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MAIN CONTRIBUTIONS

 
A new application of Monte Carlo technique in RTS

➔ The first paper that applies Monte Carlo to probabilistic response-time analysis


A new algorithm for Worst-Case Deadline Failure Probability estimation

➔ Less sensitive to input parameters than state-of-the-art

➔ Easy parameter tuning

➔ In most cases outperforms state-of-the-art approaches 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https://en.wikipedia.org/wiki/Monte_Carlo_integration
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SURVEY OF INDUSTRY PRACTICE IN RTS

Soft real-time systems are quite popular! [Akesson et. al, 2020 ]

➔ 62% of respondents: system includes soft or firm real-time components

➔ 45% of respondents: the most critical function can miss some deadlines 


True hard real-time systems are rare 

➔ (Only) 15% of respondents: deadlines can never be missed
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B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “A comprehensive survey of industry practice in real-time systems”, RTSS 2020
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THE NEED FOR BELOW-WORST-CASE PROVISIONING

B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS 2016
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WCET Setting: τi = (Ci = 4000, Ti = 5000, Di = 5000)

B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS 2016

THE NEED FOR BELOW-WORST-CASE PROVISIONING
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WCET Setting: τi = (Ci = 4000, Ti = 5000, Di = 5000)

≥ 2.6 ×

B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS 2016
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WCET Setting: τi = (Ci = 4000, Ti = 5000, Di = 5000)

≥ 2.6 ×

  average processor load: 40%!⇒

B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS 2016
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WCET Setting: τi = (Ci = 4000, Ti = 5000, Di = 5000)

Prob. Settings: τi = (𝒞i = (1500 4000
0.95 0.05), Ti = 5000, Di = 5000)

≥ 2.6 ×

B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS 2016
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WCET Setting: τi = (Ci = 4000, Ti = 5000, Di = 5000)

Prob. Settings: τi = (𝒞i = (1500 4000
0.95 0.05), Ti = 5000, Di = 5000)

≥ 2.6 ×

B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS 2016

THE NEED FOR BELOW-WORST-CASE PROVISIONING
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Intuitively: Probability to see the first deadline miss 
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)
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WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)
Intuitively: Probability to see the first deadline miss 

Λi := max
ξ

max
Ji,j∈τi

ℙ [ℛξ
i,j > Di]
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Intuitively: Probability to see the first deadline miss 

Λi := max
ξ

max
Ji,j∈τi

ℙ [ℛξ
i,j > Di]

WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Random variable that describes response 
time of job  in arrival sequence Ji,j ξ

-th activation of task j τi Deadline of task τi

Arrival sequenceWCDFP of task τi
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Pros: 

➔ Bounds the expected time to failure of a system

➔ Needed to compute deadline-miss ratio

➔ Worst-case scenario for constrained-deadline tasks under 

static-priority scheduling: first job under critical-instant pattern

Λi := max
ξ

max
Ji,j∈τi

ℙ [ℛξ
i,j > Di]

Intuitively: Probability to see the first deadline miss 
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Random variable that describes response 
time of job  in arrival sequence Ji,j ξ

-th activation of task j τi Deadline of task τi

Arrival sequenceWCDFP of task τi
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Cons: 

➔ Computationally expensive 

ℛξ
i,j := 𝒞i,1 + 𝒞i,2 + . . .

 points in distributionn
 points in distributionm  points in distribution of ≈ n ⋅ m

𝒞i,1 + 𝒞i,2

Probabilistic execution 
time (pWCET)

Λi := max
ξ

max
Ji,j∈τi

ℙ [ℛξ
i,j > Di]

Intuitively: Probability to see the first deadline miss 
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Random variable that describes response 
time of job  in arrival sequence Ji,j ξ

-th activation of task j τi Deadline of task τi

Arrival sequenceWCDFP of task τi
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PRIOR WORK ON WCDFP
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Convolution-based approaches:

➔ Direct convolution

➔ Convolution with re-sampling

➔ Task-level convolution

20

PRIOR WORK ON WCDFP
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Convolution-based approaches:

➔ Direct convolution

➔ Convolution with re-sampling

➔ Task-level convolution


Analytical upper-bounds: 

