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THE RISE OF PROBABILISTIC ANALYSIS

Expert Opinion on Tesla Model S with Autopilot, 2016

Jürgen Bönninger 
NHTSA Recall notice 1
Mercedes-Benz / Dec.   2018NHTSA Recall notice 2

Jaguar / May 2019NHTSA Recall notice 3
Jaguar / March 2021

NHTSA Recall notice 4
VW/Audi / Nov. 2022

Surviving an In-Flight Anomaly: What 
Happened on Ingenuity’s Sixth Flight,

NASA, Håvard Grip. 2021

Many modern systems fail to meet their timing requirements

Many modern systems are not statically 
analyzable but rather statistically

t

ℙ

𝕎ℂ𝔼𝕋…

Many safety standards are defined in terms 
of failure probability

[1] “The safe and effective application of probabilistic techniques in safety-critical systems”, Agrawal et al. ICCAD (2020)
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DEPENDENCE — A MAJOR OBSTACLE
There are several open problems in the field of probabilistic analysis

3

[2] “A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean. LITES (2019)

HOW TO MODEL DEPENDENCE? 
“How to handle … dependences between the execution times of 

 (i) jobs of the same task, and  
 (ii) jobs of different tasks?” 

[2]

HOW TO QUANTIFY DEPENDENCE? 
“The impact of these dependences may vary 

based on how strong they are.” [2]

HOW TO STATISTICALLY INFER DEPENDENCE? 
“Appropriate statistical studies are needed to investigate the 

 types of dependences and their impact on probabilistic  
schedulability analysis” [2]

?

2

4

3 5

…

positive correlation

3
execution time of τB,1

2

4

5

negative correlation

t

ℙ

2 4 3 51 4execution time

τA,1 τA,2 τB,1

HOW TO USE IT IN RT ANALYSIS? 
“Analyses are needed that can address  

dependencies.” [2]
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CORRELATION-TOLERANT ANALYSIS
Sound, irrespective of any potential dependence

4

(∑5
i=1 ̂s i)

2

(∑5
i=1 ̂s i)

2
+ (d − ∑5

i=1 ̂e i)
2

d
̂e 1 , ̂s 1 ̂e 3 , ̂s 3 ̂e 4 , ̂s 4 ̂e 5 , ̂s 5̂e 2 , ̂s 2

[3] “CTA: A Correlation-Tolerant Analysis of the Deadline-Failure Probability of Dependent Tasks”Marković et al. RTSS (2023)

Inputs: 

‣  : upper bound on the mean execution time (ET) of any job of task  

‣  : upper bound on the standard deviation of the ET of any job of  

̂e i τi
̂s i τi

[3]

ℙ[
5

∑
i=1

Xi ≥ d] ≤

deadline-failure 

probability of τ5

deadline-failure of τ5
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DEPENDENCE — A MAJOR OBSTACLE
However, these open problems remain unaddressed
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[2] “A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean. LITES (2019)

HOW TO MODEL DEPENDENCE? 
“How to handle … dependences between the execution times of 

 (i) jobs of the same task, and  
 (ii) jobs of different tasks?” 

[2]

HOW TO QUANTIFY DEPENDENCE? 
“The impact of these dependences may vary 

based on how strong they are.” [2]

HOW TO STATISTICALLY INFER DEPENDENCE? 
“Appropriate statistical studies are needed to investigate the 

 types of dependences and their impact on probabilistic  
schedulability analysis” [2]
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HOW TO USE IT IN RT ANALYSIS? 
“Analyses are needed that can address  
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THIS PAPER (PART 1) 
A CORRELATION-AWARE ANALYSIS

HOW TO MODEL DEPENDENCE? 
“How to handle … dependences between the execution times of 

 (i) jobs of the same task, and  
 (ii) jobs of different tasks?” [2]

HOW TO QUANTIFY DEPENDENCE? 
“The impact of these dependences may vary 

based on how strong they are.” [2]

HOW TO USE IT IN RT ANALYSIS? 
“Analyses are needed that can address  

dependencies.” [2]

[2] “A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean LITES (2019)
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τA,1 τA,2 τB,1

CA,1 CB,1CA,2
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2 4 3 51 4execution time
[2]

HOW TO MODEL DEPENDENCE? 
“How to handle … dependences between the execution times of 

 (i) jobs of the same task, and  
 (ii) jobs of different tasks?” 

