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e
THE RISE OF PROBABILISTIC ANALYSIS

Many modern systems fail to meet their timing requirements e

Expert Opinion on Tesla Model S with Autopilot, 2016

NHTSA Recall notice 1 "i’

/P Surviving an In-Flight Anomaly: What
. gy . H I 5 9 . F . ’
NHTSA Recall notice 2 appened on Ingenuity’s Sixth Flight
NASA, Havard Grip. 2021

NHTSA Recall notice 3

NHTSA Recall notice 4 NHTSA

I RT A e S NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
VW/Audi / Nov. 2022

Many safety standards are defined in terms Many modern systems are not statically
of failure probability analyzable but rather statistically

SIL Low demand mode |Continuous/High demand mode

prob. failure on demand prob. failure per hour
1 > 1072 to < 1071 > 10"% to < 102
2 > 1073 to < 1072 > 107 to < 107°
3 >10"%to < 1073 > 1078 to < 1077
4 > 107> to < 10™% > 10" to < 1078

Table 1: IEC 61508: Permitted Failure Probabilities |1
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[1] “The safe and effective application of probabilistic techniques in safety-critical systems", Agrawal et al. ICCAD (2020)
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DEPENDENCE - AMAJOR OBSTACLE

There are several open problems in the field of probabilistic analysis

————/_-'
HOW TO MODEL DEPENDENCE?

“How to handle ... dependences between the execution times of
(i) jobs of the same task, and
(ii) jobs of different tasks?”
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HOW TO QUANTIFY DEPENDENCE?

“The impact of these dependences may vary

| based on how strong they are.” 2]
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HOW TO STATISTICALLY INFER DEPENDENCE?

“Appropriate statistical studies are needed to investigate the
types of dependences and their impact on probabilistic
schedulability analysis” 2]
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HOW TO USE IT IN RT ANALYSIS?

“Analyses are needed that can address
dependencies.” 2]

?+? +

[2]"A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean. LITES (2019)
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CORRELATION-TOLERANT ANALYSIS -

Sound, irrespective of any potential dependence

Inputs:
» € .. upper bound on the mean execution time (ET) of any job of task .

» § ;- upper bound on the standard deviation of the ET of any job of ;

deadline-failure of
.- @

deadline-failure
probability of

[3]"CTA: A Correlation-Tolerant Analysis of the Deadline-Failure Probability of Dependent Tasks"Markovic et al. RTSS (2023)
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DEPENDENCE - A MAJOR OBSTACLE

However, these open problems remain unaddressed

HOW TO MODEL DEPENDENCE? HOW TO STATISTICALLY INFER DEPENDENCE?
“How to handle ... dependences between the execution times of “Appropriate statistical studies are needed to investigate the
( i%.jo.bs of the: same task, and types of dependences and their impact on probabilistic
(ii) jobs of different tasks?” schedulability analysis”
B 2] [2]
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[2]"A survey of probabilistic schedulability analysis techniques for real-time systems” Davis and Cucu-Grosjean. LITES (2019)
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THIS PAPER (PART 1)
A CORRELATION-AWARE ANALYSIS

-___//‘_'—‘._N
HOWTO MODEL DEPENDENCE?

“How to handle ... dependences between the execution times of
(i) jobs of the same task, and
(ii) jobs of different tasks?” )

— i,
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HOW TO QUANTIFY DEPENDENCE? HOWTO USE ITIN RT ANALYSIS?
“The impact of these dependences may vary “Analyses are needed that can address
| based on how strong they are.” (2] , dependencies. ™ [2]
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CORRELATION

How do we model various types of dependence?

maximum minimum
M ) correlation ) correlation
<
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“The impact of these dependences may vary E rd
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[2]"A survey of probabilistic schedulability analysis techniques for real-time systems" Davis and Cucu-Grosjean LITES (2019)
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CORRELATION- ANALYSIS

An efficient way to analyse deadline-failure probability using covariances

Inputs:
» € . upper bound on the mean execution time (ET) of any job of task t;
» 'S . upper bound on the standard deviation of ET of any job of
s if\i,i : upper bound on the ET intra-task covariance between any two jobs of T,
s 1’\1‘, . - upper bound on the ET inter-task covariance between any two jobs of two distinct tasks z; and 7,

Inter-task covariance UBs

VAB VAB
Intra-task covariance UB ?A s |
X e e ‘e
Mean UBs €, e, ey
Standard deviation UBs S A S 4 S 5

HOWTO USE IT IN RT ANALYSIS?

