MONTE CARLO
RESPONSE-TIME ANALYSIS

RTSS 2021
9 December 2021

Sergey Bozhko, Georg von der Brüggen*, and Björn Brandenburg
* now at TU Dortmund, Germany
MAIN CONTRIBUTIONS

A new application of Monte Carlo technique in RTS
➔ The first paper that applies Monte Carlo to probabilistic response-time analysis

A new algorithm for Worst-Case Deadline Failure Probability estimation
➔ Less sensitive to input parameters than state-of-the-art
➔ Easy parameter tuning
➔ In most cases outperforms state-of-the-art approaches

https://en.wikipedia.org/wiki/Monte_Carlo_integration
A CASE FOR PROBABILISTIC RTA
SURVEY OF INDUSTRY PRACTICE IN RTS

Soft real-time systems are quite popular! [Akesson et. al, 2020]

➔ 62% of respondents: system includes soft or firm real-time components
➔ 45% of respondents: the most critical function can miss some deadlines

True hard real-time systems are rare
➔ (Only) 15% of respondents: deadlines can never be missed
THE NEED FOR BELOW-WORST-CASE PROVISIONING

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016
THE NEED FOR BELOW-WORST-CASE PROVISIONING

WCET Setting: $\tau_i = (C_i = 4000, \ T_i = 5000, \ D_i = 5000)$
THE NEED FOR BELOW-WORST-CASE PROVISIONING

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$
WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

\Rightarrow average processor load: 40%!

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016
THE NEED FOR BELOW-WORST-CASE PROVISIONING

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

\Rightarrow average processor load: 40%!
THE NEED FOR BELOW-WORST-CASE PROVISIONING

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

THE NEED FOR BELOW-WORST-CASE PROVISIONING

WCET Setting: \(\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000) \)

Prob. Settings: \(\tau_i = \left(C_i = \begin{pmatrix} 1500 \\ 0.95 \end{pmatrix}, T_i = 5000, D_i = 5000 \right) \)

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016
THE NEED FOR BELOW-WORST-CASE PROVISIONING

WCET Setting: $\tau_i = (C_i = 4000, T_i = 5000, D_i = 5000)$

Prob. Settings: $\tau_i = \left(\mathcal{C} = \begin{pmatrix} 1500 \\ 0.95 \\ 0.05 \end{pmatrix}, T_i = 5000, D_i = 5000 \right)$

B. Brandenburg and M. Gül, "Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservations", RTSS 2016
PROBABILISTIC RTA
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Intuitively: Probability to see the first deadline miss
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Intuitively: Probability to see the first deadline miss

\[\Lambda_i := \max_{\xi} \max_{J_{i,j} \in \tau_i} \mathbb{P} \left[R_{i,j}^\xi > D_i \right] \]
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Intuitively: Probability to see the first deadline miss

\[\Lambda_i := \max_{\xi} \max_{J_{i,j} \in \tau_i} \mathbb{P} \left[R_{i,j}^{\xi} > D_i \right] \]

- WCDFP of task \(\tau_i \)
- Arrival sequence
- Random variable that describes response time of job \(J_{i,j} \) in arrival sequence \(\xi \)
- \(j \)-th activation of task \(\tau_i \)
- Deadline of task \(\tau_i \)
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Intuitively: Probability to see the first deadline miss

\[
\Lambda_i := \max_{\xi} \max_{J_{i,j} \in \tau_i} \mathbb{P} \left[R_{i,j}^{\xi} > D_i \right]
\]

Pros:

➔ Bounds the expected time to failure of a system
➔ Needed to compute deadline-miss ratio
➔ Worst-case scenario for constrained-deadline tasks under static-priority scheduling: first job under critical-instant pattern
WORST-CASE DEADLINE FAILURE PROBABILITY (WCDFP)

Intuitively: Probability to see the first deadline miss

\[\Lambda_i := \max_{\xi} \max_{J_{i,j} \in \tau_i} \mathbb{P} \left[R_{i,j}^{\xi} > D_i \right] \]

Cons:

- Computationally expensive

\[R_{i,j}^{\xi} := C_{i,1} + C_{i,2} + \ldots \]

\[\approx n \cdot m \text{ points in distribution of } C_{i,1} + C_{i,2} \]
PRIOR WORK ON WCDFP
PRIOR WORK ON WCDFP

Convolution-based approaches:

➔ Direct convolution
➔ Convolution with re-sampling
➔ Task-level convolution
PRIOR WORK ON WCDFP

Convolution-based approaches:
- Direct convolution
- Convolution with re-sampling
- Task-level convolution