CORRELATION AWARENESS
How do we model various types of dependence?

6

Covariance — a measure of the degree to which 
two random variables fluctuate together. Cov[CA,1, CB,1] = − 1CA,1…

intra-task 
covariance

Cov[CA,1, CB,1] = 1CA,1

Covariance of   and CA,1 CB,1

inter-task 
covariance

[2] “A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean LITES (2019)
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HOW TO QUANTIFY DEPENDENCE? 
“The impact of these dependences may vary 

based on how strong they are.” [2]
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τA,1 τA,2 τB,1 t

CORRELATION-AWARE ANALYSIS
An efficient way to analyse deadline-failure probability using covariances

Inputs: 

‣  : upper bound on the mean execution time (ET) of any job of task  

‣  : upper bound on the standard deviation of ET of any job of  

̂e i τi
̂s i τi
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deadline-failure  

of τ2̂v A,A

̂v A,B̂v A,BInter-task covariance UBs 

Intra-task covariance UB

Mean UBs

Standard deviation UBs

̂e A ̂e A ̂e B
̂s A ̂s A ̂s B

[2] “A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean LITES (2019)

HOW TO USE IT IN RT ANALYSIS? 
“Analyses are needed that can address  

dependencies.” [2]

‣  : upper bound on the ET intra-task covariance between any two jobs of  

‣  : upper bound on the ET inter-task covariance between any two jobs of two distinct tasks  and 

̂v i,i τi
̂v i,k τi τk
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CAA IN A NUTSHELL
The goal is to express everything in terms of CAA inputs
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?ℙ[RB ≥ d] ≤

deadline-failure  

probability of τB

unknown response-time 

distribution of τB relative 
deadline
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CAA rests on Cantelli’s inequality and Biyename’s identity

ℙ[RB ≥ d] ≤
̂𝕍 [RB]

̂𝕍 [RB] + (d − ̂𝔼 [RB])
2

9

deadline-failure  

probability of τB

unknown response-time 

distribution of τB

τA,1 τA,2 τB,1

upper bound on 

the variance of RB

upper bound on 

the mean of RB

2 ⋅ ̂s 2
A + ̂s 2

B

variance UBs

̂𝔼 [RB] = 2 ⋅ ̂e A + ̂e B

̂𝕍 [RB] =
Intra-task cov UB

2 ⋅ ̂v A,A+ + 4 ⋅ ̂v A,B

Inter-task cov UB
̂𝕍 CTA[RB] = 2 ⋅ ̂s 2

A + ̂s 2
B + 2 ⋅ ̂s 2

A + 4 ⋅ ̂s A ⋅ ̂s B

relative 
deadline relative deadline of  τB

CAA IN A NUTSHELL

all covariance pairs

…
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EVALUATION
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How do CAA results compare to CTA in general?

We compared CAA and CAA.

[4] Marković et al. RTSS (2024) [3] Marković et al. RTSS (2023)
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EVALUATION
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Synthetic task sets were randomly generated to highlight differences between CTA and CAA.

Four experiments were conducted to investigate: 
1. Influence of the task set size on DFP, 
2. The influence of the total mean utilization on DFP, 
3. The influence of the maximum standard deviation on DFP,  
4.The influence of the maximum correlation on DFP.

In this talk, we focus on (1).
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EVALUATION
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Investigating the influence of the task-set size

CAA always derives better 
bounds than CTA
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*lower is better*log scale

CAA dominates CTA, i.e., it always computes better or, at worst, equal DFP estimates

CAA derives better 
bounds than CTA

The gap becomes slightly more pronounced as the 
number of tasks increases due to Bienaymé's identity

2 ⋅ ̂s 2
A + ̂s 2

B
̂𝕍 [RB] = 2 ⋅ ̂v A,A+ + 4 ⋅ ̂v A,B

̂𝕍 CTA[RB] = 2 ⋅ ̂s 2
A + ̂s 2

B + 2 ⋅ ̂s 2
A + 4 ⋅ ̂s A ⋅ ̂s B



BUT, HOW DO WE DERIVE  
CAA (AND CTA) INPUTS? 

