004, U.S.A.

cheng@cs.uh.edu

Mozahid Haque

Department of Mathematics

University of Houston

Houston, TX 77004, U.S.A.

mahaque@uh.edu

Abstract—In [1], Cheng and Andrei introduced an extension

of Real-Time Logic verification to Linear Real-Time Logic,

henceforth LRTL. LRTL allows for dependencies beyond two

events, and [1] introduces a reduction to a nonlinear matrix form

for the specification and verification problem. In [3], we

provided an alternative method using QR decomposition through

Householder reflections. In this paper, we will introduce a block

matrix decomposition through permutation matrices and

clustering to exploit any sparseness when possible. Then, a

simple mechanism of generating ratios between elements will be

extended to generate a well-defined initial vector, if not the

solution. This initial vector will be implemented in a select few
iterative methods to resolve the null space when possible.

Keywords—Algorithms, Linear Real-Time Logic, LRTL, Real-

Time Logic, RTL, and Verification.

I. INTRODUCTION

In RTL, a set of safety specifications and safety assertions,
SP and SA, respectively, dictate the constraints of a given
system. Logically, we wish to show the satisfiability of SP →
SA indirectly by showing the unsatisfiability of the logically
equivalent form ~(SP Ʌ ~SA), where ~SA means the negation
of SA. Path RTL is a proper subclass of RTL defined in [4]
and gives us a form for timing constraints in the form of
inequalities that are expressed as disjunction of inequalities.

For example, the expression ∀i @(e1, i) ̶ @(e2, i) ≤ k has the
meaning that the difference between the time of the i-th
occurrence of event e1 and the time of the i-th occurrence of
event e2 is at most k with i and k both positive integers.

With all the constraints given in inequality form, we are
then able to express this in conjunctive normal form resulting
in a set of inequalities which can be further compressed to the
simplified matrix form from linear algebra Ax ≤ b. This gives
us Linear Real-Time Logic, LRTL. For further reading, a full
and better articulated derivation can be found in [1] and [2].

In [1] and [2], the solution method involved finding the null
space using the well-known Gaussian elimination method with
partial pivoting. In [3], the method introduced was QR
decomposition with Householder matrices for increased
stability at the price of an increased flop count. In this paper,
we continue seeking further efficient methods with regards to
stability and flop count by introducing the notion of a partial
cluster and ratio of elements.

II. PRELIMINARIES

A. Partial Cluster

Following the language of [5], we introduce the notion of a
partial cluster in matrices. Often with sparse matrices (contains
lots of zero elements in a matrix), we are able to cluster the
non-zero elements to further simplify and reduce the work of
any given solution method with permutation matrices. Recall,
multiplication by a permutation matrix on the right of some
matrix A will rearrange the columns of a matrix while
multiplication on the left will rearrange the rows. In [5], the
clustering resulted in a matrix of this form:

.

In a similar fashion, the notion of a partial cluster is of this
form:

.

The difference between the two is a shared column of
potentially non-zero entries - a shared row is similar. Note that
the size of these matrices is not at issue; the structure of the
sparseness is the purpose of the toy matrices.

B. Ratio of Elements

Consider the following:

.

*Supported in part by the US National Science Foundation under Awards

No. 0720856, No. 1219082, and No. 1154606.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

21

We wish to find x1, x2, and x3 such that Ax = 0. It is simple to
generate the solutions simply from the given matrix elements.

 First, check whether elements c and d are of the same sign
or not. If they are, simply let x2 = (-d/c)x3, negate for opposite
signs. This establishes a ratio between x2 and x3. Similarly,
check sign of a and b, and if same, easily generate the other
ratio x1 = (-b/a) x2ˊ. Then, just find the least common multiple
(lcm) of the coefficients of the common column (or common
row if that form) to equate the common shared element.

 Notice the special nature of the toy example. It is indeed in
the form of a partial cluster! The extension of this ratio schema
becomes apparent when applying to matrices of larger sizes in
partial cluster form. Also, note that we may have several partial
clustering in a matrix. It need not be two clusters. Only the
sparse structure is important after using the permutation
matrices. The adjustments of the x vector correspond to
column exchanges, i.e., multiplication of matrix A by a
permutation matrix on the right.