Analytical upper-bounds:
- Bernstein’s, Hoeffding’s, and Chernoff’s inequalities
PRIOR WORK ON WCDFP

Convolution-based approaches:

➔ Direct convolution
➔ Convolution with re-sampling
➔ Task-level convolution

Analytical upper-bounds:

➔ Bernstein’s, Hoeffding’s, and Chernoff’s inequalities

Common disadvantages:
PRIOR WORK ON WCDFP

Convolution-based approaches:
- Direct convolution
- Convolution with re-sampling
- Task-level convolution

Analytical upper-bounds:
- Bernstein’s, Hoeffding’s, and Chernoff’s inequalities

Common disadvantages:
- Highly-dependent on the input
PRIOR WORK ON WCDFP

Convolution-based approaches:
→ Direct convolution
→ Convolution with re-sampling
→ Task-level convolution

Analytical upper-bounds:
→ Bernstein’s, Hoeffding’s, and Chernoff’s inequalities

Common disadvantages:
→ Highly-dependent on the input
→ Methods to bound pessimism are unknown
PRIOR WORK ON WCDFP

Convolution-based approaches:
- Direct convolution
- Convolution with re-sampling
- Task-level convolution

Analytical upper-bounds:
- Bernstein’s, Hoeffding’s, and Chernoff’s inequalities

Common disadvantages:
- Highly-dependent on the input
- Methods to bound pessimism are unknown
- Hard to guess the right parameters
MONTE CARLO
WCDFP ESTIMATION
MAIN STEPS OF OUR APPROACH

1. Change the problem statement

2. Sample many values from response-time distribution $R_{i,j}^\xi$

3. Perform statistical generalization to estimate WCDFP Λ_i

Standard idea of Monte Carlo
MAIN STEPS OF OUR APPROACH

1. Change the problem statement

2. Sample many values from response-time distribution $\mathcal{R}_{i,j}^\xi$

\Rightarrow

\Rightarrow

3. Perform statistical generalization to estimate WCDFP Λ_i
MAIN STEPS OF OUR APPROACH

1. Change the problem statement

⇒

2. Sample many values from response-time distribution \(R_{i,j}^{\xi} \)

⇒

3. Perform statistical generalization to estimate WCDFP \(\Lambda_i \)
1. CHANGING THE PROBLEM STATEMENT

Prior statement:

Given a task set τ, a task τ_i, arrival sequence ξ, and a job $J_{i,j}$, derive an upper bound r such that $\mathbb{P}[R_{i,j}^\xi > D_i] \leq r$
1. CHANGING THE PROBLEM STATEMENT

Prior statement:
Given a task set τ, a task τ_i, arrival sequence ξ, and a job $J_{i,j}$, derive an upper bound r such that $\mathbb{P}[R_{i,j}^\xi > D_i] \leq r$

New statement:
Given a task set τ, a task τ_i, arrival sequence ξ, a job $J_{i,j}$, the required accuracy δ, and the misestimation probability ε, derive an upper bounds l and r such that $l \leq \mathbb{P}[R_{i,j}^\xi > D_i] \leq r$ with probability $1 - \varepsilon$ and $|r - l| < \delta$
Main Steps of Our Approach

1. Change the problem statement

2. Sample many values from response-time distribution $R_{i,j}^\xi$ to Λ_i

3. Perform statistical generalization to estimate WCDFP Λ_i
2. SAMPLE MANY VALUES FROM $\mathcal{R}_{i,j}^\xi$

Recall: distribution of $\mathcal{R}_{i,j}^\xi$ (likely) contains too many points

\implies we cannot compute the distribution
2. SAMPLE MANY VALUES FROM $\mathcal{R}_{i,j}^{\xi}$

Recall: distribution of $\mathcal{R}_{i,j}^{\xi}$ (likely) contains too many points

\implies we cannot compute the distribution

However! We still can build a procedure to sample values from $\mathcal{R}_{i,j}^{\xi}$

In the paper: A simple schedule simulator $S_{i,j}^{\xi}$ does the job

$\mathcal{R}_{i,j}^{\xi}$ – response time

$S_{i,j}^{\xi}$ – simulator
2. SAMPLE MANY VALUES FROM $\mathcal{R}_{i,j}^\xi$

Recall: distribution of $\mathcal{R}_{i,j}^\xi$ (likely) contains too many points

\implies we cannot compute the distribution

However! We still can build a procedure to sample values from $\mathcal{R}_{i,j}^\xi$

In the paper: A simple schedule simulator $\mathcal{S}_{i,j}^\xi$ does the job

Theorem: distribution of $\mathcal{S}_{i,j}^\xi = \text{distribution of } \mathcal{R}_{i,j}^\xi$
MAIN STEPS OF OUR APPROACH

