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Message from the Chairs

Welcome to Madrid, Spain, and to OSPERT’ 14, the 10 annual workshop on Operating Systems Platforms
for Embedded Real-Time Applications. It has been a pleasure and honor to serve as the chairs for OSPERT’s
10-year anniversary, and we invite you to celebrate with us the first decade of this unique venue for exchanging
ideas about systems issues related to real-time and embedded systems. OSPERT’s key strengths have always
been the participants, representing a healthy mix of academics and industry experts, and the many interesting
discussions facilitated by OSPERT’s interactive format, which are two traditions that we aim to continue.

Paolo Gai will open the workshop with his keynote highlighting the challenges and opportunities in
developing, establishing, and maintaining commercially viable open-source RTOS solutions for automotive
systems. As founder and CEO of Evidence Srl, a successful spinoff of the well-known ReTiS Lab at Scuola
Superiore Sant’ Anna in Pisa, Paolo is in a unique position to discuss this topic and we are delighted that he
volunteered to share his experience and perspective.

OSPERT this year accepted eight of nine peer-reviewed papers, which cluster around two central topics.
First, OSPERT’s core focus area—RTOS design and implementation—is well represented, with contributions
ranging from a hardware-based RTOS, over fault tolerance in a multi-kernel OS, to reflections on API design,
efficient kernel interfaces, and a report on an educational RTOS for LEGO Mindstorm devices. Second,
reflecting the growing importance of efficiently supporting safety-critical workloads and workloads of mixed
criticality on shared hardware platforms, this year’s program features two timely reports on system design for
safety-critical workloads in the avionics and automotive domains. The program is completed by an invited
paper reporting on the progress of MC?, an open-source platform for applied systems research on hosting
mixed-criticality workloads on multicore platforms.

OSPERT 2014 would not have been possible without the support of many people. The first thanks are
due to Gerhard Fohler and the ECRTS steering committee for entrusting us with organizing OSPERT’ 14,
and for their continued support of the workshop. We would also like to thank the program committee for
volunteering their time and effort to provide useful feedback to the authors, and of course all the authors for
their contributions and hard work.

On the occasion of OSPERT’s 10-year anniversary, we extend our special thanks to the chairs of prior
editions of the workshop who shaped OSPERT and let it grow into the successful event that it is today.

Last, but not least, we thank you, the audience, for actively contributing—through your stimulating
questions and lively interest—to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Bjorn B. Brandenburg Shinpei Kato
Max Planck Institute for Software Systems Nagoya University
Kaiserslautern, Germany Nagoya, Japan

Program Committee

James H. Anderson, University of North Carolina at Chapel Hill, USA

Andrea Bastoni, SYSGO AG, Germany

Sebastian Fischmeister, University of Waterloo, Canada

Gernot Heiser, NICTA and University of New South Wales, Australia

Robert Kaiser, Hochschule RheinMain University of Applied Sciences, Germany
Daniel Lohmann, Friedrich-Alexander Universitit Erlangen-Niirnberg, Germany
Wolfgang Mauerer, Siemens AG, Germany

Gabriel Parmer, George Washington University, USA

Michael Roitzsch, Technische Universitdiit Dresden, Germany
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Keynote Talk

Open-source and Real-time in Automotive Systems:
(not only) Linux, (not only) AUTOSAR

Paolo Gai
Evidence Srl

The talk will consider the current status of open-source and real-time in automotive systems, starting from
the history of the open-source real-time OS ERIKA Enterprise. The current trends will also be considered
including the usage of open-source Linux systems and the integration and safety qualification issues on
modern automotive multicores.

Dr. Paolo Gai, CEO of Evidence Srl, graduated (cum laude) in Computer Engineering at University of Pisa
in 2000 with a graduation thesis developed at the ReTiS Laboratory of the Scuola Superiore SantAnna on the
development of the modular real-time kernel SHaRK. He obtained the PhD from Scuola Superiore Sant’ Anna
in 2004. Since 2000, he founded the ERIKA Enterprise project, an open-source RTOS which recently reached
the OSEK/VDX certification, and which is currently used by various industries and universities. Since
2002 he is CEO and founder of Evidence Srl, a SME working on operating systems and code generation
for Linux- and ERIKA-based industrial products in the automotive and white goods market. His research
interests include development of hard real-time architectures for embedded control systems, multi-processor
systems, object-oriented programming, real-time operating systems, scheduling algorithms and multimedia
applications.
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Abstract—Many different types of high-speed networks are
employed in industrial systems, which affect real-time processing,
such as motor control of industrial controllers, because of the
increased CPU load due to network protocol processing. In this
study, we propose a system-on-a-chip (SoC) architecture for
industrial controllers to reduce the network protocol processing
load. The proposed architecture adopts a RTOS in hardware
in order to accelerate RTOS execution because the RTOS is
frequently called in protocol processing and commonly used in
many protocols. Existing hardware RTOSs require a purpose-
built core which has a special interface to connect with the
hardware RTOS in a tightly coupled manner. However, ARM
processors are required in many industrial systems. We man-
ufactured a SoC for Industrial controllers using the proposed
architecture and it is the world’s first SoC with hardware RTOS,
and it is commercially available. The results of our experimental
evaluations showed that the API execution time of the proposed
architecture was 1.4-2.9 times faster and the UDP/IP throughput
of the proposed architecture was 1.67 times faster compared with
that when using a conventional software RTOS.

I. INTRODUCTION

In factories, low speed networks such as controller area
networks (CANs) have been used as industrial networks.
However, high-speed networks such as 10/100/1000 Mbps
Ethernet have been employed recently. Industrial controllers
(IndCntlrs), which control industrial devices such as motors,
require real-time processing. However, the deployment of
high-speed network systems affects the real-time processing of
IndCntlrs. High-speed network protocol processing occupies a
large amount of CPU time and generates frequent interrupts,
thus it is necessary to decrease the network protocol processing
load of IndCntlrs.

In contrast to office networks, industrial networks are re-
quired to meet real-time constraints. This requires periodic and
deterministic data transfer to ensure synchronization among
the IndCntlrs connected by the network. An Ethernet is
adopted as a physical layer in industrial network protocol
stacks but many protocols, such as PROcess Fleld NET-
work (PROFINET), Ethernet industrial protocol (EtherNet/IP),
ModbusTCP, and Ethernet for control automation technology

(EtherCAT), have been proposed for use as the upper layer
of industrial network protocol stacks to satisfy real-time con-
straints[14]. Therefore, multi-protocol support is required for
IndCntlrs. Furthermore, improved real-time processing is also
required to satisfy the real time constraints.

The adoption of ARM cores is required for IndCntlr because
users want to utilize the properties of software that have
already been developed and they need to retain the same in-
tegrated development environments. Furthermore, ARM cores
provide scalability because they have many lineups and they
are also reliable due to the fact they have been implemented
in a huge number of embedded systems throughout the world.
For these reasons, major semiconductor manufacturers have
moved their products from proprietary cores to ARM cores.

Low power consumption and low costs are important be-
cause industrial systems comprise a large number of IndCntlrs,
which are connected via a network.

As mentioned above, the requirements for industrial net-
work systems are: (1) decreasing the load of network proto-
col processing, (2) improved real-time processing, (3) multi-
protocol support, (4) adoption of ARM cores, and (5) low costs
and low power consumption.

One approach that satisfies requirements (1) and (2) is
to adopt a network protocol offload engine. However, to
satisfy requirement (3), the engines have to be designed and
implemented for all protocol types. Furthermore, this approach
lacks flexibility, needs a greater silicon area in the SoC, and
is more expensive; thus, it is impractical. Another approach is
to increase the clock rate of the core. However, requirement
(5) is not satisfied because the system has high costs and high
power consumption.

The purpose of the present study is to propose an archi-
tecture for a SoC for IndCntlrs that satisfy the requirements
mentioned above and to manufacture the SoC. We satisfied
the requirements by implementing a RTOS in hardware. The
RTOS APIs are invoked frequently during protocol processing
in any type of protocol. Thus, a large amount of CPU time is
consumed by RTOS execution during the protocol processing.
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Therefore, if a RTOS is implemented in hardware and the CPU
time occupation by RTOS is reduced, the protocol processing
load can be reduced. Thus, requirement (1) is satisfied. Re-
quirement (2) is also satisfied because reducing the RTOS
overheads also decreases the interrupt response time. This
method also satisfies requirement (3) because the hardware
RTOS is commonly used in many type of protocols, thus it
decreases the processing load for many type of protocols.
Furthermore, the method satisfies requirement (5) because
it does not require an increase in the core performance. In
this study, we refer to "RTOS implemented in hardware” as
HWRTOS and "RTOS implemented in software” as SWRTOS.

As shown in Fig.1, there are two methods for connecting
a core with a HWRTOS. One is a tightly coupled type of
HWRTOS (TC-HWRTOS) and the other is a loosely coupled
type of HWRTOS (LC-HWRTOS). Requirement (4) is satis-
fied with LC-HWRTOS, as mentioned in Section II, thus we
adopted the LC-HWRTOS.

The main contributions of this study are as follows.

1. Proposal of a LC-HWRTOS architecture for IndCntlr.

2. Proposal of improvement of performance by parallel
execution of a core and a HWRTOS.

3. Design and manufacture of a SoC for IndCntlrs.

4. Evaluation of the RTOS performance and network
throughputs of both LC-HWRTOS and SWRTOS on the SoC.

The remainder of this paper is organized as follows. The
HWRTOS architecture for IndCntlrs is described in Section
II. Section III provides details of the LC-HWRTOS. Section
IV explains the architecture of the SoC and the performance
evaluations are presented in Section V. Related work is pre-
sented in Section VI and Section VII concludes this study. The
Appendix describes our previous development system, original
ARTESSO system[12]. The HWRTOS that we developed is
referred to as ARTESSO HWRTOS.

II. HWRTOS ARCHITECTURE FOR INDCNTLR

This section describes why the LC-HWRTOS is adopted to
satisfy requirement (4).
The following are the combinations of four cores and RTOS
types for the IndCntlr SoC.
(A) HWRTOS + purpose-built core ~ (TC-HWRTOS)
(B) HWRTOS + modified ARM core (TC-HWRTOS)
(C) HWRTOS + ARM core (LC-HWRTOS)
(D) SWRTOS + ARM core (SWRTOS)
The following explains the TC-HWRTOS and LC-
HWRTOS as shown in Fig.l. In TC-HWRTOS, the core
has the Processor Register Link, which is a special interface
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TABLE 1

Different combinations of RTOSs and cores
Combination Type (A) | (B) © (D)
RTOS TC-HWRTOS LC-HWRTOS| SWRTOS
Core Purpose-build (mﬁim 3 ARM
API execution time Low Middle High
Tick management offloading Available Un-available
IIA offloading Available Un-available
Core Reliability Middle High
Core Scalability No Low Yes
Core verification cost High Middle Low
Standard Tools Unusable Usable
LSI development cost Middle High | Middle | Low

for calling an API and for switching the contents between
the Register Save Memory and the internal registers of the
core. The internal registers comprise a program counter, stack
pointer, flag register, and general-purpose registers. In the
present study, the core internal registers are referred to as
ProcReg. The contents of the ProcReg are kept in the Register
Save Memory on a task-by-task basis. Thus, all API functions,
including context switching, are implemented in hardware.
Therefore, in TC-HWRTOS, the execution time is quite fast,
although a purpose-built core has to be used. As mentioned in
the Appendix, the original ARTESSO system is configured as
a TC-HWRTOS and it belongs to type (A). (B) is configured as
a TC-HWRTOS with an ARM core, thus the ARM core needs
to be modified to provide a special interface with ARTESSO
HWRTOS. However, the scalability and reliability of the core
are lower than formal ARM products since it is modified.

In LC-HWRTOS, the HWRTOS is implemented on the sys-
tem bus of the core, thus the core can invoke an API through
the system bus and the core does not need to be modified
with a special interface. Therefore, the API execution is quite
fast, although context switching is executed by software in the
same manner as SWRTOS.

Table I shows the advantages and disadvantages of the each
combination. (C) is configured as a LC-HWRTOS with an
ARM core. (D) is a conventional SWRTOS system.

The following describes comparison of the API execution
sequence for each RTOS type. Fig.2 (a) shows the sequence
without context switching. In TC-HWRTOS, after invoking
an API, the HWRTOS executes the API function and the task
restarts after completion. In contrast to the TC-HWRTOS, the
LC-HWRTOS requires a pre-procedure to call APIs and a
post-procedure to obtain the result value, because arguments
and a return value of the API are handed over using registers in
LC-HWRTOS, which are deployed between the core and the
ARTESSO HWRTOS, as mentioned in Section III, whereas
they can be handed over using ProcReg in TC-HWRTOS.
Fig.2 (b) shows the API function sequence with context
switching. The LC-HWRTOS requires a context-switching
process based on software in addition to the pre- and post-
procedures. The software used to call the RTOS, such as pre-
and post-procedures, is called a RTOS driver.

To satisfy requirement (4), (B) or (C) must be selected. The
execution of APIs by (B) is faster than that by (C). However,
the scalability and the reliability are lower than formal ARM,
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and development cost is high in (B). The core availability and
real-time response in (C) are improved compared with (D)
because all of the RTOS functions are executed by hardware,
except for context switching. Based on these considerations,
we selected (C), the LC-HWRTOS, as the RTOS for the
IndCntlr SoC.

III. LC-HWRTOS FOR THE INDCNTLR SOC
A. Architecture of the LC-HWRTOS

Fig.3 shows the architecture of the IndCntlr SoC based
on the LC-HWRTOS method. The original ARTESSO sys-
tem was designed based on the TC-HWRTOS, and the LC-
HWRTOS of this study was modified the original ARTESSO
system. The modifications are as follows. A new module,
ARTESSO AHB Interface (AAI) is implemented, which per-
mits the ARM core to access the ARTESSO HWRTOS
through the AHB. AHB stands for advanced high-performance
bus and is ARM system bus. The AAI includes the ”Command
Register,” ”Argument Registers,” and “Result Register.” The
core accesses these registers through the AHB to invoke an
API and to obtain the return value of the API. The Argument
Registers and Result Register are also accessed from the Main
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rent state” and “task priority.” The Virtual Queue implements
a great deal of queues in small hardware and provides fast
queue operations. The Event Control Block, the Semaphore
Control Block, and the Mail Box Control Block maintain
and manage the information required by event functions,
semaphore functions, and mailbox functions, respectively.

B. Procedure for Calling an API

Fig.4 shows the API call sequence. The core writes the
argument into the Argument Registers and writes an API
identifier in the Command Register, (a). Next, the AAI sends
a Req_API signal to the MC with an API_ID signal which
indicates the API identifier, (b). When the signals are detected,
the MC begins the execution of the API, (c). After the MC
completes the execution of the API, the MC writes the return
value into the Result Register, (e). The core polls the Result
Register after the API call and it reads the value until a valid
return value is written into the Result Register by the MC, (d).

If the API execution requires context switching, information
that indicates the context switching request and the dispatched
task identifier are written in the Result Register with the
return value. The core then executes context switching using
software, (f). Specifically, the contents of the current task in
the ProcReg in the core are saved to the Data RAM and the
contents of the next task are loaded into the ProcReg.
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C. Parallel execution of core and ARTESSO HWRTOS

As mentioned in Appendix, the original ARTESSO HWR-
TOS implements not only API functions but also other RTOS
functions such as interrupt invoked API (ITA) and tick manage-
ment to offload their works from the core. When an interrupt
occurs, the ITA function invokes a selected API, which is
determined by the interrupt cause. After the IIA function the
MC executes task switch if needed. Fig.11 in the Appendix
shows the IIA offloading in the TC-HWRTOS and Fig.10 (1)
shows that the SWRTOS executes the same procedure as ITA
offloading. In the tick management function, the ARTESSO
HWRTOS implements hardware timeout-timers for each task
and if the MC detects a timer expiration, the MC moves the
task from the wait queue to the ready queue, and then the MC
executes task switch if needed.

In the SWRTOS, the user function is suspended while exe-
cuting the RTOS function. Since the RTOS functions and user
functions are both executed on a core and the user function
has to wait for return value of called API. In the original
ARTESSO HWRTOS, the user function was suspended during
the MC working in the same manner as the SWRTOS. This
method is called serial operation of a HWRTOS and a core
(SOHC). However the IIA and the tick management functions
are invoked by interrupts therefore they can be started without
invocation by user functions executing on the core, thus the
ITA and the tick management can execute in parallel with
user functions in the HWRTOS. Proposed architecture allows
parallel operation by modifying the MC. This method is called
parallel operation of a HWRTOS and a core (POHC). If the
RTOS decides that a task switching is not needed at the end of
the IIA or tick management function, the currently executing
user function continues to run, as shown in Fig.5. The POHC
improves the system performance, especially in systems where
interrupts are generated frequently such as network protocol
processing.

IV. SOC IMPLEMENTATION: R-IN32M3

This section provides a summary of the R-IN32M3 SoC[15],
which we developed as an IndChntlr to satisfy the requirements
specified in Section I. Fig.6 shows the overall configuration of
R-IN32M3. The R-IN32M3 is commercially available and the
libraries for R-IN32M3, such as the RTOS driver, and protocol
stacks, are available from Renesas Electronics web site.
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The R-IN32M3 provides various types of communication
ports, such as CAN and CC-Link, while two Ethernet ports
are provided for use by industrial Ethernet systems.

The R-IN Engine is a module that implements industrial
network functions. It is not a conventional simple processing
unit but it provides high performance and has high added
value, as follows.

1) LC-HWRTOS: The LC-HWRTOS comprises the AAI,
the ARTESSO HWRTOS, and the core, as mentioned in
section III. A Cortex-M3 is adopted as an ARM core.

2) 802.3 Two-port Switch: The module operates with a
daisy chain configuration using a two-port PHY in industrial
Ethernet. Two different hardware configurations are possible,
EtherCAT/slave and CC-Link IE/Field.

3) Ethernet Accelerator: The Ethernet Accelerator has
three functions for accelerating protocol processing. (i) Check-
sum execution for TCP and IP. (ii) A protocol header rear-
rangement function, which rearranges the compressed header
format into a format that the core can handle easily, and
vice versa. (iii) A buffer management function that comprises
buffer allocation and release functions. They are also imple-
mented by hardware logic.

V. PERFORMANCE EVALUATIONS

This section presents comparisons of the performance ob-
tained using TC-HWRTOS, LC-HWRTOS, and SWRTOS.

A. Evaluation Items

The RTOS performance and network performance are eval-
vated. /) to 5) present evaluations of the RTOS performance
and 6) describes the network performance, as follows.

1) API execution time: The improvement in the execution
time with HWRTOS is evaluated. The API execution time is
measured with and without context switching for each of the
“start task,” “release semaphore” and “wake up task” APIs.

2) Interrupt response: The improvement in the interrupt
response with the IIA offloading is evaluated. The times are
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measured from tl to t3 in Fig.10 (1) with SWRTOS, in Fig.11
with TC-HWRTOS and in Fig.5 with LC-HWRTOS.

3) IIA overheads: The improvement in IIA offloading with
the POHC is evaluated. In this case, the task is not switched
as the result of the API execution, which is invoked during the
ITA. The times are measured from tl to t2 in Fig.10 (1) for
SWRTOS, and in Fig.11 for TC-HWRTOS. In LC-HWRTOS,
the time is zero is verified.

4) Influence of tick: The improvement in the real-time
response with the tick management offloading is evaluated,
i.e., the variation in the interrupt response with the tick
function. Three periodic tasks are performed, where each cycle
is set to 4, 10, or 15 ms. Each task process executes 20,000
loops, which execution time is about 2.2 ms. As shown in
Fig.7, the execution time of the 4-ms periodic task is measured.
If there are no influences on the tick, the execution time is
about 2.2 ms and fixed.

5) Wake-up execution time: The improvement in the real-
time performance in hardware implementation is evaluated.
The execution time of the API is measured if n tasks are
waiting for their timeout in the queue and one of them
is woken by the wake-up task API. The measurements are
executed 1 million times for each n, and the maximum and
minimum times for each n are obtained.

6) UDP/IP throughput: The UDP/IP throughput is evaluated
using each LC-HWRTOS and SWRTOS.

B. Experimental Setup

The performance is evaluated with SWRTOS, LC-
HWRTOS, and TC-HWRTOS which are API-compatible.
With SWRTOS and the LC-HWRTOS, the R-IN32M3 evalua-
tion board is used. The operational clock of both the core and
the HWRTOS are set to 100 MHz. In the SWRTOS evaluation,
the HWRTOS function of the R-IN32M3 is disabled. In
the TC-HWRTOS, the Verilog source code of the original
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ARTESSO system shown in the Appendix is used and the
time is obtained by the Verilog RTL simulator.

In the network performance evaluation related to the SWR-
TOS and the LC-HWRTOS, the evaluation environment de-
scribed above is employed and the UDP/IP protocol stack is
implemented on it, where the UDP/IP throughput is measured
in both environments.

C. Evaluation Results

The following section presents the evaluation results for the
experiments described in the previous section.

For 1), Fig.8 1) a—c show the execution time results with
the three APIs. Without context switching, the execution times
with the LC-HWRTOS are 1.7 to 2.9 times faster compared
with the SWRTOS. With context switching, however, the exe-
cution times with the LC-HWRTOS are 1.4 to 1.5 times faster
compared with the SWRTOS. The results are better “without
context switching” with the LC-HWRTOS because only pre-
and post-API software processing are needed in “without”
case, but context-switching software is added process in “with”
case. As mentioned in Section II, execution time in the TC-
HWRTOS is the fastest.

For 2), Fig.8 2) shows the results of the interrupt response
evaluation. The execution time with the LC-HWRTOS is 2.3
times faster compared with that with the SWRTOS.

For 3), Fig.8 3) shows the IIA overheads. With the LC-
HWRTOS, the IIA function is offloaded from the core and
context switch is not executed thus the IIA overheads are zero.
The results demonstrate the system performance is improved
by POHC method, because the core can keep to execute in
case of a context switch is not needed, as shown in Fig.5.

For 4), Fig.8 4) shows the effects of the time tick man-
agement function on real-time processing. The evaluation is
only executed in the SWRTOS and the LC-HWRTOS because
the performance of TC-HWRTOS is almost same as that of



LC-HWRTOS. The horizontal axis indicates the execution
time required for the 4-ms periodic task. The execution time
required for the 4-ms periodic task in the SWRTOS varies
according to the periodic interrupt and the maximum range
of variation is 9.6 ms. By contrast, the execution time in
the LC-HWRTOS is always 2.2001 ms. These results show
that real-time processing is delayed by a maximum of 9.6
ms by tick management function with the SWRTOS, whereas
the process is not delayed with the LC-HWRTOS. Therefore,
the LC-HWRTOS is advantageous during real-time processing
because a task that is invoked by an interrupt can start at a
precise time.

For 5), Fig.8 5) shows the execution time of the wake
up task when some tasks are waiting for timeouts. With
the SWRTOS, the maximum execution time and its variation
increase according to n. When n is 16, the variation is 1.04
us. By contrast, the execution time is always fixed regardless
of n with the LC-HWRTOS. The execution time with the LC-
HWRTOS is 2.6 times faster compared with the SWRTOS
when n is 16. These results show that the wake up task
execution time varies according to the internal conditions
in the SWRTOS, whereas the time does not depend on the
internal conditions in the LC-HWRTOS. Therefore, the LC-
HWRTOS is advantageous for real-time processing because a
task can wake up at a precise time in the LC-HWRTOS.

For 6), Fig.8 6) shows the UDP/IP throughput results where
both platforms are exactly the same, except for the RTOS. The
results indicate that the performance is improved by 1.67 times
only when the SWRTOS is replaced by the LC-HWRTOS. The
results also show that the network load decreased by 40% with
the LC-HWRTOS, thus LC-HWRTOS would be effective in
industrial network systems.

VI. RELATED WORK

Various techniques have been proposed for improving the
performance of RTOSs, some of which implement the RTOS
functions partially in hardware [6-11]. Others implement all
of the functions of the RTOS in hardware [1-5]. Previous
studies have shown that the performance of the HWRTOS
was several times faster than that of the SWRTOS. Some
of them adopt ARM core, however, they implemented non-
standardized and limited number of APIs, and they only
provided several or several tens of queues because they could
not implement a large number of queues in small volume
hardware, therefore insufficient objects could be provided.
Consequently, their methods did not satisfy the requirements of
industrial network systems. Furthermore, they have not been
commercially available as a SoC. By contrast, the proposed
architecture provides 41 ITRON[13] standard APIs, which are
sufficient for utilization in the IndCntlrs. ITRON is a RTOS
standard and widely used in Japan. The proposed architecture
also provides several thousand queues at low cost using the
novel Virtual Queue technology, as described in the Appendix.
Therefore, the proposed architecture satisfies the requirements
of industrial network systems. The SoC based on the proposed
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architecture is the world’s first commercial product which
implements ARM and RTOS in hardware.

VII. CONCLUSION

Recently, faster network systems have been deployed for
industrial networks using Ethernet. However, the increased
protocol processing load affects real-time processes such as
motor control. Thus, we developed R-IN32M3 SoC to over-
come this problem, which can be used in industrial network
systems. The requirements of industrial network systems are:
(1) reducing the load of network protocol processing, (2)
improved real-time capability, (3) multi-protocol support, (4)
adoption of ARM cores, and (5) low costs and low power
consumption. To satisfy these requirements, Corex-M3 was
adopted as the core and the LC-HWRTOS was adopted as
the RTOS. Our evaluations showed that the LC-HWRTOS
operated faster than the SWRTOS. Our experimental results
showed that the UDP/IP throughput was increased by 1.67
times by replacing the SWRTOS with the LC-HWRTOS and
the network load decreased by 40%.
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APPENDIX

This appendix describes the original ARTESSO system [12],
which we developed using the ARTESSO HWRTOS, as shown
in Fig.9.

A. Summary of the original ARTESSO system

The original ARTESSO system comprises an ARTESSO
HWRTOS, a Register Save Memory, and an ARTESSO core,
as shown in Fig.9. They are configured as a TC-HWRTOS.
The ARTESSO HWRTOS conforms with ITRON specifica-
tions [13] and it supports 41 ITRON APIs. The supported APIs
are listed in Table II. The Register Save Memory is used to
maintain the contents of the ProcReg on a task-by-task basis.
The ARTESSO Core is a proprietary 32-bit RISC processor,
which has a special interface that connects with the ARTESSO
HWRTOS in a tightly coupled manner.

B. Features of the original ARTESSO system

The following are the features of the original ARTESSO
system.

1. Configuration of TC-HWRTOS.

2. Several thousand queues in hardware at a low cost based
on an innovative idea called Virtual Queue.

3. An interrupt invoked API (ITA) offloading function that
executes interrupt processing in hardware, which improves the
performance of the interrupt response.

4. A tick management offloading function that removes
the software tick process, which also improves the interrupt
response.

1) TC-HWRTOS: Fig.9 shows the architecture of the origi-
nal ARTESSO system, which is configured as a TC-HWRTOS.
The Main Controller (MC) is implemented by a hardware
state machine that executes all of the API call processes. The
Task Control Block maintains the management information
related to all of the tasks, such as the “current state” and
“task priority.” The Virtual Queue module implements all of
the queues used by the RTOS. The Event Control Block,
the Semaphore Control Block, and the Mail Box Control
Block maintain and manage the information required by
event functions, semaphore functions, and mailbox functions,
respectively.

Next, we describe the API call procedure. The arguments
and return values of the APIs are handed over using some of
the general purpose registers in the ProcReg. When the core
decodes an API call assembler instruction, the core changes
the Req_API signal to 1 and indicates an API identifier by
sending the API_ID signal to the MC. If the MC detects
this signal, it changes the hold signal to 1 and commences
API processing according to the API_ID signal. If the API
has arguments, the MC refers to the specific registers in the
ProcReg that are assigned to the arguments. When the MC
completes the execution of the API process, it writes the return
value in the specific register of the ProcReg that is assigned to
the return value and it then changes the hold signal from 1 to
0, thereby indicating the completion of the process to the core.
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Fig. 9. Original ARTESSO system (TC-HWRTOS)

TABLE II
Supported APIs

task start, exit, terminate, change priority, get task ID,

sleep, wakeup, release wait

flag create, delete, wait, set, clear, poll
semaphore create, delete, wait, release
mailbox create, delete, send, receive

cpu lock, unlock

dispatch disable, enable

rotate
set, get

ready queue

system timer

If the core recognizes the hold signal transition, it restarts and
fetches from the next program counter.