THIS PAPER (PART 2)

?

[2] “A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean LITES (2019)

HOW TO STATISTICALLY INFER DEPENDENCE? 
“Appropriate statistical studies are needed to investigate the 

 types of dependences and their impact on probabilistic  
schedulability analysis” [2]
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ANOTHER PROBLEM: DISTRIBUTION MISCLASSIFICATION
Incorrectly assuming the wrong underlying distribution can lead to unsound results 

13

ℙ

Many refuted results!

 heavy-tailed distributions⋄
As explained in The Fundamentals of Heavy 
Tails, 2022, Jayakrishnan et al.

Since our research focuses on safety 
properties, it is crucial to eliminate 

the risk of distribution misestimation.
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A random variable with 
an unknown distribution 

and unknown expectation

GOAL: DISTRIBUTION-AGNOSTIC STATISTICAL INFERENCE
We use Nonparametric Bootstrap

14

Step 1. Draw an initial sample  of  

 independent observations of 

I
n X

Step 2. Generate  bootstrap samples 
(by randomly resampling with 

replacement from the initial sample )

b

I

Step 3. Compute the bootstrap 

statistic on each bootstrap sample B

But how do we obtain sound upper bounds from the bootstrap distribution?

sample mean < 𝔼[X]

bootstrap1 mean < sample mean bootstrapb mean<sample mean 𝔼[X] <. . .

. . .

𝔼[X]
(ground−truth expectation)

Output: Bootstrap distribution of the expectation
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Output: The upper bound of the 
confidence interval.

𝔼[X]

sound upper bound
unsound  

upper bound

CONFIDENCE INTERVALS
The key to deriving upper bounds on parameters from an unknown distribution

15

A random variable  with 
an unknown distribution 

and unknown expectation

X

Step 4. Compute the confidence 
interval with a given level of 

confidence γ

γ = 0.7
 γ = 0.9

 γ = 0.99

𝔼[X] (ground−truth expectation)

Bootstrap distribution of the 
expectation

sound but overly pessimistic  
upper bound
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WHAT ARE THE GUARANTEES?
How should we interpret the derived results?

16

‣ No statistical inference method can provide  
absolute certainty 

‣ There is always a minuscule but non-zero chance that 
a ground-truth parameter lies outside the statistically 
estimated range

‣ Bootstrapped CIs provide an excellent means of 
estimating ground truth that is 
‣ statistically rigorous 
‣ distribution-agnostic 
‣ sample-efficient 
‣ mathematically well-understood 

[5] “The correct interpretation of confidence intervals” Tan and Tan. Proceedings of Singapore Healthcare (2010)

Wrong confidence interval interpretation 
‣“A common misunderstanding about CIs is that for say a 
95% CI (A to B), there is a 95% probability that the true 
population mean lies between A and B.“ 

[5]

Correct confidence interval intepretation 
‣“A 95% CI simply means that if the study is conducted 
multiple times (multiple sampling from the same 
population) with corresponding 95% CI for the mean 
constructed, we expect 95% of these CIs to contain the 
true population mean“ [5]

𝔼[X]

γ = 0.7
 γ = 0.9

 γ = 0.99
ℙ

Hello 
again!
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‣  : upper bound on the mean execution time (ET) 

‣  : upper bound on the standard deviation of ET 

‣  : upper bound on the ET intra-task covariance 

‣  : upper bound on the ET inter-task covariance

̂e i
̂s i
̂v i,i
̂v i,k

CONFIDENCE-BASED TASK PARAMETERS
All CAA and CTA inputs are obtained with bootstrapping from bounds on confidence intervals

17

Important tuning knobs

Number of bootstrap samples b

bootstrap1 mean

Initial sample size n

sample mean 𝔼[X]

…

Level of confidence γ

γ = 0.7
 γ = 0.9

 γ = 0.99
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CASE STUDY

18

Three experiments on a proof-of-concept case study from WATERS 2017 workloads 
were conducted to investigate: 

1. Influence of the initial sample size on DFP, 
2. Influence of the level of confidence on DFP, 
3. Influence of the number of bootstrap samples on DFP.

