

MONTE CARLO RESPONSE-TIME ANALYSIS

RTSS 2021 9 December 2021

Sergey Bozhko, Georg von der Brüggen*, and Björn Brandenburg * now at TU Dortmund, Germany

European Research Council Established by the European Commission

MAX-PLANCK-GESELLSCHAFT

MAIN CONTRIBUTIONS

A new application of Monte Carlo technique in RTS

→ The first paper that applies Monte Carlo to probabilistic response-time analysis

A new algorithm for Worst-Case Deadline Failure Probability estimation

- → Less sensitive to input parameters than state-of-the-art
- → Easy parameter tuning
- \rightarrow In most cases outperforms state-of-the-art approaches

https://en.wikipedia.org/wiki/Monte_Carlo_integration

A CASE FOR PROBABILISTIC RTA

SURVEY OF INDUSTRY PRACTICE IN RTS

Soft real-time systems are quite popular! [Akesson et. al, 2020]

→ 62% of respondents: system includes soft or firm real-time components → 45% of respondents: the most critical function can miss some deadlines

True hard real-time systems are rare

B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, "A comprehensive survey of industry practice in real-time systems", RTSS 2020

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

MPI-SWS

→ (Only) 15% of respondents: deadlines can never be missed

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

MPI-SWS

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

MPI-SWS

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

MPI-SWS

\Rightarrow average processor load: 40%!

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

MPI-SWS

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

\Rightarrow average processor load: 40%!

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

MPI-SWS

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

MPI-SWS

Prob. Settings:
$$\tau_i = \left(\mathscr{C}_i = \left(\mathcal{C}_i \right) \right)$$

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

 $\begin{array}{cc} 1500 & 4000 \\ 0.95 & 0.05 \end{array} \right), \ T_i = 5000, \ D_i = 5000 \right)$

Prob. Settings:
$$\tau_i = \left(\mathscr{C}_i = \left(\mathcal{C}_i \right) \right)$$

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

> $\begin{array}{ccc} 1500 & 4000\\ 0.95 & 0.05 \end{array} \right), \ T_i = 5000, \ D_i = 5000 \right)$

PROBABILISTIC RTA

MPI-SWS

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Monte Carlo Response-Time Analysis

WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP) Intuitively: Probability to see the first deadline miss

 $\Lambda_i := \max_{\xi} \max_{J_{i,j} \in \tau_i} \mathbb{P} \left[\mathscr{R}_{i,j}^{\xi} > D_i \right]$

Pros:

- → Bounds the expected time to failure of a system
- → Needed to compute deadline-miss ratio
- → Worst-case scenario for constrained-deadline tasks under static-priority scheduling: first job under critical-instant pattern

→	Computationall	y expensiv
	$\mathscr{R}_{ii}^{\xi} := \mathscr{C}_{i,i}$	$+\mathscr{C}_{i,2}$
		$m \mid$
	n	points in d

MPI-SWS

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Convolution-based approaches:

- → Direct convolution
- → Convolution with re-sampling
- → Task-level convolution

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Convolution-based approaches:

- → Direct convolution
- → Convolution with re-sampling
- → Task-level convolution

Analytical upper-bounds:

→ Bernstein's, Hoeffding's, and Chernoff's inequalities

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Convolution-based approaches:

- → Direct convolution
- → Convolution with re-sampling
- → Task-level convolution

Analytical upper-bounds:

→ Bernstein's, Hoeffding's, and Chernoff's inequalities

Common disadvantages:

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Convolution-based approaches:

- \rightarrow Direct convolution
- → Convolution with re-sampling
- → Task-level convolution

Analytical upper-bounds:

→ Bernstein's, Hoeffding's, and Chernoff's inequalities

Common disadvantages:

→ Highly-dependent on the input

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Convolution-based approaches:

- \rightarrow Direct convolution
- → Convolution with re-sampling
- → Task-level convolution

Analytical upper-bounds:

→ Bernstein's, Hoeffding's, and Chernoff's inequalities

Common disadvantages:

- → Highly-dependent on the input
- → Methods to bound pessimism are unknown

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Convolution-based approaches:

- \rightarrow Direct convolution
- → Convolution with re-sampling
- → Task-level convolution

Analytical upper-bounds:

→ Bernstein's, Hoeffding's, and Chernoff's inequalities

Common disadvantages:

- → Highly-dependent on the input
- → Methods to bound pessimism are unknown
- → Hard to guess the right parameters