If a context switch is needed after the completion of API
execution, the MC saves the contents of the ProcReg in
the Register Save Memory and loads the next task contents
into the ProcReg from the Register Save Memory. Next, the
MC changes the Hold signal from 1 to 0, which indicates
completion to the core and the core then restarts the fetch
process again.

In the interrupt procedure, interrupt signals enter the Inter-
rupt Controller in the ARTESSO HWRTOS. If the MC detects
an interrupt through the Interrupt Controller, the MC changes
the Hold signal to 1 to stop the core. When the core stops, the
Held signal is changed to 1. If the MC detects the Held signal
transition, it saves the contents of the ProcReg to the Register
Save Memory and loads the ISR contents from the Registers
Save Memory into the ProcReg. Next, the MC changes the
Hold signal from 1 to O to indicate the completion of the
context switch to the core and the then core restarts the fetch
process according to the ISR register set.

As mentioned above, the original ARTESSO system imple-
ments the TC-HWRTOS using a special interface with a pro-
cedure between the ARTESSO HWRTOS and the ARTESSO
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2) Virtual Queue: In general, RTOSs require many queues,
i.e., several thousand queues, since they are needed for each
instance of an object. To implement an RTOS in hardware,
the queues should also be implemented in hardware. However,
it is very expensive to implement many queues in hardware
using conventional technology such as hardware FIFOs. Thus,
we propose the innovative idea of a Virtual Queue, which is
an information compression technique with reversibility that
produces a large number of queues with a small hardware
volume.

3) IIA Offloading: The IIA offloading function is im-
plemented in addition to the conventional interrupt service
routine (ISR) in the ARTESSO HWRTOS. The IIA offloading
function invokes a selected API based on the cause of the
interrupt. Fig.10 (1) shows that the SWRTOS executes the
same procedure as ITA offloading. The following description
provides specific details of the procedure. When an interrupt
is generated, the SWRTOS starts and it saves the current
task register contents in the ProcReg, before loading the ISR
register contents into the ProcReg and starting the ISR. The
ISR determines the cause of the interrupt and invokes an API
based on the cause. After the completion of API execution, the
SWRTOS terminates the ISR and the SWRTOS then replaces
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TABLE III
RTOS execution time

ARTESSO

System Call Dispatch | SWRTOS HWRTOS
(TC-HWRTOS)

Sleep Task Yes 628 10
‘Wakeup Task Yes 496 10
Change Priority Yes 541 11
Receive from Mailbox No 224 7
Receive from Mailbox Yes 591 11
Send to Mailbox No 360 8
Send to Mailbox Yes 541 11
Wait Semaphore No 216 6
Wait Semaphore Yes 558 9
Release Semaphore No 344 7
Release Semaphore Yes 536 11

Unit : Cycles

the ISR contents in the ProcReg with the new task register
contents.

ITA offloading can replace the software ISR process, as
mentioned above, therefore all of the interrupt processes can
be implemented in hardware. Thus, the interrupt response is
improved dramatically, as shown in Fig.10 (2) and Fig.11.

4) Tick management Offloading: The SWRTOS uses a tick
process to implement timeout processing for tasks. The tick
process is woken up by a periodic interrupt and it decrements
each timeout counter. If it detects a timeout, it removes the
task from the wait queue and appends it to the ready queue.
As mentioned above, the tick process is a critical process and
interrupts are inhibited during the process, which results in
fluctuations in the interrupt latency. By contrast, the ARTESSO
HWRTOS implements hardware timeout counters on a task-
by-task basis and the counter value is decremented by its
hardware. If the counter reaches zero, the MC is started, which
removes the task from the wait queue and appends the task
to the ready queue. Next, the MC executes context switching
if necessary. Thus, the ARTESSO HWRTOS does not require
the tick process in software. This results in a drastic reduction
in fluctuations in the interrupt latency.

C. Performance of the original ARTESSO system

Table III compares the performance of commercial SWR-
TOS and the ARTESSO HWRTOS, which has the TC-
HWRTOS configuration. The RTOS performance of the orig-
inal ARTESSO system was several tens times faster than that
of SWRTOS. The interrupt response using IIA offloading was
38 to 104 times faster than that of the SWRTOS, as shown in
Fig.10.
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Abstract—This paper presents different approaches approach also has the advantage of having a higher
for real-time fault tolerance using redundancy methods bandwidth communication channel, i.e. memory, than
for multi-core systems. Using hardware virtualization, a  in traditional control networks such as CAN, enabling
distributed system on a chip is created, where the cores  ney recovery techniques. In this paper we focus specif-
are isolated from one another except through explicit ically on different Triple Modular Redundancy [7], [8]

communication channels. Using this system architecture, . : . :
redundant tasks that would typically be run on separate (TMR) techniques that can be applied to a virtualized
distributed system on a chip.

processors can be consolidated onto a single multi-core

processor while still maintaining high confidence of system : . : ~
reliability. A multi-core chip-level distributed system could The next section provides a brief summary of Quest

therefore offer an alternative to traditional automotive V a separatlon kerne! we .have been developlng for use
systems, for example, which typically use a controller N real-time mlxed-crl_tlcallty systems [9]. Section Il
area network such as CAN bus to interconnect multiple ~ discusses our generic fauttetection approach. Sec-
electronic control units. Using memory as the explicit  tion IV introduces three fauliolerancemethods we are
communication channel, new recovery techniques that currently considering for Quest-V, and each approach
require higher bandwidths and lower latencies than those is described in detail in Sections V- VII. This is
of traditional networks, now become viable. In this work,  followed by a discussion of our generic fautcovery

we discuss several such techniques we are considering in technique in Section VIII. Related work is discussed in
our chip-level distributed system called Quest-V. Section IX followed by the conclusions and future work

in Section X.
I. INTRODUCTION

Fault-tolerance in real-time systems has historically 0
been accomplished through redundancy in both hard- '
ware and software [1]-[4]. For example Briere et al.  Quest-V is designed for real-time high confidence
explain how in the Airbus A320/330/340 there aresystems. It is written from scratch for Intel's x86
“sufficient redundancies to provide the nominal per-architecture, and operates asliatributed system on a
formance and safety levels with one failed computer,chip. Quest-V uses hardware virtualization technology
while it is still possible to fly the aircraft safely with to partition a one or more cores, a region of machine
one single computer active [5]." Redundancy acrossghysical memory and a subset of I/O devices into
multiple compute nodes protects against both hardwareeparatesandboxeslintel’s extended page table (EPT)
and software failures. We propose a technique that usefgature on modern VT-x processors is used to partition
hardware virtualization to sandbox each core of a multi-memory into separate regions for different sandbdxes.
core processor, along with a subset of machine physical ) o ) ) )
memory and a collection of I/O devices. Hardware virtualization assists in the design of

, , virtual machine monitors (VMMs, a.k.a. hypervisors),

This design allows the system to operate as ayhich are capable of managing multiple virtual ma-
separation kerne[6], where communication between chines (VMs) on the same physical machine. Unlike
sandboxes occurs through explicit memory channels angh traditional VMMs, Quest-V does not require the
inter-processor interrupts. Each sandbox is isolated fromyse of a monitor to schedule VMs on processor cores.
the software faults that can occur in another sandboXnstead, each sandbox runs its own kernel that performs

and any hardware faults that are specific to a single corgsandbox-local) scheduling directly on available proces-
or subset of memory. This allows the consolidation ofgq; cores.

computational tasks onto a single multi-core processor
while still maintaining a large number of the advantages 1amp x86_64 and ARM Cortex hardware virtualization extensions
associated with a traditional distributed system. Thisprovide a similar functionality.

QUESTV DESIGN
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This approach has numerous advantages. First, baliffer across replicas. We do not believe this restriction
cause a trusted monitor is not performing VM schedul-is too prohibitive; however, we plan to remove this
ing, it is eliminated from the normal operation of the restriction in future work.
system. This results in very few VM exits, resulting
in lower overheads due to virtualization. Second, this
simplifies the design of a monitor, which now only
needs to initialize sandboxes (or, equivalently, VMs)

During execution, the redundant guests or task in-
stances reach specific synchronization points. Depend-
ing on whether the redundancy is for the entire sandbox
e(guest) or only a single task determines whether the

establish shared memory communication channels b hronizati it h VM exit
tween sandboxes, and assist when necessary in fagiyichronization ponts are when a exit occurs or
when the replicated task makes a system call. This

recovery. The reduced complexity of Quest-V’s monitor . R .
code makes it more easily verified for correctness influences whether synchronization is handled in the
" hypervisor or a guest kernel. At the synchronization

point, the hypervisor or kernel determines which pages
have been modified and creates the necessary per-page
Before we discuss different possible TMR config- hashes and summary hash. The memory management
urations in Quest-V, we will briefly discuss how we unit can be used to help track which pages have been
detect faults. This approach is used throughout almodified as the pages can initially be marked as read
the subsequently described system configurations. TMRNIy to cause hypervisor or kernel traps on attempted
uses a majority voting mechanism to detect an errorpage updates. The hashes are sent to the voter and
In the traditional TMR setup, the results of redundantthe sandbox/task continues execution. We do not halt
(replicated) computations are sent to the voter. Whileexecution, i.e. barrier synchronize the tasks, and wait for
we could use this approach, we have decided to usthe results of the voter as this would add unnecessary
a more aggressive fault detection technique that ca@verheads. Instead, no external action, e.g. output to an
detect any deviation in the redundant computation, nofictuator, is taken on behalf of the redundant copies until
only the result. Our approach takes hashes of memori majority of identical hashes have been collected. Once
on a per-page basis of all memory modified by theénough hashes have been collected and verified, any
program between synchronization points. We also takdecessary I/O is performed and the hashes are released.
a summary hash of all the modified memory. The voter
first compares the summary hashes. If the summary has‘gb
values are identical, no further error detection actions,,
are taken. If the summary hashes are not identical, th%e
voter iterates through the per-page hashes to determi
which pages are different. This allows for faster recov-
ery, described in detail in Section VIII. Currently, we are

I11.  FAULT DETECTION

If an error has occurred but there is still a majority
nsensus, any I/O is performed, and the hypervisor
kernel is notified as part of fault recovery (see
ction VIII). If there is no consensus, an application
pendent recovery procedure can be used to bring
the system into a useful state. For example, for an

autonomous automobile application, the system could

using the Jenkins one-at-a-time [10] hash function duggafely bring the vehicle to a halt. To detect performance
to its simplicity. For added security, where a maI|C|ousfau|tS where a sandbox or task does not reach a

sandbox could corrupt a page so that the hash would bg, -honization point, timeout values can be specified

the same as the valid page, a cryptographically securfy, ye appiication developer. If a synchronization point

hash function could be used. is not reached within the timeout value it is treated as
Taking consensus on memory hashes is a generig fault and the same generic recover procedure is used

fault detection approach as it just relies on the program’d0 correct the performance failure.

user-space state or the entire sandbox being identical

across all instances. This also places a restriction on |V. VIRTUALIZATION BASED TRIPLE MODULAR

the types of programs that can be monitored. Their REDUNDANCY

execution across sandboxes must be identical during a . _ .
fault-free execution. The task or guest can only rely 1he chip-level distributed system design of Quest-V

on its own internal state and any data passed to th&'€ates an opportunity to develop new fault tolerance
program through shared memory or by the hypervisori€chniques. For example, techniques that exploit high
Redundant tasks or guest code must not make use gndmdth, low latency communication between sand-

process-specific values such as process IDs, unless th@pXes can be explored. In this section, we will introduce
are identically replicated, and similarly should not usevarious techniques and we will highlight their strengths

constructs such aget t i meof day() which might and weaknesses in Sections V, VI and VII.

2nitializing a sandbox requires setting up an appropriaeivare Redundancy in either data and/or execution can be
partition of processor cores, memory and 1/O devices. Deuives- used to detect Byzantine errors, e.g. soft errors causing

selves can be shared but resource partitioning is typichilye only bit-flip-s, POSSibly as aresult of the system being exposed
once, at boot-time. to radiation. Separate Quest-V sandboxes can support
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redundant executions of a process or guest. Whenevaloes not support three results and will perform its
an external action needs to be taken, e.g. sending awn TMR). Techniques have been developed to protect
message to an actuator, a consensus mechanism, susingle points of failure such as voters. For example,
as Triple Modular Redundancy [7], [8] (TMR), can Ulbrich et. al used arithmetic encoding techniques to
be used to ensure that faulty values do not propagatprotect the voters in TMR [12]. Furthermore, while
to the device. We will focus our discussion of fault the redundant sandboxes might not have direct access
tolerance techniques in Quest-V on those that followto the device in the first and second configurations
the TMR approach. In what follows, we describe threedescribed above, they could have read-only access to
different fault tolerant Quest-V system configurations,ensure that the voting mechanism is behaving correctly.
which depend on where the voting mechanism andf the redundant sandboxes reach a consensus that the
device driver are located: voting mechanism is behaving incorrectly the device
driver and voter could be re-initialized or the device
could be mapped to a new sandbox. We plan to explore
these techniques in future work.

e Voting mechanism and device driver in the
hypervisor — Each process submits its results to
the hypervisor via a hypercall or through emulated
devices. The hypervisor waits for the results or
a timeout, compares the results and sends the
majority to the device. In this configuration, the voting mechanism and
e \oting mechanism and device driver in one device driver are located in the hypervisor. This conflicts
sandbox— A single sandbox acting as arbitrator ~ with the design philosophy of Quest-V, as the hypervisor
has sole access to the device. The arbitrator ishould ideally be as simple as possible. Furthermore,
responsible for comparing the results of redun-placing a device driver in the hypervisor could make
dant computations, which are distributed across thehe entire system vulnerable if the device driver is
other computationsandboxes. Communication be- incorrectly implemented. However, if we overlook this,
tween the arbitrator and each computation sandboX MR fault tolerance can be applied to operating systems
is via a separate shared memory channel, whiclother than Quest-V, e.g. Linux, without the need to
is protected by extended page table (EPT) mapmodify any source code. Specifically, the hypervisor
pings. That is, no two computation sandboxes carcould host three or more redundant guests that com-
access each other’s private channel to the arbitratomunicate the results of the computation through an
thereby preventing a faulty computation sandboxemulated 1/0 device. Besides voting and performing
from corrupting the results of another sandbox. 1/O, the hypervisor is responsible for encapsulating each
e Voting mechanism distributed across sand- guest to ensure that they remain in loose lockstep. This
boxes and device driver is shared- Each sandbox approach is depicted in Figure 1.

that contains a redundant process also has shared

V. HYPERVISORVOTING AND |I/O

access to the device. Each redundant process com-
pares its own state to the redundant copies to
determine if a fault has occurred and recovers if Guest Guest Guest
necessary. The non-faulty sandboxes elect a leader
to send the data to the device. Communication oc- ~| Emulated Emulated Emulated -
curs in pair-wised private shared memory channels [| Device Device Device
as described in the previous configuration. Hypervisor
In the following three sections, we discuss further | Voter | [ Device Driver |

details of our proposed approach for each of the above Physical Device

configurations.

Fig. 1: Voting mechanism and device driver in the
A. Voter — Single Point of Failure hypervisor.

The final voter in a TMR setup can be a single point ~ This approach builds upon hypervisor-based fault
of failure. The voter could malfunction and select thetolerance (HBFT) [13]-[16]. HBFT is an example of a
minority result or simply output a different result than primary-backup based fault tolerance system that uses a
its inputs. All the configurations above could suffer from hypervisor to encapsulate a guest virtual machine so the
the voter malfunctioning. A common solution is to use state of the entire system can be easily manipulated and
three voters [11] and the output of each voter is thesaved. This allows the primary and backup, which run
input to the next stage of the computation. However,on different machines, to be easily synchronized without
eventually a single output that is to be sent to therelying on any information from, or modification of,
device needs to be determined (assuming the devicthe operating system or application. The execution of
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the guests is divided into time epochs. At each epochidentical, e.g. only a subset of the applications running

the primary and backup are ensured that they are in each guest need to be replicated. Applications that are
the same state. This is either accomplished by havingot safety-critical can be executed in just one guest. This
an active backup that is kept in lockstep [13], having aapproach requires operating system support, to hash the
dormant backup and transferring the changed state frorapplication pages and communicate the results to the
the primary to the backup [14], or having an active arbitrator sandbox.

backup that is not kept in lockstep and any discrep-
ancies between the two executions are handled at the| Arbitrator | |Redundant| |Redundant| |Redundant
epoch boundaries [15]. During execution, the hypervisor | Sandbox Sandbox Sandbox Sandbox

buffers all output until an epoch has been reached and Private Communication Channels |
the primary and backup have been synchronized. This [ voter

ensures that if the primary fails, the backup can perform
the same output without duplicated output being seen
outside of the system.

—Physical -

HBFT, as it stands, can only handle crash failures, [ Device Hypervisor \
where the primary node halts when it fails [17], [18].
If the primary fails, the backup guest begins execution Fig. 2: Voting mechanism and device driver in an
to ensure high availability. The HBFT model can be arbitrator sandbox.
extended to recover from Byzantine errors by adding
a third redundant guest. At epoch boundaries, i.e. syn- The main advantage to this approach is that the hy-
chronization points, the hypervisor examines the state opervisor remains as simple as possible. The hypervisor
each guest and if a single guest differs, the state can b@oes not have to emulate any devices, nor does it contain
corrected. This approach would not require any mod-any device drivers. All necessary devices are isolated
ification of the guest operating system or applicationfrom the redundant guests via hardware virtualization
and could even be applied to closed-source softwaregxtensions, as described in our earlier work [9]. Not
By combining all the guests onto a single multi-core only is the hypervisor simple but it is kept out of the
processor, we cannot recover from errors such as powetontrol path during normal execution, thus avoiding the
failures that bring down the entire processor, but we carfosts of VM exits. Only during recovery would it be
recover from Byzantine errors in a much more efficientnecessary to drop down into the hypervisor. Also, as
manner as data can be transferred between guests aPgeviously stated, the granularity of redundancy is much
much faster rate. finer as the redundancy is at the application-level as

opposed to the guest-level.
This approach does have some disadvantages com—p P ¢

pared to the other two approaches. First, as previously Having a single sandbox vote and send the results
mentioned, the hypervisor must be much more adio the device driver does have its limitations. First,
vanced. For example, it must support emulated deviceg sandbox is necessary to contain the voting task.
and be able to recover the entire guest operating systeniVhile the task performing the voting would require
Also, every sandbox must be performing the exact samé& low overall utilization, the other approaches do not
operations. It is not possible for one sandbox to runrequire a separate sandbox just for voting. Another
non-safety critical tasks that the other sandboxes do ndimitation is that while we gain the ability to do task-
run as the hypervisor has no information about whatevel redundancy we do so at the cost of having to add
state belongs to which task. We will see in the next twothe redundancy support into the operating system. While
sections that this limitation does not apply to the otherthis is possible for an operating system such as Quest-
approaches. V, it becomes increasingly difficult for a more complex
system such as Linux.

Device
Driver

VI. ARBITRATOR SANDBOX

In this configuration, the voting mechanism and VIl. SHARED VOTING

device driver are located in arbitrator sandbox. The A third configuration is to have the voting process
redundant computations are performed in three or morand device shared across all sandboxes. This approach
guests as depicted in Figure 2. Communication betweeis similar to the second approach in that it has a smaller
guests is explicit through shared memory channelsgranularity of redundancy, e.g. at the application level,
These could be set up statically by the hypervisorand therefore the redundant sandboxes do not have
at boot-time, or dynamically, at run-time. Unlike the to be executing identical sets of tasks or operate in
approach described in Section V, the fault tolerance is alockstep. It also requires operating system support to
the application-level as opposed to the entire guest. Thisash memory pages and communicate the results to
has the advantage that each guest does not need to H#ferent sandboxes. This approach avoids the need for
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a special arbitrator sandbox. Each sandbox takes a votes they often require direct access to the device and
on the results of the other sandboxes, again communieccur asynchronously.

cating through private shared memory channels. Of the

sandboxes that have a value equal to the majority vote, VIIl. RECOVERY

a temporary leader is elected, which performs the actual

/0. This approach is depicted in Figure 3. We have a few key requirements for our recovery

procedure. First, it should be as generic as possible, so
that it can be used across multiple applications. Second,

B e s the_recovery.procedure shoqld bg applicable to both an
entire operating system running within a sandbox and to

Private Communication Channels a task running within an operating system. Obviously

there will be some differences, mostly complications

[ Voter | [ Voter | [ Voter | due to operating system recovery, but the general ap-
Device Device Device proach should be the same. This allows us to share a
Driver Driver Driver similar code base between operating system and task
recovery, reducing the code base size and the possibility

:I Shared Physical Device I: of errors.
Hypervisor Initially, our recovery procedure involved taking

snapshots of the changed state at each synchronization
point, similar to a rollback procedure. However, instead
Fig. 3: Voting mechanism and device driver are sharedf rolling back to the last known good state we would
across sandboxes. instead roll forward using the snapshot of a correct
instance to bring an incorrect instance up to the same
There are two possible ways that the shared drivestate. However, in our preliminary evaluations, the snap-
could be implemented. One is that the device is directlyshot procedure dominated the overhead associated with
mapped to all participating sandboxes all the time.recovery to the point that rolling back and rolling for-
This has obvious security and safety concerns as @ard had nearly identical recovery times. We therefore
faulty sandbox could at any time send erroneous outpugiecided to abandon taking snapshots at synchronization
signals through the device. As previously mentioned inpoints and perform recovery without them.
Section 1V, the other sandboxes could be monitoring . .
the memory associated with the device to determine if The point of taking snapshots was 1o ?”OW one
such behavior occurs and if so, signal to the hypervisopandbox or task to be recovered without interfering
that the device should be unmapped from the fau|tyWIth the execution of the sandbox that is being used as
sandbox. This could be acceptable if a few erroneoudl® cOrrect instance. The snapshot pages could be read
I/0 messages were permitted and the device could bl%'thou'[ the fear that the correct instance would modify
reinitialized. them while the recovery procedure was occurring, as
the correct instance would actually be using different
A more secure method would be the following: memory frames at the time of recovery. If we do not
whenever an 1/O operation needed to be performed, eadlake snapshots, then we run the risk that the correct
sandbox sends to the hypervisor the sandbox it wishemstance modifies a page while we are copying it for
to be the leader to perform the I/O operations. The hy+ecovery. This is the same issue that occurs during live
pervisor then temporarily grants that sandbox the writemigrations of virtual machines [19]. The solution is
privileges to the device while still permitting the other to divide the migration, or in our case, the recovery
sandboxes to have read access. Once the I/O operationpsocedure into different phases. First, pages are pushed
complete the sandboxes signal that the write privilegegrom source (correct instance) to destination (recovering
should be revoked. The granting and revoking of writeinstance), and if a page is modified, it is re-pushed.
privileges performed by the hypervisor only occurs if a Second, the source is stopped and pages are copied
majority of the sandboxes signal that it should occur. Inwithout the need to be concerned about consistency.
this way, a sandbox would have to fail specifically after Finally, as the migrated virtual machine executes, any
it was granted write privileges and before the privilegespages that have not been pushed are pulled as they
were revoked. Such an approach requires some suppdrecome necessary. Different live migration strategies
from the hypervisor as the hypervisor has to be ablebalance these phases. We can use a similar approach
to dynamically map and unmap a device to differentto recovery which basically involves performing a live
sandboxes. It would also involve a large number ofmigration on a sandbox or application. However, instead
VM exits which would be required to temporarily grant of halting the source instance, we allow it to continue
and then later remove access to the device. Also, howunning. We will explore what balance of the three
interrupt service routines should be handled is uncleaphases is most appropriate for a recovery.
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IX. RELATED WORK [5]

Achieving triple modular redundancy through mul-
tiple executions of a task has been previously explored
by Reinhardt and Mukherjee [20], andobel, Hartig [6]
and Engel [21]. Reinhardt and Mukherjee developed
a simultaneous and redundantly threaded processor, in
which hardware is responsible for error checking and [7]
recovery. While this alleviates software developers of
fault tolerance concerns it also adds extra overhead[S]
by replicating components that are not safety-critical.
Furthermore, specialized hardware features must be
available. [9]

Dobel et al. developed a software based approach
to task replication on top of the L4 Fiasco micro-
kernel [21]. Their approach involved a master-controller[ioj
task, which monitored the execution of redundant tasksy; 1
The controller handled CPU exceptions, page faults and
system calls made by the redundant tasks and ensured
they had identical state at these points. This is similar
to our first approach of using a hypervisor as the mastel?]
controller. As with our other two approaches, it operates
on a per-task basis rather than an entire guest.

X. CONCLUSIONS ANDFUTURE WORK [13]

We have presented three fault tolerant configurations
based on TMR. Such techniques are made possible by
the unique design of the Quest-V separation kernel. Wi
have focused on TMR as it is a common fault toleranc
mechanism used to handle soft errors.

14]

Beyond implementing and comparing the previously
described techniques, one of the main challenges réss)
maining is protecting the voter. As briefly discussed
in Section 1V, techniques such as arithmetic encoding
can be used to protect voters in TMR. We have also
discussed the possibility of having redundant sandboxek €]
monitor the results of the voter, by having read-only
access to a device driver and signaling the monitor if an
error is detected. We plan to compare these technique&n
as part of (real-time) online fault detection and recovery
in Quest-V. (18]
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Abstract—This paper presents fast user space priority switch-
ing, a mechanism for tasks to change their scheduling priority
without entering the operating system kernel. Instead, tasks
and the operating system kernel agree on a shared memory
space storing the current task’s priority. While the task changes
its priority by writing to a variable in the shared memory,
the operating system kernel synchronizes its internal scheduling
priority with the user task’s priority lazily on certain occasions
affecting scheduling.

We discuss two different protocols for fast user space priority
switching. For two ARM-based platforms, we compare their
implementations with a traditional approach which uses system
calls to change scheduling priorities. The presented approach is
suitable for systems using partitioned preemptive fixed-priority
scheduling.

I. INTRODUCTION

Operating system environments, like OSEK' and AU-
TOSAR? in the automotive world, ARINC 6533 in Avionics,
and POSIX* real-time scheduling for industrial applications,
often rely on preemptive fixed-priority scheduling, either on
single processor systems or in a partitioned environment com-
prising a single processor per partition. The system’s sched-
uled active entities, called tasks, processes, or threads, switch
their scheduling priorities when entering a critical section,
according to the operating system’s priority ceiling protocol [5]
to prevent deadlocks. Using precomputed priorities based on
previous analysis, the tasks raise their priorities upon entering
a critical section to a specific value, and lower their priorities
again to the previous value when leaving the critical section.
Moreover, critical sections can be acquired in a nested fashion.
Typically, on occasions where priorities are changed, other
important things happen as well, so most operating systems use
a system call to implement the state changes in the operating
system kernel. However, system calls are expensive operations
on most processor architectures and in most operating systems,
involving a state change of processor privileges, saving and
restoring registers, or switching to different stacks.

This paper presents a concept to change task priorities in
user space with low cost by avoiding system calls entirely in
the common fast path. To this end, we define a shared memory
protocol between user space tasks and the operating system
kernel.

The rest of this paper is structured as follows: We introduce
terminology, the execution environment, and the problem sce-
nario in section II. In section III, we discuss our optimized

10ffene Systeme und deren Schnittstellen fiir die Elektronik im Kraft-
fahrzeug / Vehicle Distributed Executive [1]

2 AUTomotive Open System Architecture [2]

3 Avionics Application Standard Software Interface [3]

4Portable Operating System Interface [4]
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approaches in detail. Section IV compares the approaches
with a traditional implementation using system calls to change
priorities on two ARM-based platforms for automotive and
industrial / multimedia usage scenarios. We discuss the results
in section V. Finally, section VI lists related work and section
VII concludes.