1. Change the problem statement

2. Sample many values from response-time distribution \(R_{i,j}^\xi \)

3. Perform statistical generalization to estimate WCDFP \(\Lambda_i \)
3. PERFORM STATISTICAL GENERALIZATION

Algorithm 1: DFP estimation

Input: \(\tau, \tau_x, \xi, \delta, \) and \(\varepsilon. \)

Output: Estimate of \(\mathbb{P}[R_{x,y}^\xi > D_x]. \)

- \(\xi \) – arrival sequence
- \(\delta \) – accuracy
- \(\varepsilon \) – misestimation probability
- \(R_{x,y}^\xi \) – response time
- \(D_x \) – deadline of \(\tau_x \)
3. PERFORM STATISTICAL GENERALIZATION

Algorithm 1: DFP estimation

- **Input:** τ, τ_x, ξ, δ, and ε.
- **Output:** Estimate of $\mathbb{P}[R_{x,y}^\xi > D_x]$.

Note: δ and ε are explicit arguments!
3. PERFORM STATISTICAL GENERALIZATION

Algorithm 1: DFP estimation

Input: τ, τ_x, ξ, δ, and ε.
Output: Estimate of $\mathbb{P}[R_{x,y}^\xi > D_x]$.

Input Parameters

Note: δ and ε are explicit arguments!

Easy to chose right parameters

Input Parameters:

- ξ – arrival sequence
- δ – accuracy
- ε – misestimation probability
- $R_{x,y}^\xi$ – response time
- D_x – deadline of τ_x
3. PERFORM STATISTICAL GENERALIZATION

Algorithm 1: DFP estimation

Input: $\tau, \tau_x, \xi, \delta,$ and ε.

Output: Estimate of $\mathbb{P}[R_{x,y} > D_x].$

1. $k := 0$, $z := \Phi^{-1}(1 - \frac{\varepsilon}{2})$, $s := \lceil(z/\delta)^2\rceil$;

Input Parameters

Note: δ and ε are explicit arguments!

Number of necessary samples s depends only on δ and ε.
3. PERFORM STATISTICAL GENERALIZATION

Input Parameters

Note: \(\delta \) and \(\varepsilon \) are explicit arguments!

Number of necessary samples \(s \) depends only on \(\delta \) and \(\varepsilon \)

Algorithm 1: DFP estimation

Input: \(\tau, \tau_x, \xi, \delta, \) and \(\varepsilon \).

Output: Estimate of \(\mathbb{P} \left[R_{x,y}^\xi > D_x \right] \).

1. \(k := 0, \ z := \Phi^{-1} \left(1 - \frac{\varepsilon}{2} \right), \ s := \lceil (z/\delta)^2 \rceil \);

\(\Phi^{-1} \) is the \((1 - \varepsilon/2) \)-th quantile of standard normal distribution

\(s \) is any number greater than \((z/\delta)^2 \)
3. PERFORM STATISTICAL GENERALIZATION

Algorithm 1: DFP estimation

Input: τ, τ_x, ξ, δ, and ε.
Output: Estimate of $P[R_x > D_x]$. Let $k := 0$, $z := \Phi^{-1}(1 - \frac{\varepsilon}{2})$, $s := \lceil(z/\delta)^2\rceil$.

z is the $(1 - \varepsilon/2)$-th quantile of the standard normal distribution.

s is any number greater than $(z/\delta)^2$.

Input Parameters

Note: δ and ε are explicit arguments!

Number of necessary samples s depends only on δ and ε.

\Rightarrow Runtime depends on δ, ε, and runtime of simulator.
3. PERFORM STATISTICAL GENERALIZATION

Algorithm 1: DFP estimation

Input: τ, τ_x, ξ, δ, and ε.

Output: Estimate of $\mathbb{P}(R_{x,y} > D_x)$.

1. $k := 0$, $z := \Phi^{-1}(1 - \frac{\varepsilon}{2})$, $s := \lceil (z/\delta)^2 \rceil$;
2. for 1 to s do
3. Draw sample via $S_{x,y}^\xi$;
4. if $S_{x,y}^\xi > D_x$ then
5. $k := k + 1$;

Input Parameters

- **Note:** δ and ε are explicit arguments!
- **Number of necessary samples s** depends only on δ and ε
- **Do s simulations and count the number of deadline misses k**
3. PERFORM STATISTICAL GENERALIZATION

Algorithm 1: DFP estimation

Input: τ, τ_x, ξ, δ, and ε.

Output: Estimate of $\mathbb{P}(R_{x,y}^\xi > D_x)$.