“Analyses are needed that can address
dependencies.” 2]

[2]"A survey of probabilistic schedulability analysis techniques for real-time systems" Davis and Cucu-Grosjean LITES (2019)
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IN A NUTSHELL

The goal is to express everything in terms of CAA inputs

deadline-failure
probability of T

P[Rg = d] <
unknown response-time : %
relative
deadline

distribution of 7

Filip Markovi¢, Georg von der Briiggen, Mario Giinzel, Jian-Jia Chen, and Bjérn B. Brandenburg



e
IN A NUTSHELL

CAArestson ...

deadline-failure upper bound on

°... :
probability of T the variance of R,

P[R, > d] <

unknown response-time o

P V[Rz] + (d _

deadline relative deadline of g the mean of Ry,

distribution of 7 upper bound on

E[Ry =224+ ¢,

VIR =2 52452 +2- D, +4 0,5,

variance UBs Intra-task cov UB Inter-task cov UB

all covariance pairs
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EVALUATION

How do CAA results compare to CTA in general?

A Distribution-Agnostic and

Correlation-Aware Analysis of Periodic Tasks

Filip Markovié! Georg von der Briiggen? Mario Giinzel”> Jian-Jia Chen? Bjorn B. Brandenburg!
'Max Planck Institute for Software Systems, Germany
2TU Dortmund, Department of Computer Science, Germany

Abstract—Real-time tasks often exhibit correlated execution-
time distributi due to factors such as shared caches,
resources, and inputs. Yet state-of-the-art probabilistic analysis
still overlooks the impact of correlation, a gap that has been
highlighted as a major open problem in the field.

This paper responds to the open problem with the first
correlation-aware analysis (CAA) of periodic tasks with stochastic
execution times. The proposed analysis, which derives response-
time distributions to infer upper bounds on deadline-failure
probabilities, applies to a novel task model that incorporates
information about both intra- and inter-task dependencies.

In addition, the paper shows how to statistically infer the
two model parameters using fid intervals obtained via
nonparametric bootstrapping. Notably, the inference method
described is distribution-ag 7 ing that it does not assume
any particular probability distribution a priori, thereby eliminating
a major risk of misclassifying the ground-truth execution behavior.

By design, CAA domi tate-of-the-art correlati lerant
analysis (CTA). The significantly better accuracy of CAA is demon-
strated via experiments with synthetically generated workloads,
while a case study based on the WATERS’17 industrial challenge
provides a proof-of- pt of the istical inference method.

I. INTRODUCTION

A major challenge in the analysis of modern real-time
systems is that many state-of-the-art methods, including worst-
case execution time (WCET) analysis, prove ineffective when
applied to complex software and hardware stacks. This is
mainly due to unpredictable components and effects such
as hardware accelerators [50], thermal noise [35], extrinsic
nondeterminism in network communication protocols [30], and
complex hardware and software stacks designed with developer
productivity and code reuse as the primary goals, as opposed to
performance predictability [52]. New approaches to analyze and
mitigate the timing uncertainties inherent in modern real-time
systems are thus urgently needed. In this context, probabilistic
analysis has emerged as the most promising direction [16].

The two overarching (and often conflicting) goals in prob-
abilistic analysis for real-time systems are soundness and
accuracy. On the one hand, to ensure soundness, an analysis
must not underestimate the probability of adverse events (e.g., a
missed deadline). On the other hand, if the estimated probability
of failure is much greater than a system’s actual, ground-truth
risk of failure, the analysis’s excessive pessimism will result
in overallocation of resources, reduced system efficiency, and
ultimately increased costs and environmental impact.

A key and still largely unresolved issue at the core of the
tension between analytical soundness and accuracy is the chal-
lenge of correlated execution times [16]. While it has long been

[4] Markovic et

recognized that ignoring potential correlations among execution-
time distributions (i.e., incorrectly assuming that all tasks are
independent) can lead to optimistic (i.e., unsound) results [54],
it is only recently that research has developed techniques that
address the issue in a provably sound manner [5, 46].