II1.

We use the following terminology and make the following
assumptions: The term fask refers to the unit of execution
scheduled by an operating system. The operating system
provides two execution modes: either user mode for appli-
cation contexts, or kernel mode for operating system specific
activities. Additionally, the distinction of user space and kernel
space denotes separated address spaces for the execution
modes, e.g. user code can not access kernel code and data, and
kernel code must validate user space pointers before access.

PROBLEM DEFINITION

For task scheduling, we assume an execution environment
using partitioned preemptive fixed-priority scheduling, i.e. in-
dependent scheduling on each processor. The higher a priority
value, the more favoured a task is selected by the operating
system scheduler. For tasks of the same priority, we assume
activation in FIFO-order based on task arrival times.

Each task 7; has a current scheduling priority P;(t) and an
upper priority bound, the maximum controlled priority Pmax;
up to which it can adjust its own priority during task execution
time. For brevity, we shorten P;(¢) to P;.

We assume that a priority ceiling protocol is used, such
that each critical section C'S,,, has a dedicated ceiling priority
Pceil,,. This ceiling priority is statically defined as the max-
imum scheduling priority of all tasks that compete for that
specific critical section C'S,,.

We further assume that all tasks comply with the priority
ceiling protocol, i.e. that no task tries to enter a critical section
with a priority lower than the ceiling priority Pceil,, of the
section. Conversely, the maximum controlled priority of all
tasks that compete for a specific critical section C'S,, is higher
or equal to the ceiling priority of this critical section Pceil,,.
That is: V7Vm : Pceil,, < Pmax;.

As illustrated in Figure 1, on entry into a critical section at
tenter, task 7; raises its priority from its current scheduling
priority P; to P/ max(P;, Pceil,,). On exit of that
critical section at tjeqye, it lowers its priority back to its
previously possessed priority P;. Moreover, critical sections

can be entered in a nested fashion.

As Figure 1 shows, in a scenario where task 7; raised its
priority and exclusively performs resource access, while an-
other task 7; arrives at ¢4,,;y., three possible priority relations
are to be distinguished:
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Fig. 1: Cases of interaction: 7; arrives, while 7; raised its
priority temporarily from P; to P/ during a critical section.

e Case P; > P/: The priority of 7; is higher than the
raised priority of 7;. The operating system kernel thus
immediately preempts 7; over 7;. 7; will effectively be
preempted while still being in the critical section. By
definition of the priority ceiling protocol, all tasks with
higher priority than P/, which includes 7;, do not access
the critical section 7; was preempted in.

e Case P, < P; < P/: The priority of 7; is higher than
the scheduling priority P; initially possessed by 7;, but is
lower than or equal to its raised priority P/. This case has
to be considered by the operating system kernel since, as
soon as 7; lowers its priority back to P;, it needs to be
preempted immediately in favour of ;.

e Case P; < P;: The priority of 7; is lower than or equal
to the initial scheduling priority P; of 7;. Here, 7; can not
preempt 7; regardless of 7;’s current priority. In fact, 7;
will not be selected as currently scheduled task before 7;
completes at teomplete-

In the scenario depicted in Figure 1, a traditional imple-
mentation approach would use two system calls to raise and
lower a task’s scheduling priority or disable interrupts during
execution of the critical section. Due to the low overhead of
interrupt disable/enable pairs compared to system calls, such a
pragmatic approach is often considered acceptable if the execu-
tion environment permits the use of privileged instructions by
application code, such as in Automotive. However, in POSIX
and ARINC 653, disabling interrupts is not allowed.

To lower the cost of priority ceiling protocols, we consider
the following optimization: if no task arrives while task 7; is
in a critical section, the system calls could be omitted. This
could be implemented by a lazy approach: the step to adjust
priorities is delayed to the point in time when a scheduling
specific event occurs, e.g. until a new task arrives.

Two scenarios are possible: either the kernel tracks all
critical sections 7; may enter, or it tracks P;. We consider
the latter: 7; stores its current scheduling priority in the user
space variable uprio which is known and accessible to the
operating system kernel, and the kernel synchronizes T;’s
actual scheduling priority with this value when necessary.
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III. FAST USER SPACE PRIORITY SWITCHING
PROTOCOLS

In this section, we discuss two different protocols for fast
user space priority switching, referred to as UPRIO|KPRIO
and UPRIO|NPRIO, according to the names of the protocol
variables.

A. The UPRIO|KPRIO Protocol

The UPRIO|KPRIO protocol comprises two variables:

e uprio describes the priority of the current task 7; in user
space, user prio, and is set by the task on priority change,
i.e. when entering or leaving a critical section.

e kprio, shorthand for kernel prio, reflects the kernel’s view
of the scheduling priority of 7;. On kernel entry”, the kernel
updates P; from uprio and writes the resulting priority
back to kprio.

Using this protocol, 7; can raise its scheduling priority by
issuing single memory store operation only:

function Protocoll_RaisePriority (prio)
uprio := prio

To handle preemption correctly when lowering the priority
again, 7; needs to check (by looking at kprio) whether it has
been interrupted since it entered the critical section and, if so,
to issue a system call to trigger rescheduling in the kernel:

function Protocoll_LowerPriority (prio)
uprio := prio
if uprio < kprio
SyscallPreempt ()

The kernel part of the protocol synchronizes the internal
scheduling priority on kernel entry:

function Protocoll_KernelSyncPriority ()
if uprio > currentTask.maxprio
uprio := currentTask.maxprio
kprio := uprio
if kprio < nextTask.prio
KernelPreempt ()

For robustness, the kernel ensures that 7; scheduling pri-
ority does not exceed the task’s maximum controlled priority
Pmax;. Furthermore, it checks for pending task preemption.

Using this protocol, 7; can raise and lower its scheduling
priority in the fast path by issuing one memory load and two
memory store operations only. In the slow path, i.e. when
interrupted by the kernel in the critical section, one system
call is inevitable.

In a nested critical section scenario, 7; needs to raise its
priority twice: from P; to P/ on entering the outer critical
section C'Sy,, and finally to P/’ on entering the inner critical
section C'S,,. Using the described protocol, again no system
call is involved in this step. The number of system calls on
lowering the priority ranges between zero and two: zero for no

interruption in the fast path, one for an interruption in the outer

SThe kernel is entered by a processor architecture specific trap mechanism
on system calls, asynchronous interrupts, or exceptions like division by zero.



critical section, and two for an interruption in the inner one.
In the latter case, the protocol exhibits its worst case behavior:
with each transition to a lower priority level, it has to issue a
system call, because kprio > uprio.

B. The UPRIO|NPRIO Protocol

The second protocol also uses two variables, uprio and
nprio, but with slightly different semantics:

e uprio describes the current priority of 7; set by user code.

e nprio, meaning next priority, refers to the priority of
the next eligible task for scheduling in FIFO and priority
order. The kernel provides this information and updates it
on every scheduling decision.

Like the first protocol, UPRIO|NPRIO allows rapid priority
changes with no system calls in the fast path as long as the
next thread’s priority remains below F;. If uprio drops below
nprio on lowering the priority, user code issues a system call:

function Protocol2_RaisePriority (prio)
uprio := prio

function Protocol2_LowerPriority (prio)
uprio := prio
if uprio < nprio
SyscallPreempt ()

The kernel updates nprio accordingly when tasks are
inserted to or removed from the ready queue. Additionally,
it bounds uprio to Pmax; and checks whether to preempt:

function Protocol2_KernelReadyQueueChange ()

nprio := nextTask.prio
if uprio > currentTask.maxprio
uprio := currentTask.maxprio
if uprio < nprio
KernelPreempt ()

Despite the similarities, UPRIO|NPRIO only needs a system
call if preemption is really required. Therefore, in the nested
critical section scenario from above, the number of system
calls to lower the priority is at most one.

C. Protocol Summary

When comparing UPRIO|KPRIO and UPRIO|NPRIO, both
protocols use the same technique to change priorities by
writing to a variable in user space, uprio, and checking
another variable, kprio or nprio, when lowering the pri-
ority to test for (possible) preemption. While UPRIO|KPRIO
uses the priority of the currently scheduled thread for that,
UPRIO|NPRIO relies on the actual priority of the next eligible
thread instead.

Despite being faster than an implementation using system
calls to raise and lower priorities, implementations of both
protocols add overhead to ready queue handling (synchro-
nizing uprio) or context switching (setting uprio and
kprio/nprio).
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Still, UPRIO|KPRIO bears potential for optimization: in-
stead of synchronizing kprio on every kernel entry, the
synchronizing step could be postponed to actual scheduling
decisions like in the UPRIO|NPRIO protocol.

IV. EVALUATION

We compare implementations of the approaches presented
in section III to a traditional implementation using system
calls to change priorities. To evaluate the implementations, we
selected two ARM-based platforms from different use cases,
but with a similar system architecture.

As a typical representative of an automotive processor, we
selected the Hercules TMS570 evaluation board from Texas
Instruments. The TMS570 has two ARM Cortex-R4 processor
cores operating in lockstep mode at 180 MHz. This Cortex-
R4 implementation does not have any caches, but fast, tightly-
coupled on-chip SRAM for data storage and flash memory
for instruction storage. Also, it supports a memory protection
unit (MPU) to isolate applications. On the other end of the
spectrum, the AM3358 processor on the BeagleBone Black
board represents a system typically used in industrial and
multimedia scenarios. Its Cortex-A8 core has split data and
instruction caches of 32KB size each, a memory management
unit (MMU), and it operates at 550 MHz.

Despite these differences, both processors share the same
instruction set architecture and most of the exception handling
model. To exclude side effects by memory management, we
use a static memory layout on both processors and execute the
same benchmark on a small statically configured OSEK-like
operating system, based on a custom micro kernel.

We compare the two approaches UPRIO|KPRIO and
UPRIO|NPRIO to each other and to an implementation using
system calls for each priority change. We use two scenarios for
evaluation: Firstly, in subsection A, we provide the execution
times of a micro benchmark of all three approaches to deter-
mine the overhead of the fast priority switching implementa-
tion in subsection B. Secondly, in subsection C, we evaluate the
benefit of fast priority switching in a nested locking scenario
with and without preemption.

A. Micro Benchmarks

The micro benchmark shown in table II comprises multiple
functions to evaluate the platform performance in general and

TABLE I: Processor Characteristics

Parameter TMS570 AM3359
Typical applications safety critical industrial automation,
transportation applications consumer electronics
CPU Core Cortex-R4 Cortex-A8
Micro architecture ARMV7-R ARMV7-A
Pipeline in order, dual-issue in order, dual-issue
8 stages, | ALU 13 stages, 2 ALUs
L1 Caches none 2x 32 KB, 4-way
none 16 word line
L2 Cache none 256 KB (not used)
Board TI Hercules board BeagleBone Black rev. 1
with TMS570LS3137 with AM3359AZCZ
CPU Clock 180 MHz 550 MHz
SRAM Clock 180 MHz 275 MHz
Instruction fetch Flash, 180 MHz I-Cache, 550 MHz




basic scheduling related activities of an OSEK-like execution
environment in particular. In braces, we give the relative
performance gain over the traditional system call approach.

To analyze the platform performance, we conducted the
following tests:

e NOP (No OPeration) loops to analyze the overhead for
decrement-and-branch instructions,

e function calls followed by an immediate return, and

e memory performance of load and store operations.

To evaluate our operating system and its scheduling over-
head, we measured the execution time of the following com-
binations of system calls:

e A null system call determines the overhead of system calls
in general.

e Schedule enforces a round-trip through the scheduler
without a context switch. The call puts the current task
in READY state on the ready queue and reschedules it
immediately.

e A ChainTask call where the calling task activates itself
again: in addition to Schedule (), this shows the over-
head of resetting the task’s state.

e The ActivateTask / TerminateTask pairs shows
task activation of a lower and higher priority task. Acti-
vation of the higher priority task causes scheduling and a
context switch to this newly activated task, which immedi-
ately terminates, followed by another context switch back
to the original caller. Activation of the lower priority task
just measures the cost of placing a task on the ready queue.

e An event loop: a high priority task waits for incoming
events which are signalled by a low priority task in
a loop. The high priority task issues two system calls:
WaitEvent to wait for events in the operating system
kernel, and ClearEvent to acknowledge the events. This
again comprises two context switches.

TABLE II: Micro Benchmark Results in CPU Cycles

All tests were run in a loop 16384 times. For measurement,
we used the 32-bit cycle counter of the ARM processor’s
performance monitor unit, which can be read in a single
instruction. The cycle counter is configured to run at the
processor’s core clock speed.

The overall size of the operating system kernel and the
benchmarks on the TMS570 board is 26 KB code and 25 KB
data. The same values for the AM3359 are only slightly higher,
so the overall working set fits into each of the processor’s data
and instruction caches.

We used the GCC 4.6.3 cross compiler for ARM provided
by the Ubuntu 12.04 Linux distribution to compile our C99-
based operating system. We let the compiler optimize for
size with —Os —-fomit-frame—-pointer and used inline
functions where possible.

B. Overhead of Fast Priority Switching Protocols

As table II shows, the Cortex-A8 core of the AM3359
possesses a faster micro architecture and shows roughly
2.5x faster memory performance than the TMS570. Also, the
different protocols have no impact on platform performance.
When comparing the performance of the system calls, only a
performance benefit of 20% to 30% remains.

The UPRIO|KPRIO protocol shows a general overhead of
up to 17.8% on the TMS and up to 16.0% on the AM3359.
The UPRIO|NPRIO protocol performs better with an overhead
of up to 9.1% on the TMS and up to 14.8% on the AM3359.
Especially the decision to synchronize user priorities only on
scheduling decisions pays off for null system calls.

The operating system kernel is not further optimized for
any of the protocols. All three compared implementations use
a defined region per task to host the protocol variables®. The
shared region alone causes an overhead of 2% to 3% on context
switches (values not shown).

C. Nested Locking Scenario with Preemption

To determine the overhead of critical sections and measure
the effect of possible preemption on lowering a task’s priority,
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Benchmark | Sy Ste"T';;gm[ Urrio[KPrio | UPRIONPRIO the critical section benchmark defines three points in time
NOP 75 when to activate another task:

fZ:gul(;z ;:]:h, R 24213 T T1 put.side the outer criti.cal sect.ion N .
read 1K SRAM. 32.bit 2078 T2 inside the outer, outside the inner critical section
write 1K SRAM, 32-bit 2078 T3 inside the inner critical section

null system call 157 185 (+17.8%) 157 (+0%)

Schedule 329 351 (+6.7%) 359 (+9.1%) At these trigger points, the benchmark task activates one out
ChainTask 416 433 (+4.1%) 443 (+6.5%) of four tasks whose priority value may be:

task activation low priority 295 320 (+8.5%) 312 (+5.8%)

task activation high priority 983 1060 (+7.8%) | 1060 (+7.8%) A) above the inner critical section’s ceiling priority,

event loop 1166 1262 (+8.2%) | 1224 (+5.0%) B) between the outer and the inner critical sections’ ceiling
~OF AM3359 5 priorities,

Fonction call 7 C) between the benchmark task’s normal priority and the outer
read 1K flash, 32-bit 786 critical section’s ceiling priority, or

read 1K SRAM, 32-bit 786 D) lower than the benchmark task’s normal priority.

write 1K SRAM, 32-bit 786

null system call 144 167 (+16.0%) 144 (+0%) Alternatively, no additional task is activated. In total, this
Schedule 251 283 (+127%) | 279 (+11.2%) provides 15 different procedures, of which we consider only a
ChainTask 295 327 (+10.8%) 324 (+9.8%) meaningful subset.

task activation low priority 244 267 (+9.4%) 280 (+14.8%)

task activation high priority 710 776 (+9.3%) 752 (+5.9%) 5The region between kernel and user task additionally hosts the ID of the
event loop o7 1031 (+124%) 958 (+4.5%) currently executing task, which is the only value the system call variant updates



Similarly, we benchmark a non-nested critical section. We
again interrupt the benchmark task outside and inside the
critical section by none, another higher, medium, or lower
priority task. This additionally provides 8 different procedures
in total, of which we also consider only a meaningful subset.
For the non-nested case, the single critical section is referred
to as the outer critical section.

Table III shows the timing of nested and non-nested
critical sections in terms of CPU cycles for both platforms
including possible interruptions. In braces, we give the relative
performance gain over the common system call approach. For
both, the nested and non-nested cases, our protocols show good
results when the critical sections are not interrupted, achieving
a performance gain of more than 72% compared to the system
call approach. Naturally, if the measured task is subject to
interruptions, its execution time increases.

For interrupted critical sections, table III lists three typical
combinations: (+ highprio task), where a higher priority task
causes immediate preemption, (+ lowprio task), where a lower
priority task does not cause preemption, and (+ medprio task)
for scenarios where a medium priority task causes preemption
as soon as a critical section is left. Where it makes a difference
when the benchmark task is interrupted, i.e. in the outer or the
inner critical section, the numbers are presented. Especially
the UPRIO|KPRIO protocol is sensitive to this.

TABLE III: Critical Section Benchmark in CPU Cycles

Benchmark || System Call ]|  UPRIO|KPRIO | UPRIO|NPRIO
TMS570

non-nested 370 T* 101 (-72.7%) 101 (-72.7%)

+ lowprio task 670 T1 437 (-34.8%) 424 (-36.7%)
T2 | 659 (-1.6%)

+ medprio task 1321 T1 1148 (-13.1%) 1136 (-14.0%)
T2 1382 (+4.6%) 1299 (-1.7%)

+ highprio task 1340 TI | 1157 (-13.7%) || 1140 (-14.9%)
T2 1400 (+4.5%)

nested 747 T* 184 (-75.4%) 184 (-75.4%)

+ lowprio task 1014 Tl 504 (-50.3%) 482 (-52.5%)
T2 730 (-28.0%)
T3 | 947 (-6.6%)

+ medprio task 1707 Tl 1216 (-28.8%) 1197 (-29.9%)
T2 1455 (-14.8%) 1367 (-19.9%)
T3 1668 (-2.3%)

+ highprio task 1694 T1 1223 (-27.8%) 1206 (-28.8%)
T2 | 1450 (-14.4%)
T3 1669 (-1.5%)

AM3359

non-nested 327 T* 28 (-91.4%) 28 (-91.4%)

+ lowprio task 581 T1 296 (-49.1%) 276 (-52.5%)
T2 506 (-12.9%)

+ medprio task 1046 Tl 839 (-19.8%) 783 (-25.1%)
T2 1040 (-0.6%) 935 (-10.6%)

+ highprio task 1061 Tl 822 (-22.5%) 787 (-25.8%)
T2 | 1046 (-1.4%)

nested 651 T* 58 (-91.1%) 58 (-91.1%)

+ lowprio task 901 Tl 313 (-65.3%) 293 (-67.5%)
T2 | 531 (-41.1%)
T3 736 (-18.3%)

+ medprio task 1376 T1 840 (-39.0%) 804 (-41.6%)
T2 1058 (-23.1%) 957 (-30.5%)
T3 1275 (-7.3%)

+ highprio task 1382 T1 | 846 (-38.8%) 804 (-41.8%)
T2 1076 (-22.1%)
T3 1275 (-7.7%)
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For UPRIO|KPRIO, activations inside the inner critical
section (T3) are most expensive. These entail two system calls
to synchronize the task’s priority, whereas activations in the
outer critical section (T2) just need one system call. For the
TMS570, the T2-scenarios perform worse than the standard
system call based approach by up to 4.6% in case of the
kernel preempting the current task in favour of the interrupting
task. As the number of system calls is exactly one in both the
standard system call approach and our protocols, this is solely
due to protocol overhead.

In contrast, the UPRIO|NPRIO protocol does not show these
effects. As it issues at most one system call (zero for non-
nested T2-scenarios) to synchronize its priority with the kernel,
its results are always faster than the system call approach.

V. DISCUSSION

In the benchmark results, both protocols show an overhead
in system call performance compared to a traditional approach.
This overhead needs to be justified by the performance gain
of handling critical sections in user space in the fast path. We
think the results draw a realistic picture of the protocols, as
neither benchmarked approach was specifically optimized.

A. Benchmark Results

For UPRrIO|KPRIO, we expected a constant overhead for
each system call and only little impact on scheduling related
calls. The former is an effect of synchronizing priorities on
every system call, and the latter shows the overhead of updat-
ing the protocol variables. We also expected to see a staircase
pattern due to additional system calls on lowering priorities
when interrupting the protocol inside critical sections; the
overheads are higher the higher the nesting level is.

However, we did not expect that UPRIO|KPRIO would per-
form so poorly and sometimes even shows slower performance
than the system call based approach. We also benchmarked
an implementation of the UPRIO|KPRIO protocol which does
not synchronize priorities on every system call, but only on
scheduling conditions (benchmark results not shown). The
constant overhead for every system call disappears, but the
worst case condition of a system call when lowering the
priority still dominates the performance.

We also benchmarked the cost of updating user variables
in a system call based approach to get an estimate of the costs
(values not shown). We compared an implementation providing
uprio and the ID of the current task in user accessible
variables, an implementation providing just the ID, and one
providing no variables. The overhead for providing the first
variable (task ID) was about 4%, the additional overhead for
the second variable (uprio) was less than 2% on a context
switch, and about 4% for calls affecting the task’s priority.
These results are in line with the micro benchmarks.

The UPRIO|NPRIO protocol behaves as expected. The
benchmark values show that it needs at most one system call
when lowering the priority, and also the overall performance
gain looks promising, especially on a system with caches.
However, the benchmark results of a non-nested critical section
interrupted by a medium priority task show, that the worst
case timing is still in the range of the pure system call based



approach. We assume this effect has prevented the adoption of
such protocols in general purpose operating system.

Comparison of the results for TMS570 and AM3359
shows, that the performance gain of the protocols is higher
by about 10% on the architecture with caches. We would have
expected to see that the handling of the additional protocol
variables would show much less impact on a CPU with caches,
but the micro benchmark results point into a different direction.

At this point, it also becomes clear that further analysis
of the benefits of the protocols is difficult using just these
synthetic benchmarks. We need to run real-world workloads
or require statistical information on the distribution of nested
and non-nested locking and typical preemption patterns to see
the overall effect on a long-running system.

As said before, a pragmatic approach in Automotive is to
disable interrupts at the beginning of critical sections. This
is probably related to higher costs of following the OSEK
priority ceiling protocol compared to disabling interrupts. We
need to compare the proposed protocols to these pragmatic
implementations as well, as upcoming automotive platforms
may no longer allow to disable interrupts in user space due to
increased function safety requirements.

B. Safety and Security Considerations

From a safety point of view, the following aspects are
relevant. A task 7; can try to exceed its maximum controlled
priority Pmaz; by placing a higher priority value into uprio.
The kernel must check this whenever it reads uprio and
must bound the value to Pmax;. Additionally, it is possible to
enforce a lower priority bound Pmin; in an implementation,
should that be a requirement. Lastly, a task can act as a foul
player and not issue a system call on lowering the priority. This
behavior has the same effect as a thread not leaving the critical
section, because it delays the scheduling of higher priority
tasks. This problem is not introduced by the fast priority
switching approach: it would also happen with the traditional
approach using system calls. Tasks accessing the same resource
must mutually trust each other anyway.

Also, both protocols leak scheduling related information:
UPRIO|KPRIO reveals that the user task has been interrupted,
and UPRIO|NPRIO exposes the priority of the next eligible
task for scheduling on the ready queue. This may hinder the
adoption in security sensitive operation environments.

VI. RELATED WORK

In real-time scheduling on single processor systems, pri-
ority inversion problems occur when a medium priority task
preempts a low priority task inside a critical section, and is
itself preempted by a high priority task which tries to enter
that critical section. As the low priority task is not scheduled
for execution, it cannot leave the critical section the highest
task wishes to enter. The Priority Inheritance Protocol (PIP)
[5] temporarily raises the priority of the lower priority task to
the priority of a higher priority task when the higher priority
task is waiting to enter a critical section locked by a lower
priority task. The Priority Ceiling Protocol (PCP) [5] assigns
a ceiling priority to each critical section which has to be
assumed on entering the critical section. The Stack Resource
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Protocol (SRP) by Baker [6] solves this for scheduling with
dynamic priorities such as Earliest Deadline First (EDF). For
these protocols, multiprocessor variants exist [7] [8].

Operating system environments use these protocols or
adaptions thereof. OSEK [1] and AUTOSAR [2] use the OSEK
immediate priority ceiling protocol. POSIX [4] refers to a
similar protocol as PTHREAD_PRIO_PROTECT.

Some commercial operating systems such as LynxOS with
its "Fast Ada Page" [9] employ techniques similar to the
described protocols. Previous PikeOS [10] single core imple-
mentations used a model comparable to UPRIO|KPRIO.

Linux’ vDSO [11] and L4’s user-level TCB [12] map a
page into user space to share information such as the current
thread’s control block and IPC arguments (L4), or current CPU
and system time (Linux).

The pending event indicator in L4’s vCPU concept [13]
brings fast interrupt enable / disable pairs to para-virtualized
operating systems on top of a micro kernel. Its interface also
uses a two-way indicator to signal the interrupt status and
pending interrupts like the UPRIO|NPRIO protocol.

Sloth [14] schedules tasks as interrupts and thus delegates
scheduling decisions to the interrupt controller. Tasks interface
with the interrupt controller directly to change their scheduling
priorities. Benchmark results show similar performance bene-
fits for critical sections. However, this performance comes at
the price: a malicious task could easily monopolize the CPU.
This approach is only feasible if all tasks can trust each other.

Similarly optimized for the fast path, the Fast User Space
Mutex (Futex) [15] supports mutexes with low overhead,
requiring a system call only on contention.

VII. CONCLUSION

We have shown a concept enabling the currently executing
task to change its scheduling priority in user space. When
raising priorities, no system calls are needed. For lowering
priorities again, system calls are only required when scheduling
is necessary. We have described and evaluated two approaches,
UPRIO|KPRIO and UPRIO|NPRIO, and discussed the safety im-
pact in case of tasks misbehaving by exceeding their assigned
priority ranges.

Both protocols show performance gains for uncontended
critical sections and, in case of UPRIO|NPRIO, similar or better
performance on contention.

The presented approach is suitable for real-time operating
systems with partitioned preemptive fixed-priority scheduling,
especially for the OSEK priority ceiling protocol in Automo-
tive.

For future work, we would like to combine the presented
approach with the Futex concept of [16] to implement fast pri-
ority ceiling mutexes and further synchronization primitives in
user space for AUTOSAR, ARINC 653, and POSIX use cases.
Also, we need to conduct measurements using more complex
scenarios to evaluate the impact on real-world applications.
Finally, we would like to discuss the applicability to multicore
environments, mixed criticality systems, and approaches using
dynamic priority scheduling such as EDF.
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Implications of Multi-Core Processors on Safety-
Critical Operating System Architectures
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Abstract—As additional hardware in airplanes increases their
weight and in turn their fuel consumption, multi-core platforms
are an interesting potential solution to achieve more processing
capabilities onboard while avoiding carrying additional weight.
However, compared to single-core platforms, multi-core
platforms entail the additional price of requiring more complex
components with tailored timing and communication strategies
for the processes running on different cores at the same time.
This paper presents the developed strategies and the lessons
learnt from porting, deploying, and implementing on a multi-core
platform a recent cabin management software of an actual
passenger airplane and a security gateway for real-time
application. As no standards and best-practices exist in the
current industrial landscape, this work sets an important
industrial basis for implementing and deploying safety-critical
applications in multi-core environments.

Keywords-component: Operating systems, industrial best-
practice; ARINC 653; time partitioning; Avionics Software;
Method Evaluation; Multi-Core Platforms

L INTRODUCTION

There is a clear trend that future architectures of high-
performance data processing and computing will be multi-core
or even many-core processor platforms [1]. With increasing
integration due to weight saving requirements and increasing
needs of computing power due to functional integration,
avionics — the electronics in aircrafts — needs to adapt to multi-
core computing platforms as well. The need for functional
integration of systems and the addition of new functionality
(ideally without any additional weight) pushes processing
performance to its limits. An example is represented by the
various monitoring and support functions that have been
integrated recently into many aircrafts in order to release the
pilot from his routine tasks and improve airplane safety.
Furthermore, customers i.e., airlines and ultimately passengers,
constantly demand that more features —like high-definition in-
flight entertainment (HD-IFE), Cabin Wi-Fi, etc. [21]- be
available on airplanes.