1. $k := 0$, $z := \Phi^{-1}(1 - \frac{\delta}{2})$, $s := \lceil (z/\delta)^2 \rceil$;
2. **for** 1 to s **do**
 3. **if** $S_{x,y}^\xi > D_x$ **then**
 4. $k := k + 1$;
 5. $\tilde{s} := s + z^2$, $\tilde{p} := \frac{1}{s} \left(k + \frac{z^2}{2} \right)$;
3. **return** $\tilde{p} \pm z \sqrt{\frac{\tilde{p}(1-\tilde{p})}{s}}$

Input Parameters

Note: δ and ε are explicit arguments!

- **Number of necessary samples s**
 - depends only on δ and ε

- **Do s simulations and count the number of deadline misses k**

- **Given k successes in s trials, one can estimate the ground truth p**
Introduce formal definition of probabilistic response-time $R_{i,j}^\xi$

→ Can be used in future work

Correctness of the simulator

→ Detailed proof that interprets simulator as random variable

Correctness of statistical generalization

→ Reduction of the simulation to a Bernoulli trial

→ Application of binomial confidence interval

Evaluation:

… will be discussed next
EVALUATION

Chernoff’s inequality vs MC

Convolution with re-sampling vs MC

➔ 2500 task sets
➔ Shape: $C_i = \left(\frac{c}{0.95}, \frac{4c}{0.05}\right)$

➔ Cardinality: $n \in \{5, 10, \ldots, 50\}$
➔ Utilization: $u \in \{0.75, 0.8, \ldots, 0.95\}$
EVALUATION

Chernoff’s inequality vs MC

Convolution with re-sampling vs MC

→ 2500 task sets
→ Shape: $\mathcal{C}_i = \left(\begin{array}{cc} c & 4c \\ 0.95 & 0.05 \end{array} \right)$
→ Cardinality: $n \in \{5, 10, \ldots, 50\}$
→ Utilization: $u \in \{0.75, 0.8, \ldots, 0.95\}$
EVALUATION

Convolution with re-sampling vs MC

Chernoff’s inequality vs MC

- 2500 task sets
- Shape: \(C_i = \left(\begin{array}{cc} c & 4c \\ 0.95 & 0.05 \end{array} \right) \)

- Cardinality: \(n \in \{ 5, 10, \ldots, 50 \} \)
- Utilization: \(u \in \{ 0.75, 0.8, \ldots, 0.95 \} \)
EVALUATION

Convolution with re-sampling vs MC

- 2500 task sets
- Shape: $\mathbb{C}_i = \left(\frac{c}{0.95}, \frac{4c}{0.05} \right)$

Chernoff’s inequality vs MC

- Cardinality: $n \in \{5, 10, \ldots, 50\}$
- Utilization: $u \in \{0.75, 0.8, \ldots, 0.95\}$
EVALUATION

Convolution with re-sampling vs MC

Probabilistic execution time (pWCET)

$\mathbb{C}_i = \begin{pmatrix} c & 4c \\ 0.95 & 0.05 \end{pmatrix}$

\rightarrow Cardinality: $n \in \{5, 10, \ldots, 50\}$
\rightarrow Utilization: $u \in \{0.75, 0.8, \ldots, 0.95\}$

\rightarrow 2500 task sets
EVALUATION

Convolution with re-sampling vs MC

- 2500 task sets
- Shape: \(C_i = \begin{pmatrix} c & 4c \\ 0.95 & 0.05 \end{pmatrix} \)

Probabilistic execution time (pWCET)

Chernoff’s inequality vs MC

- Cardinality: \(n \in \{5, 10, \ldots, 50\} \)
- Utilization: \(u \in \{0.75, 0.8, \ldots, 0.95\} \)
EVALUATION (VARY COST DIFFERENCE)

\[\mathcal{C}_i = (c^{0.95} c^{0.05}) \]

\(\rightarrow \) 500 task sets

\(\rightarrow \) Shape: \(\mathcal{C}_i = (c^{0.95} c^{0.05}) \)

\(\rightarrow \) Cardinality: \(n \in \{5,10,\ldots,50\} \)

\(\rightarrow \) Utilization: \(u \in \{0.75,0.8,\ldots,0.95\} \)
EVALUATION (VARY COST DIFFERENCE)

Chernoff’s inequality vs MC

Convolution with re-sampling vs MC

\[C_i = \left(\begin{array}{c} c \\ 0.95 \\ 0.05 \end{array} \right) \]

→ 500 task sets

→ Shape: \(C_i = \left(\begin{array}{c} c \\ 0.95 \\ 0.05 \end{array} \right) \)

→ Cardinality: \(n \in \{5,10,\ldots,50\} \)