The conventional method for circumventing correlation
issues uses the notion of a task’s probabilistic worst-case
execution time (pWCET) [2, 5, 16]. This approach assumes that
each task’s pWCET distribution includes sufficient padding to
account for and mask any potentially harmful dependencies on
the behavior of other tasks. Although correctly padded pWCETs
in principle allow the use of independence-assuming analysis
methods, it has recently been observed that even just defining
the concept of a pWCET is not trivial [5], let alone determining
the correct amount of padding. In addition, even correctly
padded pWCETs can be a challenge to use properly [12].

Recently, correlation-tolerant analysis (CTA) [46] has
emerged as a more direct solution to the challenge of ana-
lyzing dependent tasks without resorting to false independence
assumptions or relying on pWCET-based models. Notably,
CTA accommodates arbitrary dependencies among tasks while
requiring only upper bounds on the expectation and standard
deviation of otherwise unknown execution-time distributions.

However, while both CTA and the careful use of padded
pWCETs can ensure soundness in the presence of correlated
execution times [5, 46], neither is ideal when it comes to
accuracy. As we illustrate with an example in Sec. II, CTA,
and even more so analyses built on the pWCET abstraction,
can suffer from significant inherent pessimism because they
only tolerate or mask correlation, rather than treating it as a
first-order feature of the task model being analyzed.

Thus, recent advances [5, 46] notwithstanding, the problems
of (i) statistically inferring dependencies among execution times
and (ii) using this data in sound analysis remain largely open.
As Davis and Cucu-Grosjean [16] highlight in their list of open
issues and key challenges in probabilistic analysis:

« “How to handle issues relating to dependences between
the execution times of jobs of (i) the same task, and (ii)
Jobs of different tasks? The impact of these dependences
may vary based on how strong they are.” [16]

« “Appropriate statistical studies are needed to investigate
the types of dependences and their impact on probabilistic
schedulability analysis. Analyses are needed that can
address dependencies.” [16]

We propose the first solutions to both problems in this paper.

al. RTSS (2024

CTA: A Correlation-Tolerant Analysis of the
Deadline-Failure Probability of Dependent Tasks

Filip Markovié! Pierre Roux?

Abstract—Estimating the t deadline failure probability
(WCDFP) of a real-time task is notoriously difficult, primarily
because a task’s execution time typically depends on prior
activations (i.e., history depend and the tion of other
tasks (e.g., via shared inputs). Previous analyses have either
assumed that execution times are probabilistically independent
(which is unrealistic and unsafe), or relied on complex upper-
bounding abstracti such as probabilistic t i
time (pWCET), which mask dependencies with p Explor-
ing an analytically novel direction, this paper proposes the first
closed-form upper bound on WCDFP that accounts for dependent
execution times. The proposed correlation-tolerant analysis (CTA),
based on Cantelli’s inequality, targets fixed-priority scheduling and
requires only two basic summary statistics of each task’s ground-
truth ion time distribution: upper bounds on the mean and

dard d (for any possible job-arrival seq ). Notably,
CTA does not use pWCET, nor does it require the full execution-
time distribution to be known. Core parts of the analysis have
been verified with the Coq proof assistant. Empirical comparison
with state-of-the-art WCDFP analyses reveals that CTA can yield
significantly improved bounds (e.g., a lower WCDFP than any
pWCET-based method for ~70% of the workloads tested at
90% pWCET utilization and 60% average utilization). Beyond
accuracy gains, the favorable results highlight the potential of
the previously unexplored analytical direction underlying CTA.

I. INTRODUCTION

Probabilistic analysis of real-time systems holds the promise
of addressing the central challenge of modern hardware and
software architectures: unavoidable uncertainty in the execution
behavior of real-time tasks. Such uncertainty, deeply embedded
in the fabric of modern computing systems, more often than not
precludes meaningful (classical) worst-case analysis, leaving a
stochastic perspective as the only viable option.

One of the most pressing open problems in this space is
the issue of dependent execution times (also referred to as
execution-time correlation). Specifically, when bounding a
task’s worst-case deadline-failure probability (WCDFP), it is
crucial to account for possible dependencies on both previous
activations (intra-task dependence) and other tasks in the system
(inter-task dependence). If such dependencies are ignored, the
WCDFP may be severely under-approximated.