➔ Bernstein’s, Hoeffding’s, and Chernoff’s inequalities
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Convolution-based approaches:

➔ Direct convolution

➔ Convolution with re-sampling

➔ Task-level convolution


Analytical upper-bounds: 

➔ Bernstein’s, Hoeffding’s, and Chernoff’s inequalities


Common disadvantages:
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Convolution-based approaches:

➔ Direct convolution

➔ Convolution with re-sampling

➔ Task-level convolution


Analytical upper-bounds: 

➔ Bernstein’s, Hoeffding’s, and Chernoff’s inequalities


Common disadvantages:

➔ Highly-dependent on the input 
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Convolution-based approaches:

➔ Direct convolution

➔ Convolution with re-sampling

➔ Task-level convolution


Analytical upper-bounds: 

➔ Bernstein’s, Hoeffding’s, and Chernoff’s inequalities


Common disadvantages:

➔ Highly-dependent on the input 

➔ Methods to bound pessimism are unknown
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Convolution-based approaches:

➔ Direct convolution

➔ Convolution with re-sampling

➔ Task-level convolution


Analytical upper-bounds: 

➔ Bernstein’s, Hoeffding’s, and Chernoff’s inequalities


Common disadvantages:

➔ Highly-dependent on the input 

➔ Methods to bound pessimism are unknown

➔ Hard to guess the right parameters
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PRIOR WORK ON WCDFP
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MAIN STEPS OF OUR APPROACH

27

1. Change the problem 
statement

2. Sample many values from 
response-time distribution 

ℛξ
i,j

3. Perform statistical 
generalization to estimate 

WCDFP Λi

⇒ ⇒

Standard idea of Monte Carlo
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statement

2. Sample many values from 
response-time distribution 

ℛξ
i,j
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generalization to estimate 
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⇒ ⇒
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response-time distribution 
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1. CHANGING THE PROBLEM STATEMENT

30

Given a task set , a task , arrival sequence , and a job , derive an 
upper bound  such that 

τ τi ξ Ji,j
r ℙ[ℛξ

i,j > Di] ≤ r

Prior statement:
  — response timeℛξ

i,j

 — deadline of Di τi
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1. CHANGING THE PROBLEM STATEMENT

31

Given a task set , a task , arrival sequence , and a job , derive an 
upper bound  such that 

τ τi ξ Ji,j
r ℙ[ℛξ

i,j > Di] ≤ r

Given a task set , a task , arrival sequence , a job ,  
the required accuracy , and the misestimation probability ,  

derive an upper bounds  and  such that 

 with probability  and 

τ τi ξ Ji,j
δ ε

l r
l ≤ ℙ[ℛξ

i,j > Di] ≤ r 1 − ε |r − l | < δ

Prior statement:

New statement:

  — response timeℛξ
i,j

 — deadline of Di τi

 — accuracyδ

 — misestimation 
probability

ε
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MAIN STEPS OF OUR APPROACH
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1. Change the problem 
statement

2. Sample many values from 
response-time distribution 

ℛξ
i,j

3. Perform statistical 
generalization to estimate 

WCDFP Λi

⇒ ⇒
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2. SAMPLE MANY VALUES FROM ℛξ
i,j

33

Recall: distribution of  (likely) contains too many points


 we cannot compute the distribution

ℛξ
i,j

⟹
  — simulator𝖲ξ

i,j

  — response time  ℛξ
i,j
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2. SAMPLE MANY VALUES FROM ℛξ
i,j

34

Recall: distribution of  (likely) contains too many points


 we cannot compute the distribution

ℛξ
i,j

⟹

However! We still can build a procedure to sample values from  

In the paper: A simple schedule simulator   does the job

ℛξ
i,j

𝖲ξ
i,j

  — simulator𝖲ξ
i,j

  — response time  ℛξ
i,j
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2. SAMPLE MANY VALUES FROM ℛξ
i,j

35

Recall: distribution of  (likely) contains too many points


 we cannot compute the distribution

ℛξ
i,j

⟹

However! We still can build a procedure to sample values from  

In the paper: A simple schedule simulator   does the job

ℛξ
i,j

𝖲ξ
i,j

Theorem: distribution of  = distribution of 𝖲ξ
i,j ℛξ

i,j

  — simulator𝖲ξ
i,j

  — response time  ℛξ
i,j
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MAIN STEPS OF OUR APPROACH