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

MONTE CARLO WCDFP ESTIMATION

1. Change the problem statement

 \Rightarrow

MPI-SWS

2. Sample many values from response-time distribution

 $\mathscr{R}^{\xi}_{i,j}$

3. Perform statistical generalization to estimate WCDFP Λ_i

Standard idea of Monte Carlo

 \Rightarrow

1. Change the problem statement

 \Rightarrow

2. Sample many values from response-time distribution

 \Rightarrow

3. Perform statistical generalization to estimate WCDFP Λ_i

1. Change the problem statement

 \Rightarrow

2. Sample many values from response-time distribution

 \Rightarrow

3. Perform statistical generalization to estimate WCDFP Λ_i

1. CHANGING THE PROBLEM STATEMENT

Prior statement:

Given a task set τ , a task τ_i , arrival sequence ξ , and a job $J_{i,j'}$ derive an upper bound r such that $\mathbb{P}[\mathscr{R}_{i,j}^{\xi} > D_i] \leq r$

 D_i – deadline of au_i

1. CHANGING THE PROBLEM STATEMENT

Prior statement:

New statement:

Given a task set au, a task $au_{i'}$ arrival sequence ξ , a job $J_{i,j'}$

 $l \leq \mathbb{P}[\mathscr{R}_{i,j}^{\xi} > D_i] \leq r$ with probability $1 - \varepsilon$ and $|r - l| < \delta$

 D_i – deadline of τ_i

 ε – misestimation probability

Given a task set au, a task $au_{i'}$ arrival sequence ξ , and a job $J_{i,j'}$ derive an upper bound *r* such that $\mathbb{P}[\mathscr{R}_{i,i}^{\xi} > D_i] \leq r$

the required accuracy δ , and the misestimation probability ε ,

derive an upper bounds *l* and *r* such that

1. Change the problem statement

 \Rightarrow

2. Sample many values from response-time distribution

 \Rightarrow

3. Perform statistical generalization to estimate WCDFP Λ_i

$$\mathscr{R}_{i,j}^{\xi}$$
 – response time

$S_{i,j}^{\xi}$ – simulator

 \implies we cannot compute the distribution

Recall: distribution of $\mathscr{R}_{i,j}^{\xi}$ (likely) contains too many points

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

2. SAMPLE MANY VALUES FROM $\mathscr{R}^{\xi}_{;;}$

$$\mathscr{R}_{i,j}^{\xi}$$
 – response time

Recall: distribution of \mathscr{R}_{i}^{ξ}

, (likely) contains too many points
$$j$$

 \implies we cannot compute the distribution

However! We still can build a procedure to sample values from $\mathscr{R}_{i,j}^{\zeta}$ In the paper: A simple schedule simulator $S_{i,j}^{\xi}$ does the job

2. SAMPLE MANY VALUES FROM $\mathscr{R}^{\xi}_{;;}$

$$\mathscr{R}_{i,j}^{\xi}$$
 – response time

Recall: distribution of \mathscr{R}^{ξ}_{i}

 \implies we cannot compute the distribution

Theorem: distribution

, (likely) contains too many points
$$j$$

However! We still can build a procedure to sample values from $\mathscr{R}_{i,j}^{\zeta}$ In the paper: A simple schedule simulator $S_{i,i}^{\xi}$ does the job

of
$$S_{i,j}^{\xi}$$
 = distribution of $\mathscr{R}_{i,j}^{\xi}$

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

1. Change the problem statement

 \Rightarrow

2. Sample many values from response-time distribution

 \Rightarrow

3. Perform statistical generalization to estimate WCDFP Λ_i

Algorithm 1: DFP estimation

Input: τ , τ_x , ξ , δ , and ε . **Output:** Estimate of $\mathbb{P}\left[\mathcal{R}_{x,y}^{\xi} > D_x\right]$.

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Algorithm 1: DFP estimation

Input: τ , τ_x , ξ , δ , and ε . **Output:** Estimate of $\mathbb{P}\left[\mathcal{R}_{x,y}^{\xi} > D_x\right]$. Input Parameters Note: δ and ε are explicit arguments!

Algorithm 1: DFP estimation

Input: τ , τ_x , ξ , δ , and ε . **Output:** Estimate of $\mathbb{P}\left[\mathcal{R}_{x,y}^{\xi} > D_x\right]$.

Input Parameters *Note:* δ *and* ε *are explicit arguments!*

 \implies Easy to chose right parameters

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Algorithm 1: DFP estimation

Input: τ , τ_x , ξ , δ , and ε . **Output:** Estimate of $\mathbb{P}\left[\mathcal{R}_{x,y}^{\xi} > D_{x}\right]$. 1 $k \coloneqq 0, z \coloneqq \Phi^{-1}\left(1 - \frac{\varepsilon}{2}\right), s \coloneqq \lceil (z/\delta)^{2} \rceil; \leftarrow$

Input Parameters Note: δ and ε are explicit arguments!