However, the introduction of multi-core processing
platforms into avionics is not without risks as it poses
significant challenges at various levels. On single-core
platforms, former issues of avionic architectures concerned
system-level  scheduling, = communication links, and
communication delays. In today’s multi-core environments
those issues become challenges at operating system (OS) level.
We will outline this in more detail in the next section.

Nowadays, most of the costs for an airline are operational
costs like fuel. Recent experience has shown that modern
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system design approaches can save nearly one ton of
weight [2], which is a significant factor for saving fuel and
hence for reducing operational costs. Multi-core CPUs have the
potential to save even more Space, Weight and Power (SWaP),
which are sparse in aviation platforms.

The main contributions of this paper are the investigation
and evaluation of the influences from multi-core platforms into
the real-time scheduling of real-world industrial applications.
Such evaluations investigate multiple case studies that map
real-world applications from the aerospace domain to multi-
core processing platforms, and discuss the implications of
possible OS-related (in detail ARINC-653-related) timing
schemes and scheme changes that should be supported in the
future. We present sufficient requirements and challenges for
more flexible scheduling approaches in aviation systems.
Given that no industrial standards and practical scheduling
approaches exist so far for multi-core processors used in the
safety-critical aerospace domain, this work is unprecedented
and sets the basis for future development and discussions.

The analyzed case studies originate from porting an
experimental cabin management and monitoring system
(CMMS) and implementing a security gateway application on a
multi-core  platform. Such real-world applications are
sufficiently challenging to evaluate different complex
alternatives for timing scheduling solutions within a real-time
OS. Our contributions will explain the lessons learnt and make
suggestions for future multi-core avionic systems and time-
partitioned OS architectures suitable for the avionics domain.
Although possible scheduling solutions have been covered in
literature for performance-oriented applications, the currently
adopted approach in the safety-critical domain — with statically
allocated execution slots as defined in the standard
ARINC 653 [26] — requires a considerable configuration effort
and is often not intuitive. Additionally, in order to minimize the
certification costs (which correlate to complexity), real-time
OS vendors adopt simple and lightweight solutions, thus
further reducing many deployment scenarios that may be
assumed straight forward in other domains.

The remainder of this paper has the following structure.
Section II describes background information on our work.
Section III gives an overview about the foundations of our
evaluation and related work. Section IV explains the
environment in which the evaluation has taken place. Section V
illustrates our evaluation scenarios before we present the
lessons learnt in Section VI. In the last section, we discuss
planed future steps, and conclude our work.
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II. INTRODUCTION OF MULTI-CORE COMPUTERS TO
AVIONICS AND RELATED CHALLENGES

The introduction of multi-core systems in avionics causes
challenges where, due to safety regulations, independent
computing resources are still an important requirement. Shared
resources such as memory, busses, system level caches, and
chip input/output blocks — often praised as cost-saving factors
in consumer electronics — can pose significant challenges in
safety-driven computing cultures. A real concern is whether
full time- and space-partitioning — i.e., the segregation of
resources — can be guaranteed even in Wworst-case
scenarios [3][30]. Additionally, with the reduced feature sizes
of today’s multi-core production processes, single event effects
become more prevalent [15]. Only in recent years, the aviation
certification authorities such as the Federal Aviation
Administration (FAA) or the European Aviation Safety
Agency (EASA) have started clarifying their positions with
respect to complex electronics such as multi-core
processors [4]. Nevertheless, the need for more information
and experience with commercial off-the-shelf (COTS) multi-
core platforms and their influence on safety-relevant functions
is required in order to design hard real-time applications and to
certify those systems [8]. Several projects have started
gathering the required knowledge to allow future certification
of multi-core platforms (e.g., RECOMP [12], EMC2 [13],
ARAMS [14][13]).

A second challenge is the migration of the currently used
aviation software architectures from single-core to multi-core
processors. Together with the transition from the federated
architecture (fedArch) to Integrated Modular Avionics
(IMA) [7], the transition to multi-core platforms can be clearly
considered another challenging industrial paradigm change. In
a fedArch, each system function uses its own resources i.e.,
each function utilizes a dedicated board (CPU, RAM, I/O etc.).
IMA allows a better usage of computing resources: instead of
deploying one board per function, in an IMA architecture,
functions utilize a common, shared computing farm — which
includes I/O — and several logical functions are encapsulated in
so-called partitions. The most widely used OS standard for
IMA development is ARINC 653 [26], defining the Avionics
Application Standard Software Interface. This standard
describes a layered OS environment [5] where separated
partitions host different functionality with different criticality
levels. These partitions are virtual containers hosting separated
software. Each partition works on an individual subset of
system resources such as CPU cores, /O, and RAM. A strict,
a-priori known, static time scheduling controls the execution-
time of the partitions and allows to set hard real-time execution
constraints for every application. The first airplanes using an
IMA approach were the Airbus A380 and Boeing’s B777.
Nowadays, all modern airplanes —like the A350 or the B787—
have adopted IMA system architectures in combination with
ARINC 653-compliant OSs.

The next generations of airplanes will have to adapt multi-
core platforms in combination with IMA and ARINC 653.
However, this will force developers and system integrators to
change current software architectures, in particular their
communication models and scheduling processing schemes.
Another challenge when using partitioned systems in

combination with multi-core platforms is how to correctly
devise the time scheduling approach for several partitions, the
scheduling of all partitions together within one hyperperiod
(major time frame), and the partition time frame of parallel
executing partitions [10]. On a multi-core platform, partitions
will be executed in parallel and therefore, in order to allow an
optimized usage of resources and communication, the system
designer needs to find a suitable static time-scheduling schema
that fulfils the different timing requirements. Furthermore, on a
multi-core platform, communication between partitions is more
complex, since the software designer needs to respect the
different timings in combination with applications executed in
parallel. For example, he has to take into account how long a
message transfer requires to reach its destination partition
(possibly executing on a different core) to guarantee worst-case
timing requirements.

In order to fulfill all needed safety and security
requirements and therefore fulfilling the certification
requirements, while at the same time containing certification
costs, OSs need to reduce the configuration complexity of
systems deployed on multi-core platforms. Limiting the
possible timing schema options is a viable and very promising
approach to enable relative straightforward configurations and
to satisfy certification requirement. In section V, we present
and discuss the timing schema options that would fit both the
above configuration and certification requirements in the
context of a recent IMA cabin management software.

I1I. FOUNDATIONS AND RELATED WORK

This section explains all foundations and fundamentals of
the evaluation system, state-of-the-art, and used techniques.

A. Native Separation-support in OSs

Given the importance of ensuring time- and space-
segregated execution of partitions, it is fundamental to select an
appropriate execution environment for the partitions. A
microkernel-based OS meets this requirement by offering a
separation kernel with support for scheduling of active entities,
separation of memory and access control, separation of
external devices, interrupt handling, and inter-thread
communications. A microkernel-based OS is therefore the
natural platform for the evaluation presented in this paper.
Specifically, to practically discuss our approach we have
chosen SYSGO’s PikeOS (Version 3.2), which allows
asymmetric  multiprocessing (AMP) and  symmetric
multiprocessing (SMP) [9] in combination with ARINC 653
partitioning [6]. SYSGO’s PikeOS is a commercially available
microkernel based real-time OS that provides hypervisor-like
virtualization capabilities and ensures strict time and resource
partitioning.

Separation is achieved in PikeOS through the concepts of
resource and time partitions. Resource partitions encapsulate
one or more tasks,' which in turn encapsulate one or more
threads that constitute the active scheduling entity in
PikeOS [25]. A resource partition in PikeOS is a container of a
set of physical resources and privileges for user applications —
implemented using one or more tasks or threads. In other
words a resource partition is a virtual-machine environment for

'A task identifies a separate address space shared by all threads assigned to it.
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guest applications spacing from simple tasks to complete guest
OSs. PikeOS’ security and safety functionality lie in the ability
of strictly separating the physical resources assigned to a
resource partition.

Furthermore, each thread in PikeOS is assigned to a time
partition. Each resource partition can be assigned to one time
partition while each time partition can be associated with
several resource partitions. The relations are illustrated in
Figure 1. Processing time is allocated to time partitions and
threads inside one time partition share the allocated processing
time, which is defined by a static time-window-based
scheduling. [5]

Thread Schema —"Ef\,r;y
many 1
1 many
Reso.u_rce Time-Slot
Partition
many many
1
1 . ..
Time Partition — many
(M)

Figure 1: Relationship among resource and time partitions
in PikeOS. A Time Partition can comprise multiple time
slots, which form a Schema. A Schema contains therefore
several Time Partitions. Threads are assigned to Resource
Partitions, which in turn are assigned to Time Partitions.

An appropriate assignment of resource partitions to time
partitions allows to implement of the execution model implied
by the ARINC 653’s major time frame concept.”

B. Challenges of Scheduling a Multi-Core Systems

Today's IMA platforms typically use single-core processors
like the IBM 75x or Freescale MPC744X family. These
processors have a relatively simple caching and pipeline
architecture. Often, they are pure host processors requiring
separate bridge chips, which are specifically developed for an
individual airplane system. In contrast, most multi-core
processors are COTS components with complex instruction
pipelines, branch prediction, multi-level caches and cache
coherency modules with included I/O and DMA controllers.
These optimizations lead to better performance but lower the
timing determinism.

On a single-core processor, no thread parallelism is
allowed, while on a multi-core processor, parallel execution of
multiple threads is the normal case. This leads to interference
between applications running on different cores when hardware
resources are shared between the cores. Resource sharing is
detrimental for worst case performance: as shown in
Schliecker [19] and in Fuchsen [17], the performance of one
core can drop by 50% for specific applications if memory or

ZA major time frame is a repeating, fixed-length period during which each
partition is executed at least once; the major time frame is therefore a multiple
of the hyperperiod of all partition periods.

PCI bus is excessively used by other cores. Similar results are
shown in Nowotsch [3] for memory and platform-level caches.

Common multi-core processors have multi-level caches for
performance optimization and they use cache coherency
modules and crossbars to interconnect the cores. Software
running on different cores is therefore not executing
independently. Even in the absence of explicit software data or
control flows between cores, resource-coupling exists at
platform level due to shared hardware. A switch between
resource partitions comprises a context switch on the specific
cores. Caches are likely to have to be flushed and synchronized
for coherency.

C. Related Work

Carpenter et al. [22] described challenges and complexity
in theory and practice of scheduling in a safety-critical
environment, which is likely to run on a multi-core processor.
King [23] recently explained techniques, such as slack
partitioning and cached scheduling, for the usage in safety-
critical software on multi-core platforms. He argues that this is
a powerful approach as applications can utilize remaining
computing  bandwidth in a  systematic = manner.
Carnevali et al. [18] have presented a formal approach to
design and verify two-level hierarchical scheduling systems, as
used in ARINC 653. The approach includes all necessary steps
from design to development of real-time systems.
Schliecker et al. [19] introduced an analytical approach for
calculating worst-case response times in automotive real-time
system using tasks and shared resources. Nowotsch et al. 0
introduced an approach to manage multi-core Worst-Case
Execution Time (WCET).

I\ CASE STUDY ENVIRONMENT

In this section, we explain the two systems we used to
evaluate time partitioning on multi-core  platforms.
Furthermore, this section introduces the used hardware and
software platforms.

A. Cabin Management System

The cabin management and monitoring system (CMMS) of
commercial passenger airplanes is the major controlling device
for functionalities like cabin light, crew communication,
passenger announcement, climate, water and waste etc. For the
enhancement of in-flight accommodation, airlines and
passengers recently demanded for more up-to-date
technologies such as Cabin Wi-Fi, HD-Inflight-Entertainment
Systems, or Cabin Video Monitoring. All such demanded
technologies need more processing power. DO-214 [20]
describes some of the minimum audio operational performance
requirements of a CMMS, which rise challenging time and
maximum communication delay requirements. Some of the
CMMS’s functions are safety-critical, i.e., the communication
between the cabin server and the end devices has to be
guaranteed. In order to guarantee communication in hard real-
time, currently one application periodically (<100us) sends
data to the end devices. Designing a timing scheduling for a
single-core platform is quite easily compared to a multi-core
platform. A CMMS system has several applications with
different WCETs. This generates several hundred safety
requirements that must be satisfied by the system. Although on
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a single-core the time-scheduling is linear and clearly defined,
it is currently a challenge to devise an optimized time-
scheduling schema for new system configurations holding
around 30 cabin-related applications.

The mentioned trend of deploying more cabin functionality
onto one platform requires more computing performance.
Current systems use single-core CPUs. Increasing the number
of single-core computers to reach better performance would
require more space, power consumption and weight, with
undesirable impacts on the airplane. Multi-core platforms
would allow minimizing size and weight in both current and
future  systems. Leveraging a  multi-core-capable
ARINC 653 OS [27], a new cabin server architecture that holds
several functions integrated on one board is feasible and
desired.

B. Hardware Platforms

The new experimental CMMS we implemented as a case
study uses several Freescale MPC8641D CPUs with two e600
cores as evaluation platform. All CPU cards are using Ethernet
for inter-CPU communication. This experimental platform
implements only some important cabin functionalities, like the
cabin light and crew communication, with the intention to
evaluate a first version of a new ARINC 653 compliant multi-
core OS.

C. Software Platform

As discussed in section III, the OS chosen for our software
platform is SYSGO’s PikeOS 3.2. PikeOS offers AMP and
SMP support, complies with the ARINC 653 standard and is
certifiable according to DO-178b [24] at the required design
assurance level (DAL) (level B or C depending on CMMS
system architecture and application). Furthermore, it has been
already used in several safety-critical avionics devices.

V. EVALUATION SCENARIOS

In order to evaluate a multi-core test environment platform,
we have designed four scenarios based on already used
applications in the current CMMS. All scenarios are designed
for a dual-core CPU platform, which was chosen as
fundamental configuration for the next generation of
experimental CMMS. Furthermore, all scenarios use four
partitions. These partitions can have different WCET and hold
the implementation for a CMMS use case. It is important to
mention that the current application timings have been reused
without considering constraints given by the current OS. This
approach allowed to investigate the limits of current software
and hardware, and to make suggestions for the next generation
of CMMS systems. The analysis explicitly focuses on the
communication overheads entailed by the different solutions,
and on the trade-offs that are required due to the constraints
imposed by each solution. Please note that without restricting
the discussion and the presented solutions, for simplicity,
multirate systems (as defined in ARINC 653) are not discussed
in this paper.

A. Fixed Partition Time Frame Durations

The basic idea of the first evaluation scenario is to fix
execution times (partition time frames [10]) for all partitions on
both cores running at the same time. The time partitions are

defined as T1 and T2, whereby the amount of execution time of
T1 and T2 is variable. Our approach is using four (resource)
partitions (P1, ..., P4) on a dual core platform, so that every
core has assigned two partitions. These numbers of
applications were chosen by selecting a number of relevant
CMMS applications implementing basic cabin use cases. At a
given time, two partitions are executed in parallel and two
partitions are idle. The parallel-running partitions are assigned
to the same time partition, i.e., P1 and P3 are assigned to T1.
After the end of one time partition (e.g., T1), the cores switch
to the next partitions. This scenario requires that one pair of
partitions ends at the same time and that the partition change
must occur on both cores at the same time. illustrates the
mentioned scenario. In this figure, time is progressing
(cyclically) from left to right.

In this scenario, a communication within a pair (e.g.,
between P1 and P3 or P2 and P4) of partitions can be done
without large delays. A communication between P1 and P4
needs at most the complete duration of T1 to reach P4, and an
answer from P4 to P1 can require up to the duration of T2.
Thus, the overall communication would need, in the worst
case, T1 + T2. In this example, the major frame has a period
of 250us (T1 + T2).

- - P ------- 1
Corel | P1 I p2 :
1 | 1
i I 1
[ | |
Core 2 | P3 Idle : P4 :
1
1 | 1
|___I1____I___Iz____'
b 125 250 -
Major Time Frame

Figure 2: Schema Fix Partition Time Frames

Due to the need of switching between T1 and T2 at the
same time on both cores, partition’s durations has to be
extended to the duration of the longest partition: if P1 has a
WCET of 125 ps while P3 requires only 100us, then P3 has to
be “extended” to 125us as well. Therefore, 25 pus of P3’s
execution on Core 2 will be not utilized (idle).

B. Individual Partition Time Frame Durations

This scenario uses one individual time frame for every
application, which is allocated to a resource partition. All these
partitions (P4, ..., P7) have a different WCET. In order to
allow different partition time frames on every core, every core
has an independent scheduling time schema and resource
partitions are assigned to independent time partitions (T3, ...,
T6). The different partition time frames on every core generate
different major time frames: P4 (assigned to T3) on core 1 has
a longer execution time than P6 (assigned to T5) on core 2.
From the perspective of the system designer both cores can be
seen as two independent CPUs. illustrates this scenario.
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As an example, if the WCETs for T3, T4, T5, and T6 are
80us, S0us, 60us, and 60us respectively, then the major frame
on core 1 is 130us while it is 120us on core 2. This approach
influences the communication between partitions. The major
time frame of core 1 is 10us longer than the major frame on
core 2. After 12 time frame periods, core 2 has executed one
complete cycle more than core 1. A guaranteed direct
communication between two partitions is very complex in this
scenario. In a real deployment, there is the need of finding an
effective tradeoff between simplifying communication and a
reasonable, contained amount of idle time. A possibility would
be to maintain a global major period on both cores, with
different partitions executing on each core with different
periodicity. In the example above, this would lead to a global
major time frame of 130pus with a 10ps idle time on core 2.

Time-partition Periods on Core 1
[ 1
1 T3 T4 1
1 1
Corel | P4 ps |l
S . ]
- - - r----"- I
Core2 | P6 : P7 |
| | 1
1 T5 | T6 1
e e e e e = [ S ! .
Lo 60 80 120 130
Time-partition Periods on Core 2

Figure 3: Individual Partition Time Frames

C. One Application, Two or More Cores

The third evaluation scenario focuses on the timing of an
application using more than one core. This scenario is based on
the idea that an application needs more performance than those
achievable on one core only. Possible examples for this
scenario are image processing applications for video
monitoring, communication applications for cabin phone
conferences, or in general, parallelizable applications with very
short execution times (e.g., around 20us) and the requirement
of a high amount of processing power. In this case, one time
partition (T7) spans on all cores, and the single parallelizable
application is mapped on a single resource partition (P8),
allocated to both cores. The scenario is illustrated in Figure 4
(note that in the following figures, time is progressing from top
to bottom).

Core 1l Core 2

e P8 P8

Figure 4: Schema for one Application on two Cores

From communication point of view, this scenario is
straightforward: since the partition is executed on both cores, a
shared memory solution is an efficient solution for the
communication model. The major drawback of this solution is
that it is only applicable for those applications that can be
easily parallelized, while most of today’s legacy applications
are optimized for single-core execution. Furthermore, if
dynamic elements are used in the deployment of tasks on
different core, safety certification may become harder.

D. Security Gateway Use Case

In order to integrate more than one security domain
(potentially at different criticality) in a system, and allowing
the domains to securely communicate, a gateway (an additional
software application) can be used to control the data flow
between resource partitions in accordance with the system
security policy. To realize an appropriate scheduling of such a
gateway, two contradicting paradigms should be followed.
While on the one hand, the gateway should execute as little as
possible to avoid performance loss and allow to meet the
demanding real-time requirements of the controlled
applications, on the other hand, the whole system must remain
deterministic and secure. Thus, the gateway needs to process
the maximum amount of communication data within one
scheduling period.

On single-core architectures there are two possible
scheduling solutions. In the first solution, the gateway (P9) can
run in its own time partition that is scheduled directly between
the other communicating partitions (P10 and P11) —see . This
generates a complex time-scheduling schema and may lead to
some idling time overhead since the applications may not send
the same amount of data in each period. The second approach
is to “steal” processing time directly from the time-partition
that initiated the communication. This approach adds more
complexity to the WCET analysis of an application that is
required by the certification process of high-criticality
applications.

Core 1l

| P9 (Gateway) l

P10

P9 (Gateway)
P11

Figure 5: Single-core scheduling with Gateway processing
time slot between application partitions

By using multi-core architectures it is possible to run the
gateway (P9) on one dedicated core concurrently with the
applications on other cores (P10 and P11) — see Figure 6.
Although this approach may under-utilize the core where the
gateway is allocated (as P10 and P11 do not continuously
exchange messages), a higher utilization of the gateway’s core
can be restored by allocating lower priority tasks (or non-real-
time tasks) on the same core. Thus, processing time will be
employed to process the low-priority background tasks that are
promptly interrupted by the gateway when a communication
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takes place. Although appropriate to avoid under-utilized cores,
this approach could expose timing covert channel inside the
system, and therefore, it requires the background low-priority
tasks to be trustworthy.

A possible method to realize the described scheduling
behavior within PikeOS is to use the time partition TO. In
contrast to standard time partitions, threads assigned to TO are
always eligible to be scheduled concurrently with the threads
belonging to the current active standard time partition. The
eligible thread with the highest priority between the active
standard time partition and TO is scheduled on the core [5].
Hence, TO can be used for event-driven real-time applications
or applications without real-time requirements that can run
when higher priority threads have completed. This approach is
somewhat similar to the background server and slack
scheduling approaches (e.g., [28], [29]) for multi-core
platforms.

Core 2
P10

P11

Core 1l

P9
(Gateway)

Figure 6: Multi-core scheduling with Dedicated Core for
the Gateway

VL LESSONS LEARNT

In this section, we summarize the evaluation of the
scenarios mentioned in the last section. In order to evaluate the
scenarios, we implemented prototypes of the CMMS
applications and of the gateway application. The prototypes are
sufficient to demonstrate and evaluate the usage of multi-core
platforms and SYSGO’s PikeOS 3.2.

A. Fixed Time Frame Durations

The implementation of this scenario shows that it is very
challenging to find applications with the same or at least
compatible WCET. All implemented applications had very
different execution times and this generated high variance in
the time-partitions’ durations, leading to high idle times and
under-utilized cores. As a “worst-case” example, during the
implementation we faced the challenge of allocating on
different core monitoring applications with a WCET of 250us
to be run almost concurrently with an audio streaming
application with a WCET of 10ms.

An additional issue exposed by this solution is high latency
entailed by concurrently flushing caches on time-partition
switches on multiple cores. This is required to ensure the
correct initial conditions and deterministic execution of highly
safety-critical applications. Unfortunately, writing back caches
into memory on all the partitions at the same point in time
leads to longer write-back times due to concurrent use of the
common memory and buses resources.

Another difficulty was to deal with a periodic partition that
must execute after a specific amount of time. In this scenario, if

a periodic application is combined with a non-periodic
application, the non-periodic application must also be
scheduled when the periodic partition is activated. Although
this may seem a trivial task, most periodic applications have
either high or low priorities. Therefore, in case of low priority
periodic application, the system may waste computing time for
the unnecessary non-periodic application. The opposite
situation occurs in the case of high priority periodic
application, as the periodic application may be executed due to
the activation of the non-periodic one. In some cases, it is
impossible to combine non-periodic and periodic application
on the some core, because their scheduling requirements are
completely incompatible.

B. Individual Time Frame Durations

The idea of the second time schema scenarios or variants
thereof is currently not supported by any ARINC-653-
compatible OS. Nonetheless, this scenario is fully flexible and
would fulfill most of the needed requirements of application
designers. Every core has its own scheduling schema, and
time-partition assignment is independent on every core. One of
the main challenges is related to the communication between
applications assigned to different time-partitions on different
cores. The synchronization of such communication is very
challenging as each core may execute independent sequences
of time-partitions. The application designer is therefore forced
to closely monitor the timing of data transfer between different
applications. Such task is complex and hard to configure and
control as the major execution cycle of one core can be faster
than the cycle(s) of the other core(s). Therefore, in this
scenario, important and complex communications behaviors
are more difficult to implement. Another major challenge is the
current lack of precise WCET tools supporting applications
running within multiple ARINC 653 partitions [16]. This
makes the task of precise evaluation of the length of each
independently executing time partition even harder.
Improvement in this field would allow future systems to
calculate the best scheduling schema by using information
from applications and partitions.

C. One Application, Two or More Cores

As noted, the major difficulties of implementing this
scenario are related to the parallelization of legacy, already
certified, single-core applications. Furthermore, parallel-
executing threads are not independent from each other, and
may cause interference through, e.g., competing OS’s system
calls. Consequently, the timing of applications executing on
other cores is affected. Although interference on other
partitions and cores can be minimized by for example,
synchronizing partition scheduling on all cores, high WCET
penalties are unavoidable. It should be noted that newer
versions of PikeOS (e.g., version 3.4) enable a synchronized
partition switching on multiple cores, but such a feature was
not available when the implementation was carried out.

D. Security Gateway Use Case

In case of our gateway application, we clearly see the
potential benefit of using multi-core architectures for those
upcoming safe and secure system designs that adds data flow
controlling components. These gateway components need to
execute whenever a communication between two applications
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belonging to differently classified security domains occurs. In
order to avoid changes of currently established single-core
scheduling schemas, the gateway can be processed on a
dedicated core. However, since we cannot determine for all
applications when communications exactly occur, the gateway
is required to be executed whenever a communication request
is initiated. To avoid the high utilization penalty of exclusively
using a core for the gateway only, an event-driven real-time
application should share the core with uncritical software (if
possible and available). PikeOS’ time partition TO is a possible
solution to operatively realize such a scenario and to deal with
otherwise unused idle time.

TO has been used as an always-active background time
partition. Since it can contain multiple resource partitions with
different priority levels, low-priority resource partitions (and
therefore applications) have been assigned to TO so that they
could be scheduled during the idle time of the other time-
partitions. The deterministic scheduling of other time partitions
is not affected and only spare, otherwise-idle time is spent for
low-priority resource partitions within TO. It should be noted
that high-priority event-driven resource partitions can be
assigned to TO as well to minimize the response time after an
event occurrence. In fact, such high priority partitions can
preempt any lower priority partitions (in both TO or in any
standard time-partitions) at any time thus ensuring fastest
possible response times. In case of this event/driven scheduling
the system architect has to evaluate the potential impact on
time determinism.

It should be noted that several challenges arose from the
use of the TO approach. In fact, although TO can guarantee the
execution time of a task, tasks and resource partitions assigned
to TO are preferred to equal-priority resource partitions
assigned to standard time-partitions. This may lead to potential
starvation of the resource partitions assigned to standard time-
partitions.

VIL

The scenarios presented in the paper are the first step in a
long-term research project that aims to develop a new CMMS
version for future airplane generations. One of the next steps
will be the definition of new software architecture optimized
for ARINC 653 and multi-core platforms. A first proposal of
such architecture is presented in [11].

FUTURE STEPS

Furthermore, we identified some CMMS applications that
could be successfully parallelized to fulfill the scenario in
section V.C. Therefore, we have started to evaluate a four-core-
CPUs for the experimental CMMS with limited functionality.
To implement all original and new functions even more
resources are needed.

Our first evaluation has successfully shown that a multi-
core platform is able to hold more than the applications
currently required for a CMMS. In the next steps, we would
like to combine several other systems like video information
and passenger Wi-Fi network in one single multi-core
platform. However, this approach entails new security concerns
such as those implied by combining several different security
levels in one platform. In order to provide the highest security

level, we will have to define new methods and techniques on
the level of applications, OSs and hardware.

Strict time and space partitioning is one solution for dealing
with the arising security challenges. However, these
approaches can only prevent the leak of information of faulty
memory accesses or timing attacks. However, since in every
integrated system communication between partitions is
required, the needed communication channels would be
vulnerable to transfer secure data out of a security domain. An
integrated gateway solution for controlling the information
flow between partitions belonging to different domains similar
to the one presented in scenario in section V.D is a first step
towards securing such kind of communications. Finding multi-
core optimized software architecture and scheduling approach
for such gateways will be a challenging part of our future work.