 This has another implication related back to a block
decomposition of a given matrix. We need not solve for the
null space of a matrix as a whole. Instead, we can simply solve
for the null space of the clusters and equate ratios of the shared
column (or row) element using a lcm method. This would
reduce the flop count by applying any of the matrix methods
introduced in [1], [2], or [3] to the submatrices.

C. Givens Rotation QR Decomposition

Givens rotation involves rotation matrices with calculation

of c and s values based on elements of the column vector we

wish to zero. The advantage is its selective zeroing method.

D. Additional Principles

Some additional concepts we cannot fully explicate here

will just be briefly mentioned here; details can be found in [6].

A Jordan normal form consists of a decomposition consisting

of its generalized eigenvalues in Jordan block form. The

Krylov subspace is the span of a subspace multiplied by

powers of a matrix A. For matrix A, ind(A) is the smallest

nonnegative integer k such that rank(Ak) = rank(Ak+1).

III. SOLUTION METHOD PROPOSALS

A. Iterative Procedures

We will examine a few iterative methods when the option

is available. Most of the methods require ind(A) = 1 for the

largest Jordan block and use a Krylov subspace method.

However, the vast majority of iterative methods revolve

around nonsingular matrices whereas our matrices are

singular, i.e., non-invertible matrices. The possibility of a null

basis with more than one vector also hampers the generation

of good iterative procedures since we start with one initial

vector when there may be many.

B. Reduction to Proposed Method

Our proposed method will implement the two notions

given in II. For a given matrix Ai x j
 and the problem Ax = 0,

1. (Sparsity) When inputting elements of matrix A, keep a

count of nonzero elements of A corresponding to element

xj and a count of corresponding rows in A with only two

or three unknowns with the rest of the elements in the

rows being zero.

2. (Cluster) Rearrange the matrix to resemble the partial
cluster form with permutation matrices and update

elements of x accordingly, resulting in submatrices from

block decomposition. The count from step 1 is preserved.

3. (Ratios) Resolve the unknowns for any of the rows with

two unknowns from step 1 in each submatrix in a fashion

similar to the toy example in II.B. if there are enough two

element rows w.r.t. unknowns and equations.

4. (Other general methods) For the unresolved elements of

the submatrices, we may apply a mix of selective

Gaussian elimination and a combination of 3. for

particularly sparse submatrices, the QR decomposition

through Householder matrices for particularly dense (less
zeroes) submatrices from [3], a QR decomposition

through Givens rotation for particularly sparse

submatrices, or an iterative method as a last resort.

5. (LCM) Recombine the resolved xi values corresponding

to the various submatrices by finding the least common

multiple of the common xi’s of the shared columns (or

rows) due to clustering.

There are other stop procedures involving a positivity

condition along with other notions due to various subtleties in

the reduction process of [1]. Sometimes, step 3 may be

unnecessary. Givens rotation method may be implemented in
general with sparse matrices with advantages being less flops

and parallelization as opposed to Householder method [7]. All

these enhancements are being explored and will be reported

together with experimental results in a future paper.

REFERENCES

[1] Andrei, S. and Cheng, A. M. K. 2007. Verifying Linear Real-Time

Logic Specifications. 28
th
 IEEE International Real-Time Systems

Symposium (RTSS), Tuscon, AZ, 2007.

[2] Andrei, S. and Cheng, A. M. K. 2009. Efficient Verification and

Optimization of Real-Time Logic Specified Systems. IEEE Transactions

on Computers, Vol. 58, No. 12, pp. 1640-1653.

[3] Andrei, S., Cheng, A. M. K., and Haque, M. 2013. Optimizing the

Linear Real-Time Logic Verifier. 19
th
 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS) WiP Session,
Philadelphia, PA.

[4] Jahanian, F. and Mok, A.K.. A Graph-theoretic Approach for Timing

Analysis and Its Implementation. IEEE Transactions on Computers, Vol.
C-36, No. 8, pp. 961-975, August 1987.

[5] Andrei, S. and Cheng, A. M. K. Decomposition-based Verification of

Linear Real-Time Systems Specifications, 2nd Workshop on
Compositional Theory and Technology for Real-Time Embedded

Systems (CRTS), Washington, D.C., USA (Co-located with IEEE RTSS
2009), December 1, 2009.