How do CAA results compare to CTA when using statistical inference?

Important tuning knobs

Number of bootstrap samples b

bootstrap1 mean

Level of confidence γInitial sample size n

sample mean 𝔼[X]

…

γ = 0.7
 γ = 0.9

 γ = 0.99
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CASE STUDY

19

Investigating the influence of the initial sample size

*lower is better
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CASE STUDY

19

Investigating the influence of the initial sample size

*lower is better

De
ad

lin
e-

fa
ilu

re
 p

ro
ba

bi
lit

y (
DF

P)

Initial sample size (n)



Filip Marković, Georg von der Brüggen, Mario Günzel, Jian-Jia Chen, and Björn B. Brandenburg

CASE STUDY

19

Investigating the influence of the initial sample size

*lower is better

Both CAA and CTA tend towards their respective optimal DFP estimates as the initial 
sample size increases.

All DFP estimates are sound.
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Initial sample size (n)
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CASE STUDY

20

Investigating the influence of the level of confidence 

Increasing the level of confidence leads to more conservative results for both analyses.

All DFP estimates are sound.

*lower is better

De
ad
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DF

P)

Level of confidence ( )γ



SUMMARY



Filip Marković, Georg von der Brüggen, Mario Günzel, Jian-Jia Chen, and Björn B. Brandenburg

CONTRIBUTIONS
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HOW TO MODEL DEPENDENCE? 
“How to handle … dependences between the execution 

times of (i) jobs of the same task, and   
(ii) jobs of different tasks?” 

HOW TO QUANTIFY DEPENDENCE? 
“The impact of these dependences may vary based 

on how strong they are.” 

HOW TO USE THESE IN RT ANALYSIS? 
“Analyses are needed that can address 

dependencies.”

HOW TO STATISTICALLY INFER DEPENDENCE? 
“Appropriate statistical studies are needed to  

investigate the types of dependences and their impact  
on probabilistic schedulability analysis” 

BONUS: COMPUTATION EFFICIENCY! 
“ensuring that they [analyses] can be applied to  

problems of a practical size.” 
Closed-form solution

[2] “A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean LITES (2019)

Nonparametric 
bootstrapping

Confidence-based 
task parameters

γ = 0.7
 γ = 0.9
 γ = 0.99

̂v A,A

̂v A,B̂v A,BInter-task covariance UBs 

Intra-task covariance UBs

τA,1 τA,2 τB,1

ℙ[R2 ≥ d] ≤

deadline-failure  
probability CAA (dominates CTA)

̂𝕍 [RB]

̂𝕍 [RB] + (d − ̂𝔼 [RB])
2

2 ⋅ ̂s 2
A + ̂s 2

B 2 ⋅ ̂v A,A+ + 4 ⋅ ̂v A,B

=

τA,1 τA,2 τB,1

all covariance pairs 
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GOAL: DISTRIBUTION-AGNOSTIC STATISTICAL INFERENCE
We use Nonparametric Bootstrap

2. Solved Problems1. Background 3. Future Work

12

XA random variable with 
an unknown distribution

1. Draw an initial sample  of  

independent observations of 

I n
X

I = {x1, x2, . . . , xn}

2. Generate  bootstrap samples 
(by randomly resampling with 

replacement from the initial sample )

b

I β1 = {x2, x1, . . . , x2} βb = {x2, xn, . . . , xn}. . .

3. Compute the bootstrap statistic on 

each bootstrap sample B θ*1 θ*b. . .

Output: Bootstrap distribution of θ

sample mean < 𝔼[X]

. . .

bootstrap1 mean< sample mean
bootstrapb mean

<sample mean
𝔼[X ]<

. . .

(ground−truth expectation)
𝔼[X]