Multiple accesses to I/O devices are additional complex
activities that will require further investigation. During several
tests, we discovered that the currently-in-use driver design has
to be improved to support multi-core platforms and partitions.
A clean driver interface is needed, which can control parallel
accesses from partitions.

It should be noted that not all the presented multi-core
design possibilities can be operatively realized with the
currently available hardware/software combinations. On the
one hand, due to the complexity of current multi-core platforms
with shared hardware components it is very difficult to
estimate accurate-WCET bounds that can be used to
characterize the execution requirements needed by some of the
identified design solutions. On the other hand, limitations of
operating-systems such as the employed version of PikeOS
(version 3.2, still optimized for single-core solutions) still do
not offer adequate certifiable functionalities and means to
efficiently implement all the proposed design solutions.
However, newer and upcoming versions of OSs like PikeOS
(with new interfaces and improved tools) provides (e.g., in
PikeOS version 3.4) and will provide improved support for
some of the major constraints identified in the presented
scenarios. In particular, the ability of running individual time
partitioning schemes on separate cores with the upcoming
PikeOS version will allow to significantly simplify the porting
and the scheduling of avionics applications to multi-cores.

VIIIL.

In this paper we have presented the investigation of a multi-
core platforms usage in the context of a real-world safety
critical real-time environment with a strong focus on time
scheduling and communication behavior. The main goal of this
study was to better understand the operational difficulties and
opportunities involved in finding an optimal scheduling for
industrially-relevant real-time applications and to illustrate
potential approaches when such applications are implemented
and deployed on a multi-core platform. We have investigated
four scenarios that were derived from a real CMMS taken from
a state of the art Airbus plane. These scenarios can be seen as
challenging archetypes for most aviation applications in a
safety-critical real-time environment.

CONCULSION

For each of the investigated scenarios, execution time and
periods of the selected applications as well as communication
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needs between them have been discussed. Our results underline
the challenges in migrating current avionics application designs
from single-core to multi-core platforms while preserving
appropriate time and space separation properties. For each
analyzed solution, the major drawbacks have been presented.

Furthermore, we have proposed ideas on how to optimize
software designs and communication models for future multi-
core systems, not only in the avionics field, but in other fields
with similar safety certification and performance requirements.
When dealing with upcoming multi-core safety critical
systems, an optimized solution for task distribution in a
certifiable real-time environment will require a combination of
system architecture, software architecture, operating system,
and communication modules and further joint development
efforts.
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Abstract—Recent trends in automotive systems have intro-
duced the need for meeting both quality of service expectations
and hard real-time processing guarantees. This paper addresses
this trend by reviewing most popular virtualization and hard
real-time solutions, and proposes promising future directions
for combining both types of systems. A generic automotive
use-case and its requirements are presented targeting a single
hardware platform. The key virtualization solutions discussed
include KVM-Preempt-RT, Para-virtualized KVM-Preempt-RT
and RT-Xen. The RTOSes evaluated are RTLinux, RTAI and
Xenomai, for their suitability to the automotive use-case. Finally,
future directions that can bridge the hard real-time control
and virtualization gap in automotive platforms are presented.
Implementation and experimental evaluation of the proposed
design remain as future work.

I. INTRODUCTION

Real-time systems must respect pre-defined timing con-
straints and remain deterministic in nature. The validity of
computations depends on functional correctness and the avail-
ability of results before pre-computed deadlines [6] [15]. A
Real-Time Operating System (RTOS) executes real-time tasks
and ensures timing constraints by strictly respecting task pri-
orities at all times. Key features of an RTOS include interrupt
latency, determinism and preemptive scheduling. A real-time
system can be unfair, as it needs to assure certain deadlines
and usually penalizes low priority tasks. Examples of real-
time applications in automotive include Electronic Stability
Control (ESC) and Adaptive Cruise Control (ACC).

A General Purpose Operating System (GPOS) such as
Linux is optimized for performance in the average case rather
than real-time behavior, ensuring fairness and throughput to
achieve a well-balanced system for all of its users. In the au-
tomotive context, In-Vehicle Infotainment (IVI) encompasses
a set of low priority and non-critical applications such as
multimedia, games and location services, that typically require
a GPOS for portability.

The contribution of this paper is a detailed survey of key
virtualization and real-time technologies with the objective of
combining real time functionality and multimedia applications
together to meet the growing automotive market expectations.
The paper is organized as follows: Section II illustrates a
generic automotive use-case, with its real-time and non real-
time requirements. Section III analyzes the key real-time
virtualization technologies. Section IV reviews existing hard
real-time solutions and their key features. Section V describes
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promising software architectures for future automotive plat-
forms and Section VI concludes this paper by discussing these
directions. We use the terms Security & Safety to refer to secu-
rity and safety of operating system and software services, and
we do not imply life-safety hard real-time systems. Moreover,
the scope of discussion has been limited to automotive context,
as opposed to previous surveys [13] on real-time systems.

II. RTOS CONTROL + GPOS BASED IVI IN AUTOMOTIVE

We focus on the deployment of multiple operating systems
including an RTOS and a GPOS on a single hardware plat-
form. In the automotive use-case, a car can be considered
as an “Object” playing an important role in the Internet of
Things (IoT) arena. Moreover, high speed mobile communi-
cation in automobile platforms can enable the use of the car
as a gateway for other Connected Objects. The latest modem
technology standards such as 4G/4G+ can enable these highly
connected automotive platforms. We assume that most of the
Long Term Evolution (LTE) protocol [5] processing takes place
in a dedicated hardware module, which supports high band-
width communications (> 4500 bps). Applications interfacing
with LTE protocol stack reside in the GPOS, thus requiring
LTE module’s virtualization or direct assignment to the GPOS.
The RTOS takes care of Controller Area Network (CAN)
processing, managing the high bandwidth communications on
the IEEE 802.1 AVB Ethernet Bus [16].

Rear-view Camera,
Modem / Telephony,
FM Radio, :

Security (Airbags),
Diagnostics, eCall,
Stability Control,

GENIVI AUTOSAR
Generic GPOS Legacy RTOS
(Linux based VM) (OSEK/VDX)

| Virtual Machine Monitor (VMM) |

| Hardware Platform (Processor+Modem) |
Fig. 1: GPOS and RTOS on an Automotive Platform

The use-case also assumes that RTOS and GPOS take
benefit of virtualization technology and run on top of a
Virtual Machine Monitor (VMM) similar to [19]. Stability of
this use-case depends on the separation of RTOS and GPOS
services, and RTOS tasks must be prioritized over the GPOS
applications, in order to respect the latency and deterministic




TABLE I: Automotive Use-Case Requirements, Rationale and Explanations

Requirement H Rationale/Criteria

l Explanation

Technology Type || Multi-OS Support

A Real-Time Hypervisor would seamlessly support legacy RTOS & GPOS systems.

Hardware Platform || 32/64-bit Processor

Preferably 64-bit embedded processor(s) to ensure future-proof implementation.

RTOS Latency || 10~50us (approx)

Strongly dependent on the control application under consideration.

GPOS Latency || < 5ms (network) + Processing

Soft Real-Time requirements mainly due to applications processing LTE packets.

Legacy RTOS Support || Easy Application Migration

Multiple legacy RTOS support or emulation to ease real-time application migration.

Disk Scheduling || Low Latency Disk Accesses

Multimedia application access times to disk resources should be minimum.

1/0 Virtualization || Host/Guest Coordinated I/0

Virtualization of I/O resources should benefit from Host/Guest coordination.

Certification || Real-time OS Protection

RTOS tasks should be isolated from IVI applications to ensure certifiable operation.

Open Source || Community Building/Maintenance

Open Source software is better maintained and serves larger user base.

requirements. Figure 1 shows the generic architecture of this
use-case and Table I gives some of its key requirements.

III. VIRTUALIZATION SOLUTIONS WITH REAL-TIME

Most of these solutions modify the Linux kernel to introduce
real-time capabilities including preemption, lower interrupt
latency, faster context switching and fine-grain time manage-
ment. The most popular solution in this category is the Real-
Time Preemption patch [1] (a.k.a. Preempt-RT), and others
including MontaVista Linux [20] and TimeSys Linux [18]. The
key idea is to enable preemption in all possible kernel contexts,
instead of a few preemption points in order to build a highly
responsive system. Examples of kernel blocking contexts in-
clude critical sections and Interrupt Service Routines (ISRs).
These solutions cannot provide hard guarantees on the timing
latencies of the patched kernels [23], as analysis of the whole
kernel code paths is infeasible. Other real-time virtualization
solutions include baremetal hypervisors [24] with a strong
focus on real-time scheduling of virtual machines.

A. KVM with Preempt-RT

The Preempt-RT patch [1] takes a standard Linux ker-
nel and modifies it to enable almost full kernel preemption
(reentrancy). The key changes introduced are: the use of
mutexes instead of spinlocks, threaded interrupts and support
for Priority Inheritance Protocol (PIP) to avoid priority inver-
sion. Mutexes guarding the critical sections support priority
inheritance mechanism, thus they can be preempted and put
on sleep mode. Interrupt handling in kernel thread contexts
enables their scheduling as normal Linux processes, thus ISR
preemption is supported. On average, the interrupt latency
ranges between 20us and 30ps, with a maximum value
from 62pus to 336us [8][17]. Additional Preempt-RT features
include High Resolution (HR) Timers, Preemptible Soft IRQs
and Preemptible RCU (Read Copy Update) mechanism.

Most of the Preempt-RT features have already been in-
tegrated into the mainline kernel [12] except for the bit
spinlocks [3] and threaded interrupts that are still maintained
separately. The Preempt-RT solution is implemented in a
generic and portable way thus supporting a new platform
does not require platform specific modifications, if the target
platform is already supported by Linux. Nevertheless, some
of device drivers and kernel sources may need to be reviewed
and adapted.
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Preempt-RT patch can be employed to make the Host Linux
an RTOS, and use KVM virtualization for meeting the non
real-time application requirements [12]. This solution however
does not easily support a legacy RTOS, as the real-time domain
resides on the Host side rather than the Guest. To overcome
this limitation, we can exploit KVM’s virtualization model
as discussed in [28]. Thus, a careful Prioritization of VMs’
priorities and scheduling class can give real-time behavior in
Guests. However, priorities alone cannot guarantee the real-
time behavior in Guests, as interrupts on the Host machine can
even preempt highest priority tasks, thus Preempt-RT patch is
necessary to convert Host ISRs into kernel threads.

On SMP or multi-core platforms, CPU Shielding can be
used to dedicate a Host CPU to a Guest RTOS VM, using
the task and interrupt affinities. The RTOS VM is assigned
to a CPU except CPUO, in order to avoid the common Host
interrupts such as the ones originating from disk and network
devices. Additionally, SMI, ACPI and tracing features of the
Host kernel are disabled to avoid power management induced
performance degradation. Swapping of Guest memory pages
is also disabled. Figure 2(a) shows the generic architecture of
Preempt-RT based virtualization solutions.

B. Para-virtualized KVM with Preempt-RT

Prioritization of virtual machines into the real-time schedul-
ing class is one way to improve the real-time responsiveness of
Guest virtual machines. Prioritization requires careful balanc-
ing and deactivation of certain features on Host machine, as
real-time Guests may depend on non real-time Host services,
such as kernel events and Asynchronous I/O (AlIO). Addi-
tionally, livelocks may occur if an in-appropriate maximum
priority is selected. For example, a High Resolution timer
thread needs to have higher priority than the real-time virtual
machine, if the VM wishes to receive events from the HR timer
thread [14]. Likewise, we need to ensure that only real-time
tasks are executed inside the real-time VMs, as ’low priority’
background jobs within a real-time VM take priority over the
seemingly high priority Host processes.

These issues have been analyzed in [14], which proposes
a para-virtualization scheduling interface to overcome the
priority inversion problems. This solution introduces two new
hypercalls that real-time Guests invoke to inform the hyper-
visor about their internal state. The first hypercall i.e. Set
Scheduling Parameters is used to inform the hypervisor of
the current Guest process priority and policy. The hypervisor
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uses this information to calculate the Host-level priority of
the corresponding VCPU thread and informs the scheduler
about it. The second hypercall is used from Guest interrupt
handling context. Before injecting an interrupt into a Guest,
the hypervisor boosts the corresponding VCPU’s priority to
maximum, and the Guest informs hypervisor about the end of
interrupt handling by using the Interrupt Done hypercall. The
hypervisor then restores the previous priority and policy for
this particular VCPU, known as deboost. Figure 2(b) shows
the overall architecture of this solution.

Although, this solution avoids priority inversion but it
comes with additional cost as the average latency increases to
86us with a maximum of 434us [14]. Moreover, the KVM
para-virtual MMU operations have to be disabled as their
implementation is incompatible with changes in the Preempt-
RT MMU subsystem. Lastly, this solution cannot support un-
modified legacy RTOSes, as the Guest OS sources must be
modified for para-virtual interface implementation.

C. RT-Xen: A Real-Time Baremetal Hypervisor

Xen [7] is a popular open source baremetal hypervisor and
allows for the co-existence of multiple domains (VMs) on the
same hardware platform. It creates a special domain known as
Domain 0 that acts like a Host OS and manages Guest domains
i.e. Domain Us in Figure 2(c). Xen uses para-virtualization so
Guest OS and I/O drivers are modified to send requests to the
VMM instead of hardware. The VMM forwards these requests
to the para-virtual backend drivers in Domain 0, which then
uses real hardware drivers for completing I/O operations.

Real-time virtualization in Xen i.e. RT-Xen [24] has been
proposed for single-core CPUs and a more recent work i.e. RT-
Xen 2.0 [25] for multi-core platforms. In all cases, the reported
results show soft real-time behavior in virtual machines and a
scheduling quantum of 1ms is proposed. Results in [24] show
a 40% deadline miss rate when the scheduling quantum is
set to 10us and Guest systems cannot even boot for smaller
scheduling intervals. A recent study [10] has reported interrupt
latency (for a short 8 seconds test) of around 14us with a
maximum value between 21.2us and 41.5us, depending on the
type of scheduler used in RT-Xen. Lastly, certification of RT-
Xen is still an open issue, which is an important requirement
for the automotive use-case.
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IV. REAL-TIME SOLUTIONS WITHOUT VIRTUALIZATION

This section provides a detailed review of key real-time
solutions that are interesting w.rt. the automotive use-case.
In all of these solutions, a small nano-kernel” is introduced
underneath the usual Linux kernel and focuses on the hard
real-time requirements of the system.

A. RTLinux: The First Real-Time Linux

RTLinux is the first solution to employ the dual kernel
approach [27], i.e. the Linux kernel is treated as a low priority
process and all real-time activity is confined to the RTLinux
kernel space [21]. A later effort introduced POSIX threads API
into RTLinux to enable user mode real-time threads. RTLinux
is available in two different flavors i.e. the RTLinux/GPL and
Real-Time Core. The overall architecture of RTLinux/GPL is
shown in Figure 3(a).

The RTLinux micro-kernel is fully preemptible and uses
fixed priority scheduling with support for Priority Ceiling
Protocol (PCP) to prevent priority inversion. Linux kernel
is assigned the lowest priority and executes as an idle task.
The real-time scheduler supports Round Robin scheduling for
tasks with the same priority. Moreover, the RT scheduler can
be replaced dynamically by a more suitable one, to meet the
needs of a given application.

RTLinux handles all hardware interrupts necessary for
deterministic processing and propagates other ones to the
Linux kernel, if interrupts are enabled by Linux. To take
hardware control, the Linux kernel is modified to remove
hardware management instructions e.g. interrupt enable and
disable instructions. These instruction are replaced with hooks
to render control to the RTLinux micro-kernel, which takes
appropriate action e.g. enabling or disabling interrupt delivery
to the Linux kernel. RTLinux uses the concept of Hardware
Abstraction Layer (HAL) and provides an API for managing
hardware interrupts and writing ISRs. The average latency
ranges between Sus to 10us, with a maximum latency of
27us [21].

The major drawback of RTLinux is its proprietary design
and closed source nature [21] (at-least the RTCore). The real-
time tasks execute outside the Linux kernel and use a specific
real-time kernel API. As a result, the GNU/Linux program-
ming model cannot be preserved when porting real-time appli-
cations from another RTOS to RTLinux. This solution requires
custom device drivers in the real-time domain and does not



RT Task || RT Task
User User RT RT User User (User) || (User)
Process Process Task Task Process Process RT Task - ’ User ’ User
]
RT-FIFO Y (Kernel) é g x :;5 « é § = Process Process
SysCall Interface SysCall Interface G EE A E RS
Y —,| RT RT Y % =it SBR[ SysCall Interface
q Scheduler . €| i Nucleus
Device Drivers Linux TRk Tl RTAI Linux [ Device Drivers l A [Linux _ —
T sortirgs " S 3 T Rsonras Device Drivers
] X T Rsonmas rVvy
o Interrupt > e
Real-Time < . Domo0|Dom1| - | Idle Interrupt g <
1/0 ‘ Z 1/0 1/0 Pipe (ipipe) 1/0 o (ini DomO(Dom1| - | Idle
i Scheduler 110 Pipe (ipipe) /0
RTLinux ulel 2 ADEOS NOIToR
27 1w IRos 27 hw IRas 27 1w IRos

Hardware Platform

Hardware Platform

Hardware Platform |

(a) RTLinux/GPL Architecture

(b) RTAI/ADEOS Architecture

(c) Xenomai/ADEOS Architecture

Fig. 3: Hard Real-Time Solutions using a Micro-kernel

support MMU, so virtual memory and memory protection are
unavailable. Inter-process communication between RTLinux
tasks and Linux processes takes place through message queues
(RT-FIFOs) or shared memory.

B. RTAI: Real-Time Application Interface

RTAI [2][9] follows the dual kernel approach of
RTLinux and introduces a Real-Time Hardware Abstraction
Layer (RTHAL) for simulating the hardware platform and
making the Linux kernel believe that it runs on a real platform.
The RTHAL gathers all pointers to the time critical kernel data
and functions, such as the hardware interrupt flags, interrupt
vectors, etc., into a single data structure and modifies the
Linux kernel routines to initialize the RTHAL pointers. RTAI
then modifies the Linux kernel to use RTHAL for all of its
hardware-specific operations, forwarding control to RTAI in
all such cases.

More recent versions of RTAI are based on the Adaptive
Domain Environment for Operating Systems (ADEOS) [26].
The ADEOS nano-kernel schedules multiple instances of the
same or different operating systems running on top of it, and
allows for the co-existence of multiple prioritized domains.
ADEOS implements a pipeline scheme, which is used to
virtualize the data and functions previously gathered by the
RTHAL layer. Each domain, for example RTAI and Linux,
is represented by an entry in the ADEOS interrupt pipeline
(I-pipe), and every event entering the pipeline is delivered
to all of the registered domains according to their respective
priorities. RTAI resides in the highest priority domain to ensure
real-time behavior. The average latency for the original RTAI
solution is around Sus with a maximum latency of 10us.
Using the ADEOS layer, the average latency is increased to
10us. Figure 3(b) shows the generic architecture of RTAI
using the ADEOS layer.

The ADEOS layer pushes the Linux kernel out of the Ring
0 to Ring 1 on x86 machines, by modifying the GDT entries.
This aspect can cause problems in case of virtualization,
especially on systems with only two levels of privileges i.e.
system and user, as the Host is usually assumed to have full
control of the hardware platform.

C. Xenomai: The RTOS Chameleon

The Xenomai [11][21] framework is yet another micro-
kernel based real-time, abstract and architecture neutral oper-
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ating system. Xenomai uses a generic and reusable emulation
layer known as nucleus. The nucleus exports an architecture
independent interface for controlling the hardware resources to
lower-level HAL layer, which implements it in a host-specific
manner. The nucleus includes necessary support for Inter
Process Communication (IPC), and communication with Linux
domains takes place through message pipes. Additionally, the
nucleus provides dynamic memory allocation support with
real-time guarantees and any number of memory heaps can
be maintained dynamically.

Xenomai also uses the ADEOS layer for interrupt virtual-
ization and managing different domains; receiving interrupts
from hardware platform and forwarding them to higher layers,
according to their respective priorities. The average latency
for Xenomai on x86 machines varies between 10us to 15us,
whereas the worst case latency is reported to be 37us and
90us [8] in kernel and user modes, respectively.

Xenomai introduces the concept of Skins or personalities
and each skin emulates the system call interface of a particular
RTOS. The objective of a skin is to ease the portability of real-
time applications from another RTOS to Xenomai framework,
with minimal or no changes. Xenomai provides emulation
skins for Native, VxWorks, pSOS+ efc. and supports many
architectures including ARM!, Blackfin and i386. The overall
design of Xenomai framework is shown in Figure 3(c).

The real-time task scheduler of Xenomai uses fixed pri-
orities with preemption support and employs PIP to prevent
priority inversion. The task rescheduling procedures are locked
during an ISR execution, in order to preserve atomicity of
interrupt handling, and ISRs always take priority over tasks.
Automatic task migration between Xenomai and Linux is
possible, but requires compatibility between the used APIs
i.e. as a function of the used skin.

Xenomai does not support MMU [21], thus virtual memory
and protection is unavailable for real-time tasks. Xenomai
patched kernels show improved performance due to the de-
activation of power management and frequency scaling func-
tions [17]. To improve platform support, Xenomai is aiming
towards integration with the Linux Preempt-RT patches [21].

ILimited support for ARM architecture as of today.

2These latency values are for x86 machines, as reported in literature.

3FSMLabs and its key product i.e. RTLinux was sold to Wind River in
February 2007 [4] but got discontinued since August 2011.



TABLE II: Comparison of Virtualization and Real-Time Technologies

Criteria]|  KVM/RT | PV-KVM/RT RT-Xen || RTLinux/RTCore | RTAI/ADEOS | Xenomai/ADEOS |
Technoloay Type Hosted VMM Hosted VMM Baremetal VMM Dual Kernel Dual Kernel Dual Kernel
gy P Prioritization Para-virtualization | Para-virtualization (Linux + RTLinux) (Linux + RTAI) (Linux + Xenomai)

Maintenance Cost

Host kernel only)

Host/Guest kernel)

Host/Guest kernel)

(Proprietary kernel)

(In-house kernel)

Supported All (Potential All (Potential ARM, ARM64, Alpha, ARM!, 1386, |ARM!, Cris, i386, m68k, | ARM!, Blackfin, i386, SH,
Platforms || Porting Issues) Porting Issues) 1386, x86_64 MIPS, PPC, Proprietary MIPS, PPC, x86_64 PPC32/64, NIOS2, x86_64
Avg. Latency? 20~30us ~86us ~14pus 5~10us 5~10us T~15us
Max. Latency? 62~336us ~434us 21~42us 10~27us 10~20us 10~37us
API Support Standard Standard Standard POSIX RTAI Kernel & Multiple Common APIs
User/Kernel APIs | User/Kernel APIs User/Kernel APIs Kernel APIs LXRT User APIs User/Kernel Mode (Skins)
Open Source/Cost Yes / Free Yes / Free Yes / Free No / Licensing Fee Yes / Free Yes / Free
Develop. Status || Requires Patching | Requires Patching Relatively New Stable Stable Stable (Relatively New)
Support/Type || Good/Forums Limited/Forums Limited/Forums Good/Vendor Limited/Forums Good/Forums
Deployment/|| High (Patched High (Patched High (Patched Low~Medium Medium~High High

(In-house kernel)

Legacy RTOS/
RT Applications

Yes (No changes
to Guest kernels)

No (Guest kernel
require changes)

No (Guest kernel
require changes)

No (RT tasks
require porting)

No (RT tasks
require porting)

Yes (RT Tasks only,
using Emulation Skins)

Source

Linux 3.12

Linux 3.12

RT-Xen 2.0/Xen 4.3,

Discontinued?

RTAI 4.0, Linux 3.8

Xenomai 2.6.3, Linux 3.10

Compatibility || Standard Drivers | Standard Drivers

Linux 3.9, PV FE/BE

Proprietary Drivers Custom Drivers Custom Drivers

This solution, commonly known as Xenomai/forge, is cur-
rently under development and does not require the ADEOS
layer as it is based on a single kernel approach. Table II
compares all of the virtualization and real-time techniques
discussed in Sections III and IV.

V. ARCHITECTURAL DIRECTIONS FOR REAL-TIME AND
VIRTUALIZATION IN AUTOMOTIVE PLATFORMS

The ARMvVS architecture targets both high-end and low
energy embedded platforms and provides a 64-bit computing
environment while keeping backward compatibility for 32-
bit systems. It provides a dedicated hypervisor mode with
hardware extensions for virtualization and Large Physical
Address Extension (LPAE) support for enabling very large
address spaces. It also includes a separate execution envi-
ronment known as TrustZone that can be used for meeting
secure computing requirements. These features make ARMv8
an ideal candidate for virtualization as well as dual kernel
solutions. In this section, we discuss promising future direc-
tions, as shown in Figure 4, that will satisfy the use-case
requirements presented in Section II. Some other applications
such as Advanced Driver Assistance Systems (ADAS) can also
directly execute on the Host system, if POSIX compatible,
without requiring any real-time or virtualization support.

A. Preempt-RT Host with Embedded RTOS Kernel

One possible solution is to follow the Xenomai/forge direc-
tion, where the RTOS kernel is embedded in the Preempt-RT
Host, as shown in Figure 4(a). The main advantages of this
solution will include support for multiple RTOS APIs, real-
time virtualization, its open source nature and MMU-based
address-space separation/protection for real-time tasks. On the
down side, it will be (most likely) a soft real-time solution,
as dependencies will exist between RTOS and Host systems.
Additionally, maintenance costs will be high, as every new
revision of Linux kernel will have to be reviewed for Preempt-
RT patches. Lastly, certification is completely infeasible as a
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sound Worst Case Execution Time (WCET) analysis cannot be
performed for such a complex system.

B. RTOS in TrustZone with Vanilla Host

To ensure hard real-time requirements, the solution pro-
posed in Figure 4(b) is more appropriate as it will keep the
virtualization and real-time domains separate. The RTOS will
execute in TrustZone on top of an Interrupt Virtualization layer
similar to ADEOS, while keeping the possibility to share mem-
ory with GPOS in the non-secure world. The key advantages



TABLE III: Comparison of Proposed Architectural Directions in Figures 4(a) & 4(b)

Requirement H Proposition in Figure 4(a) l Proposition in Figure 4(b) l Favored Solution l Rationale/Explanation
Technology Type || Single RT kernel with Hosted VMM | Dual kernel with Hosted VMM A Lower maintenance cost
Hardware Platform ARMV7/v8 ARMV7/v8 A &B -
RTOS Latency Expected < 500us (Soft) Expected < 50us (Hard) B Hard real-time
GPOS Latency Expected < 5ms (Soft) Expected < 5ms (Soft) A &B -
Legacy RTOS Support Yes (Skins for RT Applications) Yes (With/Without HAL) B No emulation required
Disk Scheduling || Host/Guest Coordinated Scheduling | Host/Guest/RTOS Coordination A Reduced complexity
1/0O Virtualization Virtualization/Direct Assignment | Virtualization/Direct Assignment A&B -
Certification Completely Infeasible Feasible B Security & Isolation
Open Source Yes Yes (Partially) A Potentially closed RTOS components

of this solution include hard real-time guarantees, support for
legacy RTOS, hardware based security, lower maintenance cost
and feasibility of certification for real-time software. However,
the virtualization layer will remain non real-time and execute
on top of the unmodified Host kernel. In order to meet the soft
real-time requirements of LTE packet processing application
on GPOS, a mechanism similar to coordinated scheduling [22]
between RTOS and VMM based GPOS will be investigated.
Table III compares the two proposed solutions.