[6] Simoncini, V. 1996. An Iterative Procedure for Computing the Null

Basis. Iterative Methods in Linear Algebra, II, IMACS Series in
Computational and Applied Mathematics, Vol. 3, pp. 413-423.

[7] Golub, G. H. and Van Loan, C. F. Matrix Computations, 3
rd

 ed. Johns

Hopkins University Press, Baltimore, MD, 1996.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

22

Towards a communication-aware mapping of software
components in multi-core embedded real-time systems

Hamid Reza Faragardi, Kristian Sandström, Björn Lisper, Thomas Nolte
MRTC/Mälardalen University, P.O. Box 883, SE-721 23 Västerås, Sweden

{hamid.faragardi, bjorn.lisper, thomas.nolte}@mdh.se, kristian.sandstrom@se.abb.com

Abstract—Several studies have been done to investigate ef-
ficient mapping of software components onto a distributed
embedded real-time system. However, most of these studies do
not consider a distributed system where each node can be a
multi-core processor. Mapping becomes even more complicated
when precedence constraints between software components are
taken into account. In this paper, the ongoing work on addressing
the challenge of achieving a resource efficient and predictable
mapping of software components onto a distributed multi-core
system is discussed. Our goal is to minimize inter-components’
communication cost besides meeting timing and precedence
constraints between the components. The solution should solve
two sub-problems; assign a set of software components onto a
task set, and assign the created task set to (the cores of) the
processing nodes. In this paper, we discuss some challenges and
potential solutions to design a communication-efficient system.

Keywords-mapping; multi-core; distributed real-time systems.

I. INTRODUCTION

Nowadays, component based software engineering is more
commonly used in design and implementation of modern
embedded systems. In component based design, each Software
Component (SC) is corresponding to one particular function
of the system, and the application is fulfilled via composition
and corporation among different SCs. This design significantly
simplifies both development and maintenance of systems, and
it typically also increases predictability. However, mapping
and scheduling of component-based software applications is
more challenging when it comes to achieving a resource
efficient solution compared to the traditional resource opti-
mization engineering of monolithic software. The reason for
this is inherent in the complex nature of modern embedded
hardware, which often is both heterogeneous and parallel in
nature. When running a component-based application on a
distributed system in which each node could be a multi-core
processor, then this problem becomes even more complicated.

In this work-in-progress paper, we address the problem of
achieving a resource efficient design of a component-based
software application being mapped onto a heterogeneous dis-
tributed embedded hardware. We concentrate on minimizing
communication cost as a prominent performance factor in such
systems because, increasing the inter-components’ communi-
cation cost does not only aggravate the overall performance
but it can also reduce schedulability of the system. The
problem can be divided into two sub-problems; mapping and
scheduling. In the mapping process a set of components are
assigned to a task set, and the generated task set should then be
scheduled on a distributed multi-core system. The scheduling
phase should deal with the assignment of tasks to the cores
of the processing nodes. The scheduling of tasks is partially

resolved off-line, in the sense that one task will always execute
on the same core, i.e., tasks are not migrating across cores.

Although a balanced allocation of the task set onto the
cores (i.e., load balancing) usually results in an acceptable
performance, such a solution may increase the overall com-
munication overhead when the components (and therefore,
also tasks) are able to communicate with each other. When
designing a communication-aware solution the consolidation
approach, where the tasks are consolidated on a minimum
number of nodes, could be more effective because the cost
of transferring data over the network is dramatically higher
than the communication cost on the same core. Generally, the
cost of communication between a pair of SCs depends on
their location that will determine resource related costs, such
as communication delays on the network, memory latencies to
communicate between the cores of a same node, interference
patterns etc. On the other hand, the proposed solution must
be able to, in addition to minimizing communication cost,
satisfy all system and application constraints such as deadlines,
precedence and memory limitation.

II. RELATED WORK

Most previous works related to this paper can be categorized
into two groups. In the first group, allocation of hard real-time
tasks in distributed systems in the presence of precedence
constraints has been investigated [1]. However, often only
considering single core processors or assuming that the task
set is created in advance and thus the mapping of software
components to a task set is not covered. Some works also
cover both the mapping and scheduling phases for single-
core systems such as [2], [3]. In the second group, multi-core
scheduling is taken into account however, distributed multi-
core systems has not been considered [4], [5].