These observations are not new: the lack of independence
in practice was recognized as a safety problem already more
than 25 years ago by Tia et al. [49] in one of the first works
on probabilistic schedulability analysis. Unfortunately, only
little progress has been made on this issue since Tia et al.’s

[3] Markovic et
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observation, with Davis and Cucu-Grosjean noting in the clos-
ing remarks of their recent survey [19]: “Issues of dependence
are of great importance in probabilistic schedulability analysis
[...] Analyses are needed that can address dependencies”.
Prior attempts at tackling dependence in state-of-the-art
WCDFP analyses have relied on over-approximation. The
common idea in this line of work is to “pad” the ground-
truth execution-time distributions with “sufficient pessimism,”
to the point that task behavior can be safely assumed to be inde-
pendent. The primary mechanism for realizing such an analysis
in a sound manner is the concept of a probabilistic worst-case
execution time (pWCET) distribution [3, 8, 14, 17, 18], which
can be determined for each task either via static analyses [e.g.,
4, 6, 16, 31] or with measurement-based techniques such as
extreme value theory (EVT) [e.g., 32, 33, 46, 47].
Specifically, the pWCET approach promises that the analysis
may model execution times with independent random variables
following the pWCET distribution, provided the pWCET
distribution is suitably determined [19]. However, a significant
limitation of such independence-assuming analysis (IAA) lies in
its inherent over-approximation of the ground truth, which can
lead to considerable pessimism compared to actual behavior.

This paper. Exploring a fundamentally different direction, we
propose a novel correlation-tolerant analysis (CTA) of WCDFP
under fixed-priority scheduling. CTA is based on Cantelli’s
inequality [9] and departs from the state of the art in three major
ways: first, CTA does not use pWCET, nor does it otherwise
require ground-truth distributions to be pessimistically padded;
second, unlike traditional methods, CTA does not require full
knowledge of the ground-truth distributions, as it uses only
bounds on their means and standard deviations (under any
possible job-arrival sequence); and last but not least, CTA is
safe in the presence of arbitrarily dependent execution times.
Notably, CTA also does not require the degree of inter- or intra-
task correlation to be quantified, which is desirable in practice.
In developing CTA, we make the following contributions:

« We convey the core idea with a simple example (Sec, II).
« From Cantelli’s inequality [9], we derive, and verify with
Cogq [13. 41], an upper bound on the sum of random
variables with unknown degrees of correlation (Sec. IV).
« We formally model the execution of a stochastic sporadic
real-time workload under preemptive uniprocessor fixed-

al. RTSS (2023
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EVALUATION

Synthetic task sets were randomly generated to highlight differences between CTA and CAA.

Four experiments were conducted to investigate:
1. Influence of the task set size on DFP,
2. The influence of the total mean utilization on DFP,
3.The influence of the maximum standard deviation on DFP,

4.The influence of the maximum correlation on DFP.

In this talk, we focus on (1).

Filip Markovi¢, Georg von der Briiggen, Mario Giinzel, Jian-Jia Chen, and Bjérn B. Brandenburg
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EVALUATION

Investigating the influence of the task-set size

CAA derives better CAA always derives better
bounds than CTA bounds than CTA
*log scale *lower is better \
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CAA dominates CTA, i.e., it always computes better or, at worst, equal DFP estimates

VIREI =2 53+ 55 +2- V0 +4-V,p

The gap becomes slightly more pronounced as the
number of tasks increases due to Bienaymé's identity VMR =2 53+ 5342 53445, 5,
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BUT, HOW DO WE DERIVE
CAA (AND CTA) INPUTS?
THIS PAPER (PART 2)

- ———— T - —— -
— e —~—

—— - —— — -

HOW TO STATISTICALLY INFER DEPENDENCE?
“Appropriate statistical studies are needed to investigate the
types of dependences and their impact on probabilistic

schedulability analysis” 2]

\w

[2]"A survey of probabilistic schedulability analysis techniques for real-time systems" Davis and Cucu-Grosjean LITES (2019)



ANOTHER PROBLEM: DISTRIBUTION MISCLASSIFICATION

Incorrectly assuming the wrong underlying distribution can lead to unsound results