VI. CONCLUSION AND FUTURE DIRECTIONS

We conclude this paper, by highlighting the advantages
of solution proposed in Section V-B. Although this solution
will cost more w.r.t. initial development effort, it is better
suited to the hard real-time requirements of our automotive
use-case. Furthermore, thanks to its segregated nature it will
require lower maintenance effort. Our next objective is to
address the development of this solution, based on the first
ARMV8 SoC platform, meanwhile continuing our proof-of-
concept implementation on the available ARMv7 SoCs.
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Abstract—The MC? (mixed-criticality on multicore) frame-
work has been proposed and implemented in LITMUS®™, a real-
time extension to Linux. The implemented MC? framework has
been used in several research efforts pertaining to multiprocessor
real-time systems. This paper describes the current status of work
on MC?. There are currently two MC? branches. We describe
the features of each branch and report on current progress in
unifying these branches.

I. INTRODUCTION

Future embedded real-time systems are expected to require
increased computational workloads and functionalities. Multi-
core platforms have the potential to meet these requirements by
offering greater computational capabilities and advantages in
size, weight, and power (SWaP). However, the introduction of
multiple processing cores makes real-time resource allocation
more difficult. To further complicate matters, many avionic
and automotive embedded applications require tasks to be
supported at different criticality levels, such as safety critical,
mission critical, and best effort, on a single multicore system
(1].

Because the failure of a safety critical task may cause a fatal
failure of a system, such a task may be provisioned with a
very pessimistic worst-case execution time (WCET). This can
result in wasted computational capacity due to the difference
between the predicted WCET and the actual execution time
observed at run time. A technique to minimize this discrepancy
has been proposed by Vestal [2]. He proposed the multi-
criticality (or mixed-criticality) task model, which provides
varying degrees of WCET assurance. Specifically, for low-
criticality tasks, he proposed using less pessimistic WCETSs
for schedulability analysis, while for high-criticality tasks, he
proposed using more pessimistic WCETs.

In the RTCA DO-178B and DO-178C software standards
for avionics, criticality levels range from A (highest) to E
(lowest) and are determined for a system component (e.g., a
task) by examining the effects of failures. Mixed-criticality
scheduling on multicore platforms was first considered by
Anderson et al. [3]. They proposed operating-system (OS)
infrastructure that allows mixed-criticality applications to be
supported on a multicore platform, assuming the five crit-
icality levels of DO 178B/C, while ensuring real-time cor-
rectness. In follow-up work, researchers at UNC Chapel Hill
and Northrop Grumman Corp. proposed a mixed-criticality
scheduling framework for multicore platforms, called MC?
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(mixed-criticality on multicore), and provided schedulability
analysis results [4]. In MC?, higher-criticality tasks are viewed
as “slack generators” that use only a small fraction of their
execution budget. Lower-criticality tasks execute using this
slack. MC? also employs a two-level hierarchical scheduling
approach, in which containers (also called servers) [3] are
used to enable the temporal correctness of subsystems.

The first implementation of MC? was described by Herman
et al. [1], who discussed design tradeoffs and evaluated the
robustness of the implemented mixed-criticality scheduler with
respect to breaches in execution-time assumptions. MC? is
implemented within LITMUSRT, a real-time extension of
Linux that was designed to support real-time workloads on
multicore platforms [5], [6], [13], [14].

In order to make safety-critical cyber-physical embedded
systems more predictable, cache-management techniques were
proposed by Ward et al. [7]. Specifically, they proposed two
cache-management techniques, called cache locking and cache
scheduling, and showed that the usage of such techniques
can reduce WCETs in higher-criticality tasks. Ward et al.
developed a branch of MC? in which these cache-management
techniques are used, and presented experimental results on a
multicore Tegra3 ARM machine.

As mentioned by Burns and Davis [8], a task may exceed its
predicted level-/ WCET. When such guarantees are violated,
overload can occur. To provide guarantees in such overload
situations, a recovery mechanism was proposed by Erickson
et al. [9] that uses virtual time. This mechanism has been
incorporated in a branch of MC? that employs a virtual timer
[4]. This branch was used to obtain experimental results on an
x86 machine. However, due to the different microarchitectures
of MC? with cache management and with virtual time, these
two branches of MC? have not yet been unified.

In this paper, we report on the current status of MC2. In the
rest of this paper, we provide relevant background (Sec. II),
describe the current two branches of MC? (Sec. III), and then
conclude (Sec. IV).

II. BACKGROUND

In this section, we provide necessary background on mul-
tiprocessor real-time scheduling, LITMUSRT, and the MC?
architecture. We also briefly explain the container abstraction
used for hierarchical scheduling and common MC? features.



A. Multiprocessor Real-time Scheduling

Task model. We assume that temporal constraints for tasks
can be modeled by the implicit-deadline periodic or sporadic
task model. Under the periodic task model, a system is com-
prised of a set of recurring tasks. Each such task 7; releases
a succession of jobs, denoted 7; 0,7 1,..., and is defined by
a period, p;, and an execution time, e;. Successive jobs of
T; are released every p; time units, starting at time 0, and a
job released at time ¢ must complete by its deadline, t + p;.
Under the sporadic task model, each task 7; is specified by an
execution cost, e;, a minimum separation between successive
job releases, p;, and a relative deadline, d;. Task 7;’s utilization
is given by u; = e;/p;. We sometimes assume a harmonic task
system wherein all task periods are integer multiples of the
smallest task period.

We assume a hardware platform with m processors. A
task system is schedulable on such a platform under a given
scheduling algorithm if no deadline constraint is violated.
In a hard real-time (HRT) system, jobs must never miss
their deadlines, while in a soft real-time (SRT) system, some
deadline misses are tolerable. If a job 7;; released at r;
completes execution at time ¢, then its response time is t — r; ;
and its tardiness is max{0,t — d; ;}. In the definition of SRT
assumed in MC2, tardiness is required to be bounded.

Partitioned and global scheduling. Under partitioned
scheduling, tasks are statically assigned to processors and
migration is not allowed, while under global scheduling, tasks
may migrate across processors. Generally, partitioned schedul-
ing is preferable in HRT systems, and global scheduling is
preferable in SRT systems [10], [11]. Partitioned approaches
have lower run-time overheads, but processing capacity may
be wasted due to bin-packing problems. In contrast, global
approaches eliminate bin-packing issues and are particularly
effective in SRT systems where some deadline misses are
allowed [12]. A drawback of global scheduling is increased
OS overheads associated with contention of shared scheduler
state.

B. LITMUSRT

MC? is implemented in LITMUSRT, an extension to the
Linux kernel that supports real-time schedulers as plug-in
components [13], [14]. LITMUSRT was developed as an
experimental platform for research on multiprocessor real-time
scheduling and synchronization. Time-based events, such as
job releases, are handled by Linux’s high resolution timer ap-
plication programming interface (hrtimer API) and scheduling
events and synchronization requests are handled by plug-in
event handlers. LITMUSRT provides a very light-weight event
tracing tool called feather-trace to record scheduling events
and synchronization requests [15]. The partitioned earliest-
deadline-first (P-EDF) and global EDF (G-EDF) schedulers
have been implemented in LITMUS®T previously [16]. As
noted earlier, there are currently two branches of MC2 imple-
mented in LITMUSRT.
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Fig. 1. Container allocation and the scheduler for each container under MC?
on a four-processor system.

C. MC? Architecture

Vestal proposed a technique for eliminating under-utilization
of processors due to very pessimistic WCET values [2]. He
observed that the WCET values for higher-criticality tasks are
needlessly pessimistic from the perspective of checking the
schedulability of lower-criticality tasks. He proposed specify-
ing per-criticality-level WCET values for each task. That is,
each task 7; has an execution time, e;;, for each criticality
level I (depending on the scheduling scheme, it may not be
necessary to specify an execution time for a task at higher
criticality levels than its own). The level-/ utilization of 7; is
defined as w;; = e;;/p;. This has come to be known as the
mixed-criticality task model. In the variant of MC? described
here, four criticality levels are assumed, denoted A through
D. MC? was designed with avionics workloads in mind and
these workloads tend to be harmonic in nature [1].

Container abstraction. An essential part of mixed-criticality
scheduling is that lower-criticality tasks should not affect
higher-criticality tasks. This is very related to the concept of
temporal isolation. Such isolation can be achieved by support-
ing a container (or server) abstraction within the OS. In mixed-
criticality scheduling, a container is a group of tasks that is
a isolated from the rest of the system [3]. MC?2 uses a two-
level hierarchical scheduling approach. When the scheduler
selects the next task to run on a processor, it first selects
the highest-priority container among the containers that may
execute tasks on that processor. Then, the scheduler selects
the highest-priority task from the selected container, according
to the associated scheduling algorithm of the container. The
assumed containers and their associated scheduling algorithms
are illustrated in Fig. 1, and explained below.

In MC? as proposed by Herman et al. [1], tasks are assumed
to be periodic. Each level-/ task 7; is implemented as a single-
task container within a container for its level. A task 7; is
assigned a budget equal to its execution time for its own level.
The budget is consumed when the associated task executes
and is replenished at time 0 and every p; time units. Budget
enforcement is enabled by default, but it can be disabled.



Level A. Level-A tasks are the highest-priority tasks in MC2.
They are statically assigned to processors and scheduled by
a predefined dispatching table similar to the cyclic executive
scheduling approach [17]. There are m level-A containers,
one per processor. The schedulability analysis of level A is
straightforward. Because level A is statically prioritized over
all other levels, its schedulability is not affected by any other
containers and is guaranteed at run time unless a level-A task
T; exceeds it level-A budget, e; 4.

If there are no level-A tasks to run on a processor at a
given instant, then MC? considers level-B tasks. If a level-A
task completes before its assigned level-A budget has been
exhausted, then MC? allows a lower-criticality task to run for
the duration of the remaining budget. This technique is known
as slack shifting [1]. The completed job whose remaining
budget is being consumed by a lower-criticality task becomes a
ghost job. The ghost job completes when its remaining budget
is equal to 0.

Level B. Similarly to level A, each processor has a level-B
container. Level-B tasks are scheduled in EDF order. Option-
ally, rate monotonic (RM) scheduling can be used at level
B. When no higher-criticality tasks are eligible to run on a
processor, or when a level-A task is running as a ghost job, the
scheduler selects the next job to run from the level-B container
if such a job is available on that processor. It is required that
the period of all level-B tasks is an integer multiple of the
level-A hyperperiod (the least common multiple of level-A
task periods) [4].

Level-B schedulability is achieved when the total level-B
utilization of level-A and -B tasks on each processor is at most
1, since level-B scheduling across the system resembles the P-
EDF scheduler and has similar theoretical properties. Level-B
schedulability is guaranteed at run time unless some level-A or
-B task exceeds its level-B execution time. Similarly to level-
A jobs, a level-B job becomes a ghost job when it completes
before exhausting its level-B budget; once it is a ghost job, its
budget can be consumed by lower-priority tasks.

Level C. Level-C tasks are globally scheduled by the G-
EDF algorithm. There is one global level-C container to which
all level-C tasks are assigned. The G-EDF scheduler can be
invoked on any processor whenever level-A or -B tasks are
not eligible to run on that processor.

A level-C schedulability test is given in [4] assuming level-
C execution times. Level-C schedulability is guaranteed at run
time as long as no level-A, -B, or -C task exceeds it level-C
execution time. Like higher-criticality levels, slack shifting is
employed at level-C to allow level-D tasks to run.

Level D. Level-D tasks are scheduled on a best-effort basis.
Such tasks are normal Linux tasks, which are not considered
to be HRT or SRT tasks. Thus, there is no container for level-
D tasks and no schedulability test is provided for this level.
Level-D tasks can be scheduled by a stock Linux scheduler
when there are no eligible real-time tasks to run.
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Interrupt master. Dedicated interrupt handling, where all
interrupts are directed to a designated processor called the
interrupt master [16], can improve schedulability [1]. If an
interrupt master is used, all release and timer events occur on
the interrupt master. This enables budgeting for level-A and -B
tasks on the other processors to be less pessimistic, but level-
A and -B tasks on the interrupt master suffer from interrupt
handing overheads. MC? supports using an interrupt master as
an optional feature.

Timer merging. In a harmonic task system, multiple jobs
are released frequently at the same time because the period
of all tasks are integer multiples of the smallest period in the
system. LITMUSR®T [5] uses a timer to release real-time jobs.
In Linux, it is not guaranteed that all local timers start at the
same time. Due to this local-timer error, tasks at levels B and
C may have the same release time, yet their release timers
may fire in reverse-criticality order. In this case, a level-C
task is scheduled to run and then a level-B task is released
and scheduled to run, which preempts the previously scheduled
level-C task. To avoid this unnecessary preemption, an optional
feature called timer merging was proposed by Herman et al.
[1]. If enabled, release events within 1 us of one another are
merged using an O(1) hash table operation. However, a global
lock is required to merge all timer events across multiple
processors. Thus, this feature can be enabled only when the
interrupt master is enabled, which redirects all release events
to a single processor.

Fine-grained locking. Each level-B and -C container has
its own release queue and ready queue, and each level-A
container has an associated dispatching table. Moreover, each
processor has state indicating the currently scheduled task.
The scheduler state data in MC? must be synchronized across
processors to support MC?’s hierarchical scheduling approach.
To access this state, spin locks are used to synchronize data
structures on a per-container and per-processor basis [1].
The rt_domain_t data structure in LITMUSRT is used to
implement the ready and release queues needed to support
containers. Fig. 2 provides an illustration.

If we do not carefully optimize synchronization, then MC?
might suffer from significant overhead since the described state
is accessed frequently. To mitigate this overhead, Herman et
al. proposed a fine-grained state-locking mechanism [1]. This
mechanism ensures two properties: (a) a processor lock can
never be held for more than O(1) time; and (b) container
locks are never nested inside other container locks. Details
are provided in [1].

III. CURRENT MC? BRANCHES

In this section, we discuss the two current branches of MC?2
implemented in LITMUSRT,

A. MC? with Virtual Time

In this subsection, we describe a branch of MC? in which
virtual time is supported [9]. This version has been im-
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Fig. 2. Spin locks for containers and processors in the MC2.

plemented based on the LITMUSRT 2011.1 release (Linux
2.36.4). The usage of virtual time provides a mechanism to
recover from overload of the level-C subsystem (described in
more detail below), which can occur when any job at or above
level C overruns its level-C WCET. This branch assumes a
sporadic task model for level-C tasks since changes to the
rate of virtual time alter the job-release frequencies at level C.
In this branch, the interrupt master and timer merging are not
supported.

Virtual time. Erickson et al. [9] modified MC? to support
recovering from overload at level C. This can occur when any
job at or above level-C overruns its level-C execution time.! In
this situation, all successive job response times might increase
permanently. Such ill effects can be dealt with by changing
scheduling decisions until the overload situation has abated. In
this MC? branch, such decisions are altered by using the idea
of virtual time from Zhang [18] and Stoica et al. [19], where
job releases are determined by a virtual clock that can change
speeds with respect to the actual clock. Virtual time v(t) is
based on a global speed function s(¢). When a task overruns its
level-C execution time and its response time exceeds a given
tolerance value, the level-C scheduler slows down virtual time
and reduces the job-release frequency at level C. The MC?
branch with virtual time is comprised of a kernel component
that manages virtual time and a userspace component that
monitors job releases and completions. The kernel component
controls job releases based on virtual time. The userspace
component, called a monitor program, collects job-release and

UIf budget enforcement of level-C tasks is disabled, a level-C job can
overrun its level-C WCET. Even with budget enforcement, level-A and -B
tasks can overrun their level-C WCETs.
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-completion information from the kernel to detect an overload
situation or an idle instant. The monitor program is responsible
for determining the virtual-clock speed. This virtual-clock
mechanism affects only level-C tasks, not level-A or -B tasks.
Detected idle instants are used to determine when recovery is
completed, at which point virtual-time speed returns to actual-
time speed. Experimental results show that the scheduling
overheads and the execution time of the userspace monitor
program are small. The introduction of virtual time increases
scheduling time by about 40% on average and by 100% in the
worst case. Each invocation of the monitor program completes
in approximately 1 ms in the worst case [9].

GEL-v scheduling. In the MC? variant proposed by Mol-
lison et al. [4], level-C tasks are scheduled by using G-EDF.
As noted by Erickson et al. [20], other G-EDF-like (GEL)
schedulers can provide better response-time bounds, so in
this branch, arbitrary GEL schedulers are allowed at level
C. Furthermore, since the virtual clock is used to manage
job releases of level-C tasks, a modified version of GEL
scheduling, called GEL with virtual time (GEL-v) scheduling,
and a generalized version of the sporadic task model, called
the sporadic with virtual time and overload (SVO) model, are
used for level-C tasks. Under GEL-v scheduling, each job 7; j
is prioritized on the basis of a virtual priority point (PP), and
each task 7; is characterized by a minimum separation time
T; > 0, and a relative PP Y; > 0, both with respect to virtual
time. At time 0, s(t) is equal to 1, which means that actual
time and virtual time progress at the same rate. However, when
an overload is detected, the scheduler decreases s(t), which
reduces the progress of virtual time. As explained above, this
slows down the rate of future job releases of level-C tasks,
and creates extra slack to enable the system return to normal
behavior.

B. MC? with Cache Management

Another MC? branch with cache management has been
implemented by Ward et al. [7]. In this branch, several
shared-cache management techniques have been implemented
assuming a quad-core ARM machine. However, this MC?
branch only supports the level-B and -C subsystems. The
MC? branch with cache management uses cache lockdown
mechanisms that requires hardware support. This is why this
MC? branch works only for a specific ARM platform, which
provides the needed cache lockdown instructions.

Cache management. Ward et al. [7] proposed a cache
management technique that preallocates the dynamic memory
a job uses before the job begins execution. Page coloring is
used to allocate the memory pages required by a job. Under
page coloring, a color is assigned to each page to control the
mapping address of the page. The pages that have different
colors map to different cache sets, so they cannot conflict
with each other in the last level cache (LLC). This is used
in conjunction with cache lockdown to prevent active pages
for being evicted during the execution of the job. The cache



is treated as a shared resource that can be either preemptive
or non-preemptive, yielding two possible cache allocation
policies: cache locking and cache scheduling. Under cache
locking, the processors and the cache are not preemptible,
while under cache scheduling, they are. In this MC? branch,
cache management techniques are applied to level-B tasks.
These cache-management techniques are not applied at level
C, which is provisioned using less pessimistic WCETs. The
MC? scheduler loads the memory pages of the next level-
B job to execute into the shared LLC and flushes the pages
used by the previous job. This results in additional scheduling
overheads. However, it has been shown that cache management
enables significant schedulability gains by reducing level-B
WCETs.

Resource sharing. Cache locking ensures that the pages
required by a job reside in the cache during the entire duration
of its execution. This policy requires a multiprocessor real-
time locking protocol: the cache is treated as a shared resource
that has k replicas as given by the number of cache ways.
The RNLP [21], which optimally supports the simultaneous
locking of replicated resources, is used for this purpose. For
example, if a job requires r pages with the same color, then it
must lock r replicas of that color. Also, the job may require
several colors simultaneously. To support these requirements,
this MC? branch uses dynamic group locking as proposed by
Ward et al. [22] in the context of the RNLP. Dynamic group
locks allow a job to lock multiple resources with one lock
request rather than requesting each resource individually in a
nested fashion, which can increase system-call overhead and
blocking times. The RNLP controls all colors and ways by
using a FIFO queue for each way of each color. The maximum
duration of blocking for all cache colors is O(mr/k) where k
is the number of ways available and r is the maximum number
of ways per color requested by any job [21].

C. MC? in LITMUS®T 2014.1

The previous two branches of MC? in LITMUS®T have not
been merged because they require different microarchitectures
and the MC?2 patches are based on different Linux kernel
versions (2.6.36 and 3.0.0). We are currently trying to unify
the two branches with their features as a kernel configuration.
This work is not finished at this time. We discuss some of the
issues in unifying both branches in this section.

Container implementation. MC? ensures temporal isolation
by supporting a container abstraction. However, LITMUSRT
currently does not support such an abstraction. The previous
MC? implementation considers a real-time task as a container.
Thus, the data structure rt_param in LITMUSET has extra
variables to support container functions, such as replenishment
and consumption. The MC? branch with virtual time uses
real_release and real_deadline variables to keep
track of a job’s release and completion time, while the MC?
branch with cache management uses another rt_job data
structure, user_job. We need to merge these two different

49

data types to support the container abstraction. This approach
fulfills its requirements, but it is hard to trace the behaviors
of both a container and each individual task in the container,
and this implementation is not well-suited to job handling in
LITMUSRT,

More fine-grained locking. As shown in Fig. 2, there is a
lock for each domain. The domain structure at levels B and C
includes release and ready queues. The scheduler is required to
hold the ready-queue lock when a task is added to the release
queue and vice versa. This domain locking at levels B and C
should be more fine-grained. The locks at level A are fine-
grained enough because the domain structure at level-A only
has a dispatching table.

Cyclic executive scheduling table. Making a scheduling
table for level-A tasks is quite complicated now. We currently
use the Linux proc file system to construct a table, and
we must change the LITMUSET scheduler plugin several
times whenever changing a budget or adding a new task.
We want to devise a more convenient way to manipulate the
scheduling table. In both MC? branches, the scheduling table
can be accessed by read_proc_t and write_proc_t
function pointers. However, in Linux 3.10 (the base version
of LITMUSET 2014.1), the structure proc_dir_entry
does not have those function pointers anymore. We need to
implement proc_fops operations to unify the two branches.

IV. CONCLUSION

In this paper, we have discussed the current status of
work on MC?, the first mixed-criticality scheduling framework
implemented on multicore platforms. Due to the different
microarchitectures and base kernel versions in LITMUSET,
two branches of MC? exist. We hope that the unified MC? we
are constructing will provide more features and portability as
a mixed-criticality research testbed.

In future work, we plan to extend MC? to allow tasks to
acquire locks and have precedence constraints, in order to
enable more realistic workloads. In addition, we hope to ease
or remove the hardware dependency of the cache-management
MC? branch. The cache-management MC? branch requires
cache-lockdown instructions, which are not widely supported.
We plan to investigate cache allocation mechanisms to remove
the preloading and flushing of memory pages whenever a job
is scheduled.
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Abstract—LEGO Mindstorms EV3 is the third generation
of LEGO’s popular programmable robotics kits. However, its
standard development environment is not suitable for developing
complex programs with real-time requirements. In this paper,
a platform for developing real-time applications for EV3 is
presented. The platform is based on TOPPERS/HRP2, a static
RTOS kernel with MMU support. An algorithm for generating
MMU translation tables statically and a method for optimizing
TLB flushing are described. The architecture of the platform
and some details such as APIs provided and how to reuse
Linux device drivers on HRP2 are also introduced. A sample
program for controlling a self-balancing robot is developed for
comparison with the standard development environment. Finally,
the performance of the platform is evaluated.

I. INTRODUCTION

Mindstorms [1] is a popular series of programmable
robotics kits released by LEGO Inc. since 1998. Mindstorms
robots have been used as important tools in graduate level
researches [5] and college education such as computer science
[2], [3], [4] for many years. They include a programmable
brick computer called Intelligent Brick that controls the whole
system, and a set of modular sensors, motors and LEGO blocks
to allow users to build robots flexibly.

LEGO Mindstorms EV3 [1] released in 2013 is the
third generation of Mindstorms robots. It is equipped with
a 300MHz ARMY9 CPU, 64MB RAM and supports wireless
technologies such as Bluetooth. The standard development
environment of EV3 consists of an integrated development
environment (IDE) and a Linux-based firmware. The IDE uses
a graphical data flow programming language whose developing
is done by dragging and dropping icons into a line in order
to form commands. See Appendix A for a screenshot of
the IDE. All programs developed with the IDE are executed
on a virtual machine. The virtual machine is included in
the Linux-based firmware running on EV3. The standard
development environment is very friendly to beginners who
are not familiar with computer programming. However, there
are some disadvantages for the developers who are already
familiar with common programming languages such as C or
C++ as described below:

1) Hard to write complex programs with the graphical
programming language

2)  Lack of real-time multi-tasking support

3)  Virtual machine causing poor real-time performance

4)  Proprietary software which is hard to extend

5) Linux-based firmware taking too long to boot up
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In this paper, we present EV3PF !, a development platform
for those developers who are suffering from the disadvantages
mentioned above. The main features of our platform are listed
as follows:

1)  Booting up very quickly

2)  An RTOS kernel supporting protection functionality

3)  Programming with common languages such as C/C++

4)  Easy-to-use APIs with high real-time performance

5)  Open source and an open architecture that third party
devices can be easily supported

6) Features to assist the development such as viewing
task logs wirelessly via Bluetooth

The rest of the paper is organized as follows. An overview
of the TOPPERS/HRP2 kernel which our platform is based on,
and details of how to support an ARMv5 MMU such as an
algorithm for generating translation tables and a method for
optimizing the TLB flushing are described in Section II. In
Section III, we present our platform architecture and explain
some details of device drivers and APIs. Section IV uses a
sample program to show how to develop with our platform
and compares it with the standard development environment.
We evaluate the performance of our platform in Section V.
Finally, the paper is concluded in Section VI.

II. THE TOPPERS/HRP2 KERNEL

Our platform is based on an RTOS kernel called TOPPER-
S/HRP2 kernel (High Reliable system Profile version 2) [6].
HRP2 is a static RTOS kernel with memory protection support,
which can satisfy high reliability and safety requirements
of large-scale embedded systems like EV3. Although there
are other RTOS kernels follow a static tailoring approach,
such as those based on the OSEK/AUTOSAR automotive
standards [16], [17], only few of them do actually support
memory protection with static configuration. SAFER SLOTH
is an example of those RTOS kernels that support memory
protection with a Memory Protection Unit (MPU) [18]. HRP2
supports both MPU and full-blown Memory Management Unit
(MMU) which is used by EV3. We ported HRP2 to AM1808,
the processor of EV3, since it had not been supported. Most of
the porting work is trivial, except supporting a new MMU for
HRP2. In this section, we discuss the protection functionality
of HRP2 and how to implement it. We begin with an overview
of HRP2 kernel in Section II-A. In Section II-B, we show how
to support the MMU of AM1808. Finally, we propose a way
to optimize TLB flushing in Section II-C.

IThe source code is available at: http://www.ertl.jp/~liyixiao/ev3pf.tar.xz



A. An Overview of HRP2 Kernel

HRP?2 is a static RTOS kernel whose objects (or resources)
are defined in and generated from configuration files statically.
It supports the protection functionality such as memory protec-
tion, object access protection and extended service call func-
tionality. Some key concepts of HRP2 will now be explained.

Kernel Object: A kernel object is a system resource man-
aged by the RTOS kernel. Tasks, semaphores and memory ar-
eas are typical examples of kernel objects. Each type of kernel
object has four kinds of operations, type 1 operations, type 2
operations, management operations and reference operations.
In the case of semaphores, type I operations are for signaling,
type 2 operations are for waiting, management operations are
for configuring access rights, and reference operations are for
acquiring status. The access rights of each kind of operations
for a kernel object can be configured individually.

Protection Domain: Protection domains are disjoint sets
of kernel objects. There are two types of protection domains,
the kernel domain and user domains. Only one kernel domain
exists and there can be multiple user domains. Tasks belonging
to the kernel domain, called system tasks, are executed in
privileged mode and have full access rights to all kernel
objects. Tasks belonging to a user domain, called user tasks,
are executed in non-privileged mode with limited access rights.
A user domain is the finest granularity to grant access rights
of a kernel object, which means that user tasks in the same
user domain have the same access rights. Although a task must
belong to some protection domain, some kinds of kernel ob-
Jjects like semaphores can be shared by all protection domains
without belonging to one of them.

Service Call: The term service call in HRP2 has the same
meaning as system call in Linux. Service calls act as an
interface between user domains and the kernel. This interface
is essential to provide system services for a user task which
is usually prevented from directly manipulating the kernel’s
memory. When a service call is called, it is aware of the
caller’s protection domain, so illegal operations can be blocked
by checking the access rights. Furthermore, new service calls,
called extended service calls, can be defined. A unique number,
called function code, must be specified by developers for each
extended service call. The function code is used to call an
extended service call by the cal_svc () APL

Memory Object: A memory object represents an area of
memory controlled by HRP2. Lots of information is associated
with a memory object, such as base address, size and attributes
of that area, and access rights granted to protection domains.
An attribute is a property that always holds regardless of
which protection domain it is accessed from. For example, if
a memory object has the attribute TA_NOWRITE, its memory
area cannot be written even by a system task. There are
also attributes like TA_UNCACHE to control cache behavior.
Memory objects can be defined by developers explicitly with
the ATT_MEM API, or generated from object files registered
by the ATT_MOD APIL. Memory objects should never overlap,
or an error message will show up.