36

1. Change the problem 
statement

2. Sample many values from 
response-time distribution 

ℛξ
i,j

3. Perform statistical 
generalization to estimate 

WCDFP Λi

⇒ ⇒
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Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξ

x,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := "(z/δ)2#;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;
6 s̃ := s+ z2, p̃ := 1

s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

in obtaining the distribution of Rξ
x,y per se. Rather, the relevant

information is the DFP, that is P
[
Rξ

x,y > Dx

]
. Further, the

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.
Estimation algorithm. To start, note that the expression
Rξ

x,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξ

x,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξ

x,y (that is, F [Rξ
x,y] = F [Sξx,y]). Given Sξx,y, the

problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξ

x,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z ! Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1
and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξ

x,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξ
x,y] = F [Sξx,y], it is

sufficient to estimate the probability p = P
[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k !∑s
j=1 !rj > Dx". The summands !rj > Dx" are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the
returned interval is at most: r − l = 2z

√
p̃(1−p̃)

s̃ ≤ 2z
√

1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. "

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

3. PERFORM STATISTICAL GENERALIZATION

37

 — arrival sequenceξ

  — 
response time

ℛξ
x,y

 — deadline of Dx τx

 — accuracyδ

 — misestimation 
probability

ε
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fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.
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interval since it achieves a favorable trade-off between the
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In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

Input Parameters  
Note:  and  are explicit arguments!δ ε

3. PERFORM STATISTICAL GENERALIZATION
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Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξ

x,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := "(z/δ)2#;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;
6 s̃ := s+ z2, p̃ := 1

s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

in obtaining the distribution of Rξ
x,y per se. Rather, the relevant

information is the DFP, that is P
[
Rξ

x,y > Dx

]
. Further, the

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.
Estimation algorithm. To start, note that the expression
Rξ

x,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξ

x,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξ

x,y (that is, F [Rξ
x,y] = F [Sξx,y]). Given Sξx,y, the

problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξ

x,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z ! Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1
and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξ

x,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξ
x,y] = F [Sξx,y], it is

sufficient to estimate the probability p = P
[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k !∑s
j=1 !rj > Dx". The summands !rj > Dx" are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the
returned interval is at most: r − l = 2z

√
p̃(1−p̃)

s̃ ≤ 2z
√

1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. "

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

Input Parameters  
Note:  and  are explicit arguments!δ ε
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Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξ

x,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := "(z/δ)2#;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;
6 s̃ := s+ z2, p̃ := 1

s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

in obtaining the distribution of Rξ
x,y per se. Rather, the relevant

information is the DFP, that is P
[
Rξ

x,y > Dx

]
. Further, the

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.
Estimation algorithm. To start, note that the expression
Rξ

x,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξ

x,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξ

x,y (that is, F [Rξ
x,y] = F [Sξx,y]). Given Sξx,y, the

problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξ

x,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z ! Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1
and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξ

x,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξ
x,y] = F [Sξx,y], it is

sufficient to estimate the probability p = P
[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k !∑s
j=1 !rj > Dx". The summands !rj > Dx" are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the
returned interval is at most: r − l = 2z

√
p̃(1−p̃)

s̃ ≤ 2z
√

1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. "

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

3. PERFORM STATISTICAL GENERALIZATION
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Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξ

x,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := "(z/δ)2#;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;
6 s̃ := s+ z2, p̃ := 1

s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

in obtaining the distribution of Rξ
x,y per se. Rather, the relevant

information is the DFP, that is P
[
Rξ

x,y > Dx

]
. Further, the

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.
Estimation algorithm. To start, note that the expression
Rξ

x,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξ

x,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξ

x,y (that is, F [Rξ
x,y] = F [Sξx,y]). Given Sξx,y, the

problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξ

x,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z ! Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1
and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξ

x,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξ
x,y] = F [Sξx,y], it is

sufficient to estimate the probability p = P
[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k !∑s
j=1 !rj > Dx". The summands !rj > Dx" are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the
returned interval is at most: r − l = 2z