To the best of our knowledge, the mapping of software
components onto a distributed multi-core system with the goal
of achieving a resource efficient solution by minimizing the
overall communication cost has not yet been carefully studied.
This is the focus of this paper.

III. PROBLEM DESCRIPTION

We consider a set of strictly periodic SCs which could
be concurrently executed on different cores. This set of SCs
should be allocated among a set of heterogeneous process-
ing nodes of a distributed system. The nodes are connected
together through a CAN bus. Because of its low cost and
high reliability, the CAN bus is a quite popular solution
for embedded systems [1]. Each node is assumed to be a
homogenous multi-core system in which all the cores have

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

23

the same processing power. In addition, a set of independent
transactions represent some end to end latency requirements
between a sequence of SCs. In fact, each transaction is
represented by a directed acyclic graph in which each node
is a SC and the links show data dependency between the
SCs. This dependency implies that to complete the successor,
fresh data generated by the predecessor should have arrived
before the release time of the successor. The communication
between the SCs can be performed based on non-blocking
read/write semantics. Nevertheless, triggering is not included
in the scope of this paper, in the sense that a successor can
start its execution even with obsolete data however, in this
case we should wait for the next invocation of the successor
in order to fulfill the transaction mission. Each transaction has
a relative end to end deadline before which the execution of
the transaction must finish, i.e., all SCs of the transaction must
finish their execution before this deadline. The transaction
deadline is corresponding to the mission of that transaction.
For example, the mission could be the braking system in a car
where the whole process should be done before an end to end
deadline.

We assume that the transactions are sporadic in nature,
and thereby in the worst-case they follow a periodic behavior
with a known minimum inter-arrival time. However, the inter-
arrival time between two subsequent instances of a transaction
could be larger than its deadline. A conservative modeling
is to assume that the period of the transaction is equal to
its relative deadline. We also assume that a pair of SCs
may transfer data in between each other, while there is not
any precedence for their execution order. To represent this
an undirected graph called Software Component Interaction
Graph (SCIG) is employed. Each node of the SCIG represents
a SC and the arcs between them show data communication.
Furthermore, there is a label on each arc that indicates the rate
of data that should be transferred between the SCs.

The communication cost to transfer data between a pair of
SCs depends both on the mapping of SCs onto the cores and
the final task set structure. It can be computed as follows. If
the SCs are located i) in the same task, then we consider cost
α for transferring each unit of data, or ii) in different tasks
on the same core, then the cost of communication is β, or iii)
in different cores of the same processor, then θ is the cost of
communication, or iv) in different processing nodes, then γ is
the cost of communication. We assume that α, β , θ, and γ
are sorted in ascending order in the sense that γ is the largest
value while α is the smallest.

The main goals of this paper are 1) meeting all end to end
deadlines of the transactions, 2) minimizing the overall SCs’
communication cost.

IV. WORK-IN-PROGRESS

In our current work-in-progress we are applying different
heuristic techniques to find good mapping strategies for the
components of the applications. In real software applications,
there are additional restrictions which impose extra complexity
to the problem, and thus the problem can not be solved by the
pure consolidation approach. Three of these constraints are:
A) Due to heterogeneous hardware and the OS architecture of
the processing nodes a SC could be restricted to run only on

a subset of nodes, e.g., due to availability of specific I/O and
resources. B) Some SCs should not run on the same core, e.g.,
because of fault tolerance considerations. C) Some SCs should
run on the same node, e.g., for efficiency reasons inherent
in the SCs implementation and nature. In the following, a
potential candidate solution for the problem is intuitively
presented following three steps:

1: In the first step, a simple task set is created where each
task contains one transaction. Subsequently, an efficient
heuristic is applied (for example, genetic algorithm) to
find an communication-aware allocation of the created
task set onto the cores.

2: In the second step we try to be more intelligent in the
way that the task set generated in the first step is refined
by merging some of the SCs located on the same core
that communicate with each other onto the same task. To
avoid extra utilization overhead only the tasks with the
same period are allowed to merge into one task.