Configurator: In HRP2, developers statically configure the
kernel by writing configuration files. See Appendix B for an
example of configuration file. A configurator is a tool to parse
these configuration files. By using the parsing results as input,
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the configurator interprets template files to generate necessary
C source files or linker scripts. Template files are written in a
template language defined by HRP2 for generating files. Most
necessary femplate files such as generating source files for
kernel objects have already been provided by HRP2. However,
some target-dependent femplate files like supporting memory
protection should be implemented by developers.

B. Supporting the ARMv5 MMU

Before we explain the supporting of the ARMv5S MMU,
we describe the development process with HRP2 kernel. Fig.
1 shows a configuration flow of building the final object files
(i.e. kernel image) for HRP2 kernel. HRP2 uses two-pass
configuration to generate all source files required. In the first
pass, configurator generates information of memory objects,
a linker script and source code for kernel configuration.
Temporary object files will be created for all source files by
compiler and linker. The linker script sorts sections of object
files by their access rights. All the information of memory
objects, such as their base address, size, attributes and access
rights, must be determined in this pass. Dummy page tables
with the same size of the real ones are generated in this
pass to ensure that those information will not change in the
second pass. Source code for kernel configuration describes the
information to manage RTOS resources, such as initial state
and control blocks of tasks. After the first pass is finished, the
information of memory protection required by supporting an
MMU becomes available. In the second pass, the real page
tables will be generated. Finally, the final object files can be
created by compiling and linking with the correct memory
protection information.

The ARMvS5 MMUI[8], which is used by the processor of
EV3, has not been supported by HRP2. Since HRP2 is a static
and single address space operating system, the most difficult
and important part of supporting an MMU is to implement
the template file to generate translation tables statically. There
are two levels of translation tables in ARMvS, to support both
sections and pages. The first level translation divides the entire
address space into 1MB sized blocks, called sections. Access



permissions and cache behavior of a section can be controlled
as a whole. A section can also be divided into 4KB sized
blocks called pages for fine-grained control. In this case, a
section must be associated with a page table for the second
level translation.

Each user domain has one section table. The kernel is
responsible for configuring MMU to use corresponding section
table after switching context. A section table may be associated
with multiple page tables. A page table can be shared by
multiple section tables when possible for the sake of saving
memory space and reducing code size.

We designed an algorithm to generate these section tables
and page tables. The input of our algorithm is an array
named MP generated by the configurator, which contains the
information for memory protection. Some important properties
of MP are listed as follows:

Information of entire address space is included. Each
mp € MP represents an area of memory. MP is sorted in
ascending order of their base addresses for the convenience.
mp never overlaps and there is no space between them. That
means, the information of every byte in the address space must
be contained in some mp, even if it is not used by the kernel.

Base address and size are page-size aligned. The virtual
base address, physical base address and size of every mp € MP
must be page-size aligned since it is the finest granularity to
control the memory by an MMU.

Attributes and permissions are available. Both informa-
tion of attributes and permissions are required to control cache
behavior and set access permissions for a user domain. Let
us assume that the attributes can be acquired by the function
matr(mp) and the permissions for a user domain can be
acquired by the function mper(mp,dom). An mp is global
if it has the same access permissions for all user domains. It
is private if there is one and only one special user domain
which has the different access permissions with others. The
function prdom(mp) can be used to get that special domain
for a private mp.

Our algorithm consists of four steps, preprocess, generate
section tables, generate page tables and output, as follows:

Step 1:Preprocess. We use an array named SECTIONS to
store information for all sections. Each section € SECTIONS
represents IMB of memory. For example, SECTIONS[O] is
the section of memory space from 0x000000 to 0x100000.
section.val[dom] is the value of section in the user domain
dom’s section table. In this step, we process all sections to
generate enough information for next step as follows:
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Algorithm 1 Preprocess
1: for all sec € SECTIONS do

2: ovpset < {mp : mp overlaps with sec}

3: glbset < {mp : mp is global} N ovpset

4: pruset < {mp : mp is private} N ovpset

5: if |ovpset| =1 then > Suppose ovpset is {mp}
6: for all dom € USERDOMAINS do

7: Generate sec.val[dom] from mp

8: end for

9: else > sec needs at least one page table
10: if glbset=ovpset then

11: Mark sec as global

12: else if |{prdom(mp) : mp € pruset}| =1 then
13: if pruset = ovpset \ glbset then

14: Mark sec as private

15: sec.prvdom < prdom(any mp € prvset)
16: end if

17: end if

18: end if

19: end for

Step 2:Generate section tables. Values of all sections
that are not associated with any page table have already been
generated in last step. If section is global, only one page table
should be allocated and can be shared by all user domains.
If section is private, two page tables should be allocated,
one for section.prvdom and the other for other domains.
Otherwise, every user domain needs a page table for this
section. We define newpt(section) as a function to allocate
a page table associated with section. A page table has its
domain for generating corresponding access permissions. We
define secptval(pagetable) as a function to generate the
value representing that a section is associated with pagetable.
In this step, all values of sections will be generated as follows:

Algorithm 2 Generate section tables

for all sec € SECTIONS do
if sec is global V sec is private then
ptshared < newpt(sec)
ptshared.domain < any dom # sec.prvdom
end if
for all dom € USERDOMAINS do
if sec is global V (sec is private A dom #
sec.prvdom) then

1:
2
3
4:
5
6
7

8: sec.val[dom| + secptval(ptshared)

9: else

10: pt < newpt(sec) > Allocate a new page table
11: pt.domain < dom

12: sec.val[dom] + secptval(pt)

13: end if

14: end for

15: end for

Step 3:Generate page tables. In last step, we have al-
located page tables and assigned section and domain for
them. According to the first two properties of MP, for each
entry in a page table, there is one and only one mp that
overlaps with it. And by the third property of MP, attributes
and permissions for that entry can be acquired by matr(mp)



and mper(mp, domain). So in this step, the values of page
tables can be generated in a trivial way.

Step 4:Output. As all values of section tables and page
tables have been generated by above steps, the C source code
of them can be outputted easily in this step.

We have implemented this algorithm as a template file
to generate translation tables. However, that is not enough
for supporting the ARMvS5 MMU. There is a cache called
translation lookaside buffer (TLB) used by the ARMvS5 MMU
to improve translation speed. On a context switch between
user domains, some TLB entries can become invalid, since
the access permissions are different. Not like the ARMv6
TLBI8] that supports a feature called application space identi-
fier (ASID), the entries in the ARMv5 TLB are not associated
with any address space. Hence, in that case, TLB has to be
flushed. The simplest strategy to deal with this is to completely
flush the TLB on each context switch.

C. TLB Flushing Optimization

Flushing the entire TLB on each context switch is very
expensive and may have a negative effect for real-time applica-
tions. For the software-managed TLBs, selective flushing of the
TLB can be implemented for better performance[19]. Although
ARMvS5 TLB is a hardware managed TLB, it does support
an instruction to invalidate a single TLB entry by address.
With this instruction, we can optimize TLB flush by only
invalidating non-global entries on context switch. Non-global
entries are entries in translation tables which may change
on context switch, which can be determined statically during
generating translation tables.

At first, we stored addresses of non-global entries in an
array. On context switch, a loop is used to traverse the array
and invalidate every entry in it. This approach can be faster
than flushing the entire TLB with a small number of non-global
entries. However, it introduces an overhead for loop which
makes the time of this method growing fast and exceeding the
time of flushing the entire TLB very easily.

To optimize it further, we decide to generate the assembly
code for invalidating all non-global entries statically. Since
traversing an array is no longer necessary, the overhead of
loop can be eliminated. In addition, the instruction pipeline
should be more efficient without branches. See Section V for
a performance comparison of these TLB flushing methods.

III. PLATFORM ARCHITECTURE

In this section, we first describe the architecture of our
platform in Section III-A. Thereafter, we briefly explain how
to reuse Linux device drivers on HRP2 and port an open source
Bluetooth protocol stack for our platform in Section III-B.
Finally, APIs supported by our platform are shown in Section
II-C.

A. An Overview of Platform Architecture

Fig. 2 shows an overview of the platform architecture. Our
platform is divided into three layers as follows:

Core Services Layer: This layer is to provide services
needed by applications and monitor the running application.
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Fig. 2: Architecture of our platform

It mainly consists of the TOPPERS/HRP2 kernel and device
drivers. HRP2 kernel provides RTOS functions and protects
our platform from potential defects in applications with its
protection functionality. Device drivers are implemented to
support various features of EV3, such as pulse-width modula-
tion (PWM) for controlling motors and the speaker. Program
code in this layer usually runs in privileged mode since
it may wish to manipulate hardware devices directly. All
services are provided as service calls which can be called
from non-privileged mode. A monitor task is used to control
the application to be run. For now, the monitor just starts the
application after initializing all services properly. The feature
of loading applications dynamically and the operations to stop
or restart the application will be added in the future.

Platform Interface Layer: This layer acts as an interface
between core services layer (CSL) and user application layer
(UAL). It specifies all service calls that must be implemented
in CSL with their function prototypes. Data structures and
macro definitions shared between CSL and UAL are also
described. Even if CSL changed a lot, modifications to source
code of UAL is unnecessary as long as this layer does
not change. Since applications are only dependent on this
layer, they can be compiled and linked without any details
of CSL. Therefore, binaries built with the same version of
platform interface layer are portable, which is very helpful for
implementing dynamic loading.

User Application Layer: This layer provides APIs for
developing user applications. APIs for C language are provided
by default, and it is easy to support other programming lan-
guages by implementing API bindings. We have implemented
experimental API bindings for C++ to support object-oriented
programming with it. Only one application can be run at the
same time. All code in this layer runs in non-privileged mode
under a determined user domain called TDOM_APP.

B. Device Drivers

The biggest challenge we face in implementing device
drivers is that the scale of device drivers is too large. The



source code of the stock Linux-based firmware has been re-
leased by LEGO [13]. We analyzed it with CLOC (Count Lines
of Code), a statistics utility to count lines of code. The results
shows that there are approximately 60,000 lines of code for
device drivers exclusive for EV3 such as UART sensor driver,
and approximately half a million lines of code for generic
device drivers like Bluetooth protocol stack. Implementing
these device drivers from scratch is extremely difficult and will
take too much time, if not impossible. To reduce the workload
of developing, we must reuse the existing source code such as
the Linux-based firmware or other open source projects that
can be applied to our platform as possible. We propose an
approach to reuse the kernel-space Linux device drivers on
HRP2 kernel and evaluate its effectiveness. We also port an
open source Bluetooth protocol stack called BTstack [11] to
our platform for supporting wireless communication.

1) Reusing Linux device drivers: Many OS research
projects have reused code from existing systems to reduced the
startup cost. For example, the OSKit[20] presents a framework
to reuse C-based components from existing environments. The
OSKit defines some libraries such as kernel support library,
which should be implemented by developers. With those
libraries implemented, a device driver from Linux or FreeBSD
can be reused easily by writing some glue code. Although we
think the OSKit is too complex for our RTOS, we does adopt
a similar and simpler approach to reuse Linux device drivers.

Linux device drivers can be divided into two types, the
user-space device drivers and the kernel-space device drivers.
The user-space drivers are very difficult to reuse on HRP2
since the APIs[10] they can use are too complex for an
RTOS kernel to support. On the other hand, the kernel-space
device drivers are developed with the Linux kernel API [9]
which mainly provides basic management functions for the
kernel. The similarities between the Linux kernel API and the
TOPPERS/HRP2 API give us a chance to reuse the kernel-
space device drivers. We implemented some functions of Linux
kernel API which enable the core parts of drivers to be reused
to work. See Appendix D for implementation details.

We now describe the methodology to reuse a Linux
driver with an example shown below. At first, the header file
driver_common.h is included, which contains the Linux
kernel API we implemented. Then, some hacks are used to
make the driver compiled and working properly. The original
source file of the driver is included after the hacks. Unneeded
code in that file is commented out. At last, the interfaces of
this driver are implemented. In Linux, drivers use the standard
file operation system calls as interfaces to communicate with
applications. We must adapt implementation of these system
calls into corresponding service calls defined in the platform
interface layer of our architecture. This work can be done
easily by wrapping the file operation functions as extended
service calls.
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// Include the common part for a driver
#include "driver_common.h"

// Hacks for this module

#define InitGpio PWM_InitGpio
static void SetGpioRisingIrg(...) {

}

// Include the source file to reuse
#include "d_pwm.c"

// Interfaces
void pwm_command(...) {

DevicelWrite(...);

See Appendix F for a list of Linux device drivers which are
reused successfully. We used CLOC to evaluate the effective-
ness of our approach. The results show that we reused 14,254
lines of code by writing only 669 lines of code. This approach
has saved more than 90% of the coding work for these device
drivers.

2) Porting the BTstack: BTstack is an open source Blue-
tooth protocol stack for embedded systems[11]. Since it can
even work without an OS, we believe it can be ported to
our platform easily. The architecture of BTstack is shown in
Fig. 3. We implemented the hardware initialization for the
Bluetooth chipset by referencing the Linux device driver. The
chipset and BTstack are communicating with each other via a
UART port. We implemented the method stubs in the UART
hardware abstraction layer defined by BTstack. BTstack uses
a run loop to handle incoming data and schedule work. By
default, BTstack only provides two types of run loops, one for
POSIX system and the other one for OS-less system. The run
loop for OS-less system runs as a busy loop. We modified it to
run as a periodic task in our platform. At last, we implemented
the packet handlers (PH) to provide the Bluetooth Serial Port
Profile (SPP) which can emulate a serial port wirelessly.

It should be noted that the Bluetooth can work at a high
data rate up to 3 Mbps. Handling the data transferring with



interrupts may have a negative effect for real-time applications.
We decided to handle it with a low priority task working in
polling mode.

C. Application Programming Interface

There are three types of APIs which can be used by
developers to write programs for our platform.

TOPPERS/HRP2 kernel API: This API allows develop-
ers to use services provided by HRP2 kernel, such as task
synchronization functions. Details of this API are described in
the TOPPERS new generation kernel specication[6].

C standard library: The API of C standard library is
available, which makes development for our platform as easy
as writing a normal C application. Newlib[14], a C stan-
dard library implementation has been ported to our platform
to support the API. Furthermore, a special file descriptor
SIO_BT_FILENO for Bluetooth is defined. Developers can do
serial communications via Bluetooth simply by calling func-
tions like fprintf() and fgetc() with SIO_BT_FILENO. The
use of Newlib requires the dynamic management of memory
to support most of its functions. Since memory areas in our
platform are configured statically, we statically allocate a fixed-
sized memory pool managed by Newlib’s memory allocator.

EV3 API for C language: Features exclusive for EV3 such
as ultrasonic sensor, servo motors and LEDs are supported by
this APL. See Appendix C for a list of functions provided by
the EV3 APL

IV. A SAMPLE PROGRAM FOR SELF-BALANCING ROBOT

Developing an application for our platform involves the
following steps:

1)  Write code with APIs described in Section III-C

2)  Build the binary image hrp2 by the make command

3)  Generate the boot image uImage from hrp2 by the
mkimage command

4)  Copy uImage into root directory of a microSD card

5) Insert the microSD card into Mindstorms EV3

6) Power on EV3 and the application will get executed

To validate the implementation of our platform, we wrote
a sample program for a self-balancing two-wheeled robot,
which has real-time requirements. See Appendix E for the
construction of our robot. We implemented the self-balancing
algorithm by referencing the HTWay robot[12]. There are two
tasks in our sample program. One task works in a high priority
to perform the self-balancing algorithm. The other task works
in a lower priority to communicate with user via Bluetooth. It
outputs the value of gyro sensor continuously and a user can
control the speed and direction remotely. We have tested it and
both the tasks can work flawlessly.

On the other hand, the standard development environment
of EV3 also includes a sample program for self-balancing
called GyroBoy. By default, GyroBoy can keep the balance
correctly. However, the standard development environment
does not support priority-based scheduling. If we add a greedy
task shown in Fig. 4 to log the value of gyro sensor simulta-
neously, the robot will fall down very easily. This comparison
shows that our platform is more suitable for developing the
applications with real-time requirements.
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Fig. 4: A task to log the value of gyro sensor in the standard development
environment

V. PERFORMANCE EVALUATION

In this section, we describe some brief evaluations of our
platform. AM1808, the processor of EV3 is an ARM926EJ-
S processor running at 300 MHz[7]. We use performance
counters embedded within it to measure the performance of
our platform. In addition, we also measure the performance of
the Linux-based firmware used by the standard development
environment of EV3. Of course, we cannot compare these
platforms directly with the measurement results since there are
too many differences between them. However, we do believe
that the comparison can give us an idea of their relative
performance.

As we have mentioned in Section II-B, each protection
domain has its own section table. That is, context switching
between tasks in the same protection domain will not invalidate
any TLB entry, which is similar to thread switching in Linux.
This kind of switches can be performed very quickly both
in our platform and in Linux. On the other hand, context
switching between tasks in different protection domains is just
like process switching in Linux, which may cause many TLB
entries to become invalid.

We measure the context switching time between tasks in
different protection domains to figure out how the method of
TLB flushing affects it. The context switching time in our
evaluation is from the point that a service call causing the
context switch is issued to the point that the first instruction in
the new task is executed. The results of three methods which
we have described in Section II-C are shown in Fig. 5. A
context switch with flushing the entire TLB always costs about
3,500 CPU cycles. If only non-global TLB entries are flushed
on context switching, by a loop, the time can be reduced
to about 2,530 CPU cycles in the case of three non-global
pages. However, if there are more than 28 non-global pages,
it becomes slower than the original method. For the optimized
method we proposed, which eliminates the overhead of loop,
it only takes about 2,200 CPU cycles in the case of three
non-global pages. Moreover, it grows much slower and will
not cost more than the original method until the number of
non-global pages exceeds 52. The results have shown that our
optimized method can achieve a very low overhead of TLB
flushing when the number of non-global pages is not that
large. We have also measured the context switching time of
the Linux-based firmware by using LMbench[15]. It shows that
the average context switching time is about 310 microseconds
(93,000 CPU cycles), which is about 25 times slower than our
platform.
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TABLE I: Execution time of representative API functions

Function Average time Maximum
ev3_uart_sensor_get_raw() 2.96 us 43 us
ev3_motor_set_speed() 4.54 us 40 us
ev3_motor_set_speed()[Linux] 596 us 3424 us

We then measure the performance of some typical
APIs provided by our platform. We choose two repre-
sentative functions ev3_uart_sensor_get_raw () and
ev3_motor_set_speed() from our APIs. For com-
parison, we implemented ev3_motor_set_speed() for
the Linux-based firmware of the standard development en-
vironment. In our platform, ev3_motor_set_ speed()
can be implemented by simply calling the service call
motor_command () defined in platform interface layer. In
Linux, ev3_motor_set_speed () must send a message to
the driver by calling the file operation system call write (),
which can lead to a huge overhead. The measurement results
in Table I show that our APIs have much better real-time per-
formance and smaller overhead than the standard development
environment.

At last, we measure the memory usage and boot time of
our platform. EV3 has 64MB of memory in total. The sample
program of our platform described in Section IV takes only
3,276KB in total with 2MB allocated as the memory pool for
Newlib. Besides, our platform can boot up in 5 seconds with all
devices initialized. On the other hand, the stock Linux-based
firmware uses 61,080KB of memory and takes more than 35
seconds to boot up.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an RTOS-based development
platform with protection functionality for LEGO Mindstorms
EV3. We ported the TOPPERS/HRP2 kernel to the processor
AM1808 used by EV3. An algorithm for generating translation
tables statically has been designed to support the ARMvS
MMU on HRP2. We also proposed an optimized method
for TLB flushing to reduce the context switching overhead.
The optimized method statically generates code for flushing
TLB entries which may become invalid on a context switch.
The layered architecture, device drivers and APIs of our
platform have also been described. To reduce the workload
of implementation, we proposed an approach to reuse the
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Linux kernel-space device drivers on HRP2. We also ported
an open source Bluetooth protocol stack called BTstack. A
sample program for a self-balancing robot has been developed.
By a comparison between this sample program and the one
provided by standard development environment, our platform
has been proven to be more suitable for real-time applications.
At last, we evaluated the performance of our platform. The
measurement results have shown that our optimized method of
TLB flushing is effective and our platform can boot up much
more quickly and provide far better real-time performance than
the standard development environment.

As a future work, we plan to support dynamic loading
of applications at first. For now, every time the application
changes, developers are required to remove the microSD card
from EV3, copy the new binary file to it and insert the microSD
card again. This duplication of effort can waste so much time
and should be eliminated. The architecture of our platform is
designed to support this feature. Applications on our platform
can already be compiled into individual executable files inde-
pendent from the core services layer. Future work will focus
on designing and implementing a dynamic loader for HRP2,
which is a static RTOS kernel.
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APPENDIX A
THE STANDARD DEVELOPMENT ENVIRONMENT FOR
MINDSTORMS EV3

This is a screenshot of standard development environment
and its graphical data flow programming language.
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APPENDIX B

AN EXAMPLE OF CONFIGURATION FILE

KERNEL_DOMAIN {
/* create a system task x/
CRE_TSK (MAIN_TASK, {TA_ACT,0,main_task, 6,
1024,NULL}) ;
/* register a memory object =/
ATT_MOD ("sample_kernel.o");
/* define an extended service call =/
DEF_SVC(SVC1l, {TA_NULL, svcl_entry,64});
}
/* a user domain named DOM1 =*/
DOMAIN (DOM1) {
/* create a user task x/
CRE_TSK (TASK1, {TA_ACT,0,taskl, 6,1024,
NULL}) ;
/* register a memory object =/
ATT_MOD ("samplel.o");
}
/+* a user domain named DOM2 x/
DOMAIN (DOM2) {
/x create a user task «*/
CRE_TSK (TASK2, {TA_ACT,0,task2,6,1024,
NULL}) ;
/* create a semaphore named SEM1 «*/
CRE_SEM (SEM1, {TA_NULL, 0,1});
/+ configure access rights of SEM1 «*/
SAC_SEM (SEM1, {TACP (DOM2) , TACP (DOM1)
| TACP (DOM2) , TACP (DOM2) , TACP (DOM2) };
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ATT_MEM ({TA_NULL,

/* define a shared memory object =*/
0x80000000, 4096});

APPENDIX C
EV3 APPLICATION PROGRAMMING INTERFACE

. ev3_motor_set_speed (motor, speed)
Control the speed and direction of a motor.

. ev3_motor_brake (motor, floating)
Brake a motor.

e ev3_motor_sync
(motorA,motorB, speed, turn_ratio)
Steer or synchronize with two motors.

° ev3_motor_get_counts (motor)
Get the angular position of a motor (a.k.a. rotary
encoder).

° ev3_gyro_sensor_get_angle (sensor)
Detect the rotation of a robot with a gyro sensor.

e ev3_gyro_sensor_get_rate (sensor)
Measure the angular velocity of a robot with a gyro
Sensor.

. ev3_ultrasonic_sensor_get_distance
(sensor)
Measure the distance to an object with an ultrasonic
Sensor.

e ev3_touch_sensor_is_pressed(sensor)
Detect whether the button of a touch sensor is pressed.

° ev3_color_sensor_get_color (sensor)
Distinguish between 8 different colors with a color
Sensor.

e ev3_uart_sensor_get_raw(sensor)
Read the raw value of a UART sensor.

e ev3_led_set_color(color)
Set the color of LED on the body of Mindstorms EV3.

e ev3_button_set_on_clicked
(button, handler, exinf)
Register a handler for the button click event.

APPENDIX D
LINUX KERNEL API IMPLEMENTED WITH
TOPPERS/HRP2 API

The functions of Linux kernel API implemented in our
platform are listed as follows:

1)  Kernel-space memory management functions
2)  Semaphore API

3)  Spinlock API

4)  High-resolution timer API

The methodology to implement these functions with TOP-
PERS/HRP2 API are explained as follows:

Kernel-space memory management: Functions such as
kmalloc () and kfree () are implemented. Linux uses
multiple virtual address spaces while the HRP2 kernel uses
a single address space model. Therefore it is unnecessary to



perform the address translation between kernel space address
and user space address. In the case of kmalloc (), it can be
implemented easily by wrapping the malloc () function.

Interface for interrupt handling: Functions such as
request_irqg() which is used to register an interrupt
handler for an interrupt number, request_gpio_irqg()
which is used to register an interrupt handler for a GPIO
pin, and free_irqg() which is used to remove an regis-
tered interrupt handler are implemented. It should be noted
that the dynamic creation of an interrupt handler is not
supported by the TOPPERS/HRP2 kernel yet. We chose to
define the interrupt handlers statically and let the functions like
request_irqg() or free_irqg() simply perform enabling
or disabling of the corresponding interrupt. The interrupts
of GPIO pins are grouped into banks. To implement the
request_gpio_irg() function, we implemented a GPIO
interrupt dispatcher which dispatches interrupt to the corre-
sponding handler.

Semaphore API: Functions such as down_trylock ()
and up () are implemented. These functions can’t be imple-
mented by wrapping the semaphore management functions
in the TOPPERS API directly because these operations are
not permitted when CPU is locked (i.e. all the interrupts
are masked) according to the TOPPERS specification. We
implemented these functions natively by referencing the imple-
mentation of corresponding functions in the TOPPERS API.

Spinlock API: HRP2 provides the SIL_LOC_INT () and
SIL_UNL_INT () macros to control whether all the interrupts
are masked. Functions such as spin_lock_irgsave ()
and spin_unlock_irqgrestore () are implemented by
simply wrapping these macros.

High-resolution timer API: The high-resolution timers
have become the standard time framework in Linux since
version 2.6.16. The Linux device drivers for Mindstorms
EV3 use the high-resolution timer API for handling events
periodically. Unfortunately, the HRP2 kernel has not supported
the high-resolution timer feature yet. The HRP2 kernel handles
periodic events by kernel objects called cyclic handlers. The
period of cyclic handlers can only be set in milliseconds.
However, the HRP2 kernel does allow us to provide high-
resolution periodic ticks. By defining the TIC_NUME and
TIC_DENO macros, we can set the period of system ticks to
(TIC_NUME/TIC_DENO) milliseconds. We decided to set
this period to 200 microseconds and implemented an interface
for high-resolution cyclic handlers by handling system ticks.
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We then implemented the high-resolution timer API with this
interface.

APPENDIX E
THE CONSTRUCTION OF OUR ROBOT

This photo shows the construction of a self-balancing two-
wheeled robot which can be ontrolled by our sample program.
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APPENDIX F
REUSED LINUX DEVICE DRIVERS

1)  PWM Control Module
This driver is used to control the power and mea-
sure the angular position of motors with pulse-width
modulation (PWM).

2)  Analog I/O Module
This driver manages communication and controlling
the A to D conversion on an input port. The sensor
data of analog sensors is also fetched by this driver.

3)  UART Device Controller
This driver supports UART Device Communication
Protocol for UART sensors.

4)  Soft UART Ports Driver

There are four UART sensor ports on EV3. Two of
them are hardware UART ports provided directly by
the SoC. The others are UART ports emulated by
software. This driver supports those soft UART ports.
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Abstract—We believe that the Application Programming Inter-
faces (APIs) is a commonly ignored but very important property
of a real-time operating system (RTOS). It should not only be
complete i. e., offer all mechanisms needed to implement common
real-time systems, but also be easy to use in order to prevent
programming errors and make real-time systems more reliable.
Sadly there exists only little information about how a usable RTOS
API should look like. Therefore this paper aims to give assistance
in assessing and designing RTOS APIs. First we give an overview
of concepts we expect an RTOS API to offer and introduce criteria
we think must be fulfilled for an API to be called ‘usable’. Then
we examine the widely known API specifications POSIX and OSEK
0S as well as the APIs of the RTOSes FreeRTOS and Windows
Embedded Compact 7 w.r.t. to these criteria. Finally we discuss
possible reasons for the outcome of our examination and we
deduce some advice on how to design RTOS APIs.