→ Utilization: \(u \in \{0.75,0.8,\ldots,0.95\} \)
EVALUATION (VARY COST DIFFERENCE)

- 500 task sets
- Shape: $\mathcal{F}_i \equiv \left(\begin{array}{c} c \\ 0.95 \end{array} \right) \left(\begin{array}{c} 3c \\ 0.05 \end{array} \right)$
- Cardinality: $n \in \{5, 10, \ldots, 50\}$
- Utilization: $u \in \{0.75, 0.8, \ldots, 0.95\}$
EVALUATION (VARY COST DIFFERENCE)

- **Chernoff’s inequality vs MC**
 - Shape: $C_i = \left(\frac{c}{0.95}, \frac{3c}{0.05} \right)$
 - 500 task sets

- **Convolution with re-sampling vs MC**
 - Cardinality: $n \in \{5, 10, \ldots, 50\}$
 - Utilization: $u \in \{0.75, 0.8, \ldots, 0.95\}$
EVALUATION (VARY MODE PROBABILITIES)

Chernoff’s inequality vs MC

Convolution with re-sampling vs MC

→ 500 task sets
→ Shape: \(C_i = \left(\begin{array}{c} c \\ 0.5 \\ 0.5 \end{array} \right) \)

→ Cardinality: \(n \in \{5,10,…,50\} \)
→ Utilization: \(u \in \{0.75,0.8,…,0.95\} \)
EVALUATION (VARY MODE PROBABILITIES)

\[\mathcal{C}_i = \left(\begin{array}{c} c \\ 0.5 \\ 0.5 \end{array} \right) \]

\[\rightarrow 500 \text{ task sets} \]

\[\rightarrow \text{Shape: } \mathcal{C}_i = \left(\begin{array}{c} c \\ 0.5 \\ 0.5 \end{array} \right) \]

\[\rightarrow \text{Cardinality: } n \in \{5, 10, \ldots, 50\} \]

\[\rightarrow \text{Utilization: } u \in \{0.75, 0.8, \ldots, 0.95\} \]
EVALUATION (VARY MODE PROBABILITIES)

Chernoff’s inequality vs MC

Convolution with re-sampling vs MC

→ 500 task sets
→ Shape: $C_i = \begin{pmatrix} c & 4c \\ 0.5 & 0.5 \end{pmatrix}$
→ Cardinality: $n \in \{5,10,\ldots,50\}$
→ Utilization: $u \in \{0.75,0.8,\ldots,0.95\}$
EVALUATION (VARY MODE PROBABILITIES)

\[C_i = (c^{4c} 0.5^{0.5}) \]

\[\rightarrow \] 500 task sets

\[\rightarrow \] Shape: \(C_i = (c^{4c} 0.5^{0.5}) \)

\[\rightarrow \] Cardinality: \(n \in \{5, 10, \ldots, 50\} \)

\[\rightarrow \] Utilization: \(u \in \{0.75, 0.8, \ldots, 0.95\} \)
EVALUATION (VARY NUMBER OF MODES)

\[C_i = \left(\begin{array}{cccc} c & 2c & 4c & 6c \\ 0.93 & 0.04 & 0.02 & 0.01 \end{array} \right) \]

\[\text{Shape: } C_i \]

500 task sets

→ 500 task sets

→ Shape: \(C_i \) = \(\begin{pmatrix} c \\ 0.93 \\ 2c \\ 0.04 \\ 4c \\ 0.02 \\ 6c \\ 0.01 \end{pmatrix} \)

Cardinality: \(n \in \{5, 10, \ldots, 50\} \)

→ Cardinality: \(n \in \{5, 10, \ldots, 50\} \)

Utilization: \(u \in \{0.75, 0.8, \ldots, 0.95\} \)

→ Utilization: \(u \in \{0.75, 0.8, \ldots, 0.95\} \)
EVALUATION (VARY NUMBER OF MODES)

→ 500 task sets
→ Shape: $C_i = \begin{pmatrix} c & 2c & 4c & 6c \\ 0.93 & 0.04 & 0.02 & 0.01 \end{pmatrix}$

→ Cardinality: $n \in \{5, 10, \ldots, 50\}$
→ Utilization: $u \in \{0.75, 0.8, \ldots, 0.95\}$
CONCLUSION

Monte Carlo techniques can be used to great effect in RTS

→ Try to apply Monte Carlo techniques to your favourite (unsolved) problem

Application of Monte Carlo techniques for WCDFP estimation:

→ Less sensitive to input parameters than state-of-the-art
→ Easy parameter tuning
→ In most cases outperforms state-of-the-art approaches