ﬂany refuted results! \

¢ heavy-tailed distributions
As explained in The Fundamentals of Heavy

Tails, 2022, Jayakrishnan et al. IEVELY ish.nan Nair
Adam Wierman
Bert Zwart
%
Y/

Since our research focuses on safety
properties, it is crucial to
the risk of
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GOAL: DISTRIBUTION-AGNOSTIC STATISTICAL INFERENCE

We use Nonparametric Bootstrap

A random variable with
an unknown distribution
and unknown expectation

Step 1. Draw an initial sample I of
n independent observations of X

E[X]
(ground—truth expectation)
[

sample mean

A< E[X]

e Ny .
{'o‘c 3

\\\0.)0./

Step 2. Generate b bootstrap samples

7

- g
{"OV" ‘:\‘

(by randomly resampling with
replacement from the initial sample 1)

Step 3. Compute the bootstrap

statistic on each bootstrap sample B

< sample mean . . .

Output: Bootstrap distribution of the expectation

sample mean< E[X] <

But how do we obtain sound upper bounds from the bootstrap distribution?

Filip Markovi¢, Georg von der Briiggen, Mario Giinzel, Jian-Jia Chen, and Bjérn B. Brandenburg



CONFIDENCE INTERVALS

The key to deriving upper bounds on parameters from an unknown distribution

A random variable X with

an unknown distribution @ ----..

and unknown expectation

Bootstrap distribution of the

expectation °

Step 4. Compute the confidence
interval with a given level of

confidence y

Output: The upper bound of the
confidence interval.

Filip Markovi¢, Georg von der Briiggen, Mario Giinzel, Jian-Jia Chen, and Bjérn B. Brandenburg

A
E[X] (ground—truth expectation)

A
y = 0.7 —
y = 0.9 —_

y = O99>—-—-—1

unsound ....................

upper bound yw

A
E[X]

sound upper bound

o sound but overly pessimistic
upper bound
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WHAT ARE THE GUARANTEES?

How should we interpret the derived results?

Wrong confidence interval interpretation Correct confidence interval intepretation
» “A common misunderstanding about Cls is that for say a » “A 95% Cl simply means that if the study is conducted
95% CI (A to B), there is a 95% probability that the true multiple times 2multiple sampling from the same
population mean lies between A and B. “ population) with corresponding 95% Cl for the mean
constructed, we expect 95% of these Cls to contain the
true population mean*
‘—\“~'M [5] “\‘“'M [5]
‘-""\.._._———-\.“ R — ’-"‘\....‘———-\.“ P —
» No statistical inference method can provide » Bootstrapped Cls provide an excellent means of
absolute certainty estimating ground truth that is
» There is always a minuscule but non-zero chance that » statistically rigorous
a ground-truth parameter lies outside the statistically » distribution-agnostic
estimated range » sample-efficient

» mathematically well-understood

y = 0.7 —q
y=09  r—
=099 P»—m=>ivy
A\AA4
A
ELX]

[5]“The correct interpretation of confidence intervals” Tan and Tan. Proceedings of Singapore Healthcare (2010)
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CONFIDENCE-BASED TASK PARAMETERS

All CAA and CTA inputs are obtained with bootstrapping from bounds on confidence intervals

» € ;. upper bound on the mean execution time (ET)

» S, : upper bound on the standard deviation of ET

» V; ;- upper bound on the ET intra-task covariance

) =) ) ®)

» V; i - upper bound on the ET inter-task covariance

Important tuning knobs

Initial sample size n Level of confidence y Number of bootstrap samples b
"
y =0.7 ) XL
y = 0.9 —
y =099 »———m—i

sample mean K" E[X]

Filip Markovi¢, Georg von der Briiggen, Mario Giinzel, Jian-Jia Chen, and Bjérn B. Brandenburg
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CASE STUDY

How do CAA results compare to CTA when using statistical inference?