√
p̃(1−p̃)

s̃ ≤ 2z
√

1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. "

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

3. PERFORM STATISTICAL GENERALIZATION
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Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξ

x,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := "(z/δ)2#;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;
6 s̃ := s+ z2, p̃ := 1

s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

in obtaining the distribution of Rξ
x,y per se. Rather, the relevant

information is the DFP, that is P
[
Rξ

x,y > Dx

]
. Further, the

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.
Estimation algorithm. To start, note that the expression
Rξ

x,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξ

x,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξ

x,y (that is, F [Rξ
x,y] = F [Sξx,y]). Given Sξx,y, the

problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξ

x,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z ! Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1
and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξ

x,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξ
x,y] = F [Sξx,y], it is

sufficient to estimate the probability p = P
[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k !∑s
j=1 !rj > Dx". The summands !rj > Dx" are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the
returned interval is at most: r − l = 2z

√
p̃(1−p̃)

s̃ ≤ 2z
√

1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. "

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

3. PERFORM STATISTICAL GENERALIZATION

Input Parameters  
Note:  and  are explicit arguments!δ ε

Number of necessary samples  
depends only on  and 

s
δ ε

 — arrival sequenceξ

  — 
response time

ℛξ
x,y

 — deadline of Dx τx

 — accuracyδ

 — misestimation 
probability

ε

 Runtime depends on , , and 
runtime of simulator

⟹ δ ε
 is -th quantile of standard 

normal distribution
z (1 − ε/2)

 is any number greater than s (z /δ)2
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Note:  and  are explicit arguments!δ ε
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Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξ

x,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := "(z/δ)2#;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;
6 s̃ := s+ z2, p̃ := 1

s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

in obtaining the distribution of Rξ
x,y per se. Rather, the relevant

information is the DFP, that is P
[
Rξ

x,y > Dx

]
. Further, the

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.
Estimation algorithm. To start, note that the expression
Rξ

x,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξ

x,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξ

x,y (that is, F [Rξ
x,y] = F [Sξx,y]). Given Sξx,y, the

problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξ

x,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z ! Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1
and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξ

x,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξ
x,y] = F [Sξx,y], it is

sufficient to estimate the probability p = P
[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k !∑s
j=1 !rj > Dx". The summands !rj > Dx" are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the
returned interval is at most: r − l = 2z

√
p̃(1−p̃)

s̃ ≤ 2z
√

1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. "

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

Do  simulations and count the 
number of deadline misses 

s
k

3. PERFORM STATISTICAL GENERALIZATION

Number of necessary samples  
depends only on  and 

s
δ ε

  — simulator𝖲ξ
x,y

 — arrival sequenceξ

  — 
response time

ℛξ
x,y

 — deadline of Dx τx

 — accuracyδ

 — misestimation 
probability

ε
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Do  simulations and count the 
number of deadline misses 

s
k

Input Parameters  
Note:  and  are explicit arguments!δ ε
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Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξ

x,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := "(z/δ)2#;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;
6 s̃ := s+ z2, p̃ := 1

s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

in obtaining the distribution of Rξ
x,y per se. Rather, the relevant

information is the DFP, that is P
[
Rξ

x,y > Dx

]
. Further, the

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.
Estimation algorithm. To start, note that the expression
Rξ

x,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξ

x,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξ

x,y (that is, F [Rξ
x,y] = F [Sξx,y]). Given Sξx,y, the

problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξ

x,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z ! Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1
and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξ

x,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξ
x,y] = F [Sξx,y], it is

sufficient to estimate the probability p = P
[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k !∑s
j=1 !rj > Dx". The summands !rj > Dx" are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the
returned interval is at most: r − l = 2z

√
p̃(1−p̃)

s̃ ≤ 2z
√

1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. "