Keywords—Operating Systems, System software, Real-Time Sys-
tems, Application programming interfaces, Ergonomics, Human
factors

I. INTRODUCTION

In our everyday world, real-time systems are pervasive.
Often, laymen may not realize that they are surrounded by real-
time systems but without these systems the most mundane
things of our industrialized world would not be possible.
Industry needs real-time systems for production, many modern
aircraft cannot fly without real-time-critical control systems, and
not even something as mundane as a modern car’s engine would
function without an underlying real-time system. People may
take something like a mobile telephone for granted, however,
even this is a real-time system.

This enumeration reveals how large parts of our civilization
depend on real-time systems acting at the right time in the
right way. However, what does ‘right’ mean in this context?
Though in general this is a very tough question often demanding
intricate domain knowledge about the physical processes and
machines involved, for the underlying RTOS it is simple: Do
what the application programmer told you to do!

Therefore it is crucial for an RTOS to know precisely
what the programmer wants it to do. The ‘language’ the
programmer uses for this purpose is the API of the RTOS. Since
misunderstandings between RTOS and programmer can lead to
serious damages like plane crashes, we believe it is crucial that
RTOS APIs are well designed and straight forward to use. This
makes programming real-time systems less error-prone and
provides more time for actually testing the application instead
of wondering how the API might be used correctly. Moreover
an understandable and easily usable RTOS API can seduce

This work was supported by the German Research Foundation (DFG) under
grant no. SCHR 603/9-1.
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programmers to make their decisions explicit in the code instead
of expressing them in terms of the implicit temporal order of
instructions. This makes the job of analysis or transformation
tools much easier, helping to increase the reliability of the
real-time system even more. Nevertheless there appears to be
little guidance as to what a well designed API looks like and
what to take care of when implementing an RTOS.

In this paper we will first establish what the term real-time
means, and what semantics an 0S has to offer in order to be
called ‘real-time capable’. From this we will present our criteria
for assesing the appropriateness of an API for programming
real-time systems. After that we will take a look at some OSes
and OS standards to find out how these perform w.r.t. our
criteria. We will then discuss the appropriateness of the APIs
we examined and explain where we think these succeed and
fail at being usable RTOS APIs. From this discussion we try to
deduce some short remarks on how to design an RTOS API.

II. REQUIREMENTS FOR AN RTOS API

In order to assess RTOS APIs w.r. t. their semantics, we first
want to present an overview of important properties of real-
time systems. Throughout this paper we will be focusing on
embedded real-time systems running on microcontrollers. We
will derive concepts and semantics we believe an RTOS for this
environment should provide to the application programmer.

Most real-time systems interact with their environment using
one or more sensors and actuators. The real-time system reacts
to external stimuli signified by a sensor value. These stimuli are
called physical events. The reaction to such an event is called
a task and produces some kind of result like e. g., a setpoint
for an actuator.! More complex tasks may be triggered by a set
of events combined by AND- and OR-relations. In contrast to
non-real-time critical computer systems, a real-time system has
to react to an ever-changing external environment in a timely
manner. Events and tasks are therefore attributed with timing
information. Events may be periodic or non-periodic. Periodic
events are described by a period and a phase while non-periodic
events are described by their minimum inter-arrival time.

Additionally, all real-time critical events have a deadline
which denotes the latest point in time at which the result of
the associated task has to be available. Missed deadlines may
make the result of a task unusable or even destroy the real-time
system, leading to damage to people and loss of life. A real-
time system’s tasks are often split into multiple jobs, which
represent the basic unit of work. In addition to physical events,
jobs may have to react to a change in state of the real-time

'Note that we distinguish between the abstract notion of a task and its
concrete implementation in the form of an OS process, thread, coroutine etc.



software. These state changes are triggered by the real-time
application’s jobs and are called logical events.

A. Mapping of Real-Time Concepts to APIs

Now that we know which abstract model an 0S has to
conform to in order to be suitable to a real-time environment,
we will take a look at the particular semantics an RTOS API has
to offer and the concepts an RTOSes may use to implement
them. Most RTOSes do not use the concepts of jobs and
tasks directly. In principle, jobs and tasks are passive entities
that have to be executed by the real-time system. Most
RTOS APIs, however, provide active entities like threads [1],
coroutines [2] or continuations [3] to allow the real-time
application programmers to execute the abstract jobs and tasks
they envision. For performance reasons, multiple jobs that
share temporal parameters may be executed by the same active
entity. In the rest of this section we will first show how RTOS
APIs can handle events. Next we will introduce options for
dealing with data dependencies in real-time applications and
finally we will detail how an RTOS API may manage shared
resources.

1) Event Handling: There are two fundamental ways a real-
time system can model event handlers. The first option is
to create the active entity when the event occurs and start it.
With respect to memory consumption this may be preferable
since an active entity that does not exist will not consume
any memory for its stack. The second option is to use an
event flag. An already existing and running active entity blocks
itself on the flag and waits for the flag to change state. When
the event occurs, the detecting entity toggles the flag and
the formerly blocked active entity resumes execution. As
event flags represent the most fundamental synchronization
mechanism, more complex concepts are built on top of them.
These include counting mechanisms like semaphores [4] and
barriers [5], which can be used to implement AND-semantics,
as well as the more complex condition variables [6]. To support
complex tasks it is desirable that the API supports waiting on
combinations of events e. g., by specifying event masks. In
a non-real-time application these mechanisms would already
be sufficient, however, in a real-time system we also require
an option for deferring the execution of an event handler to a
later point in time. Moreover there need to be concepts like
reoccurring timers to also support periodic events.

The aforementioned mechanisms are already sufficient to
handle logical events. Physical events, however, are usually
signalled by interrupts, which by their very nature occur
asynchronously. An interrupt service routine (ISR) that is
activated by the occurrence of an interrupt will run immediately,
and therefore it will violate the priorities assigned to other
active entities. The RTOS API must thus provide some way of
requesting the execution of a synchronous active entity, from
the interrupt handler, which will then obey its assigned priority.
If the real-time application programmer keeps the ISR as short
as possible, a priority inversion that would otherwise lead to
missed deadlines may be avoided. For an RTOS API to be
appropriate for a real-time system with firm deadlines, where a
silently missed deadline might lead to injury or loss of life, the
API should also provide some way of finding out if a deadline
has been missed and of reacting accordingly.
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2) Data Flow: According to Wolfe and Blaza [7], approx-
imately one third of all real-time systems execute some kind
of control law to prevent a physical system from leaving its
operating point. The most natural way to model these control
systems is to represent them by a data flow from sensors
through filters and controllers to actuators. Therefore it would
be convenient to have some mapping of this data flow to the
real-time system. Although in principle it is possible to establish
producer-consumer patterns using the mechanisms we presented
in the previous section, this may be awkward. A more natural
way of modelling data flow is through mechanisms that combine
synchronization with copying of data, like message queues,
mailboxes, blackboards etc. This approach has the additional
advantage that it may also be used for communication between
remote processing nodes or to conveniently migrate jobs from
one processing node to another.

3) Resource Management: A real-time application always
needs some way to interact with its environment. As a
consequence, it needs access to physical devices, which can
usually only be used by one active entity at a time. An
RTOS API must therefore have some way of providing mutually
exclusive access to shared resources. However, exclusive access
may incur uncontrolled priority inversion [8], risking deadline
violations. Therefore an RTOS API must supply mechanisms
like the Priority Ceiling Protocol (PCP), Deadline Inheritance
(D1) or Non-Preemptive Critical Sections (NPCSes) to avoid
such behaviour. More complex resource access schemes like
the reader-writer-lock may be provided by the RTOS API to
coordinate complex resources like system memory.

B. Criteria for Assessing Real-Time Operating System APlIs

Although we now know which semantics are necessary to
represent real-time systems, we still have to determine how to
judge the implementations the RTOS API offers. In this paper
we will employ two criteria to this end.

1) Completeness: Henning [9] identifies completeness as
the most important criterion of API design. In this paper, we
will consider an RTOS API complete if it provides at least
a representation of real-time properties like periods, phases,
deadlines etc., control flow and data flow dependencies, with
and without specifiable delay, and resource management that
avoids uncontrolled priority inversion.

2) Usability: Completeness of an RTOS API may be enough
to build a real-time system, however, we think that this is not
enough to build a reliable real-time system. Many real-time
systems are used in a firm or hard real-time environment where
missed deadlines have serious consequences. An RTOS API is a
man-machine interface since it is used to express a human’s
wishes in a form that can be processed by a machine. We
therefore propose to also consider the psychological aspects of
an RTOS APIL.

Raskin [10] identifies two properties of a good man-machine
interface. Modelessness, which means that the user does not
have to remember which state the machine is in to discern what
effect an action will have; and monotony, which means that
there should be exactly one way for the user to achieve some
effect. Both requirements aim to reduce the cost of training
personnel, developing the 0S and application, and to reduce
the cost of maintenance. The locus of control of users that are



provided with multiple ways of achieving some goal will be
drawn away from what they are trying to achieve. Instead of
solving the problem at hand, they will spend time choosing
the right mechanism for doing so. Since average application
programmers are no experts in interface design, they will not
necessarily choose the best mechanism.

Note, however, that modelessness and monotony do not
mean that the user interface may not offer composite mech-
anisms. Such a requirement, however — which might be the
guiding principle of a naive approach to user interface design
— is counterproductive. It would encourage programmers to
implement mechanisms they frequently use themselves, leading
to a myriad of implementations of the same concepts.

Calculating feasible schedules is an NP-hard problem, while
determining events and event handlers is a precondition for
creating any schedule at all. Therefore it is much easier for
a human to just find the necessary events and event handlers
instead of calculating the required schedule. In this paper
we will therefore focus on RTOS APIs following the event-
triggered paradigm. We do not deny that hard real-time systems,
whose failure would endanger human lives, should be executed
in a time-triggered fashion. However, in our opinion, real-
time system designers should develop even hard real-time
systems in the event-triggered way and then use supporting tools
to transform the event-triggered design into a time-triggered
system. See [11] for an example of such a tool.

III. CHOICE OF RTOSES AND RTOS API STANDARDS

One goal of this paper is to give an overview of the state
of the art in RTOS APIs. We will therefore present two OS API
standards and two OSes, all of which are in widespread use in
academia and industry [7]. One fundamental decision an OS
designer has to make is whether the system should be configured
statically or dynamically w.r.t. active entities and resources.
The static approach has numerous advantages: A statically
configured RTOS will usually require less run-time resources
like RAM and processing power, which — even in our times,
where cheap 32bit microcontrollers are on the way of becoming
the norm rather than the exception — is an important issue in the
design of real-time systems. Also, it is much easier to analyze
the real-time properties of a static system, which allows the
designer to guarantee firm and hard deadlines. A dynamically
configured OS, on the other hand, may be much more flexible
at run-time when reacting to seldom circumstances. The rest
of this section will give a short overview of each RTOS API and
introduce the job execution abstraction of each approach.

POSIX: From a historical perspective, the Portable Oper-
ating System Interface (POSIX) standard is the most influential
standard in the world of dynamically configured OSes. First
adopted by the IEEE in 1988 [12], all Unix-like OSes implement
at least part of it. Even the Windows NT series of OSes has
had POSIX support in the past, and many embedded non-Unix
OSes provide a POSIX compatibility layer. The standard has
since grown considerably and by now encompasses a profile
that targets real-time systems even for microcontrollers without
memory managment unit (MMU) and filesystem support [13].
POSIX offers two abstractions for active entities, processes and
threads. These differ insofar as each process has its own address
space and therefore cannot access another process’s memory,
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while multiple threads may share the same address space. In this
paper we will limit ourselves to the POSIX facilities appropriate
for real-time systems. We think that it is appropriate to include
POSIX in this paper since many embedded operating systems
like eCos or RTEMS implement at least part of the standard.
POSIX does not provide direct access to the interrupt handling
mechanisms of the hardware. Instead, interrupt handling may
be mapped to POSIX’s real-time signals mechanism. These
signals are guaranteed to be delivered in the order they are
generated, and if a signal is triggered multiple times, it will be
delivered exactly as often as it was triggered.

OSEK OS: Offene Systeme und deren Schnittstellen fiir
die Elektronik im Kraftfahrzeug (OSEK) OS is an API standard
for statically configurable OSes. The standard consists of
parts that are mandatory as well as optional parts. In this
paper we are going to take a look at the mandatory OS
standard [14], which provides an abstraction for active entities,
and the optional communication standard [15], which specifies
a message passing interface. OSEK 0OS’s active entities are
called basic and extended tasks. Basic tasks have run-to-
completion semantics and map directly to our concept of
abstract tasks. Extended tasks, on the other hand, may yield the
processor voluntarily and therefore are more like other operating
system’s threads. OSEK OS is in widespread use throughout the
automotive industry. Although OSEK has been superseded by
the newer AUTomotive Open System ARchitecture (AUTOSAR)
standard, it is still relevant since it is part of this new standard.

FreeRTOS: The free and open source FreeRTOS? is a
dynamically configured 0S with support for a wide range
of different processors. FreeRTOS’s API is limited to the
facilities required by real-time applications. It provides two
implementations of active entities. Similar to the OSEK standard,
FreeRTOS names its preemptively scheduled threads tasks.
Additionally, jobs may also be mapped to coroutines, which
are scheduled cooperatively.

Windows Embedded Compact 7: This 0OS is a component-
based embedded RTOS that has compile-time configurable
support for diverse hardware, a Graphical User Interface
(Gu), touch screen and playback of digital media. In contrast
to all other examined RTOSes it demands an MMU but was
included nevertheless, since according to [7] it is used quite
frequently in industrial applications. Windows Embedded
Compact 73 configures resources and active entities dynamically
and provides three abstractions for the later ones: Processes
and threads are very similar to their POSIX namesakes, while
fibres are thread-local coroutines.

Unfortunately none of these RTOSes include an API to detect
deadline misses as mentioned in Section II-A1. Therefore in
this paper we will not examine this requirement, though we
think such an API should at least be offered in firm RTOSes.
Moreover we will only take the thread abstraction offered
by the four presented approaches into account. The reasons
for this decision are twofold: 1. Processes guarantee separate
memory address spaces and therefore rely on the presence of
an MMU. Since the kind of RTOS we have in mind usually
runs on a microcontroller and most microcontrollers do not

Zhttp://www.freertos.org/
3http://www.microsoft.com/windowsembedded/en-us/
windows-embedded-compact-7.aspx



come equipped with an MMU, full-blown processes simply are
not an option. 2. Coroutines are non-preemptive and therefore
increase the chance of an active entity violating the priority of
some other active entity. In principle it is possible to build a
real-time system with coroutines, however, we think that this
makes the programmer’s task much harder and is in conflict
with our goal of providing a usable API.

IV. METHODOLOGY

The goal of our evaluation is to find out in how far the RTOS
APIs we haven chosen succeed w. r. t. the criteria of completeness
and usability. To show if an RTOS’s API is complete we first
grouped the calls provided by the APIs w.r.t. the criteria we
established in Section II. After that we determined how many
functions have to be called in order to use these concepts
correctly. In this assessment we ignored functions that are only
required for setup and configuration.

Next we tried to quantify the monotony of the APIs by
exploring all choices an application programmer has to make
when implementing one of the basic semantics described in
Section II-A. To do so we tried to implement each requirement
in all ways permitted by the API and created a test case for
each option to verify its semantics. The experience we gathered
while implementing these proofs of concepts now allows us to
also judge the RTOS APIs w.r.t. the criterion of modelessness.

In Section II-A1 we presented two ways of handling events
— either by creating an active entity or by waking a preexisting
one up. As part of our evaluation we implemented both methods.
First we focused on handling events by directly starting active
entities. We implemented the activation of jobs from within
other jobs to support logical events and splitting tasks into
multiple jobs. To support asynchronous i.e., physical events
we also considered all ways of activating entities from within
an ISR. Second we used synchronization mechanisms like
semaphores to inform waiting active entities of events. For
both approaches we also implemented snippets that trigger
delayed events. A special case of delayed events may be
implemented using the sleep mechanism since the event is
handled by the same control flow that triggers it. In addition to
using the sleep mechanism of most APIs, we also implemented
delayed activations by other means.

In order to test the data flow mechanisms of the APIs, we
implemented simple code snippets using the basic building
block of data flow modelling, which is transferring one byte
from one job to another.

To execute these test cases conveniently and quickly we
did not deploy them on embedded hardware. Instead we used
x86-64 based desktop computers. For POSIX snippets this was
straight forward since the Linux operating system implements
the relevant parts of the standard. As the set of mechanisms
we used is basic and timing is not crucial for their semantics,
we used Linux-based simulators for the other RTOSes: Trampo-
line [16] for OSEK 0S and the FreeRTOS Linux simulator* for
FreeRTOS. Unfortunately the FreeRTOS simulator does not
support all features of the most recent FreeRTOS release, so we
had to forgo execution of some snippets. Microsoft provides
a virtual machine for testing Windows Embedded Compact 7

Table 1. NUMBER OF FUNCTIONS ASSOCIATED WITH EACH API

MECHANISM
mechanism OSEK 08 POSIX FreeRTOS ~ Windows EC 7
event handling
thread administration v (2) v (1) v (8) v (3)
interrupt administration v (6) v (11) v (2) v (5)
synchronization
event flags v (3) v (7) v (5) v (4)
semaphore ® v (4) v (6) v (1)
condition variable E v 4) E ®
barrier 3 v (1) 3 %
timer v (2 v (3) v 4 v (2)
OR-combination v (1) v (5) v () v (1)
AND-combination % v (1) % ®
data flow
message queue v (3) v (5) v (12) v (3)
Read-write-lock  d v (7)  d v (2)
resource management v ) v (4) v (2) v (3)
relevant functions 18 40 39 23

applications. As this virtual machine does not support ISRs
we could not run the corresponding test cases. Instead we
drew our conclusions from the API documentation. Our code
snippets and the complementing test framework are provided
for reference’.

V. RESULTS

In this section we will present the results of the experiments
we introduced in the previous section.

Table I summarizes the concepts present in each RTOS APIL.
The number of related functions is given in brackets if available.
The POSIX standard describes all examined mechanisms and
therefor is the most featureful API. Next in line is Windows
Embedded Compact 7, followed by FreeRTOS and finally OSEK
OS.

The number of options the user has when implementing
a required real-time concept serves as an indicator for an
APIs’s monotony. Table II shows this number for all test
cases described in Section IV. For RTOSes supporting ISRs we
differentiated between triggering events from within an ISR and
from regular active entities. In Table II the first number in
each column refers to physical events while the second number
represents the number of implementations for the logical event
mechanism. Although POSIX signals can be interpreted as an
abstraction for hardware interrupts, we did not differentiate
them from threads since they are an OS service and not a
property of the hardware.

Completeness: As every examined API offers at least one
way to implement each requirement, we consider all of them
complete.

Monotony: None of the examined RTOS APIs is monoton-
ous, since all of them offer multiple ways of achieving the
same semantics. Nevertheless, OSEK OS comes quite close to
meeting this criterion: the maximum amount of choices for
developers to achieve their aim is four. This indicates a very
straightforward API compared to the 45 choices imposed on
users by POSIX.

“http://www.freertos.org/FreeRTOS- simulator-for-Linux.html
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Table II. NUMBER OF OPTIONS FOR IMPLEMENTING THE
REQUIREMENTS
test case OSEK 0S POSIX  FreeRTOS Windows EC 7
event handling
activation 3/4 1 171 1/1
delayed activation 2 1 1 1
periodic activation 3 1 1 1
suspend interrupt 3 1 1 3
synchronization
control flow 3/3 45 19719 18/ 17
delayed control flow 2/2 24 19/ 19 19719
sleep 2 32 29 25
data dependency 1 4 3 2
resource management 1 2 2 3

Modelessness: Most APIs do quite well when it comes
to modelessness. Even inside of ISRs most RTOSes permit
the same API calls as in normal control flows. Nevertheless,
dynamically configured systems like POSIX tend to violate
this criterion since API mechanism often can be configured
extensively. Each of these configurations represents a mode
since each configuration introduces a different semantics for
some API calls. In FreeRTOS different API calls have to be used
for the same purpose, depending on the calling context. This
serves to confuse the API user without need. Consequently it
includes more relevant functions in Table I than POSIX, though
it features less API concepts.

VI. DISCUSSION

Though all of the examined RTOSes can be called complete,
none of them fulfil both criteria of usability. Nevertheless,
some seem to do better than others. In this section we want to
discuss particular problems of the APIs and if possible make a
guess as to why they are designed the way they are.

The most obvious flaw that comes to mind when comparing
Table I and Table II w.r.t. POSIX is that it is overloaded with
functionality. During the nearly 30 years of its existence, it
has been extended and improved again and again, adding new
functionality to the API. The resulting extensive API leads to
a huge amount of choices a user has to make in order to
achieve some intended semantics. Especially the smorgasbord

of synchronization mechanisms should be mentioned here.

Although not all mechanisms are marked as ‘mandatory’ in the
standard, and thus are not implemented in most embedded POSIX
compatible OSes, this is a severe violation of the principle of
monotony. Another problem is that POSIX is very configurable
and flexible due to its design goal of being easily adaptable
to arbitrary OSes. Normally these words bear a positive
connotation but w. r. t. to usability of APIs this does not hold true.
Configuring an API mechanism means changing its semantics,
which introduces modes. From our point of view both problems
can be attributed to the fact that POSIX has always been an
integrating standard which has to fit many existing systems
and provide even more mechanisms. This approach conflicts
with designing a clear and usable API.

The FreeRTOS API requires the user to apply different
functions for the same purpose depending on the execution
context (thread, coroutine or ISR), which is in conflict with our
requirement of modelessness. Whenever FreeRTOS application
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developers are trying to achieve some goal, they first have to
make themselves aware which context they are programming
in. Only after that can they decide which function to use. This
mental overhead combined with the unnecessary amount of
functions available for each task hinders efficient use of this
APIL.

In contrast, Windows Embedded Compact 7 seems to
follow a rather good general development pattern. Its API
may not be perfect but seems to be quite usable. All results in
Table I and Table IT show that Windows Embedded Compact 7
does better than the other dynamically configurable RTOS APIs
(FreeRTOS and POSIX). Microsoft probably benefits from two
factors: 1. The development team seems to have a structured
and consistent vision of the API they want to offer. This is
probably due to the tighter integration of developers and stricter
leadership in the project. Although FreeRTOS is marketed by
a commercial vendor too, its API seems to have been designed
with much less regard for usability issues. This may be a
result of feature growth over time and of designing an API
matching the internals of the OS instead of the API user’s
requirements. 2. Since Microsoft’s customers licence specific
versions of embedded Windows, Microsoft has complete control
over the degree of backward compatibility provided. This is
very important since backwards compatibility is one of the
major reasons APIs erode over time [9]. Not having to provide
backward compatiblity enables the vendor to make drastic cuts
where necessary. Nevertheless Windows Embedded Compact 7
suffers from the same issue other dynamically configured OSes
have: configurable mechanisms imply different working modes
for these mechanisms.

Most of the statically configured OSEK 0S’s API does not
suffer from this flaw. It seems that great care has been taken
in OSEK’s design to avoid modes, and the standard’s designers
had the application programmer instead of the OS implementer
in mind when they composed it. This seems surprising
since standardization usually only achieves a perpetuation of
the status quo. Another excellent decision in the design of
OSEK was to target embedded hardware platforms exclusively.
This approach has led to a very lean, straight forward and
monotonous interface. A critical look at Table II, however,
reveals an apparent exception. There are four different ways of
activating threads where all other APIs only provide one function.
This may seems excessive but the OSEK 0S standard aims for
a one-to-one mapping of jobs to active entities. Therefore,
in order to support complex control flows, different ways
of activating threads are necessary (e.g., one handy API call
atomically ends the current thread and activates another one).

Regarding modelessness, OSEK fails only in one aspect, and
it does so without a pressing need: An OSEK event is coupled
with the existence of its associated thread, and therefore, if an
event occurs while a thread does not exist, the event will be lost.
This design decision is detrimental to the API’s usability and
OSEK’s version of the event mechanism in general appears to
be defective. It would have been a much better design decision
to specify that an event flag exists even while its associated
thread does not. Nevertheless, we think that of all APIs we
examined in this paper, OSEK OS provides the best usability
experience in an embedded context.

The discussion of the different APIs reveals one commonal-
ity: The design process is crucial for the usability of an API.



Since the API should be ergonomic for its end-users and their
applications, the designers should have these in mind instead of
the underlying implementation. Instead of trying to have one
API to cover all applications and purposes w.r.t. to usability it
seems to be profitable to aim at one core purpose i. e., real-time
in our case. Additionally if planning ahead did not work out
and already existing interfaces do not work the way they were
planned, one should not shy away from breaking backwards
compatibility in favour of better API design.

VII. RELATED WORK

In the field of RTOSes only little scientific work seems to have
been done w.r.t. the design of usable APIs. Most papers that
have been published either take a look at the overall properties
of the RTOS, or, they focus on microbenchmarks of individual
properties. Almost no work has been done that assesses the
RTOS API itself, and the few examples that do, like Timmerman
and Perneel [17], use measures like the ‘richness’ of the API,
which conflicts with its usability. Anh and Tan [18] present
a relatively comprehensive collection of microbenchmarks for
implementations of RTOS APIs but do not examine the usability
of the APIs themselves. The preexisting literature thus does not
give a usability assessement of RTOS APIs.

In those cases where new APIs for RTOSes are introduced,
these are usually intended for model-driven real-time system
development. Since one of the main goals of model-driven
development is simulating the resulting real-time system, the
invented APIs cater to the needs of simulators instead of those
of programmers. In some cases this means that the API does not
even offer resource management and therefore is incomplete
w.T.t. our criteria. Examples of this approach include Hessel
et al. [19], Shaout et al. [20] as well as Maeng et al. [21].

As far as we are aware, no published work targeting the
real-time domain explores APIs w.r.t. ergonomic properties like
modelessness and monotony. So far, the human factor does
not seem to have been at the focus of real-time API design.

VIII. CONCLUSION

In this paper we first presented a minimal set of semantic
concepts that we think are necessary to express the needs of real-
time applications. We then showed how these concepts can be
mapped to RTOS APIs and introduced the criteria of completeness,
modelessness and monotony for assessing the usability of RTOS
APIs. After that we presented two RTOS API standards and
two RTOSes that we had selected as candidates for a usable
RTOS API. We examined these w.r.t. our criteria and are now
convinced that the Offene Systeme und deren Schnittstellen fiir
die Elektronik im Kraftfahrzeug (OSEK) RTOS API comes quite
close to an usable API. Furthermore we came to the conclusion
that Windows Embedded Compact 7 is a pleasant API but suffers
from the requirements the API of a dynamically configurable
0S necessarily faces. We also discussed the shortcomings of
FreeRTOS and the Portable Operating System Interface (POSIX)
standard. The designers of FreeRTOS do not seem to have
given much thought to usability while POSIX is trying to be
adaptable to any OS regardless of the intended use case. It
therefore implements many concepts in more than one way,
burdening the application programmer with having to decide
which part of the API to use.
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In the future we intend to present an RTOS API that surpasses
OSEK OS and expresses the abstract real-time concepts we
introduced in Section II-B more directly.
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Namhoon Kim, Jeremy P. Erickson, and James H. Anderson

15:00-15:30 | Coffee Break
15:30-16:30 | Session 3: RTOS Design and Implementation II

A Platform for LEGO Mindstorms EV3 Based on an RTOS with MMU Support
Yixiao Li, Takuya Ishikawa, Yutaka Matsubara, and Hiroaki Takada

Usable RTOS-APIs?

Tobias Klaus, Florian Franzmann, Tobias Engelhard, Fabian Scheler, and Wolfgang Schrider-
Preikschat

16:30-18:00 | Discussion and Closing Thoughts

Wednesday, July 9™ — Friday, July 117 2014
ECRTS main conference.
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