3: In the last step, the tasks with different periods com-
municating with each other which are allocated onto
the same core are allowed to merge. Merging the tasks
with different periods may increase the CPU utilization
as the lower period of the two tasks has to be selected
for the new task. Therefore, it forms a tradeoff between
the task’s utilization and the overall communication cost.
To handle this case we translate the communication to
CPU utilization and then the tasks will be merged if the
utilization of the new task set on that core decreases.

The interesting point about the above steps is that step
one independently can be considered as a solution for the
problem, and step one and two can be considered as another
solution and finally all three steps together can be considered
as the third solution. We intend to develop these three solutions
and compare them against each other. It is expected that
the third solution which is also a more complete solution
outperforms the other solutions. However, it may have some
drawbacks, e.g., inherent in the complexity of combining the
solutions. Another interesting idea is to get a feed-back from
the second and third step to re-execute the first step with a
better efficiency. For this purpose, the evolutionary algorithm
mentioned in the first step invokes the second or third solution
before evaluation of each individual, and thereby, the feedback
results generated by the second or third solution are used to
guide the search towards a global optimum.

REFERENCES

[1] Y. Yang, “Software synthesis for distributed embedded systems,” Ph.D.
dissertation, Ph. D. thesis/Yang Yang, 2012.

[2] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, and A. Sangiovanni-
Vincentelli, “Optimization of task allocation and priority assignment in
hard real-time distributed systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 11, no. 4, p. 85.

[3] E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, and S. Ger-
ard, “An optimization approach for the synthesis of autosar architectures,”
in IEEE ETFA, 2013, pp. 1–10.

[4] H. R. Faragardi, B. Lisper, and T. Nolte, “Towards a communication-
efficient mapping of autosar runnables on multi-cores,” in IEEE ETFA,
2013, pp. 1–5.

[5] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-
time scheduling for generalized parallel task models,” Real-Time Systems,
vol. 49, no. 4, pp. 404–435, 2013.

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

24

RTAS 2014: 20th IEEE Real-Time and Embedded Technology and Applications Symposium Work-in-Progress Session

List of Authors

Andrei, Stefan, 21

Becker, Matthias, 17
Behnam, Moris, 17
Bradatsch, Christian, 9

Cheng, Albert M. K., 11, 21
Claudel, Christian, 1
Cox, Nathan C., 3

Faragardi, Hamid Reza, 23

Gowda, Kiriti Nagesh, 13

Haque, Mozahid, 21
Healy, Christopher A., 3
Herschede, Thomas E., 3
Heuer, Jörg, 19
Hirscheider, Jakob, 19

Jiang, Yu, 11

Kemper, Alfons, 19
Kluge, Florian, 9

Kothmayr, Thomas, 19

Lei, Hang, 15
Liao, Yong, 15
Lisper, Björn, 23
Luchian, Darius B., 3

Nolte, Thomas, 17, 23

Rabee, Furkan, 15
Ramaprasad, Harini, 13

Sandström, Kristian, 17, 23
Scholz, Andreas, 19
Shaqura, Mohammad, 1

Ungerer, Theo, 9

Völp, Marcus, 7

Yang, Maolin, 15

Zou, Xingliang Zou, 11
Zuepke, Alexander, 5

25

	Preamble
	Cover
	Message from the Chair
	Program Committee
	Technical Program

	Technical Program
	A hybrid system approach to air data estimation in unmanned aerial vehicles
	A Refined Approach for Stochastic Timing Analysis
	Thread Migration for Mixed-Criticality Systems
	What if we would degrade LO tasks in mixed-criticality systems?
	Synchronous Execution of a Parallelised Interrupt Handler
	On the Schedulability of P-FRP Tasks
	Concurrent soft-real-time execution on GPUs
	Scheduling Hard Real-Time Self-Suspending Tasks In Multiprocessor Systems
	Mapping Real-Time Tasks onto Many-Core Systems considering Message Flows
	Comparison of Heuristics and Linear Programming Formulations for Scheduling of In-Tree Tasksets
	Mathematical Considerations of Linear Real-Time Logic Verification
	Towards a communication-aware mapping of software components in multi-core embedded real-time systems
	List of Authors