Number of necessary samples *s* depends only on δ and ε

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Input: τ , τ_x , ξ , δ , and ε . **Output:** Estimate of $\mathbb{P}\left[\mathcal{R}_{x,y}^{\xi} > D_{x}\right]$. 1 $k \coloneqq 0, z \coloneqq \Phi^{-1}\left(1 - \frac{\varepsilon}{2}\right), s \coloneqq \lceil (z/\delta)^{2} \rceil; \leftarrow$ z is $(1 - \varepsilon/2)$ -th quantile of standard normal distribution

s is any number greater than $(z/\delta)^2$

Input Parameters Note: δ and ε are explicit arguments!

Number of necessary samples *s* depends only on δ and ε

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Input: τ , τ_x , ξ , δ , and ε . **Output:** Estimate of $\mathbb{P}\left[\mathcal{R}_{x,y}^{\xi} > D_{x}\right]$. 1 $k \coloneqq 0, z \coloneqq \Phi^{-1}\left(1 - \frac{\varepsilon}{2}\right), s \coloneqq \lceil (z/\delta)^{2} \rceil; \leftarrow$ z is $(1 - \varepsilon/2)$ -th quantile of standard normal distribution

s is any number greater than $(z/\delta)^2$

Input Parameters Note: δ and ε are explicit arguments!

Number of necessary samples *s* depends only on δ and ε

 \implies Runtime depends on δ, ε , and runtime of simulator

Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

Algorithm 1: DFP estimation

Input: τ , τ_x , ξ , δ , and ε . Output: Estimate of $\mathbb{P} \left[\mathcal{R}_{x,y}^{\xi} > D_x \right]$. 1 $k \coloneqq 0, z \coloneqq \Phi^{-1} \left(1 - \frac{\varepsilon}{2} \right), s \coloneqq \lceil (z/\delta)^2 \rceil$; 2 for 1 to s do 3 | Draw sample via $S_{x,y}^{\xi}$ 4 if $S_{x,y}^{\xi} > D_x$ then 5 | $k \coloneqq k + 1$;

MPI-SWS

Input Parameters Note: δ and ε are explicit arguments!

Number of necessary samples s depends only on δ and ε

Do *s* simulations and count the number of deadline misses *k*

Algorithm 1: DFP estimation			
Input: τ , τ_x , ξ , δ , and ε .			
Output: Estimate of $\mathbb{P}\left[\mathcal{R}_{x,y}^{\xi} > D_{x}\right]$.			
1	$k \coloneqq 0, z \coloneqq \Phi^{-1} \left(1 - \frac{\varepsilon}{2} \right), s \coloneqq \lceil (z/\delta)^2 \rceil;$		
2 for 1 to s do			
3	Draw sample via $S_{x,y}^{\xi}$		
4	if $S_{x,y}^{\xi} > D_x$ then		
5	k := k + 1;		
6	$\tilde{s} \coloneqq s + z^2, \tilde{p} \coloneqq \frac{1}{\tilde{s}} \left(k + \frac{z^2}{2}\right);$		
7	return $\tilde{p} \pm z \sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{s}}}$		

MPI-SWS

Input Parameters Note: δ and ε are explicit arguments!

Number of necessary samples *s* depends only on δ and ε

Do *s* simulations and count the number of deadline misses k

Given k successes in s trials, one can estimate the ground truth *p*

THERE IS MORE

Introduce formal definition of probabilistic response-time $\mathscr{R}_{i,j}^{\xi}$

→ Can be used in future work

Correctness of the simulator

→ Detailed proof that interprets simulator as random variable

Correctness of statistical generalization

- → Reduction of the simulation to a Bernoulli trial
- → Application of binomial confidence interval

Evaluation:

... will be discussed next

a Bernoulli trial ence interval

MPI-SWS

MPI-SWS

EVALUATION (VARY NUMBER OF MODES)

MPI-SWS

EVALUATION (VARY NUMBER OF MODES)

MPI-SWS

Monte Carlo Response-Time Analysis

CONCLUSION

Monte Carlo techniques can be used to great effect in RTS

→ Try to apply Monte Carlo techniques to your favourite (unsolved) problem

Application of Monte Carlo techniques for WCDFP estimation:

- → Less sensitive to input parameters than state-of-the-art
- → Easy parameter tuning
- → In most cases outperforms state-of-the-art approaches