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξ

x,y (i.e., F [Rξ
x,y] =

F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξ

x,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξ

x,y . Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm
We start by introducing a simple algorithm that, assuming

that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

Given  successes in  trials, one can 
estimate the ground truth 

k s
p

3. PERFORM STATISTICAL GENERALIZATION

Number of necessary samples  
depends only on  and 

s
δ ε

  — simulator𝖲ξ
x,y

 — arrival sequenceξ

  — 
response time

ℛξ
x,y

 — deadline of Dx τx

 — accuracyδ

 — misestimation 
probability

ε
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THERE IS MORE

45

⇒ ⇒

Introduce formal definition of probabilistic response-time 


➔ Can be used in future work


Correctness of the simulator

➔ Detailed proof that interprets simulator as random variable


Correctness of statistical generalization

➔ Reduction of the simulation to a Bernoulli trial

➔ Application of binomial confidence interval 


Evaluation:

… will be discussed next

ℛξ
i,j



EVALUATION
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EVALUATION
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Convolution with re-sampling vs MC

➔ 2500 task sets

➔ Shape: 𝒞i = ( c 4c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Probabilistic execution 
time (pWCET)

Chernoff’s inequality vs MC
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EVALUATION
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Convolution with re-sampling vs MC

➔ 2500 task sets

➔ Shape: 𝒞i = ( c 4c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

MC is better

MC is worse

Probabilistic execution 
time (pWCET)

Number of task sets 
where MC is worse

Number of task sets 
where MC is better

Chernoff’s inequality vs MC
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EVALUATION
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Convolution with re-sampling vs MC

➔ 2500 task sets

➔ Shape: 𝒞i = ( c 4c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Probabilistic execution 
time (pWCET)

Chernoff’s inequality vs MC
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EVALUATION
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Convolution with re-sampling vs MC

➔ 2500 task sets

➔ Shape: 𝒞i = ( c 4c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Probabilistic execution 
time (pWCET)

Zoom in

Chernoff’s inequality vs MC
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EVALUATION
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Convolution with re-sampling vs MC

➔ 2500 task sets

➔ Shape: 𝒞i = ( c 4c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Probabilistic execution 
time (pWCET)

Chernoff’s inequality vs MC



Monte Carlo Response-Time Analysis

MPI-SWS Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

EVALUATION
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Convolution with re-sampling vs MC

➔ 2500 task sets

➔ Shape: 𝒞i = ( c 4c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Probabilistic execution 
time (pWCET)

Chernoff’s inequality vs MC
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EVALUATION (VARY COST DIFFERENCE)

53

𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 3c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC



Monte Carlo Response-Time Analysis

MPI-SWS Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg

EVALUATION (VARY COST DIFFERENCE)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 3c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC

Zoom in
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EVALUATION (VARY COST DIFFERENCE)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 3c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC
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EVALUATION (VARY COST DIFFERENCE)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 3c

0.95 0.05)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC
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EVALUATION (VARY MODE PROBABILITIES)

57

𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 4c

0.5 0.5)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC
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EVALUATION (VARY MODE PROBABILITIES)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 4c

0.5 0.5)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC

Zoom in
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EVALUATION (VARY MODE PROBABILITIES)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 4c

0.5 0.5)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC
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EVALUATION (VARY MODE PROBABILITIES)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 4c

0.5 0.5)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Convolution with re-sampling vs MCChernoff’s inequality vs MC
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EVALUATION (VARY NUMBER OF MODES)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 2c 4c 6c

0.93 0.04 0.02 0.01)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Chernoff’s inequality vs MC Convolution with re-sampling vs MC
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EVALUATION (VARY NUMBER OF MODES)
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𝒞i = ( c 4c
0.5 0.5)

➔ 500 task sets

➔ Shape: 𝒞i = ( c 2c 4c 6c

0.93 0.04 0.02 0.01)
➔ Cardinality: 

➔ Utilization: 

n ∈ {5,10,…50}
u ∈ {0.75,0.8,…,0.95}

Chernoff’s inequality vs MC Convolution with re-sampling vs MC
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CONCLUSION

63

 
Monte Carlo techniques can be used to great effect in RTS

➔ Try to apply Monte Carlo techniques to your favourite (unsolved) problem 


Application of  Monte Carlo techniques for WCDFP estimation: 

➔ Less sensitive to input parameters than state-of-the-art

➔ Easy parameter tuning

➔ In most cases outperforms state-of-the-art approaches 