Three experiments on a proof-of-concept case study from WATERS 2017 workloads
were conducted to investigate:

1. Influence of the initial sample size on DFP,

2. Influence of the level of confidence on DFP,

3. Influence of the number of bootstrap samples on DFP.

Important tuning knobs

Initial sample size n Level of confidence y Number of bootstrap samples b
"
y = 0.7 >—<A R L7
y = 0.9 —
y =099 »———m—i

sample mean K" E[X]

Filip Markovi¢, Georg von der Briiggen, Mario Giinzel, Jian-Jia Chen, and Bjérn B. Brandenburg
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CASE STUDY

Investigating the influence of the initial sample size

*lower is better

1.20 x 1071 1
1.10 x 1071 |
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4.00 x 1072 -
3.00 x 1072 -
2.00x 1072 -

Deadline-failure probability (DFP)

1.37 X 1074 -

1000 2000 3000
Initial sample size (n)
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CASE STUDY

Investigating the influence of the initial sample size

*lower is better

1.20 x 1071 1
1.10 x 1071 |
1.00 x 1071 -
9.00 x 1072 |
8.00 x 1072 -
7.00 x 1072 -
6.00 x 1072 -
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4.00 x 1072 -
3.00 x 1072 -
2.00x 1072 -

Deadline-failure probability (DFP)

4 ««+« Ground-Truth
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CASE STUDY

Investigating the influence of the initial sample size

*lower is better

1.20 x 1071 1
1.10 x 1071 |
1.00 x 1071 -
9.00 x 1072 |
8.00 x 1072 -
7.00 x 1072 -
6.00 x 1072 -
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3.00 x 1072 -
2.00x 1072 -

Deadline-failure probability (DFP)
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CASE STUDY

Investigating the influence of the initial sample size

*lower is better

1.20 x 10711
1.10x 1071 -
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6.00 x 1072 -
5.00 x 1072 - Q
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3.00 x 102 -

2.00 x 1072 -

—

Deadline-failure probability (DFP)
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CASE STUDY

Investigating the influence of the initial sample size

*lower is better
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Initial sample size (n)

All DFP estimates are sound.

Both CAA and CTA tend towards their respective optimal DFP estimates as the initial
sample size increases.
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CASE STUDY

Investigating the influence of the level of confidence

*lower is better
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Level of confidence (y)

All DFP estimates are sound.

Increasing the level of confidence leads to more conservative results for both analyses.
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HOWTO MODEL DEPENDENCE? |
“How to handle ... dependences between the execution Inter-task covariance UBs VAB VAB

times of (i) jobs of the same task, and | IEARRRE . "

N (ii) jobs of different tasks?” | Intra-task covariance UBs = 3 A
' B S — ! .
HOW TO QUANTIFY DEPENDENCE? X ° o ‘o @
' | T4 M %2 B B
“The impact of these dependences may vary based

Y on how strong they are.”

- . —— p—-—— - i

L4

2' SA+‘SB +2.//VA,A+4.VA,B

VR

HOW TO USE THESE IN RT ANALYSIS?

oPIR, >2d] < e e 2
“Analyses are needed that can address o V [Rg] + (d - E [RB])
| dependencies.” deadline-failure
s ) all covariance pairs probability ()| (dominates CTA)

L

t
HOW TO STATISTICALLY INFER DEPENDENCE? | J.I.UL.I.L
t

¥

“Appropriate statistical studies are needed to

investigate the types of dependences and their impact
| on probabilistic schedulability analysis”

— -

I o A —

Nonparametric

y =07 onfidence-based
bootstrapping

G
y=09 »——: task parameters

. - - R — —

y =099 M—yi
— g s — e £
BONUS: COMPUTATION EFFICIENCY!
“ensuring that they [analyses] can be applied to Closed-form solution [ | :>
| problems of a practical size.” SPEED

[2]"A survey of probabilistic schedulability analysis techniques for real-time systems" Davis and Cucu-Grosjean LITES (2019)
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1. Background

GOAL: DISTRIBUTION-AGNOSTIC STATISTICAL INFERENCE

We use Nonparametric Bootstrap

A random variable with ‘o

an unknown distribution E[X]
/ (ground—truth expectatzon) 2

1. Draw an initial sample I of n I {.X e
independent observations of X 1>A20 -

oo g sample mean < E[X]
2. Generate b bootstrap samples R o g
(by randomly resampling with
replacement from the initial sample I) P11 = 12 X1 - oo Po= 100 %
3. Compute the bootstrap statistic on I I JJJ—U—'—'-L JJJ—U—'-LL

sample mean . .. sample mean
each bootstrap sample B 6’;“ . 6’; R ELX]< oo
Output: Bootstrap distribution of & ‘ '
#
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